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Abstract. We study the “combinatorial anabelian geometry” that governs the relation-
ship between the dual semi-graph of a pointed stable curve and various associated profinite
fundamental groups of the pointed stable curve. Although many results of this type have been
obtained previously in various particular situations of interest under unnecessarily strong hy-
potheses, the goal of the present paper is to step back from such “typical situations of interest”
and instead to consider this topic in the abstract—a point of view which allows one to prove
results of this type in much greater generality under very weak hypotheses.

Introduction. In this paper, we apply the language of anabelioids [cf. [Mzk5], [Mzk7]]
to study the “profinite combinatorial group theory” arising from the relationship between the
semi-graph of anabelioids associated to a pointed stable curve [i.e., a “semi-graph of anabe-
lioids of PSC-type”—cf. Definition 1.1, (i), below for more details] and a certain associated
profinite fundamental group [cf. Definition 1.1, (ii)]. In particular, we show that:

(i) The cuspidal portion of the semi-graph may be recovered group-theoretically from
the associated profinite fundamental group, together with certain numerical information
[roughly speaking, the number of cusps of the various finite étale coverings of the given semi-
graph of anabelioids]—cf. Theorem 1.6, (i).

(ii) The entire “semi-graph of anabelioids structure” may be recovered group-
theoretically from the associated profinite fundamental group, together with a certain filtration
[arising from this “semi-graph of anabelioids structure”] of the abelianizations of the various
finite étale coverings of the given semi-graph of anabelioids—cf. Theorem 1.6, (ii).
Moreover, we show that from the point of view of “weights” [i.e., logarithms of absolute
values of eigenvalues of the action of the Frobenius element of the Galois group of a finite
field], the data necessary for (i) (respectively, (ii)) above may be recovered from very weak
assumptions concerning the “weights”—cf. Corollary 2.7, (i), (ii). In particular, [unlike the
techniques of [Mzk4], Lemmas 1.3.9, 2.3, for example] these very weak assumptions do not
even require the existence of a particular Frobenius element. Alternatively, when there are no
cusps, the data necessary for (ii) may be recovered from very weak assumptions concerning
the l-adic inertia action [cf. Corollary 2.7, (iii)]—i.e., one does not even need to consider
weights. This sort of result may be regarded as a strengthening of various results to the effect
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that a curve has good reduction if and only if the l-adic inertia action is trivial [cf., e.g.,
[Tama1], Theorem 0.8]

One consequence of this theory is the result [cf. Corollary 2.7, (iv)] that the subgroup
of the group of outer automorphisms of the associated fundamental group consisting of the
graphic outer automorphisms [i.e., the automorphisms that are compatible with the “semi-
graph of anabelioids structure”] is equal to its own commensurator within the entire group
of outer automorphisms. This result may be regarded as a sort of “anabelian analogue” of a
well-known “linear algebra fact” concerning the general linear group [cf. Remark 2.7.1].

The original motivation for the development of the theory of the present paper is as
follows: Frequently, in discussions of the anabelian geometry of hyperbolic curves, one finds
it necessary to reconstruct the cusps [cf., e.g., [Naka1], Theorem 3.4; [Mzk4], Lemma 1.3.9;
[Tama2], Lemma 2.3, Proposition 2.4] or the entire dual semi-graph associated to a pointed
stable curve [cf., e.g., [Mzk2], §1–5; [Mzk4], Lemma 2.3] group-theoretically from some
associated profinite fundamental group. Moreover, although the techniques for doing this in
various diverse situations are quite similar and only require much weaker assumptions than
the assumptions that often hold in particular situations of interest, up till now, there was
no unified presentation or general results concerning this topic—only a collection of papers
covering various “particular situations of interest”. Thus, the goal of the present paper is to
prove results concerning this topic in maximum possible generality, in the hope that this may
prove useful in applications to situations not covered in previous papers [cf., e.g., Corollaries
2.8, 2.9, 2.10; Remarks 2.8.1, 2.8.2].

The author would like to thank Akio Tamagawa for various helpful comments concerning
the material presented in this paper.

0. Notation and conventions.
Numbers: The notation Q will be used to denote the field of rational numbers. The

notation Z ⊆ Q will be used to denote the set, group, or ring of rational integers. The notation
N ⊆ Z will be used to denote the submonoid of integers ≥ 0. If l is a prime number, then the
notation Ql (respectively, Zl) will be used to denote the l-adic completion of Q (respectively,
Z).

Topological Groups: Let G be a Hausdorff topological group, and H ⊆ G a closed
subgroup. Let us write

ZG(H)
def= {g ∈ G | g · h = h · g for any h ∈ H }

for the centralizer of H in G;

NG(H)
def= {g ∈ G | g ·H · g−1 = H }

for the normalizer of H in G; and

CG(H)
def= {g ∈ G | (g ·H · g−1) ∩H has finite index in H , g ·H · g−1}
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for the commensurator of H in G. Note that: (i) ZG(H), NG(H) and CG(H) are subgroups
of G; (ii) we have inclusions

H, ZG(H) ⊆ NG(H) ⊆ CG(H)
and (iii) H is normal in NG(H). We shall say that H is centrally (respectively, normally;
commensurably) terminal in G if ZG(H) = H (respectively, NG(H) = H ; CG(H) = H ).

We shall denote the group of automorphisms of G by Aut(G). Conjugation by elements
ofG determines a homomorphismG→ Aut(G) whose image consists of the inner automor-
phisms of G. We shall denote by Out(G) the quotient of Aut(G) by the [normal] subgroup
consisting of the inner automorphisms.

Curves: Suppose that g ≥ 0 is an integer. Then if S is a scheme, a family of curves of
genus g

X→ S

is defined to be a smooth, proper, geometrically connected morphism of schemes X → S

whose geometric fibers are curves of genus g .
Suppose that g, r ≥ 0 are integers such that 2g − 2+ r > 0. We shall denote the moduli

stack of r-pointed stable curves of genus g (where we assume the points to be unordered)
by M̄g,r [cf. [DM], [Knud] for an exposition of the theory of such curves; strictly speaking,
[Knud] treats the finite étale covering of M̄g,r determined by ordering the marked points].
The open substack Mg,r ⊆ M̄g,r of smooth curves will be referred to as the moduli stack of
smooth r-pointed stable curves of genus g or, alternatively, as the moduli stack of hyperbolic
curves of type (g, r). The divisor at infinity M̄g,r\Mg,r of M̄g,r determines a log structure

on M̄g,r ; denote the resulting log stack by M̄log
g,r .

A family of hyperbolic curves of type (g, r)

X→ S

is defined to be a morphism which factors X ↪→ Y → S as the composite of an open immer-
sion X ↪→ Y onto the complement Y\D of a relative divisor D ⊆ Y which is finite étale over
S of relative degree r , and a family Y → S of curves of genus g . One checks easily that, if S
is normal, then the pair (Y,D) is unique up to canonical isomorphism. (Indeed, when S is the
spectrum of a field, this fact is well-known from the elementary theory of algebraic curves.
Next, we consider an arbitrary connected normal S on which a prime l is invertible (which,
by Zariski localization, we may assume without loss of generality). Denote by S′ → S the
finite étale covering parametrizing orderings of the marked points and trivializations of the l-
torsion points of the Jacobian of Y . Note that S′ → S is independent of the choice of (Y,D),
since (by the normality of S), S′ may be constructed as the normalization of S in the function
field of S′ (which is independent of the choice of (Y,D), since the restriction of (Y,D) to
the generic point of S has already been shown to be unique). Thus, the uniqueness of (Y,D)
follows by considering the classifying morphism (associated to (Y,D)) from S′ to the finite
étale covering of (Mg,r )Z[1/ l] parametrizing orderings of the marked points and trivializa-
tions of the l-torsion points of the Jacobian [since this covering is well-known to be a scheme,
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for l sufficiently large].) We shall refer to Y (respectively, D; D; D) as the compactification
(respectively, divisor at infinity; divisor of cusps; divisor of marked points) of X. A family of
hyperbolic curves X→ S is defined to be a morphism X→ S such that the restriction of this
morphism to each connected component of S is a family of hyperbolic curves of type (g, r)
for some integers (g, r) as above.

Write

C̄g,r → M̄g,r

for the tautological curve over M̄g,r ; D̄g,r ⊆ M̄g,r for the corresponding tautological divisor
of marked points. The divisor given by the union of D̄g,r with the inverse image in C̄g,r of the
divisor at infinity of M̄g,r determines a log structure on C̄g,r ; denote the resulting log stack

by C̄log
g,r . Thus, we obtain a morphism of log stacks

C̄log
g,r → M̄log

g,r ,

which we refer to as the tautological log curve over M̄log
g,r . If Slog is any log scheme, then we

shall refer to a morphism

Clog→ Slog ,

which is obtained as the pull-back of the tautological log curve via some [necessarily uniquely
determined—cf., e.g., [Mzk1], §3] classifying morphism Slog → M̄log

g,r as a stable log curve.
If C has no nodes, then we shall refer to Clog→ Slog as a smooth log curve.

If XK (respectively, YL) is a hyperbolic curve over a field K (respectively, L), then we
shall say that XK is isogenous to YL if there exists a hyperbolic curve ZM over a field M
together with finite étale morphisms ZM → XK , ZM → YL.

1. Criterion for graphicity. In the present §1, we state and prove a criterion for an
isomorphism between the profinite fundamental groups of pointed stable curves to arise from
an isomorphism of [semi-] graphs of groups. To do this, we shall find it convenient to use the
language of anabelioids [cf. [Mzk5]], together with the theory of semi-graphs of anabelioids
of [Mzk7].

Let Σ be a nonempty set of prime numbers. Denote by

ẐΣ

the pro-Σ completion of Z. Let G be a semi-graph of anabelioids [cf. [Mzk7], Definition 2.1],
whose underlying semi-graph we denote by G. Thus, for each vertex v (respectively, edge e)
of G, we are given a connected anabelioid [i.e., a Galois category] Gv (respectively, Ge), and
for each branch b of an edge e abutting to a vertex v, we are given a morphism of anabelioids
Ge → Gv .

DEFINITION 1.1. (i) We shall refer to G as being of pro-Σ PSC-type [i.e., “pointed
stable curve type”] if it arises as the pro-Σ completion [cf. [Mzk7], Definition 2.9, (ii)] of
the semi-graph of anabelioids determined by the “dual semi-graph of profinite groups with
compact structure” [i.e., the object denoted “Gc

X” in the discussion of pointed stable curves in
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[Mzk4], Appendix] of a pointed stable curve over an algebraically closed field whose char-
acteristic �∈ Σ . [Thus, the vertices (respectively, closed edges; open edges) of G correspond
to the irreducible components (respectively, nodes; cusps [i.e., marked points]) of the pointed
stable curve.] We shall refer to G as being of PSC-type if it is of pro-Σ PSC-type for some
nonempty set of prime numbers Σ . If G is a semi-graph of anabelioids of PSC-type, then we
shall refer to the open (respectively, closed) edges of the underlying semi-graph G of G as the
cusps (respectively, nodes) of G [or G] and write r(G) (respectively, n(G)) for the cardinality
of the set of cusps (respectively, nodes) of G; if r(G) = 0 (respectively, n(G) = 0), then
we shall say that G is noncuspidal (respectively, nonnodal). Also, we shall write i(G) for the
cardinality of the set of vertices of G.

(ii) Suppose that G is of pro-Σ PSC-type. Then we shall denote by

ΠG

and refer to as the PSC-fundamental group of G the maximal pro-Σ quotient of the profinite
fundamental group of G [cf. [Mzk7], the discussion following Definition 2.2]; we shall refer
to a finite étale covering of G that arises from an open subgroup of ΠG as a [finite étale]
ΠG-covering of G. A vertex (respectively, edge) of G determines, up to conjugation, a closed
subgroup of ΠG ; we shall refer to such subgroups as verticial (respectively, edge-like). An
edge-like subgroup that arises from a closed edge will be referred to as nodal; an edge-like
subgroup that arises from an open edge will be referred to as cuspidal. Write MG for the
abelianization of ΠG . Then the cuspidal, edge-like, and verticial subgroups of ΠG determine
submodules

M
cusp
G ⊆ Medge

G ⊆ Mvert
G ⊆ MG

of MG , which we shall refer to as cuspidal, edge-like, and verticial, respectively. We shall
refer to any cyclic finite étale covering of G which arises from a finite quotient MG � Q

that factors through MG/M
cusp
G and induces a surjection Medge

G /M
cusp
G � Q as module-wise

nodal. If one forms the quotient of ΠG by the closed normal subgroup generated by the
cuspidal [cf. the first “�” in the following display], edge-like [cf. the composite of the first
two “�’s” in the following display], or verticial [cf. the composite of the three “�’s” in the
following display] subgroups, then one obtains arrows as follows:

ΠG � Π
cpt
G � Πunr

G � Π
grph
G .

We shall refer to Πcpt
G (respectively, Πunr

G ; Πgrph
G ) as the compactified (respectively, unrami-

fied; graph-theoretic) quotient of ΠG . We shall refer to a ΠG-covering of G that arises from

an open subgroup ofΠcpt
G (respectively,Πunr

G ; Πgrph
G ) as a Πcpt

G - (respectively,Πunr
G -; Πgrph

G -)
covering of G. We shall refer to the images of the verticial (respectively, verticial; edge-like)
subgroups of ΠG in Πcpt

G (respectively, Πunr
G ; Πcpt

G ) as the compactified verticial (respec-
tively, unramified verticial; compactified edge-like) subgroups. If the abelianization of every
unramified verticial subgroup of Πunr

G is free of rank ≥ 2 over ẐΣ , then we shall say that G is
sturdy.
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REMARK 1.1.1. It is immediate from the definitions that any connected finite étale
covering of a semi-graph of anabelioids of PSC-type is again a semi-graph of anabelioids of
PSC-type.

REMARK 1.1.2. Note that if G is a semi-graph of anabelioids of pro-Σ PSC-type,
with associated PSC-fundamental group ΠG , then Σ may be recovered either from ΠG or
from any verticial or edge-like subgroup of ΠG as the set of prime numbers that occur as
factors of orders of finite quotients of ΠG or a verticial or edge-like subgroup of ΠG .

REMARK 1.1.3. It is immediate [cf. the discussion in [Mzk4], Appendix] that ΠG is
the pro-Σ fundamental group of some hyperbolic curve over an algebraically closed field
of characteristic �∈ Σ [or, alternatively, of some hyperbolic Riemann surface of finite type],
and that every open subgroup of an edge-like (respectively, verticial) subgroup of ΠG is iso-
morphic to ẐΣ (respectively, nonabelian). In particular, [by [Naka2], Corollary 1.3.4] ΠG is
center-free [cf. also [Mzk4], Lemma 1.3.1, for the case where Σ is the set of all prime num-
bers; the case of arbitrary Σ may be proven similarly]. Moreover, G has cusps if and only if
ΠG is a finitely generated, free pro-Σ group. On the other hand, Πgrph

G is naturally isomor-

phic to the pro-Σ fundamental group of the underlying semi-graph G. In particular, Πgrph
G is

a finitely generated, free pro-Σ group of rank n(G)− i(G)+ 1.

REMARK 1.1.4. It is immediate from the well-known structure of fundamental groups
of Riemann surfaces that, in the notation of Definition 1.1, (ii), the ẐΣ -modules MG , MG/
M

cusp
G [i.e., the abelianization of Πcpt

G ], MG/Mvert
G [i.e., the abelianization of Πgrph

G ], Mvert
G /

M
edge
G [i.e., the direct sum, over the set of vertices of G, of the abelianizations of the corre-

sponding unramified verticial subgroups of Πunr
G ] are all free and finitely generated over ẐΣ .

That is to say, all of the subquotients of the following filtration are free and finitely generated
over ẐΣ :

M
cusp
G ⊆ Medge

G ⊆ Mvert
G ⊆MG .

REMARK 1.1.5. From the point of view of Definition 1.1, (i), the condition that a
semi-graph of anabelioids G of PSC-type be sturdy corresponds to the condition that every
irreducible component of the pointed stable curve that gives rise to G be of genus≥ 2. [Indeed,
this follows immediately from the well-known structure of fundamental groups of Riemann
surfaces.] In particular, one verifies immediately that, even if G is not sturdy, there always
exists a characteristic open subgroup H ⊆ ΠG which satisfies the following property: Every
G′ which arises as a ΠG-covering G′ → G such that ΠG ′ ⊆ H ⊆ ΠG is sturdy. In fact, [it is a
routine exercise to show that] one may even bound the index [ΠG : H ] explicitly in terms of
say, the rank [over ẐΣ ] of MG .

REMARK 1.1.6. Suppose that G is sturdy. Then observe that the quotient ΠG � Π
cpt
G

determines a new semi-graph of anabelioids G′ of PSC-type, which we shall refer to as the
compactification of G. That is to say, the underlying semi-graph G′ of G′ is obtained from
the underlying semi-graph G of G by omitting the cusps. The anabelioids at the vertices and
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edges of G′ are then obtained from G as the subcategories of the corresponding anabelioids of
G determined by the quotients of the corresponding verticial and edge-like subgroups of ΠG
induced by the quotient ΠG � Π

cpt
G . Thus, it follows immediately that we obtain a natural

isomorphism Π
cpt
G
∼→ ΠG ′ .

PROPOSITION 1.2 (Commensurable terminality). Suppose that G is of PSC-type, with
associated PSC-fundamental groupΠG . For i = 1, 2, letAi⊆ΠG be a verticial (respectively,
edge-like) subgroup ofΠG arising from a vertex vi (respectively, an edge ei) ofΠG; write Bi
for the image of Ai in Πunr

G . Then the following hold.
(i) If A1 ∩ A2 is open in A1, then v1 = v2 (respectively, e1 = e2). In the non-resp’d

case, under the further assumption that G is sturdy, if B1 ∩ B2 is open in B1, then v1 = v2.
(ii) TheAi are commensurably terminal [cf. §0] inΠG . In the non-resp’d case, under

the further assumption that G is sturdy, the Bi are commensurably terminal in Πunr
G .

PROOF. First, we observe that assertion (ii) follows formally from assertion (i) [cf. the
derivation of [Mzk7], Corollary 2.7, (i), from [Mzk7], Proposition 2.6]. Now the proof of
assertion (i) is entirely similar to the proof of [Mzk7], Proposition 2.6: That is to say, upon
translating the group-theory of ΠG into the language of finite étale coverings of G and possi-
bly replacing G by some finite étale covering of G [which allows us, in particular, to replace
the words “open in” in assertion (i) by the words “equal to”], one sees that to prove assertions
(i), (ii), it suffices to prove, under the further assumption that G is sturdy [cf. Remark 1.1.5],
that if v1 �= v2 (respectively, e1 �= e2), then there exists a finite étale Πunr

G - (respectively,
ΠG-) covering G′ → G whose restriction to the anabelioid Gv2 (respectively, Ge2 ) is trivial
[i.e., isomorphic to a disjoint union of copies of Gv2 (respectively, Ge2 )], but whose restriction
to the anabelioid Gv1 (respectively, Ge1 ) is nontrivial. But, in light of our assumption that G
is sturdy, one verifies immediately that by gluing together appropriate finite étale coverings
of the anabelioids Gv , Ge, one may construct a finite étale covering G′ → G with the desired
properties. �

PROPOSITION 1.3 (Duality). Let G be a noncuspidal semi-graph of anabelioids of
PSC-type. Then the cup product in group cohomology

H 1(ΠG, ẐΣ)×H 1(ΠG, ẐΣ)→ H 2(ΠG, ẐΣ) ∼= ẐΣ

determines a perfect pairing on MG ∼= Hom(H 1(ΠG, ẐΣ), ẐΣ), well-defined up to multi-

plication by a unit of ẐΣ . Moreover, relative to this perfect pairing, the submodules Medge
G ,

Mvert
G of MG are mutual annihilators.

PROOF. Since G is noncuspidal, it follows [cf. Remark 1.1.3] that ΠG is the pro-Σ
fundamental group of some compact Riemann surface, so the existence of a perfect pairing as
asserted follows from the well-known Poincaré duality of such a compact Riemann surface.
To see that the submodulesMedge

G ,Mvert
G ofMG are mutual annihilators, we reason as follows:

Since the isomorphism class of G is manifestly determined by purely combinatorial data, we
may assume without loss of generality [by possibly replacing G by the “pro-Σ ′ completion”
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of G, for some subset Σ ′ ⊆ Σ] that G arises from a stable curve over a finite field k whose
characteristic �∈ Σ . Write q for the cardinality of k; Gk for the absolute Galois group of k.
We shall say that an action of Gk on a finitely generated, free ẐΣ -module is of weight w if
the eigenvalues of the Frobenius element ∈ Gk are algebraic integers all of whose complex
absolute values are equal to qw/2. Now one has a natural action of Gk on G [cf. Remark
2.5.1 below for a more detailed description of this action], and hence a natural action on MG
which preserves Medge

G , Mvert
G . By replacing k by a finite extension of k, we may assume

that Gk acts trivially on the underlying semi-graph G. Thus, the action of Gk on MG/Mvert
G

(respectively, Medge
G ) is trivial [cf. Remark 1.1.3] (respectively, of weight 2). On the other

hand, by the “Riemann hypothesis” for abelian varieties over finite fields [cf., e.g., [Mumf], p.
206], it follows [cf. Remark 1.1.4] that the action ofGk on Mvert

G /M
edge
G is of weight 1. Note,

moreover, that the action of Gk on H 2(ΠG, ẐΣ) is of weight −2. [Indeed, this follows by
considering the first Chern class [cf., e.g., [FK], Chapter II, Definition 1.2] of a line bundle of
degree one on some irreducible component of the given stable curve over k—cf., e.g., [Mzk4],
the proof of Lemma 2.6.] Thus, since the subquotients of the filtration Medge

G ⊆ Mvert
G ⊆ MG

are all free over ẐΣ , the fact thatMedge
G andMvert

G are mutual annihilators follows immediately
by consideration of the weights of the modules involved. �

REMARK 1.3.1. By Proposition 1.3 [applied to the semi-graph of anabelioids of PSC-
type G′ obtained by “compactifying” G—cf. Remark 1.1.6], it follows that if G is a [not neces-
sarily noncuspidal!] sturdy semi-graph of anabelioids of PSC-type, then the ranks [over ẐΣ ]
of Medge

G /M
cusp
G , MG/Mvert

G coincide. This implies that the rank [over ẐΣ ] of Mcusp
G may be

computed as the difference between the ranks [over ẐΣ ] of Medge
G , MG/Mvert

G . Moreover, it

follows immediately from the definitions that if G has cusps, then the rank of Mcusp
G is equal

to r(G)− 1. Also, [again it follows immediately from the definitions that] G is noncuspidal if
and only ifMcusp

G ′ = 0 for all finite étale ΠG-coverings G′ → G. Thus, in summary, it follows

that one may compute r(G) as soon as one knows the difference between the ranks [over ẐΣ ]
of Medge

G ′ , MG ′/Mvert
G ′ for all finite étale ΠG-coverings G′ → G.

DEFINITION 1.4. Suppose that G, H are of PSC-type; denote the respective associated
PSC-fundamental groups byΠG ,ΠH and the respective underlying semi-graphs by G, H. Let

α : ΠG
∼→ ΠH ; β : Πunr

G
∼→ Πunr

H

be isomorphisms of profinite groups.
(i) We shall say that α is graphic if it arises from an isomorphism of semi-graphs of

anabelioids G ∼→H.
(ii) We shall say that α is numerically cuspidal if, for any pair of finite étale coverings

G′ → G, H′ → H which correspond via α, we have r(G′) = r(H′).
(iii) We shall say that α is graphically filtration-preserving (respectively, verticially

filtration-preserving; edge-wise filtration-preserving) if, for any pair of finite étale coverings
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G′ → G, H′ → H which correspond via α, the isomorphism

MG ′
∼→MH′

induced by α induces an isomorphism between the respective verticial and edge-like (respec-
tively, verticial; edge-like) submodules. We shall say that β is verticially filtration-preserving
if, for any pair of finite étale coverings G′ → G, H′ → H which correspond via β, the
isomorphism

MG ′/M
edge
G ′

∼→MH′/M
edge
H′

induced by β induces an isomorphism Mvert
G ′ /M

edge
G ′

∼→Mvert
H′ /M

edge
H′ .

(iv) We shall say that α is group-theoretically cuspidal (respectively, group-theoreti-
cally edge-like; group-theoretically verticial) if and only if it maps each cuspidal (respectively,
edge-like; verticial) subgroup of ΠG isomorphically onto a cuspidal (respectively, edge-like;
verticial) subgroup of ΠH, and, moreover, every cuspidal (respectively, edge-like; verticial)
subgroup of ΠH arises in this fashion. We shall say that β is group-theoretically verticial
if and only if it maps each unramified verticial subgroup of Πunr

G isomorphically onto an
unramified verticial subgroup ofΠunr

H , and, moreover, every verticial subgroup ofΠunr
H arises

in this fashion.
(v) Let G′ → G be a Galois finite étale covering. Then we shall say that G′ → G

is cuspidally (respectively, nodally; verticially) purely totally ramified if there exists a cusp
e (respectively, node e; vertex v) of G such that G′ → G restricts to a trivial covering over
Ge′ (respectively, Ge′ ; Gv′ ) for all cusps e′ �= e (respectively, nodes e′ �= e; vertices v′ �= v)
of G and to a connected covering over Ge (respectively, Ge; Gv). We shall say that G′ →
G is cuspidally (respectively, nodally; verticially) totally ramified if there exists a cusp e
(respectively, node e; vertex v) of G such that G′ → G restricts to a connected covering over
Ge (respectively, Ge; Gv).

(vi) If A ⊆ ΠG is a closed subgroup, and A′ ⊆ A is an open subgroup of A, then we
shall say that the inclusion A′ ⊆ A descends to a finite étale covering G′ → G′′ if the arrow
G′ → G′′ is a morphism of finite étale ΠG-coverings of G such that the corresponding open
subgroupsΠG ′ ⊆ ΠG ′′ ⊆ ΠG satisfy A ⊆ ΠG ′′ , A ∩ΠG ′ = A′, [A : A′] = [ΠG ′′ : ΠG ′ ]. We
shall use similar terminology when, in the preceding sentence, “Π” is replaced by “Πunr”.

REMARK 1.4.1. Thus, by Proposition 1.3, it follows that, if, in the notation of Defini-
tion 1.4, G, H are noncuspidal, then the following three conditions on α are equivalent: (a) α
is graphically filtration-preserving; (b) α is verticially filtration-preserving; (c) α is edge-wise
filtration-preserving.

REMARK 1.4.2. Let G′ → G be a Galois finite étale covering of degree a power of
l, where G is of pro-Σ PSC-type, Σ = {l}. Then one verifies immediately that G′ → G is
cuspidally purely totally ramified if and only if the equality

r(G′) = deg(G′/G) · (r(G)− 1)+ 1
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is satisfied. Similarly, if G′ → G is a finite étaleΠunr
G -covering [so n(G′) = n(G) ·deg(G′/G)],

then one verifies immediately that G′ → G is verticially purely totally ramified if and only if
the equality

i(G′) = deg(G′/G) · (i(G)− 1)+ 1

is satisfied. Also, we observe that this last equality is equivalent to the following equality
involving the expression “i(. . . )− n(. . . )” [cf. Remark 1.1.3]:

i(G′)− n(G′) = deg(G′/G) · (i(G)− n(G)− 1)+ 1 .

REMARK 1.4.3. Let G′ → G be as in Remark 1.4.2; assume further that this covering
is a cuspidally (respectively, nodally; verticially) totally ramified ΠG- (respectively, ΠG-;
Πunr

G -) covering, and that G is arbitrary (respectively, arbitrary; sturdy). Let e (respectively,
e; v) be a cusp (respectively, node; vertex) of G such that G′ → G restricts to a connected
covering of Ge (respectively, Ge; Gv). Then observe that:

There exists a finite étale ΠG- (respectively, ΠG-; Πunr
G -) covering G′′ → G such

that: (a) G′′ → G is trivial over Ge (respectively, Ge; Gv); (b) the subcovering
G′′′ → G′′ of the composite covering G′′′ → G of the coverings G′′ → G and
G′ → G is cuspidally (respectively, nodally; verticially) purely totally ramified.

Indeed, the construction of such a covering is immediate [cf. the proof of Proposition 1.2].

REMARK 1.4.4. Let G′ → G be as in Remark 1.4.2; assume further that this covering
is cyclic, and that G is noncuspidal. Then it is immediate that G′ → G is module-wise nodal
if and only if it is nodally totally ramified. In particular, it follows that:

(i) Any closed subgroup B ⊆ ΠG is contained in some nodal edge-like subgroup if
and only if, for every open normal subgroup B ′ ⊆ B, the inclusion B ′ ⊆ B descends to a
module-wise nodal finite étale covering.

(ii) A closed subgroup A ⊆ ΠG is a nodal edge-like subgroup of ΠG if and only if
it satisfies the condition of (i) above [i.e., where one takes “B” to be A], and, moreover, is
maximal among closed subgroups B ⊆ ΠG satisfying the condition of (i).

Indeed, the necessity of (i) is immediate. The sufficiency of (i) follows by observing that
since the set of nodes of a finite étale covering of G is always finite, an exhaustive collec-
tion of open normal subgroups of B thus determines—by considering the nodes at which the
“total ramification” occurs—[at least one] compatible system of nodes of the finite étale ΠG-
coverings of G; but this implies that B is contained in some nodal edge-like subgroup. In light
of (i), the necessity of (ii) is immediate from the definitions and Proposition 1.2, (i) [which
implies maximality], while the sufficiency of (ii) follows immediately from the assumption of
maximality.

PROPOSITION 1.5 (Incidence relations). We maintain the notation of Definition 1.4.
Then the following hold.

(i) An edge-like subgroup ofΠG is cuspidal (respectively, not cuspidal) if and only if
it is contained in precisely one (respectively, precisely two) verticial subgroup(s).
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(ii) α is graphic if and only if it is group-theoretically edge-like and group-
theoretically verticial. Moreover, in this case, α arises from a unique isomorphism of semi-
graphs of anabelioids G ∼→H.

PROOF. First, we consider assertion (i). Observe that it is immediate from the defini-
tions that a cuspidal (respectively, noncuspidal) edge-like subgroup of ΠG is contained in at
least one (respectively, at least two) verticial subgroup(s). To prove that these lower bounds
also serve as upper bounds, it suffices [by possibly replacing G by a finite étale covering of
G] to show that if e is a cuspidal (respectively, nodal) edge of G that does not abut to a vertex
v, then there exists a finite étale ΠG-covering G′ → G which is trivial over Gv , but nontrivial
over Ge. But this is immediate [cf. the proof of Proposition 1.2, (i)].

Next, we consider assertion (ii). Necessity is immediate. To prove sufficiency, we reason
as follows: The assumption that α is group-theoretically edge-like and group-theoretically
verticial implies, by considering conjugacy classes of verticial and edge-like subgroups [and
applying Proposition 1.2, (i)], that α induces a bijection between the vertices (respectively,
edges) of the underlying semi-graphs G, H. By assertion (i), this bijection maps cuspidal
(respectively, nodal) edges to cuspidal (respectively, nodal) edges and is compatible with the
various “incidence relations” that define the semi-graph structure [i.e., the data of which
vertices an edge abuts to]. Thus, α induces an isomorphism of semi-graphs G

∼→ H. Finally,
by Proposition 1.2, (ii), one concludes that α arises from a unique isomorphism G ∼→ H, as
desired. �

THEOREM 1.6 (Criterion for graphicity). We maintain the notation of Definition 1.4.
Then the following hold.

(i) α is numerically cuspidal if and only if it is group-theoretically cuspidal.
(ii) α is graphic if and only if it is graphically filtration-preserving.

(iii) Assume that G, H are sturdy. Then β is verticially filtration-preserving if and
only if it is group-theoretically verticial.

PROOF. First, we consider assertion (i). Sufficiency is immediate [cf. Proposition 1.2,
(i)]. The proof of necessity is entirely similar to the latter half of the proof of [Mzk4], Lemma
1.3.9: Let l ∈ Σ [where G, H are of pro-Σ PSC-type]. Since the cuspidal edge-like subgroups
may be recovered as the stabilizers of cusps of finite étale coverings ofG, H, it suffices to show
that α induces a functorial bijection between the sets of cusps of G, H. In particular, we may
assume, without loss of generality, that Σ = {l}.

Then given pairs of finite étaleΠG- or ΠH-coverings that correspond via α

G′′ → G′ → G ; H′′ → H′ → H

such that G′′ is Galois over G′, and H′′ is Galois over H′, it follows from the assumption
that α is numerically cuspidal that G′′ → G′ is cuspidally purely totally ramified if and only
if H′′ → H′ is [cf. Remark 1.4.2]. Now observe that the cuspidal edge-like subgroups of
ΠG (respectively, ΠH) are precisely the maximal closed subgroups A such that, for every
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open normal subgroup A′ ⊆ A, the inclusion A′ ⊆ A descends to a cuspidally purely to-
tally ramified Galois finite étale covering. Indeed, in light of Remark 1.4.3 [which implies
that, in the preceding sentence, one may remove the word “purely” without affecting the va-
lidity of the assertion contained in this sentence], this follows by a similar argument to the
argument applied in the case of nodes in Remark 1.4.4. Thus, we thus conclude that α is
group-theoretically cuspidal, as desired.

Next, we consider assertion (ii). Necessity is immediate. To prove sufficiency, let us first
observe that by functoriality; Proposition 1.2, (ii); Proposition 1.5, (ii), it follows that we may
always replace G, H by finite étaleΠG- orΠH-coverings that correspond via α. In particular,
by Remark 1.1.5, we may assume without loss of generality that G, H are sturdy. Next, let
us observe that by Proposition 1.3 [cf. Remark 1.3.1], the assumption that α is graphically
filtration-preserving implies that α is numerically cuspidal, hence [by assertion (i)] that α is
group-theoretically cuspidal. Thus, by replacing G, H by their respective compactifications
[cf. Remark 1.1.6], and replacing α by the isomorphism induced by α between the respective
quotients ΠG � Π

cpt
G , ΠH � Π

cpt
H , we may assume, without loss of generality, that G,

H are noncuspidal and sturdy. Also, as in the proof of assertion (i), we may assume that
Σ = {l}. Now by Proposition 1.5, (ii), it suffices to prove that α is group-theoretically edge-
like and group-theoretically verticial. But by Remark 1.4.4, the assumption that α is edge-wise
filtration-preserving implies that α is group-theoretically edge-like. In particular, α induces
a verticially filtration-preserving isomorphism Πunr

G
∼→ Πunr

H . Now to prove that α is group-
theoretically verticial, it suffices to prove [cf. the proof of assertion (i)] that α induces a
functorial bijection between the sets of vertices of G, H. Thus, to complete the proof of
assertion (ii), it suffices to prove that β is group-theoretically verticial, that is to say, it suffices
to verify assertion (iii).

Finally, we consider assertion (iii). Sufficiency is immediate. On the other hand, necessity
follows from Remark 1.4.2, by observing that the unramified verticial subgroups are precisely
the maximal closed subgroups A of Πunr

G or Πunr
H such that, for every open normal subgroup

A′ ⊆ A, the inclusion A′ ⊆ A descends to a verticially purely totally ramified Galois finite
étale covering. Indeed, in light of Remark 1.4.3 [which implies that, in the preceding sentence,
one may remove the word “purely” without affecting the validity of the assertion contained in
this sentence], this follows by a similar argument to the argument applied in the case of nodes
in Remark 1.4.4. This completes the proof of assertion (ii). �

REMARK 1.6.1. The essential content of Theorem 1.6, (i), is, in many respects, sim-
ilar to the essential content of [Tama2], Lemma 2.3 [cf. the use of this lemma in [Tama2],
Proposition 2.4].

2. The group of graphic outer automorphisms. In this Section, we study the con-
sequences of the theory of §1 for the group of automorphisms of a semi-graph of anabelioids
of PSC-type.
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Let G be a semi-graph of anabelioids of pro-Σ PSC-type [with underlying semi-graph
G]. In the following discussion, G, G will remain fixed until further notice to the contrary [in
Corollary 2.7].

Denote by Aut(G) the group of automorphisms of the semi-graph of anabelioids G. Here,
we recall that an automorphism of a semi-graph of anabelioids consists of an automorphism of
the underlying semi-graph, together with a compatible system of isomorphisms between the
various anabelioids at each of the vertices and edges of the underlying semi-graph, which are
compatible with the various morphisms of anabelioids associated to the branches of the under-
lying semi-graph—cf. [Mzk7], Definition 2.1; [Mzk7], Remark 2.4.2. Then, by Proposition
1.5, (ii), we obtain an injective homomorphism

Aut(G) ↪→ Out(ΠG) ,

whose image we shall denote by

Outgrph(ΠG) ⊆ Out(ΠG)

and refer to as the group of graphic outer automorphisms of ΠG . Since ΠG is topologi-
cally finitely generated [cf. Remark 1.1.3], it follows that Out(ΠG) is equipped with a natural
profinite topology, which thus induces a natural topology on the subgroup Outgrph(ΠG) ⊆
Out(ΠG), which is manifestly closed, by Proposition 1.5, (ii). In particular, Aut(G) ∼=
Outgrph(ΠG) is equipped with a natural profinite topology.

SinceΠG is center-free [cf. Remark 1.1.3], we have a natural exact sequence 1→ ΠG →
Aut(ΠG) → Out(ΠG)→ 1, which we may pull-back via Aut(G) ↪→ Out(ΠG) to obtain an
exact sequence as follows:

1→ ΠG → ΠAut
G → Aut(G)→ 1 .

If G′ → G is a sturdy [i.e., G′ is sturdy] finite étale ΠG-covering which arises from a charac-
teristic open subgroup ΠG ′ ⊆ ΠG , then there is a natural action of ΠAut

G on G′. In particular,

we obtain, for every l ∈ Σ , a natural action of ΠAut
G on the free Zl-module of rank one [i.e.,

since G′ is sturdy] H 2(Π
cpt
G ′ ,Zl ).

LEMMA 2.1 (Construction of the cyclotomic character). This action of ΠAut
G on

H 2(Π
cpt
G ′ ,Zl ) factors through the quotient ΠAut

G � Aut(G), and hence determines a con-

tinuous homomorphism Aut(G)→ Z×l , whose inverse

χl : Aut(G)→ Z×l
we shall refer to as the pro-l cyclotomic character of Aut(G). Moreover, this character is
independent of the choice of sturdy ΠG-covering G′ → G.

PROOF. To verify the asserted independence of covering, it suffices to observe that any
two sturdyΠG-coverings G′ → G, G′′ → G may be dominated by a third sturdyΠG-covering
G′′′ → G, which induce isomorphisms of free Ql-modules of rank one

H 2(Π
cpt
G ′ ,Zl )⊗ Q→ H 2(Π

cpt
G ′′′ ,Zl )⊗ Q ; H 2(Π

cpt
G ′′ ,Zl )⊗ Q→ H 2(Π

cpt
G ′′′ ,Zl )⊗ Q ,
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which are compatible with the various actions by ΠAut
G .

To show that the action of ΠAut
G factors through Aut(G), we may assume without loss

of generality that Σ is the set of all primes. On the other hand, by the independence of
covering already verified, it follows that we may compute the ΠAut

G -action in question by
using a covering G′ → G of degree prime to l(l − 1). Since the action in question amounts
to a continuous homomorphism ΠAut

G → Z×l which clearly factors through ΠAut
G /ΠG ′ , the

desired factorization follows from the fact that [consideration of orders implies that] every
homomorphism Gal(G′/G)→ Z×l is trivial. �

PROPOSITION 2.2 (The double of a semi-graph of anabelioids of PSC-type). Sup-
pose that r(G) �= 0. Let H be the semi-graph of anabelioids defined as follows: The un-
derlying semi-graph H is obtained by taking the disjoint union of two copies of G and, for
each cusp e of G abutting to a vertex v of G, replacing the corresponding pairs of cusps lying
in these two copies of G by a node [i.e., a closed edge] that joins the pairs of vertices cor-
responding to v in these two copies. We shall refer to the newly appended nodes as bridges.
Away from the bridges, we take the semi-graph of anabelioids structure of H to be the struc-
ture induced by G, and, at each branch of a bridge of H, we take the semi-graph of anabelioids
structure of H to be the structure induced by G at the corresponding cusp e of G, by gluing
the two copies of Ge in question by means of the inversion automorphism Ge → Ge [induced
by “multiplication by −1” on the abelian fundamental group of Ge]. We shall refer to H as
the double of G. Then the following hold.

(i) H is a noncuspidal semi-graph of anabelioids of PSC-type.
(ii) Restriction of finite étale coverings ofH to each of the copies of G used to construct

H determines a natural injective continuous outer homomorphismΠG ↪→ ΠH.
(iii) The homomorphism of (ii) maps verticial (respectively, edge-like) subgroups of

ΠG isomorphically onto verticial (respectively, edge-like) subgroups of ΠH.
(iv) The homomorphism of (ii) induces an injection

MG ↪→ MH

that mapsMedge
G (respectively, Mvert

G ) into Medge
H (respectively, Mvert

H ).

PROOF. Assertion (i) is immediate from the definitions. Note, relative to Definition 1.1,
(i), that there is a corresponding construction of a “double” of a pointed stable curve. This
explains the need for “gluing by means of the inversion automorphism” in the definition of
H: Over, say, a complete discrete valuation ring A with algebraically closed residue field,
the completion of a generically smooth pointed stable curve at a node is isomorphic to the
formal spectrum of the complete local ring A[[x, y]]/(xy− s), where x, y are indeterminates
and s lies in the maximal ideal of A. Then the action of the local tame Galois group at each
of the branches of the node considered independently is of the form x 
→ ζ · x, y 
→ ζ · y,
where ζ is some root of unity. On the other hand, since the Galois action on coverings of the
entire formal spectrum of A[[x, y]]/(xy − s) [i.e., where one does not treat the branches of
the node independently] necessarily fixes elements of the base ring [i.e., the normalization of
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A in some finite extension of its quotient field], it follows that this action must be of the form
x 
→ ζ · x, y 
→ ζ−1 · y.

As for Assertion (ii), it is immediate that we obtain a natural homomorphismΠG → ΠH.
The asserted injectivity may be verified as follows [cf. also the proof of injectivity in [Mzk7],
Proposition 2.5, (i)]: Given any finite étale ΠG-covering G′ → G, one may construct a finite
étaleΠH-covering H′ → H, which induces G′ → G via the “restriction procedure′′ of (ii) by
gluing together two copies of G′ over the two copies of G used to construct H. Note that to
carry out this gluing, one must choose a [noncanonical!] isomorphism, at each cusp e of G,
between the restriction of G′ → G to Ge and the pull-back via the inversion automorphism of
this restriction. [Note that it is immediate that such an isomorphism always exists.] Assertion
(iii) is immediate from the construction of the double.

Finally, we consider Assertion (iv). To verify that the homomorphism MG → MH
induced by the homomorphism of (ii) is an injection, it suffices to observe that the gluing
procedure discussed in the proof of the injectivity of (ii) determines a splitting of the homo-
morphismMG → MH. Indeed, if the finite étaleΠG-covering G′ → G in question is abelian,
with Galois group A, then the resulting H′ → H admits a natural action by A, by letting A
act via the identity A→ A on one copy of G′ and via “multiplication by −1” A→ A on the
other copy of G′. [Put another way, if we think of the covering G′ → G as corresponding to
the A-set A, then we glue the set A to the set A at the bridges by means of the automorphism
“multiplication by −1”.] This completes the proof of injectivity. The fact that this injection
maps Medge

G (respectively, Mvert
G ) into Medge

H (respectively, Mvert
H ) follows immediately from

Assertion (iii). �

REMARK 2.2.1. Certain aspects of Proposition 2.2 are related to the results of [Asada].

REMARK 2.2.2. It is quite possible that various aspects of Proposition 2.2 may be
generalized from the case of “two copies of G” treated in Proposition 2.2 to the case of gluing
together arbitrary finite collections of semi-graphs of anabelioids of PSC-type. This topic,
however, lies beyond the scope of the present paper.

DEFINITION 2.3. Let J be a profinite group which acts continuously on G [i.e., we are
given a continuous homomorphism J → Aut(G)]. Set

ΠJ
G

def= ΠAut
G ×Aut(G) J .

Let M be a continuous Zl[J ]-module [i.e., a topological module equipped with continuous
actions by Zl , J ], where l ∈ Σ .

(i) We shall refer to a [continuous] character ψ : J → Z×l as quasi-cyclotomic (re-
spectively, Q-cyclotomic) if ψ (respectively, some positive power of ψ) coincides with the
restriction to J of the character χl (respectively, some integer power of the character χl) of
Lemma 2.1 on some open subgroup J ′ ⊆ J of J . If ψ : J → Z×l is a [continuous] character,
then we shall denote by

M(ψ)
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the ψ-twist of M . That is to say, the underlying topological Zl-modules of M , M(ψ) are
identical; if the action of γ ∈ J on M maps m ∈ M to γ · m ∈ M , then the action of
γ ∈ J on M(ψ) maps m 
→ ψ(γ ) · (γ · m) ∈ M = M(ψ). If n ∈ Z, then we shall write

M(n)
def= M((χl|J )n), where χl |J denotes the restriction of the cyclotomic character χl of

Lemma 2.1 to J . We shall say that M is quasi-trivial if some open subgroup J ′ ⊆ J acts
trivially onM . We shall say thatM is quasi-toral if M(−1) is quasi-trivial. If, for some open
subgroup J ′ ⊆ J , there exists a finite filtration of Zl[J ′]-submodules

Mn ⊆ Mn−1 ⊆ · · · ⊆ Mj ⊆ · · · ⊆ M1 ⊆ M0 =M
such that eachMj/Mj+1 is torsion-free and, moreover, either is quasi-trivial [over J ′] or has
no quasi-trivial J ′′-subquotients for any open subgroup J ′′ ⊆ J ′, then we shall refer to the
[possibly infinite] sum

∑

Mj/Mj+1 quasi-trivial

dimQl (M
j/Mj+1 ⊗ Ql )

[which is easily verified to be independent of the choice of a subgroup J ′ ⊆ J and a filtration
{Mj } satisfying the above properties] as the quasi-trivial rank of M .

(ii) We shall say that [the action of] J is l-cyclotomically full if the image of the ho-
momorphism χl |J : J → Z×l is open. Suppose that J is l-cyclotomically full. Then it makes
sense to speak of the weight w of a Q-cyclotomic character ψ : J → Z×l : i.e., w is the unique
rational number that may be written in the form 2a/b, where a, b are integers such that b �= 0,
ψb = (χl |J )a . If w > 0 (respectively, w = 0; w < 0), then we shall say that ψ is positive
(respectively, null; negative). If w ∈ Q, and ψ : J → Z×l is a Q-cyclotomic character of
weight w, then we shall refer to the quasi-trivial rank of M(ψ−1) as the l-weight w rank of
M . [One verifies immediately that the l-weight w rank is independent of the choice of ψ .] If
the l-weightw rank ofM is nonzero, then we shall say that w is an associated l-weight ofM .
Write

w l(M) ⊆ Q

for the set of associated l-weights of M .
(iii) Suppose that J is l-cyclotomically full. Observe that if ΠG ′ ⊆ ΠG is any charac-

teristic open subgroup, then ΠJ
G acts naturally on ΠG ′ , and hence also onMG ′ ⊗ Zl . Set

w l(J )
def=

⋃

G ′
w l(MG ′ ⊗ Zl )

[where the union ranges over characteristic open subgroups ΠG ′ ⊆ ΠG]. We shall refer to
w l(J ) as the set of associated l-weights of [the action of] J . If every w ∈ w l(J ) satisfies
0 ≤ w ≤ 2, then we shall say that [the action of] J is weakly l-graphically full. If, for every
characteristic open subgroup ΠG ′ ⊆ ΠG , it holds that

w l((M
vert
G ′ /M

edge
G ′ )⊗ Zl ) ⊆ (0, 2)Q

def= {w ∈ Q | 0 < w < 2} ,
then we shall say that [the action of] J is l-graphically full. [Thus, “J l-graphically full”
implies “J weakly l-graphically full”—cf. Proposition 2.4, (i), (ii), below.]
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REMARK 2.3.1. The purpose of the introduction of the notion “l-cyclotomically full”
is to allow us to describe, in compact form, that situation in which it makes sense to speak of
“weights” in a fashion similar to the case where the action of J arises from scheme theory.
Once it makes sense to speak of “weights”, one may introduce the notion of “l-graphically
full” (respectively, “weakly l-graphically full”), which asserts, in essence, that the weights
behave as one would expect in the case of precisely one (respectively, at least one, i.e., pos-
sibly two nested, as in the situations of Corollaries 2.8, 2.10 below) degeneration(s) of the
hypothetical family of hyperbolic curves under consideration.

PROPOSITION 2.4 (Quasi-triviality and quasi-torality). Let J be as in Definition 2.3;
l ∈ Σ . Writem(G) for the rank [over ẐΣ ] of the finitely generated, free ẐΣ -moduleMG . Then
the following hold.

(i) (MG/Mvert
G )⊗ Zl is quasi-trivial.

(ii) M
cusp
G ⊗ Zl , M

edge
G ⊗ Zl are quasi-toral. In particular, if J is l-cyclotomically

full, and 2 �∈ w l(J ), then the submodule Medge
G ⊗ Zl ⊆ MG ⊗ Zl is zero.

(iii) Assume that G is sturdy. Then there exists a positive integer m ≤ 2m(G) such
that det(MG ⊗ Zl )⊗2(−m) is quasi-trivial.

(iv) Assume that G is sturdy. Then a character ψ : J → Z×l is Q-cyclotomic if
and only if it admits a positive power that coincides with the aψ -th power of the character
obtained by the natural action of J on det(MG⊗Zl )⊗2 for some aψ ∈ Z. Suppose further that
J is l-cyclotomically full. Then a Q-cyclotomic ψ is positive (respectively, null; negative)
if and only if aψ may be taken to be positive (respectively, zero; negative). Finally, any two
Q-cyclotomic characters J → Z×l of the same weight necessarily coincide on some open
subgroup J ′ ⊆ J .

(v) Assume that the image of J in Aut(G) is open. Then J is l-graphically full.
(vi) Assume that J is l–cyclotomically full. Then 2 �= w ∈ w l(J ) implies 2 − w ∈

w l(J ). If, moreover, G is noncuspidal, then w ∈ w l(J ) implies 2−w ∈ w l(J ).
(vii) Assume that J is l-cyclotomically full, and that G has cusps [i.e., that ΠG is

free—cf. Remark 1.1.3]. Then for every sufficiently small open subgroup ΠG ′ ⊆ ΠG , the
subset

{0} ∪ w l(MG ′ ⊗ Zl) ⊆ Q

is invariant with respect to the automorphism λ 
→ 2− λ of Q; in particular, the sum of the
maximum and minimum elements of this [finite] subset is equal to 2.

(viii) Assume that J is l-graphically full. ThenMedge
G ⊗Zl ⊆ MG⊗Zl is the maximal

quasi-toral Zl[J ]-submodule of MG ⊗ Zl .
(ix) Assume that J is l-graphically full. Then MG ⊗ Zl � (MG/Mvert

G ) ⊗ Zl is the
maximal torsion-free quasi-trivial Zl[J ]-quotient module of MG ⊗ Zl .

PROOF. Assertion (i) follows immediately from Remarks 1.1.3, 1.1.4. Now when G is
noncuspidal, Assertion (ii) follows from Assertion (i); Proposition 1.3. For arbitrary G, Asser-
tion (ii) follows from Assertion (ii) in the noncuspidal case, together with Proposition 2.2, (iv).
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Assertion (iii) follows immediately from Assertion (ii) [applied to Mcusp
G ⊗ Zl]; Proposition

1.3 [applied to (MG/M
cusp
G )⊗Zl , which is possible in light of the sturdiness assumption—cf.

Remark 1.1.6]. Assertion (iv) follows formally from Assertion (iii); the definitions; the fact
that Z×l contains a torsion-free open subgroup.

To verify Assertion (v), it suffices to consider the case where G arises from a pointed
stable curve over a finite field k [cf. the proof of Proposition 1.3], and J is equal to an open
subgroup of Aut(G). Then Assertion (v) follows from the fact that [in the notation and ter-
minology of loc. cit.] the action of Gk on Mvert

G /M
edge
G is of weight 1. Assertion (vi) follows

from Assertion (ii); Proposition 1.3, applied to the compactification [cf. Remark 1.1.6] of a
sturdy finite étale ΠG-covering of G.

Next, we consider Assertion (vii). Suppose that ΠG ′ ⊆ ΠG is an open subgroup such

that r(G′) ≥ 2. Thus,Mcusp
G ′ �= 0 [cf. Remark 1.3.1], so [by Assertion (ii)] 0, 2 ∈ EG ′

def= {0}∪
w l(MG ′ ⊗ Zl ). Thus, if we set E′G ′

def= w l(M
vert
G ′ /M

edge
G ′ ⊗ Zl ), then [by Assertions (i), (ii)], it

follows thatEG ′ = {0, 2}∪E′G ′ . Moreover, by Proposition 1.3 [applied to the compactification
[cf. Remark 1.1.6] of G], E′G ′ is invariant with respect to the automorphism λ 
→ 2 − λ of
Q. But this implies the desired invariance of EG ′ with respect to this automorphism of Q.
This completes the proof of Assertion (vii). Finally, Assertions (viii), (ix) follow immediately
from Assertions (i), (ii); the definitions. �

EXAMPLE 2.5. Stable Log Curves over a Logarithmic Point. Let Slog be a log

scheme, with underlying scheme S
def= Spec(k), where k is a field, and log structure given

by a chart N 
 1 
→ 0 ∈ k [cf. the theory of [Kato]]. Let

Xlog → Slog

be a stable log curve over Slog [cf. §0]. Let T log→ Slog be a “separable closure” of Slog, i.e.,
the underlying scheme T of T log is of the form T = Spec(k̄), where k̄ is a separable closure
of k; the log structure of T log is given by a chart M 
 1 
→ 0 ∈ k, where M ⊆ Q is the monoid
of positive rational numbers with denominators invertible in k; the morphism T log → Slog

arises from the natural maps k ↪→ k̄, N ↪→ M. Thus, if we write Gklog
def= Aut(T log/Slog),

then we have a natural exact sequence

1→ Iklog → Gklog → Gk → 1 ,

whereGk
def= Gal(k̄/k); Iklog

def= Hom(Q/Z, k̄×). Now the admissible coverings of Xlog [with
tame ramification at the cusps] determine an admissible fundamental group ΠXlog which fits
into a natural exact sequence:

1→ ∆Xlog → ΠXlog → Gklog → 1 .

[The theory of admissible coverings is discussed in detail in [Mzk1], §3; [Mzk2], §2; [Mzk4],
§2; [Mzk4], Appendix. It follows, in particular, from this theory that, if one chooses a lifting
of Xlog→ Slog to some generically smooth stable log curve

X
log
lift → S

log
lift
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—where Slift is the spectrum of a complete discrete valuation ring with residue field k; the
log structure on Slog

lift is the log structure determined by the monoid of generically invertible
functions—then the coverings arising from ΠXlog may be realized as coverings of the gener-

ically smooth curve Xlog
lift that satisfy certain properties.] Moreover, if Σ is a set of primes

that does not contain the residue characteristic of k, and we denote by G the semi-graph of
anabelioids of pro-Σ PSC-type arising from the pointed stable curve over k̄ determined by
Xlog, then the maximal pro-Σ quotient of ∆Xlog may be naturally identified with the PSC-
fundamental group ΠG . In particular, one obtains a natural outer action of Gklog on ΠG ,
the automorphisms of which are easily seen [by the functoriality of the various fundamental
groups involved!] to be graphic. That is to say, we obtain continuous homomorphisms as
follows:

Gklog → Aut(G) ∼= Outgrph(ΠG) ⊆ Out(ΠG) .

Now suppose that H ⊆ Gklog is a closed subgroup such that the restriction to H of the
homomorphism Gklog → Aut(G) factors through some quotient H � J :

H � J → Aut(G) .
For l ∈ Σ , we shall refer to the image in J of the intersection of H with the pro-l com-
ponent of Iklog as the l-inertia subgroup of J ; we shall say that [the action on G of] J is
l-logarithmically full if the l-inertia subgroup of J is infinite [hence isomorphic to Zl (1)]. If
H is an open subgroup Gklog , then we shall say that [the action on G of] J is arithmetically
full and refer to k as the base field.

REMARK 2.5.1. Note that from the point of view of Example 2.5, one may think of
the action ofGk on G appearing in the proof of Proposition 1.3 as the restriction of the action
of Gklog on G discussed in Example 2.5 to some section of Gklog � Gk .

PROPOSITION 2.6 (The logarithmic inertia action). In the notation of Example 2.5,
Iklog acts quasi-unipotently [i.e., an open subgroup of Iklog acts unipotently] on MG ⊗ Zl ,
and, moreover, the submodule

Mvert
G ⊗ Zl ⊆MG ⊗ Zl

is the maximal quasi-trivial Zl[Iklog]-submodule of MG ⊗ Zl [i.e., the maximal submodule
on which some open subgroup of Iklog acts trivially].

PROOF. Let us first observe that if G is noncuspidal, then the asserted quasi-unipotency
(respectively, quasi-triviality) of the action of Iklog onMG ⊗ Zl (respectively,Mvert

G ⊗ Zl) fol-
lows immediately from the well-known theory of Galois actions on torsion points of degen-
erating abelian varieties [cf., e.g., [FC], Chapter III, Corollary 7.3; here, we note that, in the
terminology of loc. cit., the submodule Mvert

G ⊗ Zl corresponds to the submodule determined
by the “Raynaud extension”]. Thus, one obtains the asserted quasi-unipotency/quasi-triviality
in the case of not necessarily noncuspidal G by applying the theory of the “double” [cf. Propo-
sition 2.2, (iv)]. Now it remains to prove the asserted maximality. But this follows again from
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[FC], Chapter III, Corollary 7.3 [i.e., the fact that the period matrix of a degenerating abelian
variety is always nondegenerate]. �

Now, by combining Theorem 1.6 with the theory of the present §2 [cf., in particular,
Proposition 2.4], we obtain the following result.

COROLLARY 2.7 (Graphicity). Let G, H be semi-graphs of anabelioids of pro-Σ
PSC-type; JG → Aut(G), JH → Aut(H) continuous homomorphisms. Suppose, moreover,
that we have been given isomorphisms of profinite groups

α : ΠG
∼→ ΠH ; ι : JG ∼→ JH

which are compatible, with respect to the respective outer actions of JG , JH on ΠG , ΠH.
Then, for l ∈ Σ the following hold.

(i) Suppose that the respective actions of JG , JH on G, H are l-cyclotomically full.
Then α is group-theoretically cuspidal.

(ii) Suppose that the respective actions of JG , JH on G, H are l-graphically full [cf.,
e.g., Proposition 2.4, (v)]. Then α is graphic.

(iii) Suppose that the respective actions of JG , JH on G, H arise from data as in Ex-
ample 2.5; that G, H are noncuspidal; and that, in the terminology of Example 2.5, these
actions are l-logarithmically full, and, moreover, ι maps the l-inertia subgroup of JG iso-
morphically onto that of JH. Then α is graphic.

(iv) Outgrph(ΠG) is commensurably terminal in Out(ΠG).

PROOF. First, we consider Assertion (i). By Theorem 1.6, (i), it suffices to prove that
α is numerically cuspidal, under the further assumption that G, H have cusps [i.e., that ΠG ,
ΠH are free—cf. Remark 1.1.3]. By passing to sturdy finite étale coverings of G, H that
correspond via α [cf. Remark 1.1.5], it follows from Proposition 2.4, (iv), that ι preserves
positive and null Q-cyclotomic characters to Z×l . Thus, by Proposition 2.4, (vii), it follows that
ι preserves the Q-cyclotomic characters to Z×l of weight 2. Now, by applying Proposition 1.3
to the compactifications [cf. Remark 1.1.6] of sturdy finite étale coverings G′ → G, H′ → H
that correspond via α [cf. Remark 1.1.5], we conclude that the rank of Mcusp

G ′ (respectively,

M
cusp
H′ ) may be computed as the difference between the l-weight 2 and l-weight 0 ranks ofMG ′

(respectively,MH′ ) [cf. Proposition 2.4, (ii); Remark 1.3.1]; moreover, [cf. Remark 1.3.1] this
data allows one to compute r(G′) (respectively, r(H′)). This completes the proof of Assertion
(i).

Next, we consider Assertion (ii). By Assertion (i), it follows that α is group-theoretically
cuspidal. Thus, by replacing G, H by the compactifications [cf. Remark 1.1.6] of sturdy finite
étale coverings of G, H that correspond via α [cf. Remark 1.1.5], we may assume without loss
of generality that G, H are noncuspidal. Thus, by Theorem 1.6, (ii); Remark 1.4.1, it suffices
to prove that α is verticially filtration-preserving. But this follows from Proposition 2.4, (ix).
This completes the proof of Assertion (ii). Assertion (iv) follows formally from Assertion (ii)

[by taking H def= G; JG , JH to be open subgroups of Outgrph(ΠG)—cf. Proposition 2.4, (v)].
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Finally, we consider Assertion (iii). By Theorem 1.6, (ii); Remark 1.4.1, it suffices to
prove that α is verticially filtration-preserving. But this follows from Proposition 2.6 and
the assumptions concerning the l-inertia subgroups. This completes the proof of Assertion
(iii). �

REMARK 2.7.1. Corollary 2.7, (iv), may be regarded as a sort of anabelian analogue
of the well-known linear algebra fact that, if k is an algebraically closed field, then parabolic
subgroups of the general linear groupGLn(k), where n ≥ 2—e.g., the subgroups that preserve
some filtration of a k-vector space of dimension n—are normally terminal inGLn(k) [cf., e.g.,
[Hum], p. 179].

REMARK 2.7.2. Note that the group-theoretic cuspidality of [Mzk4], Lemma 1.3.9
(respectively, the graphicity of [Mzk4], Lemma 2.3) may be regarded as a [rather weak] spe-
cial case of Corollary 2.7, (i) (respectively, Corollary 2.7, (ii))—cf. the proof of Proposition
2.4, (v), above.

COROLLARY 2.8 (Graphicity over an arithmetic logarithmic point). Let G, H be
semi-graphs of anabelioids of pro-Σ PSC-type; JG → Aut(G), JH → Aut(H) contin-
uous homomorphisms that arise from data as in Example 2.5 such that [in the terminology
of Example 2.5] the resulting actions are l-logarithmically full, for some l ∈ Σ , and arith-
metically full, with base field isomorphic to a subfield of a finitely generated extension of Fp
or Qp, for some prime p �∈ Σ [where we allow p to differ for G, H]. Suppose, moreover, that
we have been given isomorphisms of profinite groups

α : ΠG
∼→ ΠH ; ι : JG ∼→ JH

which are compatible, with respect to the respective outer actions of JG , JH on ΠG , ΠH,
and satisfy the property that ι maps the l-inertia subgroup of JG isomorphically onto that of
JH. Then the respective actions of JG , JH on G, H are weakly l-graphically full, and α is
graphic.

PROOF. Indeed, by using the Frobenius elements of the Galois group of a finitely gen-
erated extension of Fp or Qp containing the base field in question [cf. the proof of Proposition
2.4, (v)], one obtains that JG , JH are weakly l-graphically full. [Note that, unlike the situation
in the proof of Proposition 2.4, (v), the pointed stable curve over a finite field that one uses
here to conclude weak l-graphic fullness will, in general, be a degeneration of the original
pointed stable curve over the base field appearing in Example 2.5. This is the reason why
[unlike the situation in the proof of Proposition 2.4, (v)] in the present context, one may only
conclude weak l-graphic fullness.] By Corollary 2.7, (i), we thus conclude that α is group-
theoretically cuspidal. Moreover, this allows us [by passing to compactifications of sturdy
finite étale coverings] to reduce to the noncuspidal case, hence to conclude that α is graphic
by Corollary 2.7, (iii). �

REMARK 2.8.1. In the situation of Corollary 2.8, suppose further that the base field
in question is sub-p-adic [i.e., isomorphic to a subfield of a finitely generated extension of
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Qp], and that ι lies over an isomorphism between the absolute Galois groups of the respective
base fields that arises from an isomorphism between the respective base fields. Then one may
apply the main result of [Mzk3]—just as the main result of [Tama1] was applied in [Mzk2],
§7—to the various verticial subgroups to obtain a version of the Grothendieck conjecture for
pointed stable curves over a sub-p-adic field. Note that in this situation, when Σ is the set
of all primes, one may also reconstruct the log structures at the nodes by considering the
decomposition groups at the nodes [cf. the theory of [Mzk2], §6]. We leave the routine details
to the interested reader.

REMARK 2.8.2. In the situation of Corollary 2.8, suppose further that the base field
in question is a finite extension of Qp [which may differ for G, H], and that Σ is the set of
all primes. Then observe that it follows from [Mzk4], Lemma 1.1.4, (ii), that ι lies over an
isomorphism between the absolute Galois groups of the respective base fields [that does not
necessarily arise from an isomorphism between the respective base fields!]. Now suppose
further that the hyperbolic curve constituted by [the complement of the nodes and cusps in]
each irreducible component of the pointed stable curves over the respective base fields that
give rise to the data in question is isogenous [cf. §0] to a hyperbolic curve of genus zero.
Then it follows from the theory of [Mzk6], §4—more precisely, the “rigidity” of the cuspidal
edge-like subgroups implied by [Mzk6], Theorem 4.3, together with the integral absoluteness
of [Mzk6], Corollary 4.11—that one may reconstruct the log structures at the nodes by con-
sidering the decomposition groups at the nodes [cf. the theory of [Mzk2], §6]. We leave the
routine details to the interested reader.

COROLLARY 2.9 (Unramified graphicity). Let G, H be sturdy semi-graphs of an-
abelioids of pro-Σ PSC-type; JG → Aut(G), JH → Aut(H) continuous homomorphisms
which determine l-graphically full actions for some l ∈ Σ . Suppose, moreover, that we have
been given factorizations

JG � J ′G → Out(Πunr
G ) ; JH � J ′H → Out(Πunr

H )

[where the composite homomorphisms are the natural homomorphisms; the first arrow of
each factorization is a surjection], together with isomorphisms of profinite groups

β : Πunr
G
∼→ Πunr

H ; ι′ : J ′G
∼→ J ′H

which are compatible, with respect to the respective outer actions of J ′G , J ′H on Πunr
G , Πunr

H .
Then β is group-theoretically verticial.

PROOF. By Theorem 1.6, (iii), it suffices to prove that α is verticially filtration-preserv-
ing. But this follows from Proposition 2.4, (ix). �

REMARK 2.9.1. Note that the group-theoretic verticiality of [Mzk2], Proposition 1.4
may be regarded as a [rather weak] special case of Corollary 2.9—cf. the proof of Proposition
2.4, (v), above.
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Finally, we observe the following consequence of the theory of the present paper con-
cerning anabelian geometry over finite extensions of the quotient field of the ring of Witt
vectors of an algebraic closure of a finite field.

COROLLARY 2.10 (Inertia action in the case of two primes). For i = 1, 2, let Ki be
a finite extension of the quotient field of the ring of Witt vectors W(F̄pi ) with coefficients in
an algebraic closure F̄pi of the finite field of cardinality pi , where pi is a prime number;
K̄i an algebraic closure of Ki; Gi

def= Gal(K̄i/Ki); Xi a hyperbolic curve over Ki whose
corresponding stable log curve extends to a stable log curve X log

i over the spectrum of the
ring of integers OKi of Ki [equipped with the log structure determined by the closed point
of Spec(OKi )]; Σ a set of prime numbers such that pi ∈ Σ; ∆i the maximal pro-Σ
quotient of the étale fundamental group of (Xi)×Ki K̄i [so∆i may be regarded as the profinite
fundamental group of a semi-graph of anabelioids Gi of pro-Σ PSC-type with precisely one
vertex and no closed edges];

αG : G1
∼→ G2 ; α∆ : ∆1

∼→ ∆2

a pair of isomorphisms of profinite groups that are compatible with the natural outer ac-
tion of Gi on ∆i . Then the following hold.

(i) We have p1 = p2 [so we shall write p
def= p1 = p2]; for i = 1, 2, the action of Gi

on Gi is weakly p-graphically full; α∆ is group-theoretically cuspidal.
(ii) Suppose that the cardinality of Σ is ≥ 2. Then α∆ induces a functorial [i.e.,

with respect to the pair (αG, α∆)] isomorphism of the “dual semi-graphs with compact
structure” [cf. [Mzk4], Appendix] of the special fibers of the X log

i .

(iii) Suppose that the cardinality of Σ is ≥ 2. Write π temp
1 ((Xi) ×Ki K̄i ) for the

tempered fundamental group of [André], §4 [cf. also [Mzk7], Examples 3.10, 5.6];
∆

temp
i

def= lim←−
N

π
temp
1 ((Xi)×Ki K̄i )/N

for the “Σ-tempered fundamental group”—i.e., the inverse limit where N varies over the
open normal subgroups of π temp

1 ((Xi)×Ki K̄i) such that the quotient π temp
1 ((Xi)×Ki K̄i )/N

is an extension of a finite group whose order is a product of primes ∈ Σ by a discrete
free group. [Here, we recall that such a discrete free group corresponds to a “combinatorial
covering” determined by the graph of the special fiber of some stable reduction of a covering
of Xi—cf. [André], Proposition 4.3.1; [André], the proof of Lemma 6.1.1.] Thus, we have a
natural continuous outer action of Gi on∆temp

i ; ∆i is the pro-Σ completion of ∆temp
i . Then

the operation of pro-Σ completion determines a surjection from the set of compatible pairs
of isomorphisms of topological groups

βG : G1
∼→ G2 ; β∆temp : ∆temp

1
∼→ ∆

temp
2

considered up to inner automorphisms of the ∆temp
i to the set of compatible pairs of isomor-

phisms of topological groups

γG : G1
∼→ G2 ; γ∆ : ∆1

∼→ ∆2



478 S. MOCHIZUKI

considered up to inner automorphisms of the ∆i .

PROOF. First, we consider Assertion (i). Since [as is well-known] Gi is an extension
of an abelian profinite group by a nonabelian pro-pi group, it follows that pi may be char-
acterized as the unique prime number p′ such that Gi contains a nonabelian pro-p′ closed

subgroup. Thus, the existence of αG implies that p1 = p2; write p
def= p1 = p2. Now since

the tensor product with Qp of the abelianization of any open subgroup of∆i admits a filtration
[cf., e.g., [FC], Chapter III, Corollary 7.3] each of whose subquotients is Hodge-Tate [relative
to the action of some open subgroup of Gi ], with Hodge-Tate decomposition only involving
“Tate twists” by the zero-th or first power of the cyclotomic character [cf. [Tate], §4, Corollary
2], it follows thatGi is [relative to its outer action on∆i] weakly p-graphically full. Thus, the
remainder of Assertion (i) follows from Corollary 2.7, (i).

Next, we consider Assertion (ii). Let l ∈ Σ be distinct from p
def= p1 = p2. Write

∆i � ∆
(l)
i for the maximal pro-l quotient of∆i . Since the subgroup of Out(∆(l)i ) that induces

the identity on the tensor product with Fl of the abelianization of ∆(l)i is [easily seen to be] a
pro-l group, it follows that by replacing Gi by an open subgroup of Gi , we may assume that
the natural map Gi → Out(∆(l)i ) factors through the maximal pro-l quotient Gi � G

(l)
i of

Gi . Thus, the data given by the outer action ofG(l)i on∆(l)i is l-logarithmically full data of the
type considered in Example 2.5. In particular, in the noncuspidal case, Assertion (ii) follows
immediately from Corollary 2.7, (iii). On the other hand, even if we are not in the noncuspidal
case, by passing to compactifications of sturdy finite étale coverings of theXi and applying the
fact that a cuspidal edge-like subgroup belongs to a unique verticial subgroup [cf. Proposition
1.5, (i)], we reduce immediately [via Assertion (i)] to the noncuspidal case. This completes
the proof of Assertion (ii).

Finally, we observe that Assertion (iii) follows formally from Assertion (ii) via the same
argument applied [in the case where Σ is the set of all primes, and the base fields are finite
extensions of Qp] in the proof of [Mzk7], Theorem 6.6, to derive the “surjectivity portion” of
[Mzk7], Theorem 6.6, from [Mzk4], Lemma 2.3. �

REMARK 2.10.1. Since free discrete groups inject into their pro-Σ completions [cf.
[RZ], Proposition 3.3.15], the natural map ∆temp

i → ∆i is injective [cf. the proof of [Mzk7],
Corollary 3.11]. On the other hand, unlike the situation of [Mzk7], Theorem 6.6, we are
unable to conclude that the surjection of Corollary 2.10, (iii), is a bijection, since [unlike the
profinite case—cf. [André], Corollary 6.2.2] it is not clear that the [image in ∆i of] ∆temp

i is
equal to its own normalizer in ∆i .
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