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1. Introduction. The purpose of the present paper is to show that if the
curvature of a complete Kaehler manifold M of complex dimension 7 does
not deviate much from that of the complex projective space P,(C), then (M)
= my(Pn(C)) for all 7. Results in the same direction have been obtained by
Rauch [15], Klingenberg [11] and do Carmo [6].

To state our result more explicitly, we introduce some notations and give
a few definitions. Let J be the tentor field defining the complex structure of
M. Let g be a real 2-dimensional subspace of the tangent space T,(M) at a point
x of M and let X and Y be an orthonormal basis for g. We define the angle
a(q), 0 = a(q) = m/2, between the two planes g and J(q) by

cos alq) = |(X,JY)],

where the inner product (X, JY) is defined by the Kaehler metric. It is a simple
matter to verify that a(g) depends only on q. We set

K(9) = (1 + 3+cos’a(q))/4.

For a Kaehler manifold M we have three kinds of pinchings. Let K(q)
denote the sectional curvature of M. Then, the Riemannian pinching of M is
greater than 8,8 > 0, if there is a positive number L such that

SL<K(@=L for all q.

The Kaehlerian pinching of M is greater than 8 if there is a positive number
L such that

3L-K(q) < K(9) = L-K(9) for all q.

Finally, the holomorphic pinching of M is greater than & if there is a positive
number L such that

SL<K(@ =L for all g such that J(q) = g.

REMARKS. 1) If J(q) = q, then K(q) = 1.

2) If the Kaehlerian pinching of M is greater than 8, then the holomorphic
pinching and the Riemannian pinching of M are, respectively, greater than &
and 8/4.

3) The Kaehlerian pinching of a complex projective space with Fubini-
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Study metric is 1 (see, for instance, [17]). Consequently, its holomorphic pinching
and Riemannian pinching are, respectively, 1 and 1/4.

Now, our result may be stated as follows:

THEOREM. Let M be a complete Kaehler manifold of complex dimension
m with Kaehlerian pinching > 4/7. Then, m(M) = m(P,(C)) for all i.

This improves slightly Klingenberg’s constant 16/25 obtained in [11].
Whereas his method is based on Morse theory, our result is based on Sphere
Theorem of Berger [ 2] and Klingenberg [10] (in particular, for odd dimensional
Riemannian manifolds) which may be stated as follows :"

Every simply connected, complete Riemannian manifold with Riemannian
pinching > 1/4 is homeomorphic with a sphere.

Although 1/4 is the best possible constant for even dimensional Riemannian
manifolds, it is an open question whether Sphere Theorem for odd dimensional
Riemannian manifolds holds for a smaller constant. In §2 we shall state our
main result in such a way that any sharpening of Sphere Theorem for odd
dimensional Riemannian manifolds would result in the reduction of 4/7 to a
smaller constant.

In §6 we shall give miscellaneous results obtained by the same method.

I conclude this introduction by expressing my thanks to Klingenberg and do
Carmo for showing me the manuscripts of their papers [11] and [6] from
which I learned the notion of Kaehlerian pinching.

2. An outline of the proof. We know that a sphere S*™*! of dimension
2m + 1 is a principal circle bundle over P,(C). The main idea is to generalize
this situation, that is, to construct a principal circle bundle P over M such that
the universal covering space of P is homeomorphic with S***!. Then the exact
homotopy sequences of the fibrings S' — S**' —» P,(C) and S'— P— M give
an isomorphism 7,(M) =~ 7,(P,(C)) for i = 2. On the other hand, M is simply
connected by a theorem of Synge [14] or by a theorem of the author [12] so
that m(M) = m(P.(C)) for all 7.

We shall first show that the theorem stated in the introduction is an
immediate consequence of the following

THEOREM 1. Let M be a complete Kaehler manifold with Kaehlerian
pinching > 8. Then there exist a principal circle bundle P over M and a
Riemannian metric on P with Riemannian pinching > 8/(4 — 39).

1) Tsukamoto simplified part of the proof of Sphere Theorem [16].
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If we set 8 =4/7, then 8/(4 — 38) =1/4 so that the universal covering
space of P is homeomorphic with a sphere and, by the preceding argument,
(M) = 7 (Pr(C)) for all i.

We shall outline here the proof of Theorem 1. In §3 we consider, in
general, a principal circle bundle P over a Riemannian manifold M of real

dimension 7 with metric ds* = }_ (6,)>. Let v be a 1form on P defining a

i=1
connection in P. Let a and b be real numbers and consider the Riemannian
metric do® = 7*(ds?) + (aby)* on P, where 7 is the projection of P onto M. We
use two constants a and & instead of just one for purely computational reason.
We express the curvature of do? in terms of those of ds® and v. In §4 we shall

show that if b+dy = 'n-*(Z J8 N 01>Where J;; are the components of J with

respect to #', - . .,6" and if M is of Kaehlerian pinching > 8, then P is of Rieman-
nian pinching > 8/(4 — 38). In 85 we find a circle bundle P and a connection

form v such that b+ dy with a suitable & is sufficiently close to 7* (Z Ji6t N G )

in a certain sense, thus completing the proof of Theorem 1.

3. Riemannian structure on a circle bundle. Throughout §3, let P be a
principal circle bundle over an n-dimensional manifold M with projection
ds® a Riemannian metric on M and v a 1-form on P defining a connection in
the bundle P. Functions on M such as components of tensor fields on M are
considered sometimes as functions on P in a natural way without any change
of notations. We shall also agree on that indices 7,7,k and / run from 1 to =
and indices «, 8, M and x run from O, 1, to #n.

Let a and & be arbitrary real numbers fixed throughout §3. Let do’
= 7*(ds?) + (aby)’. Then do® is a Riemannian metric on P. We shall now study
the structure equations of the Riemannian connections defined by ds* and do*
and also the connection given by 7. In studying the Riemannian connections
of ds® and do® we shall not consider frame bundles but shall use exclusively
forms defined on the base manifolds M and P.

Let U be a small open set in M in which ds® is given by

ds' = (6,

where 6',...,6" are 1-forms defined on U. Let (o';) be a skew-symmetric matrix
of 1-forms on U which defines the Riemannian connection of M so that we
have the following structure equations :

g = — S o'y A &,
J
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do'; = — > o'y N o¥; + QY

k
with
Qii‘_— 1/2 Z Kijkzak A 01,
k1

n

where K,;, are the components of the curvature tensor with respect to ¢',. . .,6".
Next, we shall study the connection defined by 1. Since the structure group
S! of P is abelian, the structure equation is given by

dy =T,
where T is the curvature form of v and can be written as follows:
F=#(ZAMAW)AH=—&r
Finally, we shall study“the Riemannian connection defined by do®. Set

@° = aby,
@' = m*("),

so that do® = >_ (%)

PROPOSITION 1. Set
'\I"\OO = O,
‘l’io = — ‘l’ot = — Z abAina
j
¥ = m¥(0';) — abA, "
Then (V%) defines the Riemannian connection on P with respect to do.

PrROOF. Evidently, (%) is skew-symmetric. To prove that (%) defines a
linear connection of the manifold P, let V' be another small open subset of M

on which ds* = >_ (¢°)*. Then
j

DI onUNYV,
;

where (s*;) takes values in O(n). Let (o';) and (©},) be the connection form and
the curvature form of the Riemannian connection given by ds* with respect to

the basis 6',. . .,6"; they are defined on V. Set

@:F:#(ZZWA?)
i,J
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and
@’ = aby,
7 = @),

Using @* and A;; we define (%) in the same way as (V).
Since both (#%;) and (';) define the same Riemannian connection, they are
related to each other as follows:

“;ij = Z Stkmkzsjz - Z dSiijk,
Kl k

or, in short,

® = sws™' — ds-s7', where s = (5%)), ® = (¢';) and o = (@')).
On the other hand, we have

zu = Z sYApsty,
k1l
P = > tiph, where t'; = s, %5 =, =0, t°% = 1.
]
A straightforward computation shows
Ve =Dttt — S dises,
Ap A

which means that (¥+§) defines a linear connection of the manifold P.

To see that it actually defines the Riemannian connection, it suffices to
prove that the connection has no torsion. By a simple calculation, we obtain

dg® + > Y% A @ = akalAk@’“ A @ + ab%z‘luw‘ A @* =0,
; , ,
de' + 3 V' N\ @ = 7¥(df") + 3_ (n*(e')) — abAip°) \ @’
M J
—ab Z Aiﬂ’j A @
J
=w*(dei+zwfjAaf>=0. QED.

PROPOSITION 2. If (¥8) is the curvature form of the connection defined
by (¥%), then
\Ifoo = O,
Vi, = — ¥, = — a?b? Z AuAng' N\ @° — ab Z Au®' N\ @,
Kl X

\Pij = '7"'*(9-'1}) - Z a2b2(Ai,-Ak, + AikAjl)(pk A ¢’l
ki
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—ab )" Auyp® N @,
k
where

Z Aij;kﬂk = dAij - Z Aik(l)kj + Z A,cj(oik.
k k k

PROOF. The proof is a straightforward calculation using Proposition 1
and the structure equation

Vs =dys + > Ps A b QED.
A

REMARK. The covariant derivative of the tensor field A;; with respect to
the Riemannian connection of M is given precisely by A,j.
The components R, of the curvature tensor of the Riemannian manifold

P are defined by
Vi =1/2 AZ:RaBM‘PA A @
-
PROPOSITION 3. The curvature R.gm, is expressed by K, and A;; as
Jollows :
1) Riju = Kiju — a0’ CAA + Audy — ALAj),
2) Riwo = a0 AyAn,
3) Riw = ab(Ai,lC;z — Aux) = — abAy.
Formulas 1), 2) and 3) determine all components R,p,.

PROOF. From Proposition 2, we obtain
1/2 Z Riﬂtu ¢7L A <P“ = Z [1/2Kijkl - 4262(14“141” + AikAjL)]‘pk A ¢l
Au k,l
+ ab Z AH;WO /\ @k.
k

Skew-symmetrizing the coefficients of ¢ A ¢* in the right hand side and
equating with (1/2)R,;;,, we obtain 1) and the first equality of 3). Formula 2) fo-

llows similarly from Proposition 2. Finally, the equality R;,x, = — abA;; may be
also derived from Proposition 2, but the equality A — Auw = — Awy 1
equivalent to the fact that the form >_ A,;6' A\ 6 is closed. QED.

i,J

4. Algebraic propositions. As in the preceding section, we assume that

1=ijkl=n and 0 = a,B\u =n. In this section, K,;, will be a set of real

numbers subject to the same algebraic conditions as the Riemannian curvature
tensor, ie.,
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chz = - Kjucz = - Kijlk = Kklij’
Ky + Kigy + Ky = 0.
From now on we assume that n is even. Let J =(J;;) be a skew-symmetric

matrix such that JJ = — I or>_ J,;Jy = — 8. We set
3

S = Kis — a*2JiJi + Jud sy — Jud i),
Siore = — Sivor = — Soiro = Sosor = @’y
Sapry =0 otherwise.
REMARK. If we replace bA,; and A,;; in Proposition 3 by J;; and 0
respectively, then Rasy = Sagip.
It is easy to see that the set of numbers S.m, satisfy the same algebraic
conditions as the curvature tensor Reug,.

Let R™' be the vector space of (u# + 1)-tuples of real numbers. If
X=XX",...X") and ¥ = (Y°Y",...,Y") are elements in R"*!, then their

inner product (X,Y) is defined by (X,)Y) = >_ X*Y*. For each 2-dimensional

subspace p of R"*!, we define S(p) as follows. Let X and Y form an orthonormal
basis for p. Then

SP) = 3 S XYEX'Y".

a,B8,A,p

Then S(p) is independent of X and Y and we have
S@) = 2. SuuX Y XY + 5 S, XY XY
ik

1,4,k

+ D0 S X Y XY + 3 S XY XY + 3 S0 XY/ XY
i,k i,k Jl

Let £ and # be the elements of R" given by
E = (Xl,' * .’Xn), n = (Yl,' ¢ ',Y'/z).

Then

Jt = (;JI,XJ',. X Jn,-Xf>, Jn = (Z T e DAY )
The inner product in R" is defined also in the usual way. Then
DSk XY XY = 5 K XY XFY' — 3a(E,Jn)?,
> Sioke XY XFY® = a¥(EE)YY",
D Sia XY XY = — a¥EnX°Y°,

> Sone XY XY = — a’(gnX°Y°,
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2 S0 XY XY = a¥(nn)X°X".
By adding these five equalities, we obtain
S@) = 2_ Kiu XY’ XY — 3a*(E,Jn)?
+ @f[EHYY — 2ENXY° + ()X XL,
Since (££) =1 — X°X°, () = — X°Y° and () =1 — Y°Y°, we have

PROPOSITION 4.

S(@) = 3 K XYXY! — 3a%EJn)* + a¥(X°X° + Y°Y°).

Let ¢ be a 2-dimensional subspace of R® and let U = (U%...,U") and
V=,..,V") form an orthonormal basis for ¢. Define K(q) and a(g),
0=a(q) =m/2, by

K(g) = 22 KuUVUVY,

i,J,k,1
cos alg) = [((UJV)I.
Then both K(q) and a(g) depend only on g, not on U and V.

Assume that & and 7 are linearly independent and let ¢ be the 2-dimensional
subspace of R" spanned by them. Then the vectors U and V defined as follows
form an orthonormal basis for gq.

U =E/(££)7,
V = [(&8)n — EmEL/EEEE (nm) — EmDI

Consequently, we have
(f,J"?)2 = [(‘555)(77,77) - (Eyﬁy]cosza(Q)’
2 KXY XY = [(££)(nm) — (En)1K(9).
On the other hand, we have
EDm — Ea) = (1 = XXV = Y7 - XXV =1 - XX - Y7,
The above three equalities and Proposition 4 imply 1) of the following
proposition.
PROPOSITION 5. 1) If & and n are linearly independent so that they
span a subspace q, then
Sp) =010 - X X° - YY) K(g) — 3a’cos’a(q)] + a*(X°X* + Y'Y");
2) If & and n are linearly dependent, then S(p) = a’.
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PROOF. If £ and 7 are dependent, then the first two terms in the right
hand side of the formula in Proposition 4 vanish. On the other hand, 1-X°X°
—YY° = (£,€)(nm) — (E,m)? = 0. Thus, the last term in the formula of Propo-
sition 4 is equal to &’ QED.

As in 81, we set
K(g) = (1 + 3cos’a(q))/4.
PROPOSITION 6. In Proposition 4, let a be any positive number not
greater than 1/2. If & and n span a 2-dimensional subspace q of R"™ and if
4a’K(q) = K(g) = K(g),
then
aZ=SPp)=1-3a%.

PROOF. Since 1 — X°X° —YY° = (££)(n,m) — (Em)* (as we have seen
before Proposition 5), we have, by Schwarz’s inequality,

1-XX—-YY'=0.
Since K(q) = 4a’K(q) = a*(1 + 3cos’a(q)), we have
K(q) — 3a’cos’alq) = a®* > 0.
On the other hand, since K(g) = K(q) and 4a® =1, we have
K(g) — 3a*cos’alq) =[1 + 3(1 — 4a*)cos’a(q)]/4 = [1 + 3(1 — 4a?)]/4
=1— 3a%
We shall first find an upper bound for S(p).
SPH=>10-XX"—-YY)1 — 3a% + a¥(XX*+ YY"
=1-3a*+ (4a® - DX'X* + YY) =1 — 3a%
We shall next find a lower bound for S(p).
SPH=1 - XX - YY" + a¥(X°X° + YY) = a’. QED.
Let A,; and A be real numbers subject to the same algebraic conditions
as tensor fields A;; and Ay in §3. Explicitly,
Ay = — Ay,
A = — Ajge,
Az + Ay + Ay = 0.

Then, define R.m, by the formulas in Proposition 3 so that they satisfy the
same algebraic conditions as the curvature tensor. For each 2-dimensional
subspace p of R"*' with an orthonormal basis X = (X°, X', ..., X") and Y
=YY, ...Y"), we set



130 S. KOBAYASHI

RP) = 3 R, XYeX'YH

a,B,A,p,

PROPOSITION 7. Let a be any fixed positive number. Given a positive
number &, there is a positive number p such that

IR(p) — S(p)| <&
if 20 16Ay — Jul* <p and 3 |bAy|* <p.
0

1,0,k

PROOF. As we remarked earlier, if we set bA,; = J;; and Ay, = 0, then
R(p) = S(p). Since R(p) depends continuously on A;; and A, our conclusion
follows. QED.

5. Construction of a circle bundle. In this section, we shall complete the
proof of Theorem 1. Let M be a complete Kaehler manifold with Kaehlerian
pinching > 4a?, where a is a positive number not greater than 1/2. By norma-
lizing metric, we may assume that the sectional curvature K(g) satisfies the
following inequality :

4a’K(q) < K(g) = K(9)-
By a theorem of Synge [14] or by a theorem of Myers [13], M is compact.

Let ds® = 3 (#’)* be the Kaehler metric of M and J,; the components of the
]

complex structure tensor J with respect to 6',- - .,6". Using notations of §3 and
84, we state

PROPOSITION 8. Given any positive number p, there exist a harmonic
2-form Y A;; 0 \ & on M representing an element of H*(M ;Z) and a real
1,5
number b such that

21— bA;1P<pand Y [bA|* <p,
47

i,4,k

where A denote the components of the covariant derivative of A,

PROOF. From the theory of elliptic partial differential equations (see, for
instance, [5],[8]) we infer that there exists a positive constant C such that,

for every harmonic form >_ B,;#* A\ ¢’ on M, we have
¥

> By = C+ maximum of > |B;,|%

.9,k 5
Given p>0, Let p, = min{p/C, p}. Since HM;Z) form a basis in H*(M;R),
the set of {ba ;b € R and a € H(M; Z)} is dense in H*(M ; R). Hence, there
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are a real number » and a harmonic form > A,#" A\ ¢’ representing an ele-
5

ment of HXM ; Z) such that >_ |bA;; — J;;|* <p,. Set B;; =bA,; — J;. Then
0
Bij;lc = bAij;k. Hence,

2o 10AG]" = 27 [ Byl < Cpy =p. QED.

1,3,k ik

For each x € M and each plane p in R"*', we define S(p) using the sets
of numbers K,;,(x), J;{x) and @ as in §4. Then, the assumption 4a’K(q) <
K(g9) = K(qg) for all ¢ implies by 2) of Proposition 5 and by Proposition 6 the
following inequalities :

a’ < S(p)<1-—3a’
Note that, since we have a strict inequality 4a2K(q) < K(g), we have also the
strict inequalities a® << S(p) <1 — 3a® Since M is compact, there is a positive
number & such that
a+&E<S(p)<1l—3a*— & for all x € M and all p.

Corresponding to this positive number & we take a positive number p given

by Proposition 7. Then choose a number & and a harmonic 2-form >_ A,6° A ¢
i
as in Proposition 8. Assuming for the moment the existence of a principal

circle bundle P over M and a connection form v on P such that dvy =
% (Z A 8N G ) , we shall finish the proof of Theorem 1. By means of ¢°¢',
i,

.. .,@" we can identify R"*' with each tangent space of P. Thus, we denote
by p a plane in R"*' and also the corresponding plane in each tangent space
of the manifold P, so that R(p) in Proposition 7 can be now considered as the
sectional curvature of the Riemannian manifold P. By our choice of & and by
Proposition 7, we have
a’<S(p)— E<RP) <SP +&<1—3a

Thus, if M is of Kaehlerian pinching > 4a?, then P is of Riemannian pinching
> a’/(1 — 3a*). If we replace 4a® by 8, then we have Theorem 1.

Now, the only thing which has to be proved is the following proposition.

PROPOSITION 9. Given a harmonic 2-form Y A,6' \ & representing an

05
element of HX(M ; Z), there are a principal circle bundle P and a connection

form v on P such that dy = w*( SCAG NG >
0

PROOF. The exact sequence 0 > Z — R — S' — 0 induces an exact sequence
of the cohomology groups of M with coefficients in the corresponding sheaves



132 S. KOBAYASHI

of germs of mappings. In particular, we have
H'\(M ; SY)=~ HM; Z),

where S' is the sheaf of germs of differentiable mappings into S'. The group
H'(M; S") can be considered as the set of all principal circle bundles over M.
The isomorphism H'(M; S') ~ H(M;Z) is given explicitly as follows. Let P
be an element of H'(M;S'"), ie., a principal circle bundle over M. Let v be a
connection form on P. Then dy = m*(«), where a is a closd 2-form on M.
The cohomology class of a is the element of H*(M ;Z) corresponding to P.

Therefore, given a harmonic 2-form > A;#* A\ ¢’ representing an element
of H*(M ;Z), let P be the corresponding principal circle bundle over M and
¥ be any connection form on P, so that the closed 2-form }_ B, A 6’ defined

by dy = =¥ ( > B, A& > is cohomologous to the form >_ A6 A 6. Let 8 be
a 1-form on M such that
Z Awﬁi /\ 0" b Z B“ﬂi /\ 0'7 = dB.

Set vy =" + 7%(B). It is easy to verify that v is a connection form on P and
that dy = * ( 3 A8* A w) . QED.

6. Miscellaneous results. We shall show that the same method can be
applied to Kaehler manifolds with positive holomorphic pinching. The following
proposition is due to Berger [ 3] :

PROPOSITION 10. Let M be a Kaehler manifold such that

d=K@g) =1 for all q with J(q) = q.
Then
(— 54 78 + 6 cos’a(q))/8 = K(q) = (7 — 58 + 6 cos’a(q))/8

for all q.

PROOF. For any two linearly independent vectors X and Y, we shall
denote by 4(X,Y) the sectional curvature by the plane spanned by X and Y so
that

k(X’Y) = K(X:Y’X’Y)/[(X’X)(Y’Y) - (X’Y)Q]’

where K on the right hand side denotes the Riemannian curvature tensor.

2) Because of some errors in Berger’s paper, we give here a complete proof.
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Let g be any plane in the tangent space T,(M) at a point x of M and
let X and Y form an orthonormal basis for g so that

K(q) = k(X)Y) = KX,Y,X,Y).
Making use of Bianchi’s identity and the following formulas :
KX)Y) = k(JX,JY),
KJX)Y,JX)Y) = k(JX,Y) sin’a(q),
we obtain, for any real numbers a and b,
(@ + )%k (aX + bY J(aX + bY)) = a'k(X,JX) + b'k(Y ,JY)
+ 2a’0*E + ua®b + vabd,
where
E = KX)Y) + 3k(JX,Y)sin’a(q).

Replacing b by — b, we obtain a similar equality. By adding the two equalities
thus obtained, we have

(@ + b¥)[k(aX + bY , J(aX + bY)) + k(aX — bY ,J(aX — bY))]
= 2a'R(X,JX) + 2b'k(Y, JY) + 4a*b*E.

From our assumption, we obtain the following inequalities :

3a® + b*) = a'k(X,JX) + k(Y JY) + 2a°0*E = (a® + b~
By setting a = & = 1, we have

43 — (X, JX) — kY JY)=2E =4 — k(X JX) — k(Y ,JY).
Hence,

2—-1=E=2-3.
Proceeding in the same way with

(a® + 2abcosa(q) + b*)*k(aX + bJY ,J(aX + bJY))

= a*k(X,JX) + b*k(Y ,JY) + 2a°b*F + u'a’*b + v'ab®

where
F = 3k(X)Y) + k(JX,Y)cos’a(q),
we obtain the following inequalities :
3(a® + b*)* + 4a’b’cos’a(q)] = a*k( X, JX) + b'k(Y ,JY) + 2a°b*F
= [(a® + b%)? + 4a’b*cos’a(q)].

By setting a = b =1, we have

28 — 1 + 28cos’a(q) = F = 2 — & + 2cos’a(q).
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Finally, we have
(78 — 5 + 63cos’a(q))/8 = (3F — E)/8 = (7 — 58 + 6cos’a(q))/8.
Since 3F — F = k(X,Y), this completes the proof. QED.

PROPOSITION 11. With the same notations as in Proposition 5, if
(78 — 5 + 63cos’a(q))/8 = K(q) = (7 — 58 + 6cos’a(q))/8
and if
78 — 5 = 8a® = 28.
then
(78 — 5)/8 = S(p) = (13 — 58 — 24a*)/8.

PROOF. By Proposition 5, we have
SPH=0—-X°X*—YY)[7 — 55 + 6(1 — 4a*)cos’a(q)]/8 + a¥(X°X° + Y°Y")
=10 - XX*—YY)7 — 55+ 6 — 24a?)/8 + a*(X°X° + Y°Y")
= (13 — 58 — 24a%)/8 + (32a° — 13 + 58)(X°X° + Y°Y?)/8
= (13 — 58 — 24a?)/8.
Also, by Proposition 5, we have
S =010 — X X°—YY)[78 — 5 + 6(8 — 4a*)cos’a(q)]/8 + a*(X°X° + Y°Y")
=1 — XX°—Y°Y°)(78 — 5)/8 + a*(X°X° + YY)
= (76 — 5)/8 + (8a®> — 78 + 5)(X°X° + Y°Y")/8
= (78 — 5)/8. QED.
In particular, if we set
S = 4a?,
then
(76 — 5)/8 = S(p) = (13 — 113)/8.
Thus, the method we used in the proof of Theorem 1 gives
THEOREM 2. Let M be a complete Kaehler manifold with holomorphic

pinching > 8. Then, there are a principal circle bundle P over M and a
Riemannian metric on P with Riemannian pinching > (78 — 5)/(13 — 1193).

If 8 =11/13, then (78 — 5)/(13 — 118) = 1/4. Hence,

COROLLARY. Let M be a complete Kaehler manifold with holomorphic
pinching > 11/13. Then

(M) = w(Pn(C)) for all i. (m = dim;M).
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REMARK. According to Berger [ 3], if a Kaehler manifold M of complex
dimension > 1 is of Riemannian pinching > 8, then M is of holomorphic
pinching > 8(88 + 1)/(1 — 8). Hence, if M is of Riemannian pinching = 0.23,
then M is of holomorphic pinching > 11/13. Thus, if M is of Riemannian
pinching = 0.23, then = (M) = 7(P,(C)) for all i.

In [ 1], Berger proved the following theorem :

Let P be a (2m + 1)-dimensional compact Riemannian manifold with
Riemannian pinching > 2(m — 1)/8m — 5. Then, HX(P;R) = 0.

His result, combined with Theorem 1, gives

THEOREM 3. Let M be a complete Kaehler manifold of complex
dimension m. If M is of Kaehlerian pinching > 8(m — 1)/14m — 11, then

dimH*(M ; R) = 1.

PROOF. By Theorem 1, we can construct a principal circle bundle P over
M with a Riemannian metric with Riemannian pinching > 2(m — 1)/8m — 5.

By the result of Berger, H2(1~’ ;R) =0 where P is the universal covering

manifold of P. Hence, my(P) = '77-2(?) = HZ(F ; Z) is finite. By the exact homotopy
sequence of the fibring S' — P — M,

Ty (M)~ Z + a finite group.
By Hurewicz isomorphism, H,(M ; R) = R. QED.

THEOREM 4. Let M be a complete Kaehler manifold with holomorphic
pinching > (22m — 17)/(26m — 19), where m is the complex dimension of M.
Then

dimH*(M ; R) = 1.

PROOF. The proof is quite similar to that of Theorem 3. The only change
is the use of Theorem 2 in place of Theorem 1. QED.

REMARK. For m = 2, this result is weaker than that of Berger [3] who
shows that if M is a complete Kaehler manifold of complex dimension 2 with
holomorphic pinching > 1/2, then dimH*(M ; R) = 1.

Let M be a complete Kaehler manifold of complex dimension m with
Riemannian pinching > 8, where & is the positive number defined by (22m
—17)/(26m — 19) = 888 + 1)/(1 — 8). Then, dim H*(M ;R) = 1. The proof is
by the reasoning given in the remark following Theorem 2. Again, for m = 2,
this result is weaker than those of Berger [3] and Andreotti-Frankel [9 ]
Barger assumes only 8 > 0. Andreotti and Frankel proves that if & >0, then
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M is homeomorphic with P,(C).
The proof of Theorem 1 gives also the following result:

THEOREM 5. If M is an Einstein-Kaehler manifold with positive scalar
curvature, then we can construct a principal circle bundle P over M and an
Einstein metric with positive scalar curvature on P.

PROOF. We recall that an Einstein metric is a Riemannian metric such
that the Ricci tensor is a constant multiple of the metric tensor. If M is an
Einstein-Kaehler manifold, there exists a constant ¢ such that the 2-form

c > Ji#* A\ ¢’ represents the first Chern class which is an element of H*(M;Z).
Let P be the principal circle bundle corresponding to the cohomology class

represented by ¢>_ J;;6' A ¢/ and let ¥ be a connection form such that dy
= ¥ (cZJi,ﬂi A & ) . In Proposition 3, we have then

A”' = CJH.

If we set b = 1/c in Proposition 3, then we have
R; = Z Rop = Ki; — 2a%8,;,
R, = Oj
R,, = Z; S = na’.

Since K;;= hd,; for some positive constant h, set a = (h/(n + 2))"%. Then, R.s
=n/(n + 2)8.s QED.

The construction of the bundle P and the metric do® in Theorem 5 is
natural in the sense that P is a space of constant positive curvature if and
only if M is a space of constant positive holomorphic (sectional) curvature. In
fact, suppose that M is a space of constant positive holomorphic curvature. By
normalizing the metric, we may assume that the holomorphic curvature of M

is equal to 1. Then K(q) = K(q) for all g (cf. Proposition 10) and K;; = hS,;,
where h = (n + 2)/4. Hence, a = 1/2 in the proof of Theorem 5. By Proposition
6, the metric on P is of sectional curvature 1/4. Conversely, assume that the
sectional curvature of P is constant. Then, by Proposition 6, R(p) = a* for all
p. By the same proposition, we have K(q) = 4a’K(q) for all g, thus proving
our assertion.

We shall prove a Kaehlerian analogue of the following result of Berger [4]:

Let P be a compact manifold with a 1-parameter family of Riemannian
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metrics do’(t), — & <t <&, such that

1) For each t, do*(t) is an Einstein metric;
2) The metric do*(0) is of constant positive curvature :
3) The family do*(t) is real analytic in t.

Then, for each t, do*(t) is of constant positive curvature.
Our result may be stated as follows :

THEOREM 6. Let M be a compact manifold with a 1-parameter family
of complex structures J(t) and a 1-parameter family of Riemannian metrics
ds’(t), — & <t <&, such that

1) For each t, ds*(t) is an Einstein-Kaehler metric with respect to the
complex structure J(t);

2) The metric ds*(0) is of constant positive holomorphic curvature with
respect to the complex structure;

3) The families J(t) and ds*(t) are real analytic in t.

Then, for each t, ds*(t) is of constant positive holomorphic curvature with
respect to the complex structure J(t).

PROOF. For each ¢, construct a principal circle bundle P(¢) and a Rie-
mannian metric do*(¢) on P(¢) as in Theorem 5. Because of the observation we
made after Theorem 5 and the above result of Berger, it suffices to prove that
P(¢) is independent of ¢ and that do?(¢) is real analytic in ¢ Since P(¢) cor-
responds to the first Chern class of the complex structure J(¢) under the isom-
orphism H'(M ; S")~ H*(M ; Z) (cf. the proof of Theorem 5) and since the
first Chern class of J(¢) depending continuously on # and lying in the discrete
subgroup H*(M ; Z) of H*(M ; R) must be independent of ¢, P(¢) is independent
of ¢t. Let P = P(t). For each ¢, let a(¢) be the harmonic 2-forms on M repre-
senting the first Chern class with respect to the Kaehler structure defined by
J(t) and ds*(¢). Since a(¢) can be expressed in terms of the Ricci tensor of
ds%(t) and the complex structure J(z) (cf.[ 7]), the family «(#) is real analytic
in ¢. As in the proof of Theorem 5, let v be a connection form on P such
that dy = 7*(a(0)). Note that such a connection form v is not unique. Since,
for each ¢, a(t) is cohomologous to «(0), there exists a 1-form A(z) such that
a(t) = a(0) + dB(t). We shall show that it is possible to construct a family
B(t) real analytic in ¢. Let C* be the space of real k-forms on M. Let & be the
adjoint of d and A = d8 + 8d the Laplacian defined by the metric ds*0). From
the theory of harmonic integrals, we infer that 8d486C* = 8dC' = 8C* and hence
that the Laplacian A maps 3C? isomorphically onto itself. (Our assertions follow
from the decomposition theorem : C* = dC*! + 8C**! + HF¥, where H* denotes
the space of harmonic k-forms). Let
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B(2) = A7'[¥a(?) — a(0))],

where A~' is considered as the inverse of the isomorphism A :8C? — 8C% The
family B(¢) thus constructed is real analytic in z Set

v(2) = v + T(B{).

Then, for each ¢, ¥(¢) is a connection form on P such that dvy(¢) = 7= (a(?)).
For each ¢, we define constants a(¢) and &(#) as in the proof of Theorem 5
and set

do*(t) = m*(ds*(t)) + (a(®)b(t)y(2)).

Since a(¢) and b(¢) are obviously real analytic in ¢, do*(¢) is also real analytic
in ¢. This completes the proof of Theorem 6. QED.

7. Concluding remarks. In this section we shall explain a few related
problems.

1) Every compact Hermitian symmetric space without flat factor is of
positive holomorphic pinching. Is every compact Kaehler manifold with positive
holomorphic pinching with a Hermitian symmetric space without flat factor ?

2) In particular, is the following statement true? If M is a compact
Kaehler manifold with positive holomorphic pinching, then H*¢(M;C) =0

for p==q.

3) Let M be a compact Kaehler manifold with holomorphic pinching > 1/2.
Is M homeomorphic with P,(C)? If K,,K, and K are the Riemannian curvature
tensors of Kaehler manifolds M,, M, and M, X M, respectively and if X,, X,
and X = ¢, X, + ¢, X, are tangent vectors of M,M, and M, x M, respectively,
then K(X,JX,X,JX) = ¢,*K\(X,,J X, X, JX)) + ¢,*Ky(X,,JX,,X,,JX,). It follows
that if M, = M, = P,(C) with Fubini-Study metric, then M, X M, is of
holomorphic pinching exactly 1/2.

4) Are there compact Kaehler manifolds with positive Kaehlerian pinching
which are not homeomorphic with P,(C)?
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