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1. Introduction. The purpose of the present paper is to show that if the
curvature of a complete Kaehler manifold M of complex dimension m does
not deviate much from that of the complex projective space Pm(C), then TΓ^M)
= 7Γi(Pm(C)) for all i. Results in the same direction have been obtained by
Rauch [15], Klingenberg [11] and do Carmo [ 6 ].

To state our result more explicitly, we introduce some notations and give
a few definitions. Let J be the tentor field defining the complex structure of
M. Let q be a real 2-dimensional subspace of the tangent space TX(M) at a point
x of M and let X and Y be an orthonormal basis for q. We define the angle
oc(q), 0 ^ oc(q) ^ 7r/2, between the two planes q and J(q) by

cos tf(?)= \(X,JY)\,

where the inner product (X, JY) is defined by the Kaehler metric. It is a simple
matter to verify that a{q) depends only on q. We set

K(q) = (1 + 3 cos2tf(?))/4.

For a Kaehler manifold M we have three kinds of pinchings. Let K(q)
denote the sectional curvature of M. Then, the Riemannίan pinching of M is
greater than δ, δ > 0, if there is a positive number L such that

δL < K(q) ^ L for all q.

The Kaehlerian pinching of M is greater than δ if there is a positive number
L such that

δL K{q) < K(q) ^ L ~K(q) for all q.

Finally, the holomorphic pinching of M is greater than δ if there is a positive
number L such that

δL < K(q) ^ L for all q such that J(q) = q.

REMARKS. 1) If J(q) = g, then K(q) = 1.
2) If the Kaehlerian pinching of M is greater than δ, then the holomorphic

pinching and the Riemannian pinching of M are, respectively, greater than δ
and 8/4.

3) The Kaehlerian pinching of a complex projective space with Fubini-

*) Supported by NSF. GP-812.
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Study metric is 1 (see, for instance, [17]). Consequently, its holomorphic pinching
and Riemannian pinching are, respectively, 1 and 1/4.

Now, our result may be stated as follows :

THEOREM. Let M be a complete Kaehler manifold ofcomplex dimension
m with Kaehlerian pinching > 4/7. Then, TΓ^M) = τr£(Fm(C)) for all i.

This improves slightly Klingenberg's constant 16/25 obtained in [11].
Whereas his method is based on Morse theory, our result is based on Sphere
Theorem of Berger [ 2 ] and Klingenberg [10] (in particular, for odd dimensional
Riemannian manifolds) which may be stated as follows 'P

Every simply connected, complete Riemannian manifold with Riemannian
pinching > 1/4 is homeomorphic with a sphere.

Although 1/4 is the best possible constant for even dimensional Riemannian
manifolds, it is an open question whether Sphere Theorem for odd dimensional
Riemannian manifolds holds for a smaller constant. In §2 we shall state our
main result in such a way that any sharpening of Sphere Theorem for odd
dimensional Riemannian manifolds would result in the reduction of 4/7 to a
smaller constant.

In §6 we shall give miscellaneous results obtained by the same method.
I conclude this introduction by expressing my thanks to Klingenberg and do

Carmo for showing me the manuscripts of their papers [11] and [ 6 ] from
which I learned the notion of Kaehlerian pinching.

2. An outline of the proof. We know that a sphere 5 2 m + 1 of dimension
2m + 1 is a principal circle bundle over Pm(C). The main idea is to generalize
this situation, that is, to construct a principal circle bundle P over M such that
the universal covering space of P is homeomorphic with S2πι+ί. Then the exact
homotopy sequences of the fibrings Sι -> S2m+ι -> Pm(C) and Sι-^P-^M give
an isomorphism TΓ^M) «rn-i{Pm(C)) for i ^ 2. On the other hand, M is simply
connected by a theorem of Synge [14] or by a theorem of the author [12] so
that τr,(M) = πlPJP)) for all L

We shall first show that the theorem stated in the introduction is an
immediate consequence of the following

THEOREM 1. Let M be a complete Kaehler manifold with Kaehlerian
pinching > 8. Then there exist a principal circle bundle P over M and a
Riemannian metric on P with Riemannian pinching > 8/(4 — 38).

1) Tsukamoto simplified part of the proof of Sphere Theorem [16].
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If we set δ = 4/7, then 8/(4 — 3δ) = 1/4 so that the universal covering

space of P is homeomorphic with a sphere and, by the preceding argument,

Wi(M) = irlPJC)) for all i.

We shall outline here the proof of Theorem 1. In §3 we consider, in

general, a principal circle bundle P over a Riemannian manifold M of real
n

dimension n with metric ds2 = J2 (#,;)
2. Let γ be a 1-form on P defining a

i=l

connection in P. Let a and & be real numbers and consider the Riemannian

metric dσ2 = τr*(ds2) + {abyf on P, where 7Γ is the projection of P onto M. We

use two constants a and & instead of just one for purely computational reason.

We express the curvature of dσ2 in terms of those of ds2 and γ. In §4 we shall

show that if b dy = TΓ* ί ^ J ^ * Λ #; ) where J^ are the components of J with

respect to θ\ . . ,#w and if M is of Kaehlerian pinching > δ, then P is of Rieman-

nian pinching > δ/(4 — 3δ). In §5 we find a circle bundle P and a connection

form y such that b dy with a suitable 6 is sufficiently close to TΓ* ί ^ Jφ1 Λ

in a certain sense, thus completing the proof of Theorem 1.

3. Riemannian structure on a circle bundle. Throughout §3, let P be a

principal circle bundle over an n-dimensional manifold M with projection 7Γ,

J52 a Riemannian metric on M and γ a 1-form on JP defining a connection in

the bundle P. Functions on M such as components of tensor fields on M are

considered sometimes as functions on P in a natural way without any change

of notations. We shall also agree on that indices t,j, k and / run from 1 to n

and indices a, β, λ and μ run from 0, 1, to w.

Let a and b be arbitrary real numbers fixed throughout §3. Let dσ2

— τr*(ds2) + (aby)2. Then dσ2 is a Riemannian metric on P. We shall now study

the structure equations of the Riemannian connections defined by ds2 and dσ2

and also the connection given by y. In studying the Riemannian connections

of ds2 and dσ2 we shall not consider frame bundles but shall use exclusively

forms defined on the base manifolds M and P.

Let U be a small open set in M in which ds2 is given by

where 01,. . *βn are 1-forms defined on U. Let (ω^ ) be a skew-symmetric matrix

of 1-forms on U which defines the Riemannian connection of M so that we

have the following structure equations :
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k

with

: κimβ* A β\

where Kijkι are the components of the curvature tensor with respect to #\ βn.
Next, we shall study the connection defined by γ. Since the structure group

S1 of P is abelian, the structure equation is given by

where Γ is the curvature form of γ and can be written as follows:

Γ = 7r* ( £ Aβ* A θ>) , Au = - AH.
X i,3 '

Finally, we shall study the Riemannian connection defined by dσ2. Set

φ° = aby,

so that dσ2 = Σ (^α)2

a

PROPOSITION l. Set

ΨΌ = 0,

Then (ψ£) defines the Riemannian connection on P with respect to dσ2.

PROOF. Evidently, (ψf) is skew-symmetric. To prove that (ψ$) defines a
linear connection of the manifold P, let V be another small open subset of M

on which ds2 = Σ, (&)*. Then
3

-& = Σ s'β* on U Π V,
j

where (s^ ) takes values in O(n). Let (ω^ ) and (Jil

3) be the connection form and
the curvature form of the Riemannian connection given by ds2 with respect to

the basis θ\ 9θ
n; they are defined on V. Set
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and

φ° — aby,

Using φa and Ai5 we define (ψ g) in the same way as (ψβ).
Since both (ω^ ) and (ω*j) define the same Riemannian connection, they are

related to each other as follows :

®S = Σ Λ© V* - Σ ds\s\,
k,l k

or, in short,

ω = sωs'1 — ds 5"1, where s = (s^ ), ω = (ω\) and ω = (ω\).

On the other hand, we have

-"•U ~ A-, S k^kls%ly
k,l

φa = Σ nψ\ where t*, = s*,, t\ = ί'o - 0, t\ = 1.

A straightforward computation shows

which means that (ψ g) defines a linear connection of the manifold P.
To see that it actually defines the Riemannian connection, it suffices to

prove that the connection has no torsion. By a simple calculation, we obtain

dφ° + Σ Ψ°μ Λ φμ = ab Σ &u<pk Aφι + abΣ ^uψl Λ ψk = 0,

i

5 Λ φ"
3

= 7τ* ( d& + Σ »'; Λ ^ ) = 0. QED.

PROPOSITION 2. If (Ψg) is the curvature form of the connection defined

by (ψί), then

Ψ°o = 0,

Ψ'o - - Ψ°t = - aW Σ AtkAkιφ
ι A φ°-ab Σ A^φι A φ\

k,l k,l
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- ab Σ Λ«P* A φ\
k

where

Σ Λ nk — sj A \ Λ A r^ _l_ \ ' A ,^

•f*-ij',kU — LvAxij / j x~Likuj j ~f / J~xkjuj k.
k k k

PROOF. The proof is a straightforward calculation using Proposition 1
and the structure equation

Ψg = dγ% + Σ ψί Λ tέ. QED.
λ

REMARK. The covariant derivative of the tensor field Ai5 with respect to
the Riemannian connection of M is given precisely by Aiy,k.

The components Raβλβ of the curvature tensor of the Riemannian manifold
P are defined by

λ,β

PROPOSITION 3. The curvature Raβλμ ts expressed by Kim and Atj as
follows:

1) Rijki — &ίjki — a b (ΔAIJAJCI + AίkAji — AuAjk)9

2) Riΰk0 = a'V Σ AUAU,
I

3) Rίokι = ab(Aίk;l - AiVtk) = - abAkVΛ.

Formulas 1), 2) and 3) determine all components Raβλμ.

PROOF. From Proposition 2, we obtain

1/2 Σ, Ri^ ΨX Λ Ψμ = Σ [l/2Kijkι - a*b\AυAkι + A ^ O V Λ ^

+ ab Σ AιMφ° Λ <?>*.
k

Skew-symmetrizing the coefficients of φλ Λ φμ in the right hand side and
equating with (1/2)2?^, we obtain 1) and the first equality of 3). Formula 2) fo-
llows similarly from Proposition 2. Finally, the equality Riokι = — abAkl)i may be
also derived from Proposition 2, but the equality Aίk;ι — Aiι]k = — AkVΛ is

equivalent to the fact that the form Σ ^β1 Λ &j is closed. QED.

4. Algebraic propositions. As in the preceding section, we assume that
1 ίg ij9k,l ^ n and 0 ^ <xβ,\μ ^ n. In this section, Kmι will be a set of real
numbers subject to the same algebraic conditions as the Riemannian curvature
tensor, i.e.,
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Kίm + KίkU + Kίljk = 0.

From now on we assume that n is even. Let J = (Jυ) be a skew-symmetric

matrix such that JJ = — I or ̂  JijJjk — ~ δίA:. We set

5αjQλμ = 0 otherwise.

REMARK. If we replace bAi5 and Aij;A: in Proposition 3 by Ji5 and 0
respectively, then Raβλμ = 5^^ .

It is easy to see that the set of numbers Saβχμ satisfy the same algebraic
conditions as the curvature tensor Raβχμ

Let Rn+1 be the vector space of (n + l)-tuples of real numbers. If
X=(X°,X\. ..,Xn) and Y = (Y°,Y\. . ,Yn) are elements in Rn+\ then their

inner product (X,Y) is denned by (X9Y) = 2Z XaYa- For each 2-dimensional
a

subspace p of Rn+\ we define S(p) as follows. Let X and Y form an orthonormal
basis for p. Then

sip) = Σ 5α,λ/ιx
α^xλy.

a,β,λ,β

Then S(p) is independent of X and Y and we have

sip) = Σ SUUXΎ'XΎ1 + Σ s ^ y y y

+ Σ,SioolXΎ°X0Yι + ΣSomXΎiXΎ° + Σsom
i,k i,k j , I

Let ξ and η be the elements of Rn given by

I = (X\.. .,x*), 7? = ( Y V . .,y»).
Then

^ = ( Σ ̂ iPP , , Σ JmXs ),Jv=(Σ JUY' , , Σ ^ y

The inner product in Rn is defined also in the usual way. Then

Σ SmιXΎ}XΎι = Σ KwXΎ'XΎ1 - 3a\ξ,Jη)\

ΣStakaXΎ°X«Y° = a\U)Y"Y\

Σ S.oo.X raΎ' = - at(S,η)XΎt,
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Σ S^XΎ'XΎ* = a\η,η)X°X\

By adding these five equalities, we obtain

Sip) = Σ KijuXΎ'XΎ' - 3a%ξ,Jηγ

+ a%ξ,ξ)YΎ0 - 2(ξ,η)XΎ" + (η,η)X0X°l.

Since (ξ,ξ) = 1 - X°X°, (ξ,η) = - XΎ" and (η,η) = 1 - YΎ°, we have

PROPOSITION 4.

Sip) = Σ KuuXΎ'XΎ' - 3a\ξ,Jη)2 + a\XaXa + YΎ°).

Let q be a 2-dimensional subspace of Rn and let U = (U1,- ,Un) and
V = (V1,. ,Vn) form an orthonormal basis for q. Define K(q) and aiq),
0 ^ aiq) ^ τr/2, by

= Σ Kι

cos aiq) = \iU,JV)\.

Then both K(q) and cc(q) depend only on q, not on U and V.

Assume that ξ and η are linearly independent and let q be the 2-dimensional
subspace of Rn spanned by them. Then the vectors U and V defined as follows
form an orthonormal basis for q.

v =
Consequently, we have

iξ,JvT = KξMv,V) - iξ,η)2]cos*aiq),

Σ KimXΎ'X"Yι = Uξ,ξ)iv,v) - iξ,v

On the other hand, we have

(££)(v,v) ~ (ξ>v)2 = (1 - X°X°X1 - YΎ°) - X°X0YΎ° = 1 - X°X° - YΎ°.

The above three equalities and Proposition 4 imply 1) of the following
proposition.

PROPOSITION 5. 1) If ξ and η are linearly independent so that they
span a subspace q, then

S(p) = (1 - X°X° - YΎ°)[K(q) - 3a2cos2a(q)] + a\X°X° + YΎ°)

2) If ξ and η are linearly dependent, then S(j>) = a2.
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PROOF. If ξ and η are dependent, then the first two terms in the right
hand side of the formula in Proposition 4 vanish. On the other hand, 1— X°X°
- YΎ° = (ξ,ξ)(η,η) - (ξ,v)2 = 0. Thus, the last term in the formula of Propo-
sition 4 is equal to a2. QED.

As in §1, we set

K(q) = (1 + 3cos2a(q))/4.

PROPOSITION 6. In Proposition 4, let a be any positive number not
greater than 1/2. If ξ and η span a 2-dimensional subspace q of Rn and if

then

a2^S(p)^l- 3a2.

PROOF. Since 1 - X°X° - YΎ° = (g£Xη,η) - (ξ,v)2 (as we have seen
before Proposition 5), we have, by Schwarz's inequality,

1 - X°X° - Y°Y° ^ 0.

Since K(q) ^ 4a2K(q) = a\l + 3cos2tf(#)), we have

K{q) - 3α2cos2tf(g) ^ a2 > 0.

On the other hand, since K(q) ^ K(q) and Aa2 ^ 1, we have

K(q) - 3a2cos2a(q) ^ [1 + 3(1 - 4α2)cos2α(g)]/4 ^ [1 + 3(1 - 4α2)]/4

= 1 - 3a2.

We shall first find an upper bound for S(p).

s(p) ̂  (l - x°x° - y°y°χi - 3a2) + aχx°x° + γ°y°)

= 1 - 3a2 + (4α2 - 1)(X°X° + Yoy°) ^ 1 - 3α2.

We shall next find a lower bound for S(p).

S(ρ) ^ (1 - X°X° - YΎ V + a\X°X° + y°y°) = a2. QED.

Let Aij and Aυ;k be real numbers subject to the same algebraic conditions
as tensor fields Ai5 and Aij;k in §3. Explicitly,

AWc + Ati j + Ajk;i = 0.

Then, define Raβλβ by the formulas in Proposition 3 so that they satisfy the
same algebraic conditions as the curvature tensor. For each 2-dimensional
subspace p of Bn+ι with an orthonormal basis X = (X°, X1, , Xn) and Y
= (y°,yV .,Yn), we set
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R(P)= Σ RaβXrXΎWY".
a,β,λ,μt

PROPOSITION 7. Let a be any fixed positive number. Given a positive
number £, there is a positive number p such that

\R(P)-S(p)\ <€

if Σ \bAtj - Ji}V <PandΣ, I*A«* Γ < p.

PROOF. AS we remarked earlier, if we set bAυ — Ji5 and Aίj;A; = 0, then
R(p) = S(p). Since R(p) depends continuously on Ai} and Aίj;k, our conclusion
follows. QED.

5. Construction of a circle bundle. In this section, we shall complete the
proof of Theorem 1. Let M be a complete Kaehler manifold with Kaehlerian
pinching > 4a2, where a is a positive number not greater than 1/2. By norma-
lizing metric, we may assume that the sectional curvature K(q) satisfies the
following inequality :

Aa*K{q) < K{q) =£ K(q).

By a theorem of Synge [14] or by a theorem of Myers [13], M is compact.

Let ds2 = Σ (^02 be the Kaehler metric of M and Jtj the components of the
i

complex structure tensor J with respect to 01,. βn. Using notations of §3 and
§4, we state

PROPOSITION 8. Given any positive number p, there exist a harmonic

2-form Σ An θι Λ 0j on M representing an element of H2(M Z) and a real
u

number b such that

Σ, \J» - bAu\* <P and £ \bAir,k\
2 < p,

i,J i,j,k

where Aij;ίc denote the components of the covariant derivative of Ai5.

PROOF. From the theory of elliptic partial differential equations (see, for
instance, [ 5 ], [ 8 ]) we infer that there exists a positive constant C such that,

for every harmonic form ^ B^θ1 f\ θj on M, we have

Σ \Bij;k\
2^C- maximum o f ^ l ^ l 2 .

i,J,k i,3

Given p > 0, Let pλ = min{p/C, p}. Since H\M;Z) form a basis in H\M;R\
the set of [ba b £ R and a z H\M;Z)} is dense in H\M\R). Hence, there
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are a real number b and a harmonic form Σ Aφ1 l\ θj representing an ele-
u

ment of H*(M;Z) such that Σ \ bAtj - Ju\
2 < px. Set Bt5 = bAi} - Ji5. Then

u
Bij k = bAίj;k. Hence,

Σ l*A«*la = Σ \Bij;k\
2<CPι^P. QED.

i,5,k i,j,k.

For each x £ M and each plane p in Rn+1, we define S(J>) using the sets

of numbers Kijkι(x), J^ix) and a as in §4. Then, the assumption 4a2K(q) <

K(q) ^ i£(g) for all q implies by 2) of Proposition 5 and by Proposition 6 the

following inequalities :

a2 < S(p) < 1 - Za\

Note that, since we have a strict inequality 4a2K(q) < K(q), we have also the
strict inequalities a2 < S(p) < 1 — 3a2. Since M is compact, there is a positive
number 6 such that

a2 + £ < 5(/>) < 1 - 3α2 - £ for all x £ M and all p.

Corresponding to this positive number £, we take a positive number p given

by Proposition 7. Then choose a number b and a harmonic 2-form ]Γ] ^^0* Λ #"7

as in Proposition 8. Assuming for the moment the existence of a principal
circle bundle P over M and a connection form γ on P such that <iγ =

Aίjfl* Λ #jf ) , we shall finish the proof of Theorem 1. By means of φ°,φι,
j '

• * ,φn we can identify Rn+1 with each tangent space of P. Thus, we denote
by p a plane in Rn+ι and also the corresponding plane in each tangent space
of the manifold P, so that R(p) in Proposition 7 can be now considered as the
sectional curvature of the Riemannian manifold P. By our choice of £ and by
Proposition 7, we have

a2 < S(j>) - £ < R(J>) < S ( p ) + β < l - 3a2.

Thus, if M is of Kaehlerian pinching > 4α2, then P is of Riemannian pinching
> a2/(I — 3a2). If we replace 4a2 by δ, then we have Theorem 1.

Now, the only thing which has to be proved is the following proposition.

PROPOSITION 9. Given a harmonic 2-forπι Σ Aiβ\ [\ θj representing an

element of H\M Z), there are a principal circle bundle P and a connection

form y on P such that dη = TΓ* ( ]Γ A^θ1 A 0j ) .
1,5 '

PROOF. The exact sequence 0 —> Z —> 22 -> 51 —> 0 induces an exact sequence
of the cohomology groups of M with coefficients in the corresponding sheaves
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of germs of mappings. In particular, we have

where S*_ is the sheaf of germs of differentiable mappings into Sι. The group
Hι(M S^) can be considered as the set of all principal circle bundles over M.
The isomorphism Hι{M S^) ̂  H2(M Z) is given explicitly as follows. Let P
be an element of H^M S^), i.e., a principal circle bundle over M. Let γ be a
connection form on P. Then dη — τr*(α), where a is a closd 2-form on M.
The cohomology class of a is the element of H\M Z) corresponding to P.

Therefore, given a harmonic 2-form Σ Aφ1 Λ & representing an element

of H\M Z), let P be the corresponding principal circle bundle over M and

γ' be any connection form on P, so that the closed 2-form Σ Bφ* Λ 05 defined

by dηf = 7r* ( Σ Btβ1 Λ θj ) is cohomologous to the form Σ Aβ* Λ ^' Let β be

a 1-form on M such that

Σ Λ ^ Λ θj - Σ Bifi Λ#j = dβ.

Set γ = η 4- 7r*(β). It is easy to verify that γ is a connection form on P and

that dη = 7Γ* ( Σ, Afi A &) QED.

6. Miscellaneous results. We shall show that the same method can be
applied to Kaehler manifolds with positive holomorphic pinching. The following
proposition is due to Berger [ 3 ] 2 ) :

PROPOSITION 10. Let M be a Kaehler manifold such that

δ ^ K(q) ^ 1 for all q with J(q) = q.

Then

( - 5 + 78 + 6 cos2tf(g))/8 ^ K(q) ^ (7 - 58 + 6 cos2tf(g))/8

for all q.

PROOF. For any two linearly independent vectors X and Y, we shall
denote by k(X,Y) the sectional curvature by the plane spanned by X and Y so
that

where K on the right hand side denotes the Riemannian curvature tensor.

2) Because of some errors in Berger's paper, we give here a complete proof.
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Let q be any plane in the tangent space TX(M) at a point x of M and
let X and Y form an orthonormal basis for q so that

K(q) = k(X,Y) = K(X,Y,X,Y).

Making use of Bianchi's identity and the following formulas:

k(X,Y) = k(JX,JY),

K(JX,Y,JX,Y) = k(JX,Y) sin!a(q),

we obtain, for any real numbers a and b,

(a2 + bjk (aX + bY,J(aX + bY)) = α4£(X,JX) + b4k(Y,JY)

+ 2a2bΈ + ua3b + vab3,

where

E = k(X,Y) + 3k(JX,Y)sm*a(q).

Replacing & by — b, we obtain a similar equality. By adding the two equalities
thus obtained, we have

(α2 + b2f[k(aX + bY,J(aX + bY)) + k(aX - bY,J(aX - bY))]

= 2aιk(X,JX) + 2bιk(Y,JY) + 4aWE.

From our assumption, we obtain the following inequalities:

δ(α2 + b*y ̂  aιk(X,JX) + bAk(Y,JY) + 2aWE^(a2 + bj.

By setting a = b = 1, we have

4δ - k(X,JX) - k(Y,JY) ^ 2£ ̂  4 - k(X,JX) - k(Y,JY).

Hence,

2δ-l^£^2-δ.

Proceeding in the same way with

(α2 + 2abcosa(q) + b%fk{aX + bJY,J(aX + bJY))

= a'KXJX) + b'kiY,^) + 2aVF + u'a'b + v'ab*

where

F = 3k(X,Y) + k(JX,Y)cos'a(q),

we obtain the following inequalities:

δ[(α2 + by + 4a2b2cos2a(q)] ̂  a4k(X,JX) + bιk(Y,JY) + 2a2bΨ

^ [(α2 + έ 2 ) 2 + 4α262cos2α:(<7)].

By setting a = b — 1, we have

2δ - 1
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Finally, we have

(78-5-1- 6δcos2α:(g))/8 ^ (3F - E)β ^ (7 - 5δ

Since 3F - F = k(X,Y), this completes the proof. QED.

PROPOSITION 11. With the same notations as in Proposition 5, if

(78 - 5 + 6δcos2tf(g))/8 ^ K(q) ̂  (7 - 5δ + 6cos2a(q))/8

and if

7δ - 5 ^ 8α2 ^ 28.

then

(78 - 5)/8 ^ -S(ρ) ̂  (13 - 58 - 24α2)/8.

PROOF. By Proposition 5, we have

S(p) ^ (1 - X°X° - YΎ°)[7 - 5δ + 6(1 - 4α2)cos2tf(g)]/8 + a\X°X° + Y°Y°)

^ (1 - X°X° - y°y°)[7 - 5δ + 6 - 24α2)/8 + α2(X°X° + YΎ°)

= (13 - 58 - 24α2)/8 + (32α2 - 13 + 5δ)(X°X° + Γ°Y0)/8

^ (13 - 58 - 24α2)/8.

Also, by Proposition 5, we have

S(P) ^ (1 - ^°^° - YΎ°)UB - 5 + 6(δ - 4α2)cos2α:(g)]/8 + α2(X°X° + YΎ°)

^ (1 - X°X° - Y°Y°)(7B - 5)/8 + α2(X°X° + YΎ°)

= (78 - 5)/8 + (8α2 - 7δ + 5)(X°X° + y°y°)/8

^ (78 - 5)/8. QED.

In particular, if we set

δ = 4α2,

then

(78 - 5)/8 ^ S(J>) ^ (13 - llδ)/8.

Thus, the method we used in the proof of Theorem 1 gives

THEOREM 2. Let M be a complete Kaehler manifold with holomorphic
pinching > δ. Then, there are a principal circle bundle P over M and a
Riemannian metric on P τvith Riemannian pinching > (78 — 5)/(13 — llδ).

If δ - 11/13, then (78 - 5)/(13 - llδ) = 1/4. Hence,

COROLLARY. Let M be a complete Kaehler manifold τvith holomorphic
pinching > 11/13. Then

π£M) = π£PJp)) for all i. (m = dim^M).
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REMARK. According to Berger [ 3 ], if a Kaehler manifold M of complex

dimension > 1 is of Riemannian pinching > δ, then M is of holomorphic

pinching > δ(8δ + 1)/(1 - δ). Hence, if M is of Riemannian pinching ^ 0.23,

then M is of holomorphic pinching > 11/13. Thus, if M is of Riemannian

pinching ^ 0.23, then τrt(M) = τrt(Pm(C)) for all L

In [ 1 ], Berger proved the following theorem :

Let P be a (2m + 1)-dimensional compact Riemannian manifold with

Riemannian pinching > 2(m - 1)/Sm - 5. Then, H2(P;R) = 0.

His result, combined with Theorem 1, gives

THEOREM 3. Let M be a complete Kaehler manifold of complex

dimension m. If M is of Kaehlerian pinching > S(m — l)/14m — 11, then

d'imH\M;R) = 1.

PROOF. By Theorem 1, we can construct a principal circle bundle P over

M with a Riemannian metric with Riemannian pinching > 2(m — ϊ)/8m — 5.

By the result of Berger, H\P;R) = 0 where P is the universal covering

manifold of P. Hence, τr2(P) = 7Γ2(F) = H2(P Z) is finite. By the exact homotopy

sequence of the fibring Sι —> P -^ M,

7Γ2(M) ZSΪ Z + a finite group.

By Hurewicz isomorphism, H2(M R) = R. QED.

THEOREM 4. Let M be a complete Kaehler manifold with holomorphic

pinching > (22m — 17)/(26m — 19), where m is the complex dimension of M.

Then

dimH\M;R) = 1.

PROOF. The proof is quite similar to that of Theorem 3. The only change

is the use of Theorem 2 in place of Theorem 1. QED.

REMARK. For m = 2, this result is weaker than that of Berger [ 3 ] who

shows that if M is a complete Kaehler manifold of complex dimension 2 with

holomorphic pinching > 1/2, then dimH2(M;R) = 1.

Let M be a complete Kaehler manifold of complex dimension m -with

Riemannian pinching > δ, -where δ is the positive number defined by (22m

- 17)/(26w - 19) = δ(8δ + 1)/(1 - δ). Then, dim H2(M;R) = 1. The proof is

by the reasoning given in the remark following Theorem 2. Again, for m = 2,

this result is weaker than those of Berger [ 3 ] and Andreotti-Frankel [ 9 ].

Barger assumes only δ > 0. Andreotti and Frankel proves that if δ > 0, then
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M is homeomorphic with P2(C).
The proof of Theorem 1 gives also the following result:

THEOREM 5. If M is an Einstein-Kaehler manifold with positive scalar
curvature, then we can construct a principal circle bundle P over M and an
Einstein metric with positive scalar curvature on P.

PROOF. We recall that an Einstein metric is a Riemannian metric such
that the Ricci tensor is a constant multiple of the metric tensor. If M is an
Einstein-Kaehler manifold, there exists a constant c such that the 2-form

c Σ Jiβ1 Λ θ5 represents the first Chern class which is an element of H2(M\Z).

Let P be the principal circle bundle corresponding to the cohomology class

represented by c ]P Jφ1 l\ θj and let y be a connection form such that dy

= 7Γ* ( c Σ Jiβ1 Λ 05 J . In Proposition 3, we have then

Aυ = cJiό.

If we set b = 1/c in Proposition 3, then we have

Rij — Σ Riw = Kij — 2a%jf

R^ = 0,

Since Ku= hSυ for some positive constant h, set a = {h/(n + 2))1/2. Then, Raβ

= n/(n + 2)8aβ. QED.

The construction of the bundle P and the metric dσ2 in Theorem 5 is
natural in the sense that P is a space of constant positive curvature if and
only if M is a space of constant positive holomorphic (sectional) curvature. In
fact, suppose that M is a space of constant positive holomorphic curvature. By
normalizing the metric, we may assume that the holomorphic curvature of M

is equal to 1. Then K(q) = K(q) for all q (cf. Proposition 10) and Ki3 = hBiJ9

where h = (n + 2)/4. Hence, a = 1/2 in the proof of Theorem 5. By Proposition
6, the metric on P is of sectional curvature 1/4. Conversely, assume that the
sectional curvature of P is constant. Then, by Proposition 6, R(p) = a2 for all

p. By the same proposition, we have K(q) = Aa2K(q) for all q, thus proving
our assertion.

We shall prove a Kaehlerian analogue of the following result of Berger [ 4 ] :

Let P be a compact manifold with a 1-parameter family of Riemannian
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metrics dσ2(t\ — £ <C t < £, such that

1) For each t, dσ\i) is an Einstein metric

2) The metric dσ\O) is of constant positive curvature:

3) The family dσ\t) is real analytic in t.

Then, for each t, dσ\t) is of constant positive curvature.

Our result may be stated as follows :

THEOREM 6. Let M be a compact manifold with a 1-parameter family

of complex structures J(t) and a 1-parameter family of Riemannian metrics

ds\t), - S < t < £, such that

1) For each t, ds2(t) is an Einstein-Kaehler metric with respect to the

complex structure J(t)

2) The metric ds2(0) is of constant positive holomorphic curvature with

respect to the complex structure

3) The families J(t) and ds2(t) are real analytic in t.

Then, for each t, ds2(t) is of constant positive holomorphic curvature with

respect to the complex structure J(t).

PROOF. For each t, construct a principal circle bundle P(t) and a Rie-

mannian metric dσ\t) on P(t) as in Theorem 5. Because of the observation we

made after Theorem 5 and the above result of Berger, it suffices to prove that

P(t) is independent of t and that dσ\t) is real analytic in t. Since P(t) cor-

responds to the first Chern class of the complex structure J(f) under the isom-

orphism Hι(M;&)^H2(M;Z) (cf. the proof of Theorem 5) and since the

first Chern class of J(t) depending continuously on t and lying in the discrete

subgroup H2(M;Z) of H2(M;R) must be independent of t,P(t) is independent

of t. Let P = P(t). For each t, let <x(t) be the harmonic 2-forms on M repre-

senting the first Chern class with respect to the Kaehler structure defined by

J(t) and ds\t). Since a{t) can be expressed in terms of the Ricci tensor of

άs\t) and the complex structure J(t) (cf.[ 7 ]), the family a(t) is real analytic

in t. As in the proof of Theorem 5, let γ be a connection form on P such

that dη — π*(ct(0)). Note that such a connection form γ is not unique. Since,

for each t, a(t) is cohomologous to cc(0), there exists a 1-form β(f) such that

a(t) — ct(O) + dβ(t). We shall show that it is possible to construct a family

β(t) real analytic in t. Let Ck be the space of real &-forms on M. Let δ be the

adjoint of d and Δ = dh + δd the Laplacian defined by the metric ds2(0). From

the theory of harmonic integrals, we infer that hdhC2 = BdC1 = δC2 and hence

that the Laplacian Δ maps δC2 isomorphically onto itself. (Our assertions follow

from the decomposition theorem : Ck = dCk~ι + δCfc+1 + Hk, where Hk denotes

the space of harmonic k-forms). Let
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β(t) = Δ"'[δ(

where Δ"1 is considered as the inverse of the isomorphism Δ : δC2 —> δC2. The
family β(t) thus constructed is real analytic in t. Set

= y + τ

Then, for each t, y(t) is a connection form on P such that dy(t) = 7r*(a(t)).
For each t, we define constants a(t) and b(t) as in the proof of Theorem 5
and set

dσ\t) = ir*(ds\t)) + {a(t)b(t)y{t))\

Since a(t) and b{t) are obviously real analytic in t, dσ\t) is also real analytic
in t. This completes the proof of Theorem 6. QED.

7. Concluding remarks. In this section we shall explain a few related
problems.

1) Every compact Hermitian symmetric space without flat factor is of
positive holomorphic pinching. Is every compact Kaehler manifold with positive
holomorphic pinching with a Hermitian symmetric space without flat factor ?

2) In particular, is the following statement true ? If M is a compact
Kaehler manifold with positive holomorphic pinching, then HP'Q(M;C) = O
for p =1= q.

3) Let M be a compact Kaehler manifold with holomorphic pinching > 1/2.
Is M homeomorphic with Pm(C) ? If KUK2 and K are the Riemannian curvature
tensors of Kaehler manifolds Ml9 M2 and M1 x M2 respectively and if Xl9X2

and X = cλXλ + c2X2 are tangent vectors of MUM2 and Mι x M2 respectively,
then K(X,JX,X,JX) = cι

ιKι{XuJXlfXlJ JXX) + c2*K2(X2yJX2,X2,JX2). It follows
that if Mx= M2 = Pm(C) with Fubini-Study metric, then Mx X M 2 is of
holomorphic pinching exactly 1/2.

4) Are there compact Kaehler manifolds with positive Kaehlerian pinching
which are not homeomorphic with Pm(C) ?

BIBLIOGRAPHY

[1] M. Berger, Sur quelques varietes riemanniennes suffisament pincees, Bull. Soc. math.
France, 88(1960), 57-71.

[2] , Les varietes riemanniennes (l/4)-pincees, Annali Scuola Norm. Sup. Pisa,
14(1960), 161-170.

[ 3 ] , Pincement riemannien et pincement holomorphe, ibid., 151-159.
[4] , Les spheres parmi les varietes dΈinstein, C. R. Acad. Sci. Paris, 254

(1962), 1564-1566.



TOPOLOGY OF POSITIVELY PINCHED KAEHLER MANIFOLDS 139

[ 5 ] S. Bochner, Tensor fields with finite bases, Ann. of Math. 53(1951), 400-411.
[ 6 ] M. P. do Carmo, The cohomology ring of certain Kaehlerian manifolds, to appear.
[ 7 ] S.S. Chern, Characteristic classes of Hermitian manifolds, Ann. of Math., 47(1946),

85-121.
[ 8 ] A. Douglis-L. Nirenberg, Interior estimates for elliptic systems of partial differential

equations, Communications pure and appl. Math., 8(1955), 503-538.
[ 9 ] T.T. Frankel, Manifolds with positive curvature, Pacific J. Math., 11(1961), 165-174.
[10] W. KLINGENBERG, fiber Riemannsche Manngifaltigkeiten mit positiver Krϋmmung,

Comm. Math. Helv., 35(1961), 47-54.
[11] , On the topology of Riemannian manifolds with restrictions on the conjugate

locus, to appear.
[12] S. KOBAYASHI, On compact Kaehler manifolds with positive definite Ricci tensor,

Ann. of Math., 74(1961), 570-574.
[13] S.B.MYERS, Riemannian manifolds with positive mean curvature, Duke Math. J.,

8 (1941), 401-404.
[14] J. L. SYNGE, On the connectivity of spaces of positive curvature, Quart. J. Math.,

7(1936), 316-320.
[15] H. E. RAUCH, Geodesies, symmetric spaces and differential geometry in the large,

Comm. Math. Helv. 27(1953), 294-320.
[16] Y. TSUKAMOTO, On Riemannian manifolds with positive curvature, Mem. Fac. Sci.

Kyushu Univ., 15(1961), 90-96.
[17] K. Y A N O S. Bochner, Curvature and Betti nubmers, Ann. of Math. Studies No. 32,

Princeton 1953.

UNIVERSITY OF CALIFORNIA, BERKELEY.




