TOPOLOGY OF POSITIVELY PINCHED KAEHLER MANIFOLDS

Shoshichi Kobayashi*)

(Received January 16, 1963)

1. Introduction. The purpose of the present paper is to show that if the curvature of a complete Kaehler manifold M of complex dimension m does not deviate much from that of the complex projective space $P_{m}(C)$, then $\pi_{i}(M)$ $=\pi_{i}\left(P_{m}(C)\right)$ for all i. Results in the same direction have been obtained by Rauch [15], Klingenberg [11] and do Carmo [6].

To state our result more explicitly, we introduce some notations and give a few definitions. Let J be the tentor field defining the complex structure of M. Let q be a real 2-dimensional subspace of the tangent space $T_{x}(M)$ at a point x of M and let X and Y be an orthonormal basis for q. We define the angle $\alpha(q), 0 \leqq \alpha(q) \leqq \pi / 2$, between the two planes q and $J(q)$ by

$$
\cos \alpha(q)=|(X, J Y)|
$$

where the inner product ($X, J Y$) is defined by the Kaehler metric. It is a simple matter to verify that $\alpha(q)$ depends only on q. We set

$$
\bar{K}(q)=\left(1+3 \cdot \cos ^{2} \alpha(q)\right) / 4
$$

For a Kaehler manifold M we have three kinds of pinchings. Let $K(q)$ denote the sectional curvature of M. Then, the Riemannian pinching of M is greater than $\delta, \delta>0$, if there is a positive number L such that

$$
\delta L<K(q) \leqq L \quad \text { for all } q
$$

The Kaehlerian pinching of M is greater than δ if there is a positive number L such that

$$
\delta L \cdot \bar{K}(q)<K(q) \leqq L \cdot \bar{K}(q) \quad \text { for all } q
$$

Finally, the holomorphic pinching of M is greater than δ if there is a positive number L such that

$$
\delta L<K(q) \leqq L \quad \text { for all } q \text { such that } J(q)=q
$$

Remarks.

1) If $J(q)=q$, then $\bar{K}(q)=1$.
2) If the Kaehlerian pinching of M is greater than δ, then the holomorphic pinching and the Riemannian pinching of M are, respectively, greater than δ and $\delta / 4$.
3) The Kaehlerian pinching of a complex projective space with Fubini-
[^0]Study metric is 1 (see, for instance, [17]). Consequently, its holomorphic pinching and Riemannian pinching are, respectively, 1 and $1 / 4$.

Now, our result may be stated as follows:
ThEOREM. Let M be a complete Kaehler manifold of complex dimension m with Kaehlerian pinching $>4 / 7$. Then, $\pi_{i}(M)=\pi_{i}\left(P_{m}(C)\right)$ for all i.

This improves slightly Klingenberg's constant $16 / 25$ obtained in [11]. Whereas his method is based on Morse theory, our result is based on Sphere Theorem of Berger [2] and Klingenberg [10] (in particular, for odd dimensional Riemannian manifolds) which may be stated as follows : ${ }^{1)}$

Every simply connected, complete Riemannian manifold with Riemannian pinching $>1 / 4$ is homeomorphic with a sphere.

Although $1 / 4$ is the best possible constant for even dimensional Riemannian manifolds, it is an open question whether Sphere Theorem for odd dimensional Riemannian manifolds holds for a smaller constant. In §2 we shall state our main result in such a way that any sharpening of Sphere Theorem for odd dimensional Riemannian manifolds would result in the reduction of $4 / 7$ to a smaller constant.

In §6 we shall give miscellaneous results obtained by the same method.
I conclude this introduction by expressing my thanks to Klingenberg and do Carmo for showing me the manuscripts of their papers [11] and [6] from which I learned the notion of Kaehlerian pinching.
2. An outline of the proof. We know that a sphere $S^{2 m+1}$ of dimension $2 m+1$ is a principal circle bundle over $P_{m}(C)$. The main idea is to generalize this situation, that is, to construct a principal circle bundle P over M such that the universal covering space of P is homeomorphic with $S^{2 m+1}$. Then the exact homotopy sequences of the fibrings $S^{1} \rightarrow S^{2 m+1} \rightarrow P_{m}(C)$ and $S^{1} \rightarrow P \rightarrow M$ give an isomorphism $\pi_{i}(M) \approx \pi_{i}\left(P_{m}(C)\right)$ for $i \geqq 2$. On the other hand, M is simply connected by a theorem of Synge [14] or by a theorem of the author [12] so that $\pi_{i}(M)=\pi_{i}\left(P_{m}(C)\right)$ for all i.

We shall first show that the theorem stated in the introduction is an immediate consequence of the following

Theorem 1. Let M be a complete Kaehler manifold with Kaehlerian pinching $>\delta$. Then there exist a principal circle bundle P over M and a Riemannian metric on P with Riemannian pinching $>\delta /(4-3 \delta)$.

[^1]If we set $\delta=4 / 7$, then $\delta /(4-3 \delta)=1 / 4$ so that the universal covering space of P is homeomorphic with a sphere and, by the preceding argument, $\pi_{i}(M)=\pi_{i}\left(P_{m}(C)\right)$ for all i.

We shall outline here the proof of Theorem 1 . In $\S 3$ we consider, in general, a principal circle bundle P over a Riemannian manifold M of real dimension n with metric $d s^{2}=\sum_{i=1}^{n}\left(\theta_{i}\right)^{2}$. Let γ be a 1 -form on P defining a connection in P. Let a and b be real numbers and consider the Riemannian metric $d \sigma^{2}=\pi^{*}\left(d s^{2}\right)+(a b \gamma)^{2}$ on P, where π is the projection of P onto M. We use two constants a and b instead of just one for purely computational reason. We express the curvature of $d \sigma^{2}$ in terms of those of $d s^{2}$ and γ. In $\S 4$ we shall show that if $b \cdot d \gamma=\pi^{*}\left(\sum J_{i j} \theta^{i} \wedge \theta^{j}\right)$ where $J_{i j}$ are the components of J with respect to $\theta^{1}, \cdots, \theta^{n}$ and if M is of Kaehlerian pinching $>\delta$, then P is of Riemannian pinching $>\delta /(4-3 \delta)$. In $\S 5$ we find a circle bundle P and a connection form γ such that $b \cdot d \gamma$ with a suitable b is sufficiently close to $\pi^{*}\left(\sum J_{i j} \theta^{i} \wedge \theta^{j}\right)$ in a certain sense, thus completing the proof of Theorem 1.
3. Riemannian structure on a circle bundle. Throughout $\S 3$, let P be a principal circle bundle over an n-dimensional manifold M with projection π, $d s^{2}$ a Riemannian metric on M and γ a 1 -form on P defining a connection in the bundle P. Functions on M such as components of tensor fields on M are considered sometimes as functions on P in a natural way without any change of notations. We shall also agree on that indices i, j, k and l run from 1 to n and indices α, β, λ and μ run from 0,1 , to n.

Let a and b be arbitrary real numbers fixed throughout $\S 3$. Let $d \sigma^{2}$ $=\pi^{*}\left(d s^{2}\right)+(a b \gamma)^{2}$. Then $d \sigma^{2}$ is a Riemannian metric on P. We shall now study the structure equations of the Riemannian connections defined by $d s^{2}$ and $d \sigma^{2}$ and also the connection given by γ. In studying the Riemannian connections of $d s^{2}$ and $d \sigma^{2}$ we shall not consider frame bundles but shall use exclusively forms defined on the base manifolds M and P.

Let U be a small open set in M in which $d s^{2}$ is given by

$$
d s^{2}=\sum_{j}\left(\theta^{j}\right)^{2},
$$

where $\theta^{1}, \ldots, \theta^{n}$ are 1 -forms defined on U . Let $\left(\boldsymbol{\omega}^{i}{ }_{j}\right)$ be a skew-symmetric matrix of 1 -forms on U which defines the Riemannian connection of M so that we have the following structure equations:

$$
d \theta^{i}=-\sum_{j} \omega^{i}{ }_{j} \wedge \theta^{j},
$$

$$
d \omega_{j}^{i}=-\sum_{k} \omega^{i}{ }_{k} \wedge \omega^{k}{ }_{j}+\Omega^{i}{ }_{j}
$$

with

$$
\Omega^{i}=1 / 2 \sum_{k, l} K_{i j k l} \theta^{k} \wedge \theta^{l},
$$

where $K_{i j k l}$ are the components of the curvature tensor with respect to $\theta^{1}, \ldots, \theta^{n}$.
Next, we shall study the connection defined by γ. Since the structure group S^{1} of P is abelian, the structure equation is given by

$$
d \gamma=\Gamma
$$

where Γ is the curvature form of γ and can be written as follows:

$$
\Gamma=\pi^{*}\left(\sum_{i, j} A_{i j} \theta^{i} \wedge \theta^{j}\right), A_{i j}=-A_{j i}
$$

Finally, we shall study the Riemannian connection defined by $d \sigma^{2}$. Set

$$
\begin{aligned}
\varphi^{0} & =a b \gamma \\
\varphi^{i} & =\pi^{*}\left(\theta^{i}\right)
\end{aligned}
$$

so that $d \sigma^{2}=\sum_{\alpha}\left(\mathscr{\phi}^{\alpha}\right)^{2}$.
Proposition 1. Set

$$
\begin{aligned}
& \psi_{0}^{0}=0, \\
& \psi^{i}{ }_{0}=-\psi^{0}{ }_{i}=-\sum_{j} a b A_{i j} \varphi^{j}, \\
& \psi^{i}{ }_{j}=\pi^{*}\left(\omega^{i}{ }_{j}\right)-a b A_{i j} \varphi^{0} .
\end{aligned}
$$

Then (ψ_{β}^{α}) defines the Riemannian connection on P with respect to $d \sigma^{2}$.
Proof. Evidently, $\left(\psi_{\beta}^{\alpha}\right)$ is skew-symmetric. To prove that $\left(\psi_{\beta}^{\alpha}\right)$ defines a linear connection of the manifold P, let V be another small open subset of M on which $d s^{2}=\sum_{j}\left(\overline{\theta^{j}}\right)^{2}$. Then

$$
\overline{\theta^{i}}=\sum_{j} s^{i}{ }_{j} \theta^{j} \quad \text { on } U \cap V,
$$

where $\left(s^{i}{ }_{j}\right)$ takes values in $O(n)$. Let $\left(\bar{\omega}^{i}{ }_{j}\right)$ and $\left(\bar{\Omega}^{i}{ }_{j}\right)$ be the connection form and the curvature form of the Riemannian connection given by $d s^{2}$ with respect to the basis $\theta^{1}, \ldots, \bar{\theta}^{n}$; they are defined on V. Set

$$
d \gamma=\Gamma=\pi^{*}\left(\sum_{i, j} \bar{A}_{i j}{\overline{\theta^{i}}}^{i}{\overline{\theta^{j}}}\right)
$$

and

$$
\begin{aligned}
& \bar{\phi}^{0}=a b \gamma, \\
& \bar{\varphi}^{i}=\pi^{*}\left(\bar{\theta}^{i}\right) .
\end{aligned}
$$

Using $\bar{\phi}^{\alpha}$ and $\bar{A}_{i j}$ we define ($\bar{\psi}_{\beta}^{\alpha}$) in the same way as $\left(\psi_{\beta}^{\alpha}\right)$.
Since both (ω^{i}) and ($\bar{\omega}_{j}^{i}$) define the same Riemannian connection, they are related to each other as follows:

$$
\bar{\omega}^{i}{ }_{j}=\sum_{k, l} s^{i}{ }_{k} \omega^{k}{ }_{l} S^{j}{ }_{l}-\sum_{k} d s^{i}{ }_{k} S^{j}{ }_{k},
$$

or, in short,

$$
\bar{\omega}=s \omega s^{-1}-d s \cdot s^{-1}, \text { where } s=\left(s_{j}^{i}\right), \omega=\left(\omega^{i}{ }_{j}\right) \text { and } \bar{\omega}=\left(\bar{\omega}_{j}^{i}\right) .
$$

On the other hand, we have

$$
\begin{gathered}
\bar{A}_{i j}=\sum_{k, l} s^{i}{ }_{k} A_{k l} s^{i}{ }_{l}, \\
\bar{\phi}^{\alpha}=\sum_{\beta} t_{\beta}^{\alpha} \phi^{\beta}, \quad \text { where } t^{i}{ }_{j}=s^{i}{ }_{j}, t^{0}{ }_{j}=t^{i}{ }_{0}=0, t^{0}=1 .
\end{gathered}
$$

A straightforward computation shows

$$
\bar{\psi}_{\beta}^{\alpha}=\sum_{\lambda, \mu} t_{\lambda}^{\alpha} \psi_{\mu}^{\lambda} t_{\mu}^{\beta}-\sum_{\lambda} d t_{\lambda}^{\alpha} t_{\lambda}^{\beta},
$$

which means that $\left(\psi_{\beta}^{\alpha}\right)$ defines a linear connection of the manifold P.
To see that it actually defines the Riemannian connection, it suffices to prove that the connection has no torsion. By a simple calculation, we obtain

$$
\begin{aligned}
d \varphi^{0}+\sum_{\mu} \psi^{0}{ }_{\mu} \wedge \varphi^{\mu} & =a b \sum_{k, l} A_{k l} \varphi^{k} \wedge \varphi^{l}+a b \sum_{k, l} A_{k l} \varphi^{l} \wedge \varphi^{k}=0, \\
d \varphi^{i}+\sum_{\mu} \psi^{i}{ }_{\mu} \wedge \varphi^{\mu} & =\pi^{*}\left(d \theta^{i}\right)+\sum_{j}\left(\pi^{*}\left(\omega^{i}{ }_{j}\right)-a b A_{i j} \varphi^{0}\right) \wedge \varphi^{j} \\
& -a b \sum_{j} A_{i j} \varphi^{j} \wedge \varphi^{0} \\
& =\pi^{*}\left(d \theta^{i}+\sum_{j} \omega^{i}{ }_{j} \wedge \theta^{j}\right)=0 .
\end{aligned}
$$

QED.
Proposition 2. If $\left(\Psi_{\beta}^{\alpha}\right)$ is the curvature form of the connection defined by $\left(\psi_{\beta}^{\alpha}\right)$, then

$$
\begin{aligned}
& \Psi^{0}=0, \\
& \Psi^{i}{ }_{0}=-\Psi^{0}{ }_{i}=-a^{2} b^{2} \sum_{k, l} A_{i k} A_{k l} \varphi^{l} \wedge \varphi^{0}-a b \sum_{k, l} A_{i k i l} \varphi^{l} \wedge \varphi^{k}, \\
& \Psi^{i}{ }_{j}=\pi^{*}\left(\Omega^{i}{ }_{j}\right)-\sum_{k, l} a^{2} b^{2}\left(A_{i j} A_{k l}+A_{i k} A_{j l}\right) \varphi^{k} \wedge \varphi^{l}
\end{aligned}
$$

$$
-a b \sum_{k} A_{i j ; k} \varphi^{k} \wedge \varphi^{0}
$$

where

$$
\sum_{k} A_{i j j k} \theta^{k}=d A_{i j}-\sum_{k} A_{i k} \omega^{k}{ }_{j}+\sum_{k} A_{k j} \omega^{i}{ }_{k} .
$$

Proof. The proof is a straightforward calculation using Proposition 1 and the structure equation

$$
\begin{equation*}
\Psi_{\beta}^{\alpha}=d \psi_{\beta}^{\alpha}+\sum_{\lambda} \psi_{\lambda}^{\alpha} \wedge \psi_{\beta}^{\lambda} \tag{QED.}
\end{equation*}
$$

REMARK. The covariant derivative of the tensor field $A_{i j}$ with respect to the Riemannian connection of M is given precisely by $A_{i j ; k}$.

The components $R_{\alpha \beta \lambda \mu}$ of the curvature tensor of the Riemannian manifold P are defined by

$$
\Psi_{\beta}^{\alpha}=1 / 2 \sum_{\lambda, \mu} R_{\alpha \beta \lambda \mu} \varphi^{\lambda} \wedge \varphi^{\mu}
$$

Proposition 3. The curvature $R_{\alpha \beta \lambda_{\mu}}$ is expressed by $K_{i j k l}$ and $A_{i j}$ as follows:

1) $R_{i j k l}=K_{i j k l}-a^{2} b^{2}\left(2 A_{i j} A_{k l}+A_{i k} A_{j l}-A_{i l} A_{j k}\right)$,
2) $R_{i 0 k 0}=a^{2} b^{2} \sum_{l} A_{i l} A_{k l}$,
3) $\quad R_{i 0 k l}=a b\left(A_{i k ; l}-A_{i l i k}\right)=-a b A_{k l i i}$.

Formulas 1), 2) and 3) determine all components $R_{\alpha \beta \lambda \mu}$.
Proof. From Proposition 2, we obtain

$$
\begin{aligned}
1 / 2 \sum_{\lambda, \mu} R_{i j \lambda \mu} \varphi^{\lambda} \wedge \varphi^{\mu} & =\sum_{k, l}\left[1 / 2 K_{i j k l}-a^{2} b^{2}\left(A_{i j} A_{k l}+A_{i k} A_{j l}\right]\right] \varphi^{k} \wedge \varphi^{l} \\
& +a b \sum_{k} A_{i j ; k} \varphi^{0} \wedge \varphi^{k} .
\end{aligned}
$$

Skew-symmetrizing the coefficients of $\phi^{\lambda} \wedge \phi^{\mu}$ in the right hand side and equating with $(1 / 2) R_{i j \lambda_{\mu}}$, we obtain 1) and the first equality of 3). Formula 2) follows similarly from Proposition 2. Finally, the equality $R_{i o k l}=-a b A_{k l i}$ may be also derived from Proposition 2, but the equality $A_{i k i l}-A_{i l ; k}=-A_{k l ; i}$ is equivalent to the fact that the form $\sum_{i, j} A_{i j} \theta^{i} \wedge \theta^{j}$ is closed.

QED.
4. Algebraic propositions. As in the preceding section, we assume that $1 \leqq i, j, k, l \leqq n$ and $0 \leqq \alpha, \beta, \lambda, \mu \leqq n$. In this section, $K_{i j k l}$ will be a set of real numbers subject to the same algebraic conditions as the Riemannian curvature tensor, i.e.,

$$
\begin{aligned}
& K_{i j k l}=-K_{j i k l}=-K_{i j l k}=K_{k l i j}, \\
& K_{i j k l}+K_{i k l j}+K_{i l j k}=0
\end{aligned}
$$

From now on we assume that n is even. Let $J=\left(J_{i j}\right)$ be a skew-symmetric matrix such that $J J=-I$ or $\sum_{j} J_{i j} J_{j k}=-\delta_{i k}$. We set

$$
\begin{aligned}
& S_{i j k l}=K_{i j k l}-a^{2}\left(2 J_{i j} J_{k l}+J_{i k} J_{j l}-J_{i l} J_{j k}\right), \\
& S_{i 0 k 0}=-S_{i 00 k}=-S_{0 i k 0}=S_{0 i 0 k}=a^{2} \delta_{i k}, \\
& S_{\alpha \beta \lambda \mu}=0 \quad \text { otherwise. }
\end{aligned}
$$

REMARK. If we replace $b A_{i j}$ and $A_{i j ; k}$ in Proposition 3 by $J_{i j}$ and 0 respectively, then $R_{\alpha \beta \lambda \mu}=S_{\alpha \beta \lambda \mu}$.

It is easy to see that the set of numbers $S_{\alpha \beta \lambda \mu}$ satisfy the same algebraic conditions as the curvature tensor $R_{\alpha \beta \lambda \mu}$.

Let \boldsymbol{R}^{n+1} be the vector space of $(n+1)$-tuples of real numbers. If $X=\left(X^{0}, X^{1}, \cdots, X^{n}\right)$ and $Y=\left(Y^{0}, Y^{1}, \cdots, Y^{n}\right)$ are elements in \boldsymbol{R}^{n+1}, then their inner product (X, Y) is defined by $(X, Y)=\sum_{\alpha} X^{\alpha} Y^{\alpha}$. For each 2 -dimensional subspace p of \boldsymbol{R}^{n+1}, we define $S(p)$ as follows. Let X and Y form an orthonormal basis for p. Then

$$
S(p)=\sum_{\alpha, \beta, \lambda, \mu} S_{\alpha \beta \lambda \mu} X^{\alpha} Y^{\beta} X^{\lambda} Y^{\mu}
$$

Then $S(p)$ is independent of X and Y and we have

$$
\begin{aligned}
S(p) & =\sum_{i, j, k, l} S_{i j k l} X^{i} Y^{j} X^{k} Y^{\iota}+\sum_{i, k} S_{i o k 0} X^{i} Y^{0} X^{k} Y^{0} \\
& +\sum_{i, k} S_{i 00 l} X^{\imath} Y^{0} X^{0} Y^{\iota}+\sum_{i, k} S_{0 j k 0} X^{0} Y^{j} X^{k} Y^{0}+\sum_{j, l} S_{0 j 0 l} X^{0} Y^{j} X^{0} Y^{\iota}
\end{aligned}
$$

Let ξ and η be the elements of \boldsymbol{R}^{n} given by

$$
\xi=\left(X^{1}, \cdots, X^{n}\right), \quad \eta=\left(Y^{1}, \cdots, Y^{n}\right) .
$$

Then

$$
J \xi=\left(\sum_{j} J_{1 j} X^{j}, \cdots, \sum_{j} J_{n j} X^{j}\right), J_{\eta}=\left(\sum_{j} J_{1 j} Y^{j}, \cdots, \sum_{j} J_{n j} Y^{j}\right)
$$

The inner product in \boldsymbol{R}^{n} is defined also in the usual way. Then

$$
\begin{aligned}
& \sum S_{i j k l} X^{i} Y^{j} X^{k} Y^{\iota}=\sum K_{i j k i} X^{i} Y^{j} X^{k} Y^{\iota}-3 a^{2}(\xi, J \eta)^{2} \\
& \sum S_{i 0 k 0} X^{\imath} Y^{0} X^{k} Y^{0}=a^{2}(\xi, \xi) Y^{0} Y^{0} \\
& \sum S_{i 00} X^{i} Y^{0} X^{0} Y^{\iota}=-a^{2}(\xi, \eta) X^{0} Y^{0} \\
& \sum S_{0 j k 0} X^{0} Y^{j} X^{k} Y^{0}=-a^{2}(\xi, \eta) X^{0} Y^{0}
\end{aligned}
$$

$$
\sum S_{0 j 0 l} X^{0} Y^{j} X^{0} Y^{l}=a^{2}(\eta, \eta) X^{0} X^{0}
$$

By adding these five equalities, we obtain

$$
\begin{aligned}
S(p) & =\sum K_{i j k l} X^{i} Y^{j} X^{k} Y^{t}-3 a^{2}(\xi, J \eta)^{2} \\
& +a^{2}\left[(\xi, \xi) Y^{0} Y^{0}-2(\xi, \eta) X^{0} Y^{0}+(\eta, \eta) X^{0} X^{0}\right]
\end{aligned}
$$

Since $(\xi, \xi)=1-X^{0} X^{0},(\xi, \eta)=-X^{0} Y^{0}$ and $(\eta, \eta)=1-Y^{0} Y^{0}$, we have
Proposition 4.

$$
S(p)=\sum K_{i j k l} X^{i} Y^{j} X^{k} Y^{l}-3 a^{2}(\xi, J \eta)^{2}+a^{2}\left(X^{0} X^{0}+Y^{0} Y^{0}\right)
$$

Let q be a 2 -dimensional subspace of \boldsymbol{R}^{n} and let $U=\left(U^{1}, \ldots, U^{n}\right)$ and $V=\left(V^{1}, \ldots, V^{n}\right)$ form an orthonormal basis for q. Define $K(q)$ and $\alpha(q)$, $0 \leqq \alpha(q) \leqq \pi / 2$, by

$$
\begin{aligned}
& K(q)=\sum_{i, j, k, l} K_{i j k l} U^{i} V^{j} U^{k} V^{l}, \\
& \cos \alpha(q)=|(U, J V)|
\end{aligned}
$$

Then both $K(q)$ and $\alpha(q)$ depend only on q, not on U and V.
Assume that ξ and η are linearly independent and let q be the 2-dimensional subspace of \boldsymbol{R}^{n} spanned by them. Then the vectors U and V defined as follows form an orthonormal basis for q.

$$
\begin{aligned}
U & =\xi /(\xi, \xi)^{1 / 2} \\
V & =[(\xi, \xi) \eta-(\xi, \eta) \xi] /\left[(\xi, \xi)\left((\xi, \xi)(\eta, \eta)-(\xi, \eta)^{2}\right)\right]^{1 / 2}
\end{aligned}
$$

Consequently, we have

$$
\begin{aligned}
& (\xi, J \eta)^{2}=\left[(\xi, \xi)(\eta, \eta)-(\xi, \eta)^{2}\right] \cos ^{2} \alpha(q) \\
& \sum K_{i j k l} X^{i} Y^{j} X^{k} Y^{l}=\left[(\xi, \xi)(\eta, \eta)-(\xi, \eta)^{2}\right] K(q) .
\end{aligned}
$$

On the other hand, we have
$(\xi, \xi)(\eta, \eta)-(\xi, \eta)^{2}=\left(1-X^{0} X^{0}\right)\left(1-Y^{0} Y^{0}\right)-X^{0} X^{0} Y^{0} Y^{0}=1-X^{0} X^{0}-Y^{0} Y^{0}$.
The above three equalities and Proposition 4 imply 1) of the following proposition.

Proposition 5. 1) If ξ and η are linearly independent so that they span a subspace q, then

$$
S(p)=\left(1-X^{0} X^{0}-Y^{0} Y^{0}\right)\left[K(q)-3 a^{2} \cos ^{2} \alpha(q)\right]+a^{2}\left(X^{0} X^{0}+Y^{0} Y^{0}\right)
$$

2) If ξ and η are linearly dependent, then $S(p)=a^{2}$.

Proof. If ξ and η are dependent, then the first two terms in the right hand side of the formula in Proposition 4 vanish. On the other hand, $1-X^{0} X^{0}$ $-Y^{0} Y^{0}=(\xi, \xi)(\eta, \eta)-(\xi, \eta)^{2}=0$. Thus, the last term in the formula of Proposition 4 is equal to a^{2}.

QED.
As in $\S 1$, we set

$$
\bar{K}(q)=\left(1+3 \cos ^{2} \alpha(q)\right) / 4 .
$$

Proposition 6. In Proposition 4, let a be any positive number not greater than $1 / 2$. If $\boldsymbol{\xi}$ and η span a 2-dimensional subspace q of \boldsymbol{R}^{n} and if

$$
4 a^{2} \bar{K}(q) \leqq K(q) \leqq \bar{K}(q)
$$

then

$$
a^{2} \leqq S(p) \leqq 1-3 a^{2} .
$$

Proof. Since $1-X^{0} X^{0}-Y^{0} Y^{0}=(\xi, \xi)(\eta, \eta)-(\xi, \eta)^{2}$ (as we have seen before Proposition 5), we have, by Schwarz's inequality,

$$
1-X^{0} X^{0}-Y^{0} Y^{0} \geqq 0 .
$$

Since $K(q) \geqq 4 a^{2} \bar{K}(q)=a^{2}\left(1+3 \cos ^{2} \alpha(q)\right)$, we have

$$
K(q)-3 a^{2} \cos ^{2} \alpha(q) \geqq a^{2}>0 .
$$

On the other hand, since $K(q) \leqq \bar{K}(q)$ and $4 a^{2} \leqq 1$, we have

$$
\begin{aligned}
K(q)-3 a^{2} \cos ^{2} \alpha(q) & \leqq\left[1+3\left(1-4 a^{2}\right) \cos ^{2} \alpha(q)\right] / 4 \leqq\left[1+3\left(1-4 a^{2}\right)\right] / 4 \\
& =1-3 a^{2} .
\end{aligned}
$$

We shall first find an upper bound for $S(p)$.

$$
\begin{aligned}
S(p) & \leqq\left(1-X^{0} X^{0}-Y^{0} Y^{0}\right)\left(1-3 a^{2}\right)+a^{2}\left(X^{0} X^{0}+Y^{0} Y^{0}\right) \\
& =1-3 a^{2}+\left(4 a^{2}-1\right)\left(X^{0} X^{0}+Y^{0} Y^{0}\right) \leqq 1-3 a^{2}
\end{aligned}
$$

We shall next find a lower bound for $S(p)$.

$$
S(p) \geqq\left(1-X^{0} X^{0}-Y^{0} Y^{0}\right) a^{2}+a^{2}\left(X^{0} X^{0}+Y^{0} Y^{0}\right)=a^{2}
$$

QED.
Let $A_{i j}$ and $A_{i ; k}$ be real numbers subject to the same algebraic conditions as tensor fields $A_{i j}$ and $A_{i j k}$ in $\S 3$. Explicitly,

$$
\begin{aligned}
& A_{i j}=-A_{j i} \\
& A_{i j ; k}=-A_{j i ; k} \\
& A_{i j ; k}+A_{k i ; j}+A_{j k ; i}=0 .
\end{aligned}
$$

Then, define $R_{\alpha \beta \lambda \mu}$ by the formulas in Proposition 3 so that they satisfy the same algebraic conditions as the curvature tensor. For each 2-dimensional subspace p of \boldsymbol{R}^{n+1} with an orthonormal basis $X=\left(X^{0}, X^{1}, \ldots, X^{n}\right)$ and Y $=\left(Y^{0}, Y^{1}, \ldots, Y^{n}\right)$, we set

$$
R(p)=\sum_{\alpha, \beta, \lambda, \mu,} R_{\alpha \beta \lambda \mu} X^{\alpha} Y^{\beta} X^{\lambda} Y^{\mu}
$$

Proposition 7. Let a be any fixed positive number. Given a positive number ε, there is a positive number ρ such that

$$
|R(p)-S(p)|<\varepsilon
$$

if $\sum_{i, j}\left|b A_{i j}-J_{i j}\right|^{2}<\rho$ and $\sum_{i, j, k}\left|b A_{i j ; k}\right|^{2}<\rho$.
Proof. As we remarked earlier, if we set $b A_{i j}=J_{i j}$ and $A_{i j ; k}=0$, then $R(p)=S(p)$. Since $R(p)$ depends continuously on $A_{i j}$ and $A_{i j ; k}$, our conclusion follows.

QED.
5. Construction of a circle bundle. In this section, we shall complete the proof of Theorem 1. Let M be a complete Kaehler manifold with Kaehlerian pinching $>4 a^{2}$, where a is a positive number not greater than $1 / 2$. By normalizing metric, we may assume that the sectional curvature $K(q)$ satisfies the following inequality:

$$
4 a^{2} \bar{K}(q)<K(q) \leqq \bar{K}(q)
$$

By a theorem of Synge [14] or by a theorem of Myers [13], M is compact. Let $d s^{2}=\sum_{j}\left(\theta^{j}\right)^{2}$ be the Kaehler metric of M and $J_{i j}$ the components of the complex structure tensor J with respect to $\theta^{1}, \cdots, \theta^{n}$. Using notations of $\S 3$ and $\S 4$, we state

PROPOSITION 8. Given any positive number ρ, there exist a harmonic 2-form $\sum_{i, j} A_{i j} \theta^{i} \wedge \theta^{j}$ on M representing an element of $H^{2}(M ; Z)$ and a real number b such that

$$
\sum_{i, j}\left|J_{i j}-b A_{i j}\right|^{2}<\rho \text { and } \sum_{i, j, k}\left|b A_{i j, k}\right|^{2}<\rho,
$$

where $A_{i j ; k}$ denote the components of the covariant derivative of $A_{i j}$.
Proof. From the theory of elliptic partial differential equations (see, for instance, [5], [8]) we infer that there exists a positive constant C such that, for every harmonic form $\sum_{i, j} B_{i j} \theta^{i} \wedge \theta^{j}$ on M, we have

$$
\sum_{i, j, k}\left|B_{i j ; k}\right|^{2} \leqq C \cdot \text { maximum of } \sum_{i, j}\left|B_{i j}\right|^{2} .
$$

Given $\rho>0$, Let $\rho_{1}=\min \{\rho / C, \rho\}$. Since $H^{2}(M ; Z)$ form a basis in $H^{2}(M ; \boldsymbol{R})$, the set of $\left\{b \alpha ; b \in \boldsymbol{R}\right.$ and $\left.\alpha \in H^{2}(M ; Z)\right\}$ is dense in $H^{2}(M ; \boldsymbol{R})$. Hence, there
are a real number b and a harmonic form $\sum_{i, j} A_{i j} \theta^{i} \wedge \theta^{j}$ representing an element of $H^{2}(M ; Z)$ such that $\sum_{i, j}\left|b A_{i j}-J_{i j}\right|^{2}<\rho_{1}$. Set $B_{i j}=b A_{i j}-J_{i j}$. Then $B_{i j ; k}=b A_{i j ; k}$. Hence,

$$
\sum_{i, j, k}\left|b A_{i j ; k}\right|^{2}=\sum_{i, j, k}\left|B_{i j, k}\right|^{2}<C \rho_{1} \leqq \rho .
$$

QED.
For each $x \in M$ and each plane p in \boldsymbol{R}^{n+1}, we define $S(p)$ using the sets of numbers $K_{i j k l}(x), J_{i j}(x)$ and a as in \S. Then, the assumption $4 a^{2} \bar{K}(q)<$ $K(q) \leqq \bar{K}(q)$ for all q implies by 2) of Proposition 5 and by Proposition 6 the following inequalities:

$$
a^{2}<S(p)<1-3 a^{2} .
$$

Note that, since we have a strict inequality $4 a^{2} \bar{K}(q)<K(q)$, we have also the strict inequalities $a^{2}<S(p)<1-3 a^{2}$. Since M is compact, there is a positive number ε such that

$$
a^{2}+\varepsilon<S(p)<1-3 a^{2}-\varepsilon \quad \text { for all } x \in M \text { and all } p
$$

Corresponding to this positive number ε, we take a positive number ρ given by Proposition 7. Then choose a number b and a harmonic 2 -form $\sum_{i, j} A_{i \theta} \theta^{i} \wedge \theta^{j}$ as in Proposition 8. Assuming for the moment the existence of a principal circle bundle P over M and a connection form γ on P such that $d \gamma=$ $\pi^{*}\left(\sum_{i, j} A_{i j} \theta^{i} \wedge \theta^{j}\right)$, we shall finish the proof of Theorem 1 . By means of φ^{0}, φ^{1}, \cdots, φ^{n} we can identify \boldsymbol{R}^{n+1} with each tangent space of P. Thus, we denote by p a plane in \boldsymbol{R}^{n+1} and also the corresponding plane in each tangent space of the manifold P, so that $R(p)$ in Proposition 7 can be now considered as the sectional curvature of the Riemannian manifold P. By our choice of ε and by Proposition 7, we have

$$
a^{2}<S(p)-\varepsilon<R(p)<S(p)+\varepsilon<1-3 a^{2}
$$

Thus, if M is of Kaehlerian pinching $>4 a^{2}$, then P is of Riemannian pinching $>a^{2} /\left(1-3 a^{2}\right)$. If we replace $4 a^{2}$ by δ, then we have Theorem 1 .

Now, the only thing which has to be proved is the following proposition.
Proposition 9. Given a harmonic 2-form $\sum_{i, j} A_{i j} \theta^{i} \wedge \theta^{j}$ representing an element of $H^{2}(M ; Z)$, there are a principal circle bundle P and a connection form γ on P such that $d \gamma=\pi^{*}\left(\sum_{i, j} A_{i j} \theta^{i} \wedge \theta^{j}\right)$.

Proof. The exact sequence $0 \rightarrow Z \rightarrow \boldsymbol{R} \rightarrow S^{\prime} \rightarrow 0$ induces an exact sequence of the cohomology groups of M with coefficients in the corresponding sheaves
of germs of mappings. In particular, we have

$$
H^{1}\left(M ; S^{1}\right) \approx H^{2}(M ; Z),
$$

where \underline{S}^{1} is the sheaf of germs of differentiable mappings into S^{1}. The group $H^{1}\left(M ; \underline{S}^{1}\right)$ can be considered as the set of all principal circle bundles over M. The isomorphism $H^{1}\left(M ; S^{1}\right) \approx H^{2}(M ; Z)$ is given explicitly as follows. Let P be an element of $H^{1}\left(M ; \overline{S^{1}}\right)$, i.e., a principal circle bundle over M. Let γ be a connection form on P. Then $d \gamma=\pi^{*}(\alpha)$, where α is a closd 2 -form on M. The cohomology class of α is the element of $H^{2}(M ; Z)$ corresponding to P.

Therefore, given a harmonic 2 -form $\sum A_{i j} \theta^{i} \wedge \theta^{j}$ representing an element of $H^{2}(M ; Z)$, let P be the corresponding principal circle bundle over M and γ^{\prime} be any connection form on P, so that the closed 2 -form $\sum B_{i j} \theta^{i} \wedge \theta^{j}$ defined by $d \gamma^{\prime}=\pi^{*}\left(\sum B_{i j} \theta^{i} \wedge \theta^{j}\right)$ is cohomologous to the form $\sum A_{i j} \theta^{i} \wedge \theta^{j}$. Let β be a 1 -form on M such that

$$
\sum A_{i j} \theta^{i} \wedge \theta^{j}-\sum B_{i j} \theta^{i} \wedge \theta^{j}=d \beta
$$

Set $\gamma=\gamma^{\prime}+\pi^{*}(\beta)$. It is easy to verify that γ is a connection form on P and that $d \gamma=\pi^{*}\left(\sum A_{i j} \theta^{i} \wedge \theta^{j}\right)$.

QED.
6. Miscellaneous results. We shall show that the same method can be applied to Kaehler manifolds with positive holomorphic pinching. The following proposition is due to Berger [3$]^{2)}$:

Proposition 10. Let M be a Kaehler manifold such that

$$
\delta \leqq K(q) \leqq 1 \quad \text { for all } q \text { with } J(q)=q
$$

Then

$$
\left(-5+7 \delta+6 \cos ^{2} \alpha(q)\right) / 8 \leqq K(q) \leqq\left(7-5 \delta+6 \cos ^{2} \alpha(q)\right) / 8
$$

for all q.
Proof. For any two linearly independent vectors X and Y, we shall denote by $k(X, Y)$ the sectional curvature by the plane spanned by X and Y so that

$$
k(X, Y)=K(X, Y, X, Y) /\left[(X, X)(Y, Y)-(X, Y)^{2}\right]
$$

where K on the right hand side denotes the Riemannian curvature tensor.
2) Because of some errors in Berger's paper, we give here a complete proof.

Let q be any plane in the tangent space $T_{x}(M)$ at a point x of M and let X and Y form an orthonormal basis for q so that

$$
K(q)=k(X, Y)=K(X, Y, X, Y)
$$

Making use of Bianchi's identity and the following formulas:

$$
\begin{aligned}
& k(X, Y)=k(J X, J Y) \\
& K(J X, Y, J X, Y)=k(J X, Y) \sin ^{2} \alpha(q)
\end{aligned}
$$

we obtain, for any real numbers a and b,

$$
\begin{aligned}
\left(a^{2}+b^{2}\right)^{2} k(a X+b Y, J(a X+b Y)) & =a^{4} k(X, J X)+b^{4} k(Y, J Y) \\
& +2 a^{2} b^{2} E+u a^{3} b+v a b^{3},
\end{aligned}
$$

where

$$
E=k(X, Y)+3 k(J X, Y) \sin ^{2} \alpha(q) .
$$

Replacing b by $-b$, we obtain a similar equality. By adding the two equalities thus obtained, we have

$$
\begin{gathered}
\left(a^{2}+b^{2}\right)^{2}[k(a X+b Y, J(a X+b Y))+k(a X-b Y, J(a X-b Y))] \\
=2 a^{4} k(X, J X)+2 b^{4} k(Y, J Y)+4 a^{2} b^{2} E .
\end{gathered}
$$

From our assumption, we obtain the following inequalities:

$$
\delta\left(a^{2}+b^{2}\right)^{2} \leqq a^{4} k(X, J X)+b^{4} k(Y, J Y)+2 a^{2} b^{2} E \leqq\left(a^{2}+b^{2}\right)^{2}
$$

By setting $a=b=1$, we have

$$
4 \delta-k(X, J X)-k(Y, J Y) \leqq 2 E \leqq 4-k(X, J X)-k(Y, J Y)
$$

Hence,

$$
2 \delta-1 \leqq E \leqq 2-\delta
$$

Proceeding in the same way with

$$
\begin{aligned}
\left(a^{2}\right. & \left.+2 a b \cos \alpha(q)+b^{2}\right)^{2} k(a X+b J Y, J(a X+b J Y)) \\
& =a^{4} k(X, J X)+b^{4} k(Y, J Y)+2 a^{2} b^{2} F+u^{\prime} a^{3} b+v^{\prime} a b^{3}
\end{aligned}
$$

where

$$
F=3 k(X, Y)+k(J X, Y) \cos ^{2} \alpha(q)
$$

we obtain the following inequalities:

$$
\begin{aligned}
\delta\left[\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cos ^{2} \alpha(q)\right] & \leqq a^{4} k(X, J X)+b^{4} k(Y, J Y)+2 a^{2} b^{2} F \\
& \leqq\left[\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cos ^{2} \alpha(q)\right]
\end{aligned}
$$

By setting $a=b=1$, we have

$$
2 \delta-1+2 \delta \cos ^{2} \alpha(q) \leqq F \leqq 2-\delta+2 \cos ^{2} \alpha(q)
$$

Finally, we have

$$
\left(7 \delta-5+6 \delta \cos ^{2} \alpha(q)\right) / 8 \leqq(3 F-E) / 8 \leqq\left(7-5 \delta+6 \cos ^{2} \alpha(q)\right) / 8
$$

Since $3 F-F=k(X, Y)$, this completes the proof.
QED.
Proposition 11. With the same notations as in Proposition 5, if

$$
\left(7 \delta-5+6 \delta \cos ^{2} \alpha(q)\right) / 8 \leqq K(q) \leqq\left(7-5 \delta+6 \cos ^{2} \alpha(q)\right) / 8
$$

and if

$$
78-5 \leqq 8 a^{2} \leqq 28
$$

then

$$
(78-5) / 8 \leqq S(p) \leqq\left(13-5 \delta-24 a^{2}\right) / 8
$$

Proof. By Proposition 5, we have

$$
\begin{aligned}
S(p) & \leqq\left(1-X^{0} X^{0}-Y^{0} Y^{0}\right)\left[7-5 \delta+6\left(1-4 a^{2}\right) \cos ^{2} \alpha(q)\right] / 8+a^{2}\left(X^{0} X^{0}+Y^{0} Y^{0}\right) \\
& \leqq\left(1-X^{0} X^{0}-Y^{0} Y^{0}\right)\left[7-5 \delta+6-24 a^{2}\right) / 8+a^{2}\left(X^{0} X^{0}+Y^{0} Y^{0}\right) \\
& =\left(13-5 \delta-24 a^{2}\right) / 8+\left(32 a^{2}-13+5 \delta\right)\left(X^{0} X^{0}+Y^{0} Y^{0}\right) / 8 \\
& \leqq\left(13-5 \delta-24 a^{2}\right) / 8 .
\end{aligned}
$$

Also, by Proposition 5, we have

$$
\begin{aligned}
S(p) & \geqq\left(1-X^{0} X^{0}-Y^{0} Y^{0}\right)\left[7 \delta-5+6\left(\delta-4 a^{2}\right) \cos ^{2} \alpha(q)\right] / 8+a^{2}\left(X^{0} X^{0}+Y^{0} Y^{0}\right) \\
& \geqq\left(1-X^{0} X^{0}-Y^{0} Y^{0}\right)(7 \delta-5) / 8+a^{2}\left(X^{0} X^{0}+Y^{0} Y^{0}\right) \\
& =(7 \delta-5) / 8+\left(8 a^{2}-7 \delta+5\right)\left(X^{0} X^{0}+Y^{0} Y^{0}\right) / 8 \\
& \geqq(7 \delta-5) / 8 .
\end{aligned}
$$

In particular, if we set

$$
\delta=4 a^{2}
$$

then

$$
(7 \delta-5) / 8 \leqq S(p) \leqq(13-11 \delta) / 8
$$

Thus, the method we used in the proof of Theorem 1 gives
THEOREM 2. Let M be a complete Kaehler manifold with holomorphic pinching $>\delta$. Then, there are a principal circle bundle P over M and a Riemannian metric on P with Riemannian pinching $>(7 \delta-5) /(13-11 \delta)$.

If $\delta=11 / 13$, then $(7 \delta-5) /(13-11 \delta)=1 / 4$. Hence,
Corollary. Let M be a complete Kaehler manifold with holomorphic pinching $>11 / 13$. Then

$$
\pi_{i}(M)=\pi_{i}\left(P_{m}(C)\right) \quad \text { for all } i .\left(m=\operatorname{dim}_{C} M\right)
$$

Remark. According to Berger [3], if a Kaehler manifold M of complex dimension >1 is of Riemannian pinching $>\delta$, then M is of holomorphic pinching $>\delta(8 \delta+1) /(1-\delta)$. Hence, if M is of Riemannian pinching $\geqq 0.23$, then M is of holomorphic pinching $>11 / 13$. Thus, if M is of Riemannian pinching $\geqq 0.23$, then $\pi_{i}(M)=\pi_{i}\left(P_{m}(C)\right)$ for all i.

In [1], Berger proved the following theorem :
Let P be a $(2 m+1)$-dimensional compact Riemannian manifold with Riemannian pinching $>2(m-1) / 8 m-5$. Then, $H^{2}(P ; \boldsymbol{R})=0$.

His result, combined with Theorem 1, gives
THEOREM 3. Let M be a complete Kaehler manifold of complex dimension m. If M is of Kaehlerian pinching $>8(m-1) / 14 m-11$, then

$$
\operatorname{dim} H^{2}(M ; \boldsymbol{R})=1
$$

Proof. By Theorem 1, we can construct a principal circle bundle P over M with a Riemannian metric with Riemannian pinching $>2(m-1) / 8 m-5$. By the result of Berger, $H^{2}(\widetilde{P} ; \boldsymbol{R})=0$ where \widetilde{P} is the universal covering manifold of P. Hence, $\pi_{2}(P)=\pi_{2}(\widetilde{P})=H_{2}(\widetilde{P} ; Z)$ is finite. By the exact homotopy sequence of the fibring $S^{1} \rightarrow P \rightarrow M$,

$$
\pi_{2}(M) \approx Z+\text { a finite group. }
$$

By Hurewicz isomorphism, $H_{2}(M ; \boldsymbol{R})=\boldsymbol{R}$.
QED.
Theorem 4. Let M be a complete Kaehler manifold with holomorphic pinching $>(22 m-17) /(26 m-19)$, where m is the complex dimension of M. Then

$$
\operatorname{dim} H^{2}(M ; \boldsymbol{R})=1
$$

Proof. The proof is quite similar to that of Theorem 3. The only change is the use of Theorem 2 in place of Theorem 1.

QED.
REmark. For $m=2$, this result is weaker than that of Berger [3] who shows that if M is a complete Kaehler manifold of complex dimension 2 with holomorphic pinching $>1 / 2$, then $\operatorname{dim} H^{2}(M ; \boldsymbol{R})=1$.

Let M be a complete Kaehler manifold of complex dimension m with Riemannian pinching $>\delta$, where δ is the positive number defined by $(22 m$ $-17) /(26 m-19)=\delta(8 \delta+1) /(1-\delta)$. Then, $\operatorname{dim} H^{2}(M ; \boldsymbol{R})=1$. The proof is by the reasoning given in the remark following Theorem 2. Again, for $m=2$, this result is weaker than those of Berger [3] and Andreotti-Frankel [9]. Berger assumes only $\delta>0$. Andreotti and Frankel proves that if $\delta>0$, then
M is homeomorphic with $P_{2}(C)$.
The proof of Theorem 1 gives also the following result:
THEOREM 5. If M is an Einstein-Kaehler manifold with positive scalar curvature, then we can construct a principal circle bundle P over M and an Einstein metric with positive scalar curvature on P.

Proof. We recall that an Einstein metric is a Riemannian metric such that the Ricci tensor is a constant multiple of the metric tensor. If M is an Einstein-Kaehler manifold, there exists a constant c such that the 2 -form $c \sum J_{i j} \theta^{i} \wedge \theta^{j}$ represents the first Chern class which is an element of $H^{2}(M ; Z)$. Let P be the principal circle bundle corresponding to the cohomology class represented by $c \sum J_{i j} \theta^{i} \wedge \theta^{j}$ and let γ be a connection form such that $d \gamma$ $=\pi^{*}\left(c \sum J_{i j} \theta^{i} \wedge \theta^{j}\right)$. In Proposition 3, we have then

$$
A_{i j}=c J_{i j} .
$$

If we set $b=1 / c$ in Proposition 3, then we have

$$
\begin{aligned}
& R_{i j}=\sum_{\lambda} R_{i \lambda j \lambda}=K_{i j}-2 a^{2} \delta_{i j}, \\
& R_{i 0}=0, \\
& R_{00}=\sum_{\lambda} S_{0 \lambda 0 \lambda}=n a^{2} .
\end{aligned}
$$

Since $K_{i j}=h \delta_{i j}$ for some positive constant h, set $a=(h /(n+2))^{1 / 2}$. Then, $R_{\alpha \beta}$ $=n /(n+2) \delta_{\alpha \beta}$.

QED.
The construction of the bundle P and the metric $d \sigma^{2}$ in Theorem 5 is natural in the sense that P is a space of constant positive curvature if and only if M is a space of constant positive holomorphic (sectional) curvature. In fact, suppose that M is a space of constant positive holomorphic curvature. By normalizing the metric, we may assume that the holomorphic curvature of M is equal to 1 . Then $K(q)=\bar{K}(q)$ for all q (cf. Proposition 10) and $K_{i j}=h \delta_{i j}$, where $h=(n+2) / 4$. Hence, $a=1 / 2$ in the proof of Theorem 5. By Proposition 6 , the metric on P is of sectional curvature $1 / 4$. Conversely, assume that the sectional curvature of P is constant. Then, by Proposition 6, $R(p)=a^{2}$ for all p. By the same proposition, we have $K(q)=4 a^{2} \bar{K}(q)$ for all q, thus proving our assertion.

We shall prove a Kaehlerian analogue of the following result of Berger [4]:
Let P be a compact manifold with a 1-parameter family of Riemannian
metrics $d \sigma^{2}(t),-\varepsilon<t<\varepsilon$, such that

1) For each $t, d \sigma^{2}(t)$ is an Einstein metric;
2) The metric $d \sigma^{2}(0)$ is of constant positive curvature:
3) The family $d \sigma^{2}(t)$ is real analytic in t.

Then, for each $t, d \sigma^{2}(t)$ is of constant positive curvature.
Our result may be stated as follows :
THEOREM 6. Let M be a compact manifold with a 1-parameter family of complex structures $J(t)$ and a 1-parameter family of Riemannian metrics $d s^{2}(t),-\varepsilon<t<\varepsilon$, such that

1) For each $t, d s^{2}(t)$ is an Einstein-Kaehler metric with respect to the complex structure $J(t)$;
2) The metric $d s^{2}(0)$ is of constant positive holomorphic curvature with respect to the complex structure;
3) The families $J(t)$ and $d s^{2}(t)$ are real analytic in t.

Then, for each $t, d s^{2}(t)$ is of constant positive holomorphic curvature with respect to the complex structure $J(t)$.

Proof. For each t, construct a principal circle bundle $P(t)$ and a Riemannian metric $d \sigma^{2}(t)$ on $P(t)$ as in Theorem 5. Because of the observation we made after Theorem 5 and the above result of Berger, it suffices to prove that $P(t)$ is independent of t and that $d \sigma^{2}(t)$ is real analytic in t. Since $P(t)$ corresponds to the first Chern class of the complex structure $J(t)$ under the isomorphism $H^{1}\left(M ; \underline{S}^{1}\right) \approx H^{2}(M ; Z)$ (cf. the proof of Theorem 5) and since the first Chern class of $J(t)$ depending continuously on t and lying in the discrete subgroup $H^{2}(M ; Z)$ of $H^{2}(M ; \boldsymbol{R})$ must be independent of $t, P(t)$ is independent of t. Let $P=P(t)$. For each t, let $\alpha(t)$ be the harmonic 2 -forms on M representing the first Chern class with respect to the Kaehler structure defined by $J(t)$ and $d s^{2}(t)$. Since $\alpha(t)$ can be expressed in terms of the Ricci tensor of $\mathrm{d} s^{2}(t)$ and the complex structure $J(t)$ (cf.[7]), the family $\alpha(t)$ is real analytic in t. As in the proof of Theorem 5, let γ be a connection form on P such that $d \gamma=\pi^{*}(\alpha(0))$. Note that such a connection form γ is not unique. Since, for each $t, \alpha(t)$ is cohomologous to $\alpha(0)$, there exists a 1 -form $\beta(t)$ such that $\alpha(t)=\alpha(0)+d \beta(t)$. We shall show that it is possible to construct a family $\beta(t)$ real analytic in t. Let C^{k} be the space of real k-forms on M. Let δ be the adjoint of d and $\Delta=d \delta+\delta d$ the Laplacian defined by the metric $d s^{2}(0)$. From the theory of harmonic integrals, we infer that $\delta d \delta C^{2}=\delta d C^{1}=\delta C^{2}$ and hence that the Laplacian Δ maps δC^{2} isomorphically onto itself. (Our assertions follow from the decomposition theorem : $C^{k}=d C^{k-1}+\delta C^{k+1}+H^{k}$, where H^{k} denotes the space of harmonic k-forms). Let

$$
\beta(t)=\Delta^{-1}[\delta(\alpha(t)-\alpha(0))],
$$

where Δ^{-1} is considered as the inverse of the isomorphism $\Delta: \delta C^{2} \rightarrow \delta C^{2}$. The family $\beta(t)$ thus constructed is real analytic in t. Set

$$
\gamma(t)=\gamma+\pi^{*}(\beta(t))
$$

Then, for each $t, \gamma(t)$ is a connection form on P such that $d \gamma(t)=\pi^{*}(\alpha(t))$. For each t, we define constants $a(t)$ and $b(t)$ as in the proof of Theorem 5 and set

$$
d \sigma^{2}(t)=\pi^{*}\left(d s^{2}(t)\right)+(a(t) b(t) \gamma(t))^{2} .
$$

Since $a(t)$ and $b(t)$ are obviously real analytic in $t, d \sigma^{2}(t)$ is also real analytic in t. This completes the proof of Theorem 6.

QED.
7. Concluding remarks. In this section we shall explain a few related problems.

1) Every compact Hermitian symmetric space without flat factor is of positive holomorphic pinching. Is every compact Kaehler manifold with positive holomorphic pinching with a Hermitian symmetric space without flat factor ?
2) In particular, is the following statement true? If M is a compact Kaehler manifold with positive holomorphic pinching, then $H^{p, q}(M ; C)=0$ for $p \neq q$.
3) Let M be a compact Kaehler manifold with holomorphic pinching $>1 / 2$. Is M homeomorphic with $P_{m}(C)$? If K_{1}, K_{2} and K are the Riemannian curvature tensors of Kaehler manifolds M_{1}, M_{2} and $M_{1} \times M_{2}$ respectively and if X_{1}, X_{2} and $X=c_{1} X_{1}+c_{2} X_{2}$ are tangent vectors of M_{1}, M_{2} and $M_{1} \times M_{2}$ respectively, then $K(X, J X, X, J X)=c_{1}{ }^{4} K_{1}\left(X_{1}, J X_{1}, X_{1}, J X_{1}\right)+c_{2}{ }^{4} K_{2}\left(X_{2}, J X_{2}, X_{2}, J X_{2}\right)$. It follows that if $M_{1}=M_{2}=P_{m}(C)$ with Fubini-Study metric, then $M_{1} \times M_{2}$ is of holomorphic pinching exactly $1 / 2$.
4) Are there compact Kaehler manifolds with positive Kaehlerian pinching which are not homeomorphic with $P_{m}(C)$?

Bibliography

[1] M. Berger, Sur quelques variétés riemanniennes suffisament pincées, Bull. Soc. math. France, 88(1960), 57-71.
[2] , Les variétés riemanniennes (1/4)-pincées, Annali Scuola Norm. Sup. Pisa, 14(1960), 161-170.
[3] , Pincement riemannien et pincement holomorphe, ibid., 151-159.
[4] , Les sphères parmi les variétés d'Einstein, C. R. Acad. Sci. Paris, 254 (1962), 1564-1566.
[5] S. Bochner, Tensor fields with finite bases, Ann. of Math. 53(1951), 400-411.
[6] M. P. do Carmo, The cohomology ring of certain Kaehlerian manifolds, to appear.
[7] S.S. Chern, Characteristic classes of Hermitian manifolds, Ann. of Math., 47(1946), 85-121.
[8] A. Douglis-L. Nirenberg, Interior estimates for elliptic systems of partial differential equations, Communications pure and appl. Math., 8(1955), 503-538.
[9] T.T. Frankel, Manifolds with positive curvature, Pacific J. Math., 11(1961), 165-174.
[10] W. Klingenberg, Über Riemannsche Manngifaltigkeiten mit positiver Krümmung, Comm. Math. Helv., 35(1961), 47-54.
[11] \qquad , On the topology of Riemannian manifolds with restrictions on the conjugate locus, to appear.
[12] S. Kobayashi, On compact Kaehler manifolds with positive definite Ricci tensor, Ann. of Math., 74(1961), 570-574.
[13] S. B. MYERS, Riemannian manifolds with positive mean curvature, Duke Math. J., 8 (1941), 401-404.
[14] J.L.Synge, On the connectivity of spaces of positive curvature, Quart. J. Math., 7 (1936), 316-320.
[15] H.E. RaUCH, Geodesics, symmetric spaces and differential geometry in the large, Comm. Math. Helv. 27(1953), 294-320.
[16] Y. Tsukamoto, On Riemannian manifolds with positive curvature, Mem. Fac. Sci. Kyushu Univ., 15(1961), 90-96.
[17] K. Yano- S. Bochner, Curvature and Betti nubmers, Ann. of Math. Studies No. 32, Princeton 1953.

University of California, Berkeley.

[^0]: *) Supported by NSF. GP-812.

[^1]: 1) Tsukamoto simplified part of the proof of Sphere Theorem [16].
