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Abstract. The purpose of this short article is to prove a product formula
relating the log Gromov–Witten invariants of V ×W with those of V and W
in the case the log structure on V is trivial.

0. Introduction.

Product formulas in the literature of Gromov–Witten (GW) theory started with [15]

for the genus zero Gromov–Witten invariants. It was soon generalized in [8] to (absolute)

GW invariants in any genus. There is also an orbifold version in [7]. In this paper, we

extend the product formula to the setting of relative GW theory or more generally log

GW theory.

The absolute Gromov–Witten theory studies the intersection theory on the moduli

stacks of stable maps Mg,n(X,β) from an n-pointed curve with arithmetic genus g to a

fixed nonsingular projective variety X with a fixed degree β in the Mori cone NE(X) of

effective curves in X

f : (C, x1, x2, . . . , xn) → X, such that f∗([C]) = β.

For notational convenience, we denote such a class by [f ]. Intuitively, GW invariants

count the numbers of curves passing through n fixed cycles α1, . . . , αn in X with the

above given conditions. To put it on a mathematically sound setting, one defines the

invariants as intersection numbers on Mg,n(X,β) in the following way. By the functorial

properties of the moduli stacks, there are the evaluation morphisms

evi : Mg,n(X,β) → X, i = 1, . . . , n,

and stabilization morphism

π : Mg,n(X,β) → Mg,n,

where Mg,n is the moduli stack of stable genus g, n-pointed curves and

evi([f ]) = f(xi) ∈ X, π([f ]) = [(C, x1, x2, . . . , xn)] ∈ Mg,n,

where C is the stabilization of the source curve C. The GW invariants can be defined as
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[Mg,n(X,β)]vir

π∗(γ)
∏
i

ev∗i (αi),

where [Mg,n(X,β)]vir is the virtual fundamental class. One can rephrase these invariants

in terms of the cohomological field theory

RX
g,n,β : H

∗(X)⊗n → H∗(Mg,n)

via ∫
[Mg,n(X,β)]vir

π∗(γ)
∏
i

ev∗i (αi) =

∫
Mg,n

γ.RX
g,n,β(

∏
i

αi).

The details can be found in [8] and references therein.

Intuitively, the relative invariants as defined in [17] and [18] can be considered as

refined counting. Let (X,D) be a pair consisting of a nonsingular projective variety X

and a smooth divisor D in X. If the curve C does not lie in D, it intersects with D at ρ

points with multiplicities µ1, . . . , µρ such that∑
j

µj =

∫
β

[D].

The refined counting is to fix the profile (µ1, . . . , µρ) and constraint the ρ points to lie in

chosen cycles {δj} in D. Similarly, one can define the relative invariants as intersection

numbers on relative moduli stacks as above. See [18] and [17] for details. There is also

a similar reformulation in terms of cohomological field theory. See Section 4.

The divisor D in X gives rise to a divisorial log structure on X. Recently relative

invariants have been generalized to the setting of log GW ([2], [9], [13]). See Section 1

for a brief summary of log geometry and log GW theory.

In a sense, the study of Gromov–Witten theory is the study of the virtual funda-

mental classes. The product formula is a statement that GW invariants of V and W

determine the invariants of V × W . See Equation (3). It can be written in the form

of certain functorial properties of virtual classes. In [8], K. Behrend proves a product

formula for absolute GW invariants by first establishing a corresponding functorial prop-

erty of virtual fundamental classes. In this note, we approach the product formula in the

relative and log settings in a similar way. The main results are Theorem 2.2 and Corol-

lary 4.1, which expresses the log/relative invariants of X× (Y,D) by invariants of X and

of (Y,D). The logarithmic approach to relative GW invariants of Abramovich–Chen and

Gross–Siebert ([2], [9], [13]) avoids the expanded degenerations of Li ([18]) and allows

us to adapt Behrend’s original proof, but it also presents new technical difficulties. We

were not able to prove the product formula in the general log setting and we have to

assume the log structure on one of the factors to be trivial. For the general case, see

Section 3 for some initial attempts and speculations.

This product formula could be useful in the study of Gromov–Witten theory, even

when no explicit product or log geometry is involved in the statement. For example, it

plays a role in proving the crepant transformation conjecture for ordinary flops with non-
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split vector bundles in [16]. There the degeneration technique is extensively employed

and the product formula is applied to treat fiber integrals which naturally occur in the

degeneration process.

1. Preliminaries.

1.1. Log geometry.

We work over the base log scheme SpecC with the trivial log structure. We refer to

[14, Sections 1-4] for general background on log structures on schemes, and [22, Section 5]

for log stacks. For the reader’s convenience, we recall the basic properties we need about

Olsson’s Log stack and saturated morphisms.

1.1.1. TorX .

Denote by LogSt the category of fine saturated (fs) log algebraic stacks, and St the

category of algebraic stacks. 1

For a fs log stack X, TorX is introduced in [22, Remark 5.26] to parametrize all fs

log schemes over X. It follows from the definition of TorX that a map S → X in LogSt

factors as S → TorX → X. We can view X as an open substack of TorX parametrizing

strict maps S → X. Note that TorX has a natural fs log structure so that the factorization

S → TorX above is strict, and TorX → X is log étale.

It is easy to check when X is log smooth, it is open dense in TorX . In particular if

X is log smooth and irreducible, TorX is irreducible.

Remark 1.1. Let Sch be the category of schemes over C, Grpd the category

of (small) groupoids. Recall a stack is a functor Sch → Grpd that satisfies certain

“sheaf” condition. A log stack is a stack with a log structure, and a log structure can be

understood as a map from the stack to LogC.
It is more natural to describe a fs log moduli stack X by its functor of points than

specifying its underlying stack and log structure. As the Yoneda embedding for the (2,1)

category LogSt is fully faithful, an object X in LogSt is uniquely determined by:

homLogSt(−, X) : LogSch → Grpd.

Here the stack condition for X allows us to restrict homLogSt(−, X) from LogSt to its

full subcategory LogSch of fs log schemes.

Given a log moduli functor X : LogSch → Grpd such that it is isomorphic to

homLogSt(−, X) for some fs log stack X, one might recover X by considering the stack

TorX : Sch → Grpd which corresponds to TorX , then the underlying stack X of X is

the substack of TorX satisfying a minimal condition, and the log structure of X is the

restriction of the natural log structure on TorX. See [11] for details.

1.1.2. Saturated morphisms.

Definition 1.2. Let P,Q be saturated monoids, a map P → Q is saturated, if it

is integral and the push out of

1In a higher categorical sense. In other words, LogSt and St are 2-categories, or (2,1) categories.
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P //

��

Q

R

is saturated when R is saturated.

Definition 1.3. Let (X,MX), (Y,MY ) be fs log schemes, a map f : (X,MX) →
(Y,MY ) is called saturated, if for any x ∈ X, y = f(x), the induced map between char-

acteristics MY,ȳ → MX,x̄ is saturated.

Remark 1.4. Given the above definition, a saturated morphism between fs log

stacks can be defined locally with respect to the lisse-étale topology.

It follows from the definition that saturated morphisms satisfy the following prop-

erties:

• They are stable under composition and base change in LogSt.

• For a cartesian square

(W,MW ) //

��

(X,MX)

f

��
(Z,MZ) // (Y,MY )

in LogSt, when f is saturated, the underlying diagram of stacks

W //

��

X

��
Z // Y

is cartesian in St.

1.2. Log Gromov–Witten theory.

1.2.1. Log curves.

Let Mg,n (resp. Mg,n) be the algebraic stack of stable (resp. prestable) curves of

genus g with n marked points. The log structure of Mg,n is the divisorial log structure

associated with its boundary consisting of singular curves. The log structure of Mg,n is

determined from the smooth chart ⊔mMg,n+m → Mg,n, where the map from Mg,n+m →
Mg,n is forgetting the extra m marked points without stabilizing. We view Mg,n and

Mg,n as log stacks from now on using the same notation.

Note that the forgetful map Mg,n+1 → Mg,n is saturated, as it can be identified as

the universal log curve. This implies the stabilization map Mg,n → Mg,n is saturated.

1.2.2. Log stable maps.

For a projective log smooth scheme V , let Mg,n(V ) be the fs log stack parameterizing

stable log maps from log curves of genus g with n marked points (see [2], [4], [9], [13]
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for more details). For a fs log scheme S, a log map from S to Mg,n(V ) corresponds to a

stable log map:

C //

��

V

S .

(1)

We note that the underlying map of the diagram is a usual stable map.

A log map V → W induces a stabilization map Mg,n(V ) → Mg,n(W ). Given

S → Mg,n(V ) which corresponds to a diagram (1), the composition S → Mg,n(V ) →
Mg,n(W ) corresponds to

C //

��

W

S .

where the underlying map of C → W is the stabilization of the underlying map C →
V → W , and the log structure on C is the push forward of the log structure on C with

respect to the partial stabilization C → C. (See [5, appendix B].)

1.2.3. Perfect obstruction theories.

We have a natural log map Mg,n(V ) → Mg,n forgetting the map to V . As log

deformations for Mg,n(V ) → Mg,n is the same as deformations for the underlying map of

Mg,n(V ) → TorMg,n
, a (relative) perfect obstruction theory for the log map Mg,n(V ) →

Mg,n is by definition a perfect obstruction theory for the underlying map of Mg,n(V ) →
TorMg,n .

A perfect obstruction theory for Mg,n(V ) → Mg,n is defined in [13, Section 5],

tangent space and obstruction space at [f : C → V ] ∈ Mg,n(V ) are given by H0(f∗TV )

and H1(f∗TV ) respectively, where TV is the log tangent bundle of V.

If we have a factorization Mg,n(V ) → N → Mg,n, and N → Mg,n is log étale, a

perfect obstruction theory for Mg,n(V ) → Mg,n induces a perfect obstruction theory for

Mg,n(V ) → N since TorN → TorMg,n is étale.

2. Product formula in terms of virtual classes.

2.1. Setup.

We start by introducing relevant commutative diagrams, which are the log enhance-

ment of those in [8].

We define a fs log stack D by its functor of points. Given any fs log scheme S, a map

S → D corresponds to the data consisting of n-pointed prestable log curves C,C ′, C ′′ of

genus g over S, together with partial stabilizations p′ : C → C ′ and p′′ : C → C ′′, such

that no component of C is contracted by both p′, p′′. Note that as log curves over S, the

log structure of C ′ resp. C ′′ is given by the pushforward of the log structure of C along

p′ resp. p′′.
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Define e : D → Mg,n as the forgetful morphism taking (p′, p′′) to C. It is proved in

[8, Lemma 4] that the underlying map of e is étale. As e is strict, it is log étale.

We claim that the following commutative diagram is cartesian in LogSt,

Mg,n(V ×W ) //

��

Mg,n(V )× Mg,n(W )

��
D // Mg,n ×Mg,n

(2)

Here the top horizontal arrow is determined by stabilization maps Mg,n(V × W ) →
Mg,n(V ), Mg,n(V × W ) → Mg,n(W ) induced from the projections pr1 : V × W → V ,

pr2 : V ×W → W . The left vertical arrow is defined by retaining the curve together with

its partial stabilizations with respect to pr1, pr2.

The reason for the diagram being cartesian is essentially the same as that in [8,

Proposition 5]. For a fs log scheme S, a commutative diagram

S //

��

Mg,n(V )× Mg,n(W )

��
D // Mg,n ×Mg,n

corresponds to stable log maps C ′ → V,C ′′ → W over S, together with stabilization

between log curves C → C ′, C → C ′′. 2 This recovers a stable log map C → C ′ ×C ′′ →
V ×W . Indeed, D is constructed to make (2) cartesian.

We then extend the above cartesian diagram in LogSt to

Mg,n(V ×W )
h //

c

��

P //

��

Mg,n(V )× Mg,n(W )

a

��
D

l //

e

��

P
ϕ //

��

Mg,n ×Mg,n

��
Mg,n Mg,n

∆ // Mg,n ×Mg,n .

Here all squares are constructed by taking fiber product. If V and W have trivial log

structures, this reduces to Diagram (2) of [8].

Definition 2.1. We say that the product formula (of virtual fundamental classes)

holds for V and W if

h∗([Mg,n(V ×W )]vir) = ∆!([Mg,n(V )]vir × [Mg,n(W )]vir). (3)

In [8], Behrend showed that the product formula holds for V and W when V and

W are smooth projective schemes, or log smooth schemes with trivial log structures, our

2Note that Mg,n(V )(S) → Mg,n(S) and Mg,n(W )(S) → Mg,n(S) are iso-fibrations of groupoids.
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goal of this paper is to extend his result to the case when W has nontrivial log structure.

2.2. Product formula in log GW theory.

When W has nontrivial log structure, we factor

a : Mg,n(V )× Mg,n(W ) → Mg,n ×Mg,n

into

Mg,n(V )× Mg,n(W )
a′

→ Mg,n × TorMg,n → Mg,n ×Mg,n.

We then have the following commutative diagram in which all squares are cartesian in

LogSt,

Mg,n(V ×W )
h //

c′

��

P //

��

Mg,n(V )× Mg,n(W )

a′

��
D′ l′ //

��

P′ ϕ′
//

��

Mg,n × TorMg,n

��
D

l //

��

P
ϕ //

��

Mg,n ×Mg,n

��
Mg,n Mg,n

∆ // Mg,n ×Mg,n .

(4)

Main Lemma. (I) The underlying square diagrams in St are all cartesian.

(II) The relative perfect obstruction theories for a′ and c′ are compatible.

(III) D′,P′ are irreducible, and l′ is of degree 1.

(IV) ϕ′ is a l.c.i. and is compatible with ∆ in the sense that the cotangent complex L∆

pulls back to Lϕ′ .

Theorem 2.2. Using the notations in (4), we have

h∗([Mg,n(V ×W )]vir) = ∆!([Mg,n(V )]vir × [Mg,n(W )]vir)

in the log GW setting, assuming the trivial log structure on V .

Proof. We have virtual pullbacks c′!, a′!, ϕ′!, and ∆!. (See [19, Section 3.1])

For the upper left square of diagram (4), we have

h∗([Mg,n(V ×W )]vir) = a′![P′],

by (II), (III), and Costello’s pushforward theorem [10, Theorem 5.0.1].

For the upper right square of diagram (4), note that ϕ′!([Mg,n]× [TorMg,n ]) equals

[P′], and a′!([Mg,n] × [TorMg,n ]) is [Mg,n(V )]vir × [Mg,n(W )]vir. By [19, Theorem 4.3],
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we know that a′!ϕ′! = ϕ′!a′!, so

a′![P′] = ϕ′!([Mg,n(V )]vir × [Mg,n(W )]vir).

Now (IV) gives

ϕ′!([Mg,n(V )]vir × [Mg,n(W )]vir]) = ∆!([Mg,n(V )]vir × [Mg,n(W )]vir),

and we can complete the proof by combining these equations. □

2.3. Proof of Main Lemma.

(I). As a′ is strict, the first row of squares are cartesian. Since Mg,n → Mg,n is

saturated, the bottom square is cartesian.

For the second row, to prove the two squares are cartesian is the same as showing

the squares in the following diagram are cartesian in St.

D′ l′ //

��

P′ pr2◦ϕ
′
//

��

TorMg,n

��
D

l // P
pr2◦ϕ //// Mg,n.

(5)

We claim that l ◦pr2 ◦ϕ and pr2 ◦ϕ are both saturated. l ◦pr2 ◦ϕ is saturated because a

partial stabilization map locally is given by forgetting marked points. (See the proof of

[8, Proposition 3]. What we need is that Diagram (4) there to be commutative.) pr2 ◦ ϕ
is saturated as it is the base change by Mg.n → Mg,n

P
pr2◦ϕ //

��

Mg,n

��
Mg.n

// Mg,n.

Thus, both squares in (5) are cartesian.

(II). We remark that as TorMg,n → Mg,n is log étale, D′ is log étale over D.

Thus the relative perfect obstruction theory for the log map Mg,n(V × W ) → Mg,n

can be viewed as a relative perfect obstruction theory for the underlying map of c′.

Compatibility check is the same as in [8, Propsition 6].

(III). Start with Diagram (5). The open embedding Mg,n → TorMg,n induces

D
l //

��

P
pr2◦ϕ //

��

Mg,n

��
D′ l′ //

��

P′ pr2◦ϕ
′
//

��

TorMg,n

��
D

l // P
pr2◦ϕ // Mg,n .

(6)
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Mg,n being log smooth, it is open and dense in TorMg,n . Note that both pr2 ◦ϕ, l◦pr2 ◦ϕ
are flat surjective, we conclude D(resp. P) are open dense substacks of D′ (resp. P′).

(III) then follows from properties of D,P and l. (See [8, Proposition 3]).

(IV). We factor Mg,n × TorMg,n → Mg,n ×Mg,n into

Mg,n × TorMg,n → Mg,n × TorMg,n → Mg,n × TorMg,n
→ Mg,n ×Mg,n.

First arrow is saturated and flat, and second arrow strict and smooth.

For the third arrow, note that

TorMg,n

//

��

Mg,n × TorMg,n

��
Mg,n

∆ // Mg,n ×Mg,n

is cartesian in LogSt as well as in St, and horizontal arrows are compatible l.c.i. maps.

It is then easy to see ϕ′ and ∆ are compatible.

2.4. Product formula for families.

As we need the product formula for equivariant invariants in [16], we will adapt the

arguments above to families.

Let X → S and Y → T be two families of log smooth projective varieties over

log smooth and irreducible bases. We would like to relate GW invariants of the family

X × Y → S × T to those of X → S and Y → T .

Denote by Mg,n(X/S),Mg,n(Y/T ),Mg,n(X×Y/S×T ) log stacks of stable log maps

from genus g curves with n marked points to these families.

Remark 2.3. Let X → S be a family of log smooth projective varieties over a log

stack S. As a cartesian diagram

X ′ //

��

X

��
S′ // S

in LogSt induces a cartesian diagram

Mg,n(X
′/S′) //

��

Mg,n(X/S)

��
S′ // S

in LogSt. It follows that Mg,n(X/S) is an algebraic stack locally of finite type over S

by [13, Theorem 0.1].

It is easy to see we have a cartesian diagram in LogSt
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Mg,n(X × Y/S × T ) //

��

Mg,n(X/S)× Mg,n(Y/T )

��
D // Mg,n ×Mg,n ,

and we consider the diagram

Mg,n(X × Y/S × T )
h //

c

��

P //

��

Mg,n(X/S)× Mg,n(Y/T )

a

��
D

l //

e

��

P
ϕ //

��

Mg,n ×Mg,n

��
Mg,n Mg,n

∆ // Mg,n ×Mg,n .

as before.

Theorem 2.4. Let X → S be a family of smooth projective varieties over a smooth,

pure dimensional stack S, and Y → T a family of log smooth projective varieties over a

stack T which is log smooth and irreducible.

Then we have

h∗([Mg,n(X × Y/S × T )]vir) = ∆!([Mg,n(X/S)]vir × [Mg,n(Y/T )]
vir)

Proof. Consider the cartesian diagram in LogSt,

Mg,n(X × Y/S × T ) //

��

Mg,n(X/S)× Mg,n(Y/T )

��
D× (S × T ) //

��

(Mg,n × S)× (Mg,n × T )

��
D // Mg,n ×Mg,n .

As T is log smooth, TorMg,n×T → TorMg,n is smooth, the perfect obstruction theory for

Mg,n(Y/T ) → Mg,n × T then induces a perfect obstruction theory for the composition

Mg,n(Y/T ) → Mg,n × T → Mg,n

by the arguments in [12, Appendix B]. Similarly, we have a perfect obstruction theory

for

Mg,n(X/S) → Mg,n × S → Mg,n,

and

Mg,n(X × Y/S × T ) → D× (S × T ) → D
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Now we are in the same situation as in Section 2.2, identical arguments finish the proof.

Note that (II) follows from standard properties of cotangent complexes of algebraic stacks.

□

3. Remarks for the general case.

3.1. When V has nontrivial log structure, we might consider factoring a by

Mg,n(V )× Mg,n(W ) → TorMg,n ×TorMg,n .

In this case, the underlying diagram of

TorMg,n
×Mg,n

TorMg,n

//

��

TorMg,n
×TorMg,n

��
Mg,n

∆ // Mg,n ×Mg,n

is no longer cartesian in St. If it is true that Mg,n(V ) → Mg,n is saturated, we can

replace TorMg,n by its open substack parameterizing saturated maps and the argument

we used can be adapted to this more general setting.

However, the map Mg,n(V ) → Mg,n is not even integral in general, and further

understanding concerning the log structure of Mg,n(V ) seems necessary.

3.2. To prove the product formula holds for V and W , we can assume V and W

are smooth and log smooth. This is achieved by using desingularizations of log smooth

schemes and invariance of virtual classes under certain log modifications.

By [20, Theorem 5.10], for any log smooth variety X, there exists a log blow up

π : Y → X such that Y is smooth, log smooth and π is birational. In particular, π is

proper, birational, and log étale.

Lemma 3.1. Let Φ: Ṽ → V and Ψ: W̃ → W be proper, birational, log étale maps

between log smooth projective varieties. If the product formula holds for Ṽ and W̃ , then

it holds for V and W .

Proof. Consider the diagram

Mg,n(Ṽ × W̃ )

h̃

))

M (Φ×Ψ)

$$

P̃ //

��

Mg,n(Ṽ )× Mg,n(W̃ )

M (Φ)×M (Ψ)

��
Mg,n(V ×W )

h // P //

��

Mg,n(V )× Mg,n(W )

��
Mg,n

∆ // Mg,n ×Mg,n ,
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where

M (Φ): Mg,n(Ṽ ) → M (V ),

M (Ψ): Mg,n(W̃ ) → M (W ),

and

M (Ψ×Ψ): Mg,n(Ṽ × W̃ ) → M (V ×W )

are maps between moduli stacks induced by Φ,Ψ and Φ×Ψ respectively.

As Φ is proper, birational, log étale, by [6, Theorem 1.1.1],

M (Φ)∗[Mg,n(Ṽ )]vir = [Mg,n(V )]vir.

Similarly, we have

M (Ψ)∗[Mg,n(W̃ )]vir = [Mg,n(W )]vir,

and

M (Ψ×Ψ)∗[Mg,n(Ṽ × W̃ )]vir = [M (V ×W )]vir.

Now pushforwarding the relation

h̃∗[Mg,n(Ṽ × W̃ )]vir = ∆!([Mg,n(Ṽ )]vir × [Mg,n(W̃ )]vir)

along P̃ → P gives

h∗([Mg,n(V ×W )]vir) = ∆!([Mg,n(V )]vir × [Mg,n(W )]vir). □

Remark 3.2. Let V be a smooth projective variety with log structure coming

from a simple normal crossing divisor ∪Di. Motivated by the results proved in [1], [5],

we expect that genus zero log GW invariants of V are related to orbifold GW invariants

of root stacks V ( r
√
Di). If this naive expectation is valid, then the product formula for

orbifolds proved in [7] would imply the product formula of log GW invariants in genus

zero.

4. Applications to relative Gromov–Witten invariants.

We apply this to the relative GW invariants as defined by Li and Ruan [17], and Li

[18].

Let X and Y be nonsingular projective varieties, and D a smooth divisor in Y . We

further assume H1(Y ) = 0, so a curve class of X × Y is of the form (βX , βY ) where βX

(resp. βY ) is a curve class of X (resp. Y ).

Let MΓY
(Y,D) be the relative moduli stack. Here ΓY = (g, n, βY , ρ, µ) encodes the

discrete data: g for the genus, n+ρ for the number of marked points, βY the curve class,

µ = (µ1, ...µρ) an ordered partition of
∫
βY

[D].

We have evaluation maps
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evY : MΓY
(Y,D) → Y n, evD : MΓY

(Y,D) → Dρ

and the stabilization map

π : MΓY
(Y,D) → Mg,n+ρ.

Relative GW invariants can be viewed as the Gromov–Witten transformation

RΓY
: H∗(Y )⊗n ⊗H∗(D)⊗ρ → H∗(Mg,n+ρ)

defined as

PD
(
π∗

(
ev∗Y (α)ev

∗
D(δ) ∩ [MΓY (Y,D)]vir

))
,

where PD stands for the Poincaré duality.

Let ΓX×Y = (g, n, (βX , βY ), ρ, µ). Similarly we have

RΓX×Y
: H∗(X × Y )⊗n ⊗H∗(X ×D)⊗ρ → H∗(Mg,n+ρ).

Let ΓX = (g, n+ ρ, βX). The map

RΓX : H∗(X)⊗(n+ρ) → H∗(Mg,n+ρ)

is the Gromov–Witten correspondence RX
g,n+ρ,βX

, defining a cohomological field theory.

Corollary 4.1.

RΓX×Y
((α1 ⊗ α′

1)⊗ ...⊗ ((αn ⊗ α′
n)); (αn+1 ⊗ δ1)⊗ ...⊗ ((αn+ρ ⊗ δρ))

=RΓX (α1 ⊗ ...⊗ αn+ρ)RΓY (α
′
1 ⊗ ...⊗ α′

n; δ1 ⊗ ...⊗ δρ),

where αi ∈ H∗(X), α′
i ∈ H∗(Y ) and δj ∈ H∗(D).

Proof. This follows directly from Theorem 2.2 and the comparison result between

relative and log GW invariants in [5, Theorem 1.1, Section 2.3]. □
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