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Introduction.

Recently, S. S. Rangachari [4], considered Artin’s L-functions as an analogy
of Hasse’s zeta-function, for the algebraic curves uniformized by modular
functions belonging to congruence subgroups. He proved, in certain cases,
that Artin’s L-function can be expressed as a product of Dirichlet series, cor-
responding to cusp forms of degree 2, obtained by Hecke [3]. On the other
hand G. Shimura [7] proved that Hasse’s conjecture is also true for algebraic
curves uniformized by automorphic functions belonging to an indefinite qua-
ternion algebra. Argebraic curves of this type include the curves treated by
Rangachari as special case. In this paper, we consider Artin’s L-functions
for those curves.

Our principal result is as follows. Let $\Phi$ be an indefinite quaternion
algebra over the rational number field $Q,$ $\mathfrak{o}$ be a maximal order in $\Phi$ . For a
positive integer $N$ prime to the discriminant $d(\Phi)$ of $\Phi$ , we denote by $\Gamma$ and
$\Gamma_{N}$ , respectively, the group of units in $0$ with positive reduced norm and its
subgroup consisting of elements such that $\gamma\equiv 1mod N$. As $\Phi$ has a faithfull
representation by real matrices of degree 2, $\Gamma$ and $\Gamma_{N}$ are considered as
Fuchsian groups on the upper half plane $\mathfrak{H}$ . We can find an algebraic curve
$\mathfrak{L}_{N}$ defined over $Q$ , whose function field is the field of automorphic functions
with respect to the group $\Gamma_{N}$ . Let $\rho_{1}$ be an absolutely irreducible representa-
tion of the group $\Gamma/\Gamma_{N}=G$ contained in the analytic representation of $G$ on
the jacobian variety of $\mathfrak{L}_{N}$ . Considering $G$ as a subgroup of the group $\Omega$

$=GL(2,Z/NZ)/\{\pm 1\}$ , we denote by $\{\rho_{1}, \cdots , \rho_{r}\}$ the set of all inequivalent con-
jugate representations of $\rho_{1}$ relative to $\Omega$ . Put $\deg\rho_{1}=m$ and $\chi=x_{1}+\cdots+x_{r}$

with $\chi_{i}=tr\rho_{i}$ . Then our main theorem asserts that the m-th power of Artin’s
L-function $L(\chi s)^{m}$ defined for the curves can be expressed as a product of
Dirichlet series obtained from the representation of modular correspondences
by automorphic cusp forms of type $(\Gamma, \rho, 2)$ which are considered in [8].

Therefore, such a power $L(\chi s)^{m}$ is meromorphic on the whole s-plane and
satisfies a functional equation (Theorem 1). Further we prove that, if the
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above $\chi$ is a simple character of the group $\Omega$ , then Artin’s L-function $L(\mathcal{X}, s)$

itself can be expressed by such Dirichlet series with functional equation
(Theorem 2).

In \S 1, we recall some definitions and results on automorphic functions
with respect to a discontinuous group obtained from an indefinite quaternion
algebra (cf. [7]). The definition of Hecke operators in [7] and [8] are slightly
different from each other, though they are of course essentially the same.
The definition in [7] is given in connection with the congruence relation.
while that of [8] is convenient for proving the functional equation. We
study in \S 2, the relation between these two definitions of Hecke operators.
In \S 3, we define the global Artin’s L-function. Using [8, Theorem 1] and
the fact that the analytic representations of modular correspondences on the
jacobian variety are equivalent to the representations in the vector space of
cusp forms, we get our principal results.

Here I wish my hearty thanks to Professor G. Shimura for his kind and
valuable suggestions.

Throughout the present paper we use the same notations and terminologies,
as in [7].

\S 1. Preliminaries.

We denote by $\mathfrak{H}$ the complex upper half plane $\{z\in C|{\rm Im}(z)>0\}$ . For

every $x=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in M_{2}(R)$ with $\det(x)>0$ and for every $z\in \mathfrak{H}$, we put

$x[z]=\frac{az+b}{cz+d}$ , $j(x, z)=cz+d$ .

Let $\Phi$ be an indefinite quaternion algebra over $Q$ and $0$ be a maximal
order in $\Phi$ . As $\Phi\otimes_{Q}R$ is isomorphic to $M_{2}(R)$, we can fix an injection of $\Phi$

into $M_{2}(R)$ and consider $\Phi$ as subring of $M_{2}(R)$ . If we denote by $N(\alpha)$ the
reduced norm of an element $\alpha$ of $\Phi$ , then $N(\alpha)$ is equal to the determinant
of $\alpha$ considered as an element of $M_{2}(R)$ , therefore, if $N(\alpha)>0$ for an element
$\alpha$ of $\Phi,$ $\alpha[z]$ has a meaning. Denote by $\Gamma$ the group composed of all units
in $0$ such that $N(\gamma)=1$ . For any two sided o-ideal $\mathfrak{a}$ , let $\Gamma_{\alpha}$ be the subgroup
of $\Gamma$ consisting of elements $\gamma$ satisfying $\gamma\equiv 1mod \mathfrak{a}$ . Then $\Gamma$ and $\Gamma_{\alpha}$ are
Fuchsian groups on $\mathfrak{H}$, if we consider them as subgroup of $SL(2, R)$ .

For every $z\in \mathfrak{H}$, we denote by $9(z)=(A_{z}, C_{z}, \theta_{z})$ the polarized abelian va-
riety of type $0$ with the abelian variety $A_{z}$ , the polarization $C_{z}$ , and the homo-
morphism $\theta_{z}$ of $\mathfrak{o}$ into $d(A_{z})$ considered in $[6, 7]$ . There exist a set of mero-
morphic functions $f_{1}(z),$ $\cdots$ , $f_{m}(z)$ on $\mathfrak{H}$ and a discrete subset $\mathfrak{W}$ of $\mathfrak{H}$ such that
the field of moduli of $\mathscr{L}(z)$ are given by

$K_{1}=K_{1,z}=Q(f_{1}(z), \cdots ,f_{m}(z))$ for every $z\in \mathfrak{H}-\mathfrak{W}$ ,
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and the function field
$\theta(0)=C(f_{1}, \cdots,f_{m})$

is the field of automorphic functions on $\mathfrak{H}$ with respect to $\Gamma$ .
Let (V, h) be a normalized Kummer variety of $9^{)}(z)$ . We put

$\mathfrak{g}(\mathfrak{a}, A_{z})=$ { $t\in A_{z}|\theta_{z}(\alpha)t=0$ for all $\alpha\in \mathfrak{a}$ }.

Denote by $K_{\alpha}=K_{\alpha z}$ the field generated over $K_{1}$ by the points $h(t)$ for $t\in \mathfrak{g}(\mathfrak{a}, A_{z})_{-}$

The extension $K_{a}/K_{1}$ does not depend on the choice of (V, h) and is normal.
Furthermore there exist meromorphic functions $g_{1},$ $\cdots$ , $g_{M}$ on $\mathfrak{H}$ such that

$K_{a}=K_{az}=Q(f_{1}(z), \cdots ,f_{m}(z), g_{1}(z), \cdots , g_{M}(z))$ for $z\in \mathfrak{H}-\mathfrak{W}$ ‘ ,

where $\mathfrak{W}^{\prime}$ is a certain countably infinite subset of $\mathfrak{H}$ containing $\mathfrak{W}$ ; and the
function field

$\beta\S(0;\mathfrak{a})=C(f_{1}, \cdots,f_{m}, g_{1}, \cdots, g_{M})$

is the field of automorphic functions on $\mathfrak{H}$ with respect to $\Gamma_{\alpha}$ .
By Theorem 2 of [7], the galois group of $K_{\alpha}/K_{1}$ is isomorphic to $G_{\alpha}/\{\pm 1\}$ ,

where $G_{\alpha}$ is the group of all regular elements in $0/a$ . If $\mathfrak{a}$ is prime to the
discriminant $d(\Phi)$ of $\Phi,$ $\mathfrak{a}$ is written in the form $\mathfrak{a}=No$ for a positive integer
$N$ prime to $d(\Phi)$ ; and $G_{a}$ is isomorphic to the group $GL(2, Z/NZ)$ of all re-
$gularelementsinM_{2}(Z/NZ)$ . LetHbe the subgroup of GL(2, Z/NZ)defined by

$H=\{\left(\begin{array}{l}0a\\0\pm 1\end{array}\right)|a\in Z$ , $(a, N)=1\}$ .

Denote by $L_{N}$ the subfield of $K_{\alpha}$ corresponding to the subgroup $H$ Let $\mathfrak{L}_{N}$

be an algebraic curve, complete and without singularities, having a generic
point $u$ over $Q$ such that $Q(u)=L_{N}$ , and $J_{N}$ be a jacobian variety of $\mathfrak{L}_{N}$ , de-
fined over $Q$ .

For every left o-ideal $q$ with $N(q)=q$, let $X_{q}$ be the modular correspond-
ence of $\mathfrak{L}_{N}$ associated with $q$ . For every integer $n$ prime to $N$, let $\tau_{n}$ be the
automorphism of $K_{\alpha}$ corresponding the element $n$ of $G_{\mathfrak{a}}$ , and $Y_{n}$ be the locus.

of $u\times u^{\tau_{n}}$ over $Q$ on $\mathfrak{L}_{N}\times \mathfrak{L}_{N}[5$ , \S 4.3$]$ . Put $\psi=\left(\begin{array}{ll}0 & 1\\-l & 0\end{array}\right)$ . Denote by $Z$ the

locus of $u\times u^{\psi}$ over $Q(\zeta_{N})$ , when $\zeta_{N}=e^{2\pi i/N}$ . Let $\xi_{p},$
$\eta_{p},$

$\zeta$ be the endomorphism
of $J_{N}$ determined by $X_{p},$ $Y_{p},$ $Z$ respectively.

When an algebraic geometric object $U$ is defined over the field $k$ with a
place $P$ ; we denote by $P(U)$ or $\tilde{U}$ the reduction of $Umod$ P. $NowJ_{N}$ is with-
out defect for almost all $p$ , and $\tilde{J}_{N}$ is a jacobian variety of $\mathfrak{L}_{N}\sim$ ; for such a
$p$ we have the congruence relations

$\tilde{\xi}_{p}=\pi_{p}+\pi_{p}^{\prime}\circ\eta\sim_{p}$

(1)
$\pi_{p^{o}}^{\prime}\eta=\zeta\circ\pi_{p}^{\prime}\circ\zeta\sim_{p}\sim_{-1}\sim$
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where $\pi_{p}$ denotes the p-th power endomorphism of $J_{N}$ and $\pi_{p}^{\prime}=p\cdot\pi_{p}^{-1}$ .
By a representation of a group, we always understand a representation

iby complex matrices or in a complex vector space. The following lemma is
well known [1].

LEMMA 1. Let $\Omega$ be a finite group and $G$ be a normal subgroup of S2.
Then the following assertions hold.
i) If $\rho$ is an irreducible representation of $\Omega$ , then the representation $\beta q$ of $G$

obtained by restricting $\rho$ to $G$ is either itself irreducible or is fully reducible into
irreducible components all of which are of the same degree and of the same
multiplicities.
ii) If $\sigma$ is an irreducible component of $\rho_{G}$ , then any other irreducible component
$\sigma^{\prime}$ of $\rho_{G}$ is a conjugate of $\sigma$ relative to S2; namely there exists an element $\omega$ of
$\Omega$ such that $\sigma^{\prime}(\gamma)=\sigma(\omega\gamma\omega^{-1})$ for $\gamma\in G$ ; conversely, every $\sigma^{\prime}$ obtained from $\sigma$ in
this manner is an irreducible component of $\rho_{G}$ .
iii) Any irreducible representation of $G$ can be obtained as an irreducible com-
ponent of $\Omega$ .

\S 2. Analytic representation of modular correspondences.

Let $\mathfrak{a}=No$ ($N$ ; positive integer) be a two-sided o-ideal, such that $N$ is
prime to the discriminant $d(\Phi)$ of $\Phi$ . Denote by $\Delta_{N}$ the set of all elements $\alpha$

in $0$ such that $N(\alpha)$ is positive and prime to $N$ Hereafter we denote $\Gamma_{\alpha}$ by $\Gamma_{N}$ .
We call a complex valued holomorphic function $f(z)$ on $\mathfrak{H}$ a cusp form of

degree 2 with respect to $\Gamma_{N}$ , if
(i) $f(\gamma[z])=j(r, z)^{2}f(z)$ for every $\gamma\in\Gamma_{N}$ ,

(ii) $f(z)$ vanishes at every cusp of $\Gamma_{N}$ .
We denote by $S(\Gamma_{N}, 2)$ the set of all such cusp forms.

For every $\alpha\in\Delta_{N}$, let $\Gamma_{N}\alpha\Gamma_{N}=\bigcup_{i=1}^{m}\Gamma_{N}\alpha_{i}$ be a disjoint expression. We define

the operators $\Gamma_{N}\alpha\Gamma_{N}(\alpha\in\Delta_{N})$ on $S(\Gamma_{N}, 2)$ by

(2) $f|(\Gamma_{N}\alpha\Gamma_{N})(z)=N(\alpha)\sum_{i=1}^{m}f(\alpha_{i}[z])j(\alpha_{i}, z)^{-2}$ .

If $\gamma\in\Gamma$ and $f(z)\in S(\Gamma_{N}, 2),$ $f(z)\rightarrow f(\gamma[z])j(\gamma, z)^{-2}$ gives an automorphism of
$S(\Gamma_{N}, 2)$ . We obtain thus a representation of $\Gamma$ in $S(\Gamma_{N}, 2)$ and this represen-
tation induces an analytic representation of the group $G=\Gamma/\Gamma_{N}$ on the jaco-

bian $varietyJ_{N}$ . In the expression $\Gamma_{N}\alpha\Gamma_{N}=\bigcup_{i\Leftarrow 1}^{m}\Gamma_{N}\alpha_{i}$ we can choose $\alpha_{i}$ so that

$\alpha_{i}\equiv\left(\begin{array}{ll}1 & 0\\0 & c\end{array}\right)mod N$ (cf. [7]). Using this fact, we can easily prove the following:

PROPOSITION 1. Let $\alpha$ be an element in $\Delta_{N}$ with $N(\alpha)\equiv qmod$ N. Then,

for every $\gamma\in\Gamma$ , we have

(3) $(\Gamma_{N}\alpha\Gamma_{N})Q(\Gamma_{N}\gamma\Gamma_{N})=(\Gamma_{N}\sigma_{q}\gamma\sigma_{q}^{-1}\Gamma_{N})\circ(\Gamma_{N}\alpha\Gamma_{N})$
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where $\circ$ means the product as operator and $\sigma_{q}$ denotes an element of $0$ such $that^{-}$

$\sigma_{q}\equiv\left(\begin{array}{ll}1 & 0\\0 & q\end{array}\right)mod N$.
Besides the group $G=\Gamma/\Gamma_{N}$ , we consider the group $ l2=GL(2;Z/NZ)/\{\pm 1\}.\rightarrow$

Since $G$ is isomorphic to $SL(2, Z/NZ)/\{\pm 1\}$ , we may consider $G$ as a norma).

subgroup of $\Omega$ . By Lemma 1, for any absolutely irreducible representation
$\rho_{1}$ of $G$ contained in the analytic representation of $G$ on $J_{N}$ , there exists $an_{t}$

irreducible representation $\rho$ of $\Omega$ such that $\rho$ is equivalent to the direct
sum of $\rho_{1},$ $\cdots,$ $\rho_{\gamma}$ with the same multiplicity $\kappa$ :

(4) $\rho\sim\kappa(\rho_{1}+ +\rho_{r})$

where $\rho_{1},$
$\cdots$ , $\rho_{r}$ are inequivalent representation of $G$ which are conjugates of

$\rho_{1}$ with respect to $\Omega$ (in the sense of Lemma 1, ii)). With this irreducible
representation $\rho$ of $\Omega$ , we shall consider the linear space defined by

$S(\Gamma, \rho, 2)=\{\mathfrak{f}(z)=\left(\begin{array}{l}f_{1}(z)\\\vdots\\ f_{u}(z)\end{array}\right)|^{f_{i}\in S(\Gamma,2)}$ ,

for $a11\gamma 1\leqq i\in\Gamma\leqq u,\}$

These vector functions $1(z)$ are nothing but the automorphic cusp forms of
$\cdot$

type $(\Gamma, \rho, 2)$ treated in [8]. Therefore we can define the operators $\Gamma\alpha\Gamma$

$(\alpha\in\Delta_{N})$ on this space after [8]. Namely, when $\Gamma\alpha\Gamma=\bigcup_{i=1}^{m}\Gamma\alpha_{i}(\alpha\in\Delta_{N})$ is a
disjoint sum we define

(5) $t|(\Gamma\alpha\Gamma)(z)=\sum_{i=1}^{m}\rho(\alpha_{i})^{-1}t(\alpha_{i}[z])j(\alpha_{i}, z)^{-2}$ $f\in S(\Gamma, \rho, 2)$ .

For every natural number $n$ , let $T(n)$ be the sum of $\Gamma\alpha\Gamma$ such that
$N(\alpha)=n$ . For a prime number $p$ not dividing $d(\Phi)$ , let $T(p^{\lambda},p^{\mu})$ denote the
operator $\Gamma\alpha\Gamma$ whose elementary divisor is $(p^{\lambda},p^{\mu})$ . Correspondingly, for every
natural number $n$ prime to $d(\Phi)N$, and for a prime number $p$ not dividing
$d(\Phi)N$, let $T(p^{\lambda},p^{\prime t} ; \mathfrak{a})$ and $T(n;\mathfrak{a})$ , respectively, the operator $\Gamma_{N}\alpha\Gamma_{N}$ such that
the elementary divisor of $\alpha$ is $(p^{\lambda},p^{\prime\lrcorner})$ and the sum of the operators $\Gamma_{N}\alpha\Gamma_{N}$

such that $N(\alpha)=n$ . We are now going to consider $\Gamma\alpha\Gamma,$ $T(n)$ and $T(p,p)$ as
the operators on $S(\Gamma, \rho, 2)$ , and $\Gamma_{N}\alpha\Gamma_{N},$ $T(n;\mathfrak{a})$ and $T(p,p;\mathfrak{a})$ as the operators
on $S(\Gamma_{N}, 2)$ . Then our purpose of this section is to obtain the representation
of $T(p;\mathfrak{a})$ and of $T(p,p;\mathfrak{a})$ on the representation space of $\rho_{1}+\cdots+\rho_{\gamma J}$ making
use of that of $T(p)$ and of $T(p,p)$ , respectively.

First we note that if $\Gamma_{N}\alpha\Gamma_{N}=\bigcup_{i=1}^{m}\Gamma_{N}\alpha(\alpha\in\Delta_{N})$ is a disjoint expression, then

$\Gamma\alpha\Gamma=\bigcup_{i=1}^{m}\Gamma\alpha_{i}$ is also a disjoint sum; furthermore we can choose $\alpha_{i}$ such that

$\alpha_{i}\equiv\left(\begin{array}{ll}1 & 0\\0 & q\end{array}\right)mod N$ with $q=N(\alpha)$ . When $\alpha$ runs over all the elements in $\Delta_{N^{-}}$

such that



94 S. KONNO

(6) $\alpha\equiv\left(\begin{array}{ll}1 & 0\\0 & q\end{array}\right)mod N$ ,

the set of all residue classes $\alpha mod N$ constitutes itself an abelian group.
Therefore, for suitably chosen characters $\epsilon_{1},$

$\cdots$ , $\epsilon_{u}(u=\deg\rho)$ of the group
\langle$Z/NZ)^{*}$ we may take the representation $\rho$ of $\Omega$ such that

(7) $\rho(\left(\begin{array}{ll}1 & 0\\0 & m\end{array}\right))=(\delta_{\mu\nu}\epsilon_{\nu}(m))$ $(m, N)=1$ , $(1 \leqq\nu, \mu\leqq u)$ .
On the other hand, as we can choose the representatives of $\Omega/G$ among the
elements of the form (6), we have, in view of (2)

(8) $f|(\Gamma\alpha\Gamma)=q^{-1}\left(\begin{array}{l}\epsilon_{1}(q)1f_{1}|(\Gamma_{N}\alpha\Gamma_{N})\\\vdots\\\epsilon_{u}(q^{-1})f_{u}|(\Gamma_{N}\alpha\Gamma_{N})\end{array}\right)-$ for $f=\left(\begin{array}{l}f_{1}\\\vdots\\ f_{u}\end{array}\right)\in S(\Gamma, \rho, 2)$ .

Let $\{f_{1}, \cdots , \mathfrak{f}_{s}\}$ be a basis of $S(\Gamma, \rho, 2)$, on which every operator $\Gamma\alpha\Gamma$

$(\alpha\in\Delta_{N})$ can be represented by diagonal matrix. Such a basis always exists
by virtue of Proposition 3.2 in [8]. Hence for every prime number $p$ not
dividing $d(\Phi)N$ we can find complex numbers $t_{\lambda}(p)$ and $t_{\lambda}(p,p)$ such that

(9) $7_{\nu}|T(p)=t_{\nu}(p)\mathfrak{s}_{\nu}$

$(1\leqq\nu\leqq s)$ .
(10) $\mathfrak{f}_{\nu}|T(p,p)=t_{\nu}(p,p)\mathfrak{f}_{\nu}$

Using (8) and (9), for every component $f_{k}^{(\nu\rangle}$ of $T_{\nu}$ we have

(11) $f_{k}^{(\nu)}|T(p;\mathfrak{a})=p\epsilon_{k}(p)t_{\nu}(p)f_{k}^{(\nu)}$ $(1 \leqq\nu\leqq s, 1\leqq k\leqq u)$ .

Let $\gamma$ be an element in $\Gamma$ such that $\gamma\equiv\left(\begin{array}{ll}p^{-1} & 0\\0 & p\end{array}\right)mod N$. It can be easily seen
from definitions

$f|(\Gamma_{N}pr\Gamma_{N})=f(\gamma[z])j(\gamma, z)^{2}$ for all $f\in S(\Gamma_{N},2)$ ,

$ T(p,p)=\Gamma p\gamma\Gamma$ .
As $p\gamma\equiv\left(\begin{array}{ll}1 & 0\\0 & p^{2}\end{array}\right)mod N$, we have by (8)

$f|T(p,p)=p^{-2}\left(\begin{array}{ll}\epsilon_{1}(p)2f_{1}|T(p, & p,\mathfrak{a})\\\vdots & \\\epsilon_{u}(p)^{-2}f_{u}|T(p, & p,a)\end{array}\right)J$ $f=\left(\begin{array}{l}f_{1}\\\vdots\\ f_{u}\end{array}\right)\in S(\Gamma, \rho, 2)$ .
Consequently, for every component $f_{k}^{(\nu)}$ of $f_{\nu}$ we obtain

(12) $f_{k}^{(\nu)}|T(p,p;\mathfrak{a})=p^{2}\epsilon_{k}(p)^{2}t_{\nu}(p,p)f_{k}^{(\mathcal{V})}$ $(1 \leqq\nu\leqq s, 1\leqq k\leqq u)$ .
Now consider $S(\Gamma_{N}, 2)$ as representation space of $\Gamma$ and decompose it into
irreducible subspaces. Let $\mathfrak{r}$ be the sum of all irreducible subspaces which
are equivalent to the representation space of $\rho_{i}$ for some $i$ . Then we can
choose a basis of $\prime t$ among the components $f_{k}^{(\nu)}$ of $f_{\nu}$ . Put $\deg\rho_{1}=m$ . Then
$u=\kappa mr$. Let $\{g_{1}, g_{\eta}\}$ be a basis of $\mathfrak{r}$ obtained in such a manner. Then,
for each $\mu,$ $g_{\mu}$ is equal to $f_{k}^{(\nu)}$ for some $\nu$ and $k$ . Now let $\mathfrak{g}$ be the column
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vector with components $g_{1},$ $\cdots$ , $g_{v}$ . Then the representation of $T(p;\mathfrak{a})$ and
$T(p, p;\mathfrak{a})$ with respect to $\mathfrak{g}$ are given as follows

(13) $\mathfrak{g}|T(p;a)=\left(\begin{array}{ll}p\epsilon_{i_{1}}(p)t_{\nu_{1}}(p). & 0\\0 & \dot{p}\epsilon_{i}(p)t_{\nu}(p)\end{array}\right)\mathfrak{g}$

and

(14) $t1|T(p,p;(\ddagger)=\left(\begin{array}{ll}p^{2}e_{i_{1}}(p)^{2}t_{\nu_{1}}(p,p) & 0\\0 & \dot{p}_{\mathcal{E}_{i}}^{2}(p)^{2}t_{\nu}(p,p)\end{array}\right)\mathfrak{g}$

where $i,,,,$ $\nu_{\ell}$ are determined by the relation $g_{\mu}=f_{k_{\mu}}^{(\nu_{\mu})}(1\leqq\mu\leqq v)$ .

\S 3. Artin’s $L$-functions.

Let $F$ be a cyclotomic field containing the values of all simple characters
$\iota of$ the group $G$ . Every element $\gamma$ of $G$ defines a birational transformation of

$\mathfrak{L}_{N}$, which gives rise to an element $\xi_{\gamma}$ of $d(J_{N})$ . Now we have to define an
l-adic representation $\mathfrak{M}_{l}$ and an analytic representation $\mathfrak{M}^{(l}$ for the elements
in $A(J_{N})\otimes_{Q}F$. Let $l$ be a prime number which decomposes completely in $F$ ;
we can consider $F$ as subfield of $Q_{\iota}$ . Let $M_{l}$ be an l-adic representation of
$d(J_{N})$ . We can extend $M_{l}$ to a representation of $d_{0}(J_{N})\otimes Q_{l}$ in a natural
manner, which we denote by $\mathfrak{M}_{\iota}$ . Let $M^{a}$ be an analytic representation of
$d(J_{N})$ . Every element $\alpha$ in $A(J_{N})\otimes_{Q}F$ can be written as;

$\alpha=\sum_{i}a_{i}\beta_{i}$
$a_{i}\in F$ , $\beta_{i}\in d(J_{N})$ .

Put then $\mathfrak{M}^{a}(\alpha)=\sum_{i}a_{i}M({}^{t}(\beta_{i})$ . Cleary, $\mathfrak{M}^{a}$ is a representation of $A(J_{N})\otimes F$.
By Theorem 2 of [7], the galois group of $K_{N}/K_{1}(\zeta_{N})(K_{N}=K_{\alpha})$ is isomorphic

to $G=\Gamma/\Gamma_{N}$ . Put $k=Q(\zeta_{N})$ . Let $\mathfrak{p}$ be a prime ideal of $k$ such that $\mathfrak{L}_{N}$ has
no defect. Let $u$ be the generic point of $\mathfrak{L}_{N}$ such that $Q(u)=L_{N}$ , and $\tilde{u}$ be a
generic point of $\mathfrak{p}(\mathfrak{L}_{N})$ over $kmod \mathfrak{p}$ . Then the specialization $u\rightarrow\tilde{u}$ ref. $\mathfrak{p}$ defines
a place of $K_{N}=k(u)$ . For almost all $\mathfrak{p},$ $\mathfrak{P}(K_{N})$ is a galois extension of $\mathfrak{P}(K_{1}(\zeta_{N}))$

whose galois group is (canonically) isomorphic to $G$ . For such a prime ideal
t) and for any simple character $\chi$ of $G$ , the local Artin’s L-function $L(\chi u;\mathfrak{p})$

hcan be defined (cf. [9]). We recall here some formulas, concerning this func-
tion $L(\chi u;\mathfrak{p})$ , which will be needed in the following discussions (cf. [4, 9]).

The reduction $mod \mathfrak{p}$ defines an isomorphism of $A_{0}(J_{N})\otimes F$ into $d_{0}(\tilde{J}_{N})\otimes F$ ;
denote by 2 the image of $\lambda$ by this isomorphism for any $\lambda$ in $d_{0}(J_{N})\otimes F$. We
$rCan$ choose an l-adic representation $\tilde{M}_{l}$ of $d_{0}(\tilde{J}_{N})$ in such a way that $\tilde{M}_{l}(\lambda)$

$=M_{l}(\tilde{J})$ for $\lambda\in d(J_{N})$ . We extend this representation $\tilde{M}_{l}$ to a representation
$\tilde{\mathfrak{M}}_{\iota}$ of $d_{0}(\tilde{J}_{N})\otimes Q_{l}$ in a natural manner. Then we have $\tilde{\mathfrak{Y}}\mathfrak{i}_{l}(\lambda)=\mathfrak{M}_{\iota}(\tilde{\lambda})$ for every
$\text{{\it \‘{A}}}\in d_{0}(J_{N})\otimes Q_{\iota}$ ; so we denote hereafter $\tilde{M}_{l}$ and $\tilde{\mathfrak{R}}l_{\iota}$ by $M_{l}$ and $M_{l}$ , respectively.
Now we have
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(15) $L(\chi u;\mathfrak{p})^{m}=\det(1-\mathfrak{M}_{\iota}(\check{\epsilon}_{\chi}\cdot\pi_{\mathfrak{p}})u)$ ,

where $m=\chi(1),$ $\pi_{\mathfrak{p}}$ is the $N(\mathfrak{p})$-th power endomorphism of $J_{N}$ , and

$\epsilon_{\chi}=\frac{m}{g}\sum_{\alpha\in c}\chi(\alpha^{-1})\xi_{\alpha}$ with $g=[G:e]$ .
Let $\chi_{1}\ldots\chi_{r}$ be distinct simple characters of $G$ with $\chi_{1}(1)=\cdots=\mathcal{X}_{\gamma}(1)=m$ ;

then the elements $\epsilon_{xi}=\frac{m}{g}\sum_{\alpha\in G}\chi_{i}(\alpha^{-1})\xi_{a}(1\leqq i\leqq r)$ are orthogonal idempotents.

If we put $\chi=x_{1}+\cdots+x_{r}$ and $\epsilon=\epsilon_{\chi 1}+\cdots+\epsilon_{xr}$ , we get

(16) $\prod_{i=1}^{r}L(\chi_{i}u;\mathfrak{p})^{m}=L(\chi u;\mathfrak{p})^{m}=\det(1-\mathfrak{M}_{l}(\tilde{\epsilon}\pi_{\mathfrak{p}})u)$ .

DEFINITION. Let $\chi$ be a character of the group $G$ . We define the globak
Artin’s L-function by

(17) $L(\chi s;K_{N}/K_{1}(\zeta_{N}))=\prod_{\mathfrak{p}}L(x, N(\mathfrak{p})^{-s};\mathfrak{p})$ ,

where the product
$\prod_{\mathfrak{p}}$ runs over all prime ideals $\mathfrak{p}$ in $k$ with a good property

discribed above.
Let $\rho$ and $\rho_{1},$

$\cdots$ , $\rho_{r}$ be the same as in the previous section. In the follow-
ing we shall consider the Artin’s L-functions with characters $\chi=\mathcal{X}_{1}+\cdots+\mathcal{X}_{r}$,
$\chi_{i}=tr\rho_{i}(1\leqq i\leqq r)$ . We also put

$e_{xi}=\frac{m}{g}\sum_{\alpha\in G}\chi_{i}(\alpha^{-1})\xi_{\alpha}$ and $\epsilon=\epsilon_{\chi_{1}}+\cdots+\epsilon_{xr}$ $(m=\deg\rho_{i})$ .

LEMMA 2. Let $\varphi_{n}$ be an automorphism of the field $k=Q(\zeta_{N})(\zeta_{N}=e^{\frac{2\pi i}{N}})$
}

such that $\zeta_{N}^{\varphi_{n}}=\zeta_{N}^{n}((n, N)=1)$ . Then for every $\gamma\in G$ , the locus of $(u\times u^{\gamma})^{\varphi_{n}}$ over
$Q$ is the locus of $u\times u^{\sigma_{n}^{-1}\gamma\iota r_{n}}$ over $Q$ , and hence

(18) $\xi_{\gamma^{n}}^{\varphi}=\xi_{\sigma_{n}^{-1}\gamma\sigma_{n}}$

where $\sigma_{n}$ denotes an element in $0$ such lhat $\sigma_{n}\equiv\left(\begin{array}{ll}1 & 0\\0 & n\end{array}\right)mod N$.
As the proof of this Lemma is the same as in [4], we omit it.
Let $d$( $J_{N}$ ; k) and $\llcorner fi(J_{N} ; Q)$ be, respectively, the sets of elements in $A(J_{N})|$

which are defined over $k$ and over $Q$ . The automorphism $\varphi_{n}$ of $k=Q(\zeta_{N})\{$

gives an automorphism of $d(J_{N} ; k)$ ; this can be extended to an automorphism
of $d_{0}(J_{N} ; k)\otimes F$ by putting

$(\sum_{i}a_{i}\lambda_{i})^{\varphi_{n}}=\sum_{t}a_{i}\lambda_{i}^{\varphi_{n}}$

for $a_{i}\in F,$ \‘A\in $il(J_{N};k)$ . Then, by (18), for every element $\alpha=\sum a_{i}\xi_{\gamma_{i}}with_{A}$

$a_{i}\in F,$ $\gamma_{i}\in G$, we have

(19) $\alpha^{\varphi_{n}}=\sum_{i}a_{i}\xi_{\sigma_{n}^{-1}\gamma_{i}\sigma_{n}}$ .

By definition of $\epsilon$, Proposition 1 in \S 2 and Lemma 2 we get
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(20) $\epsilon^{\varphi_{n}}=\epsilon$ $(n, N)=1$ ,

(21) $\epsilon\cdot\xi_{p}=\xi_{p}\cdot\epsilon$ and $\epsilon\cdot\eta_{p}=\eta_{p}\cdot\epsilon$ ,
(22) $\zeta\cdot\epsilon=\epsilon\cdot\zeta$ .
Furthermore, by the same argument as in [4] we can easily prove
(23) $\epsilon\sim\cdot\pi_{p}=\pi_{p}\cdot\epsilon\sim$ .

It is easy to see that $d(J_{N} ; Q)\otimes F$ is the set of all elements $\alpha$ of $\Lambda(J_{N} ; k)\otimes F$

such that $\alpha^{\varphi_{n}}=\alpha$ for every $n$ prime to $N$. By our definition of $\mathfrak{M}_{\iota}$ and $9Jl^{a}$,
if we restrict them to $cA(J_{N};Q)\otimes F,$ $\mathfrak{M}_{l}$ is equivalent to the representation
$\left(\begin{array}{ll}M^{d} & 0\\0 & \mathfrak{M}^{a}\end{array}\right)$ As $\xi_{p}$ and $\eta_{p}$ are defined over $Q$ , we have $(\xi_{p}\cdot\epsilon)^{\varphi_{n}}=\xi_{p}\cdot\epsilon,$ $(\eta_{p}\cdot\epsilon)^{\varphi_{n}}$

$=\eta_{p}\cdot\epsilon$, for every $n$ prime to $N$. Hence we obtain

(24) $\mathfrak{M}_{\iota}(\epsilon\sim\cdot\tilde{\xi}_{p})=\mathfrak{M}_{\iota}(\epsilon\cdot\xi_{p})\sim(\mathfrak{M}^{a}(e_{0}\cdot\xi_{p})$
$\mathfrak{R}l^{d}(\epsilon 0. \xi_{p}))$

(25) $\mathfrak{M}_{l}(\epsilon\sim\cdot\sim_{p}\eta)=\mathfrak{M}_{\iota}(\epsilon\cdot\eta_{p})\sim\left(\begin{array}{ll}\mathfrak{M}^{a}(\epsilon\cdot\eta_{p}) & 0\\0 & \mathfrak{M}^{a}(\epsilon\cdot\eta_{p})\end{array}\right)$ .
Using the formulas (20)$-(25)$ and congruence relations (1), we get

(26) $\det(1-\mathfrak{M}_{\iota}(\epsilon\sim\cdot\pi_{p})X)=det(1-\mathfrak{M}^{a}(\epsilon\cdot\xi_{p})X+p\mathfrak{M}^{a}(\epsilon\cdot\eta_{p})X^{2})$ .
Let $\psi(n)$ be a character of the multiplicative group $(Z/NZ)^{*}$ of integers

$nmod N$ which are prime to $N$ such that $\psi(n)=a$ primitive $f_{n}$-th root of
unity, where $f_{n}=the$ smallest positive integer satisfying $n^{fn}\equiv 1mod N$. If
$p$ does not divide $N,$ $p$ decomposes completely in $k,$ $i$ . $e.$ , we have $p=\mathfrak{p}_{1}\cdots \mathfrak{p}_{g_{p}}$

and $N(\mathfrak{p}_{i})=p^{f_{P}}(1\leqq i\leqq g_{p})$ with $f_{p}\cdot g_{p}=\varphi(N)$ . Therefore we obtain
$\prod_{\mathfrak{p}(N}\det(1-\mathfrak{M}_{\iota}(\epsilon\sim\pi_{\mathfrak{p}})N(\mathfrak{p})^{-s})$

$=\prod_{pLN}\prod_{i=1}^{g_{p}}\det(1-\mathfrak{M}_{l}(\epsilon\sim\pi_{\mathfrak{p}_{t}})N(\mathfrak{p}_{i})^{-s})$

$=\prod_{p\downarrow N}\prod_{i=1}^{g_{p}}\prod_{\mu=1}^{f_{p}}\det(1-\mathfrak{M}_{\iota}(\epsilon\sim\pi_{p})\psi(p)^{\mu}p^{-s})$

$=\prod_{p\uparrow N}\prod_{i=1}^{\varphi(N)}\det(1-\mathfrak{M}_{\iota}(\epsilon\sim\pi_{p})\psi(p)^{\mu}p^{-s})$ .
Then by virtue of (16), (17), (26), we have

(27) $L(\chi s;K_{N}/K_{1}(\zeta_{N}))^{m}=\prod_{\mathfrak{p}}\det(1-\mathfrak{M}_{\iota}(\epsilon\sim\cdot\pi_{\mathfrak{p}})N(\mathfrak{p})^{-s})$

$=\prod_{p}\prod_{\mu=1}^{\varphi(N)}\det(1-\mathfrak{M}_{\iota}(\epsilon\sim\cdot\pi_{p})\psi(p)^{\mu}p^{-s})$

$=\prod_{p}\prod_{\beta=1}^{\varphi(N)}\det(1-\mathfrak{M}^{a}(\epsilon\cdot\xi_{p})\psi(p)^{\mu}p^{-s}$

$+\mathfrak{M}^{a}(\epsilon\cdot\eta_{p})\psi(p)^{2\mu}p^{1-2S})$ ,

1) We can take $M^{a}$ in such a way that $M^{d}(\alpha)$ is of rational coefficients for $\alpha$

$\in d(J_{N};Q)$ , then $\mathfrak{M}^{a}(\alpha)$ has coefficients in $F$ for every $\alpha\in d(J_{N};Q)\otimes F$.
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where $p$ runs over almost all primes in $Q$ not dividing $N$.
As the representations $\mathfrak{M}^{a}(\xi_{p})$ and $\mathfrak{M}^{a}(\eta_{p})$ are, respectively, equal to the

representations of the operators $T(p;\mathfrak{a})$ and $T(p,p;a)$ with respect to a certain
basis of $S(\Gamma_{N}, 2)$ , the representations $\mathfrak{M}^{a}(\epsilon\cdot\xi_{p})$ and $\mathfrak{M}^{a}(\epsilon\cdot\eta_{p})$ are, respectively,
equivalent to the representations of $T(p;\mathfrak{a})$ and $T(p,p;\mathfrak{a})$ on $r$ given in (13)
and (14). For if we consider $\epsilon$ as an operator on $S(\Gamma_{N}, 2),$ $e$ vanishes outside $\mathfrak{r}$

and is the identity on $\mathfrak{r}$ .
Substituting the expressions (13) and (14), respectively, for $\mathfrak{M}^{a}(\epsilon\cdot\xi_{p})$ and

$\mathfrak{M}^{a}(\epsilon\cdot\eta_{p})$ , we have

(28) $L(\chi s;K_{N}/K_{1}(\zeta_{N}))^{m}=\prod_{\mu=1}^{\varphi(N)}\prod_{k=1}^{v}\{\prod_{p}(1-\epsilon_{i_{k}}(p)\psi(p)^{\mu}t_{\nu_{k}}(p)p^{1-s}$

$+\epsilon_{i_{k}}(p)^{2}\psi(p)^{2\mu}t_{\nu_{k}}(p,p)p^{3-2S})\}$ .
For every natural number $n$ prime to $N$, let $\mathfrak{T}(n)$ be the representation of $T(n)$

with respect to the basis $\{\overline{|}_{1}, \cdots , t_{s}\}$ (considered in \S 2). For every prime
number $p\parallel d(\Phi)N$, let $\mathfrak{T}(p,p)$ be the representation of $T(p,p)$ with respect to
the above basis. Put

$\mathfrak{D}(s;\epsilon_{i_{k}}\psi^{\mu})=\sum_{(n,N)=1}\mathfrak{T}(n)\epsilon_{i_{k}}(n)\psi(n)^{\mu}n^{-s}$ $(1 \leqq\mu\leqq\varphi(N), 1\leqq k\leqq v)$ .

This is just a special case of $\mathfrak{D}(s;\xi)$ in [8, Theorem 1].

By our choice of the basis $\{\mathfrak{f}_{1}, , f_{s}\},$ $\mathfrak{T}(n)$ and $\mathfrak{T}(p,p)$ are diagonal and
diagonal elements are $t_{\lambda}(n)$ and $t_{\lambda}(p,p)$ , respectively. Therefore the $\nu_{k}$-th
diagonal element of $\mathfrak{D}(s;\epsilon_{i_{k}}\psi^{\mu})$ is written as;

$D_{\nu_{k}}(s;\epsilon_{i_{k}}\psi^{\mu})=\sum_{(n,N)=1}t_{\nu_{k}}(n)\epsilon_{i_{k}}(n)\psi(n)^{\mu}n^{-s}$

$=\prod_{p|a(O)}(1-t_{\nu_{k}}(p)\epsilon_{i_{k}}(p)\psi(p)^{\mu}p^{-s})^{-1}$

$p*N$

$\times$ $\Pi$ $(1-t_{\nu_{k}}(p)_{\mathcal{E}_{i_{k}}}(p)\psi(p)^{\mu}p^{-s}$

$p\dagger a(\Phi)N$

$+t_{\nu_{k}}(p,p)\epsilon_{i_{k}}(p)^{2}\psi(p)^{2\mu}p^{1-2S})^{-1}$ .
Hence, from (28) we have

$L(\chi s;K_{N}/K_{1}(\zeta_{N}))^{m}=f(s)\times\prod_{\mu=1}^{\varphi(N)}\prod_{k\Rightarrow 1}^{v}D_{\nu_{k}}(s-1;\epsilon_{i_{k}}\psi^{\mu})^{-1}$ ,

where $f(s)$ denotes a rational function in finite number of $p^{-s}$ . Consequently
by Theorem 1 of [8], we have the following theorem:

THEOREM 1. Let $\rho_{1}$ be an absolutely irreducible representation of $G$ of de-
gree $m$ which is contained in the analytic representation of $G$ on the jacobian
variety $J_{N}$ . Considering $G$ as a normal subgroup of $\Omega=GL(2, Z/NZ)/\{\pm 1\}$ , let
$\rho$ be the irreducible representation of $\Omega$ which is an extension of $\rho_{1}$ . Let $\rho$ be
equivalenl to $\kappa(\rho_{1}+F\cdots+\rho_{r})$ on $G$ with multiplicity $\kappa$ and inequivalent representations
$\rho_{1},$

$\cdots$ , $\rho_{r}$ of $G$ which are conjugates of $\rho_{1}$ relative to S2. Put $\chi_{t}=tr\rho_{i}$,
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$\mathcal{X}=\mathcal{X}_{1}+\cdots+\chi_{r}$ . Then the m-th power of Artin’s L-function $L(\mathcal{X}, s;K_{N}/K_{1}(\zeta_{N}))^{m}$

can be expressed in the form

$L(\mathcal{X}, s;K_{N}/K_{1}(\zeta_{N}))^{m}=f(s)\times\prod_{\mu=1}^{\varphi(N)}\prod_{k=1}^{v}D_{\nu_{k}}(s-1;\epsilon_{i_{k}}\psi^{1^{J}})^{-1}$ ,

where $f(s)$ is a rational function of $p^{-s}$ and the $D_{\nu_{k}}(s ; \epsilon_{i_{k}}\psi^{\mu})$ are Dirichlet series
with characters $\epsilon_{i_{k}}\psi^{\mu}$ obtained from the representation of modular correspond-
ences by automorphic cusp forms of type $(\Gamma, \rho, 2)$ .

Therefore $L(\chi s;K_{N}/K_{1}(\zeta_{N}))^{m}$ can be continued meromorphically to the whole
s-plane and satisfies a functional equation.

It is desirable to show that the Artin’s L-function itself satisfies the prop-
erties in Theorem 1. We now prove that this is in fact true when $\rho\sim\rho_{1}$ ,
$i$ . $e.,$ $r=\kappa=1$ in (4),

Let $f_{1}$ , $\cdot$ .. $f_{s}$ be the basis of $S(\Gamma, \rho, 2)$ . As the representation $\rho_{1}$ of $G$ is
irreducible, the set of all components $f_{k}^{(\nu)}$ of $\mathfrak{f}_{\nu}(1\leqq\nu\leqq s, 1\leqq k\leqq m, m=\deg\rho_{1})$

constitutes a basis for the space $\mathfrak{r}$ defined in \S 2. By (8), the representation of
$T(p;(\iota)$ with respect to $\{f_{k}^{(1)}, \cdots,f_{k^{(s)}}\}$ is $p\epsilon_{k}(p)_{\sim}^{7}(p)(1\leqq k\leqq m)$ . We put $t_{Q_{1}}$

$=(f_{1^{(1)}}, \cdots,f_{1}^{(s)}, \cdots ,f_{m}^{(1)}, \cdots ,f_{m}^{(s)})$ . Then the representation of $T(p;a)$ with respect
to $\mathfrak{g}_{1}$ is given by

$\mathfrak{g}_{1}|T(p;\mathfrak{a})=\left(\begin{array}{ll}p_{\xi_{1}}(p)_{\sim}^{7}(p) & 0\\0 & \dot{p}_{\mathcal{E}_{m}}(p)_{\sim}^{T}(p)\end{array}\right)\mathfrak{g}_{1}$ for $pl^{\prime}N$ .

Similarly, by (11), we obtain the representation of $T(p,p;\mathfrak{a})$ as

$\mathfrak{g}_{1}|\tau(p,p;\mathfrak{a})=\left(\begin{array}{ll}p^{2}\epsilon_{1}(p)^{2}\mathfrak{T}(p,p) & 0\\0 & \dot{p}_{\epsilon_{m}}^{2}(p)^{2}\mathfrak{T}(p,p)\end{array}\right)\mathfrak{g}_{1}$ for $pI^{\prime}d(\Phi)N$ .

Substituting these expressions for $M^{a}(\epsilon\cdot\xi_{p})$ and $\mathfrak{M}^{a}(\epsilon\cdot\eta_{p})$, respectively, we
have by (27)

$L(\chi s;K_{N}/K_{1}(\zeta_{N}))^{m}=\prod_{\mu=1}^{\varphi(N)}\prod_{k\Rightarrow 1}^{m}\{\prod_{p}\det(1-\mathfrak{T}(p)\epsilon_{k}(p)\psi(p)^{\mu}p^{1-s}$

$+\mathfrak{T}(p, p)\epsilon_{k}(p)^{2}\psi(p)^{2/z}p^{a-2S})\}$ .
As the $\epsilon_{i}$ are characters of $(Z/NZ)^{*}(1\leqq i\leqq m)$ , if $p=\mathfrak{p}_{1}\cdots \mathfrak{p}_{g_{p}}$ in $k=Q(\zeta_{N})$

with $N(\mathfrak{p}_{i})=p^{f_{p}}(1\leqq i\leqq \mathfrak{p}_{p})$ , then $p^{f_{p}}\equiv 1mod N$, and the $\epsilon_{i}(p)$ are $f_{p}$-th roots
of unity $(1 \leqq i\leqq m)$, moreover, $\psi(p)$ is a primitive $f_{p}$-th root of unity. Thus
we obtain

$L(x, s;K_{N}/K_{1}(\zeta_{N}))=\prod_{\mu=1}^{\varphi(N)}\{\prod_{p}det(1-\mathfrak{T}(p)\psi(p)^{\mu}p^{1-s}+\mathfrak{T}(p,p)\psi(p)^{z\mu}p^{3-2s})\}$ .
Now put
(29) $\mathfrak{D}(s;\psi^{\mu})=\sum_{(n,N)=1}\mathfrak{T}(n)\psi(n)n^{-s}$

$(1\leqq\mu\leqq\varphi(N))$ .
By Theorem 1 of [8], (29) can be written as;
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$\mathfrak{D}(s;\psi^{\mu})=\prod_{p1d()}(1-\mathfrak{T}(p)\psi(p)^{\mu}p^{-b})^{-1}$

$p1N$

$\times$

$\prod_{p\uparrow a(0)N}$
$(1-\mathfrak{T}(p)\psi(p)^{\mu}p^{-s}+\mathfrak{T}(p,p)\psi(p)^{2\mu}p^{1-2S})^{-1}$ .

Thus the Artin’s L-function can be expressed as

$L(\chi, s;K_{N}/K_{1}(\zeta_{N}))=f(s)\times\prod_{\mu=1}^{\varphi(N)}\det \mathfrak{D}(s-1, \psi^{\prime 1})$ ,

where $f(s)$ denotes a rational function of $p^{-s}$ .
THEOREM 2. When $\rho_{1}$ is equivalent to $\rho$ in the Theorem 1, the Artin’s L-

function can be expressed as
$L(\mathcal{X}, s;K_{N}/K_{1}(\zeta_{N}))=f(s)\times\prod_{\mu=1}^{\varphi(N)}\det \mathfrak{D}(s-1, \psi^{\prime 1})^{-1}$ ,

where $f(s)$ is a rational function of $P^{-s}$ and $\mathfrak{D}(s, \psi^{\mu})(1\leqq\mu\leqq\varphi(N))$ are Dirichlet
series with characters $\psi^{\mu}$, obtained from the representation of modular correspond-
ences by automorphic cusp forms of type $(\Gamma, \rho, 2)$.
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