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THE PERIOD MATRIX OF THE HYPERELLIPTIC

CURVE w2 ¼ z2gþ1 � 1

By

Yuuki Tadokoro

Abstract. A geometric algorithm is introduced for finding a sym-

plectic basis of the first integral homology group of a compact

Riemann surface, which is a p-cyclic covering of CP1 branched over

3 points. The algorithm yields a previously unknown symplectic

basis of the hyperelliptic curve defined by the a‰ne equation w2 ¼
z2gþ1 � 1 for genus gb 2. We then explicitly obtain the period

matrix of this curve, its entries being elements of the ð2gþ 1Þ-st
cyclotomic field. In the proof, the details of our algorithm play no

significant role.

1. Introduction

Let X be a compact Riemann surface of genus gb 2 or smooth projective

algebraic curve over C. The period matrix tg of X depends only on the choice of

symplectic basis of the first integral homology group H1ðX ;ZÞ. It is known that

tg is symmetric and its imaginary part is positive definite. The Jacobian variety

JðXÞ of X is defined by a complex torus Cg=ðZg þ tgZ
gÞ. Torelli’s theorem states

that two given Riemann surfaces X and Y are biholomorphic if and only if

JðXÞ and JðYÞ are isomorphic as polarized abelian varieties. It implies that tg

determines the complex structure of X . In general, calculating tg is not easy;

the di‰culty is in finding a symplectic basis of H1ðX ;ZÞ. Tretko¤ and Tretko¤

[24] gave a method to compute tg, using Hurwitz systems. Andersen, Bene, and

Penner [1] showed a way of finding a symplectic basis of H1ðX ;ZÞ using chord

slides for linear chord diagrams. By combining these two methods, we explicitly

write down a geometric algorithm for finding a symplectic basis of the first
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integral homology groups of p-cyclic coverings of CP1 branched over 3 points for

prime number pb 5. We call it the chord slide algorithm. The Frobenius method

that Tretko¤ and Tretko¤ used is steady but not easy to apply to compact

Riemann surfaces of generic genus g. We can apply the chord slide algorithm to

special surfaces of generic genus g with good linear chord diagrams. Furthermore,

we illustrate calculating the period matrix for this kind of Riemann surfaces. We

compute the period matrices of the hyperelliptic and Klein quartic curves defined

by the a‰ne equations y7 ¼ xð1� xÞ and y7 ¼ xð1� xÞ2, respectively. These

computations are already known; see [24] for the first curve and [8, 12, 17, 18, 19,

22, 26] for the second.

For any odd number qb 5, let Cq;1 be the smooth projective curve over

C defined by the a‰ne equation yq ¼ xð1� xÞ. This is biholomorphic to the

hyperelliptic curve defined by the a‰ne equation w2 ¼ z2gþ1 � 1 of genus g ¼
ðq� 1Þ=2. We can apply the chord slide algorithm to this curve Cq;1 and obtain

a symplectic basis fai; bigi¼1;2;...;g of H1ðCq;1;ZÞ di¤erent to the well-known basis

in [2]. The advantage of our method is its applicability to other curves, for

example, nonhyperelliptic ones.

For generic genus, few examples of period matrices are known. Schindler [20]

computed the period matrices of three types of hyperelliptic curves of genus

gb 2. These matrices are the only examples as far as we know. Kamata [13]

introduced an algorithm for calculating those of Fermat-type curves. We know

of no other algorithms except Kamata’s and Tretko¤ and Tretko¤ ’s. For ex-

plicit computations for cases of low genus, see [7, 9, 15] except for the above

hyperelliptic and Klein quartic curves. We remark that Streit [21] studied the

period matrices from the viewpoint of representation theory. Tashiro, Yamazaki,

Ito, and Higuchi [23] computed the periods on Cq;1. We obtain the period matrix

tg of Cq;1 using the inverse of the Vandermonde matrix. Our original contribu-

tion to the computation of tg is in finding the inverse matrix W�1
A , which is

defined in Section 4. Schindler [20] obtained one for the same hyperelliptic

curve of genus gb 2 defined by the a‰ne equation w2
1 ¼ z1ðz2gþ1

1 � 1Þ, which is

biholomorphic to Cq;1. This result contains a recurrence relation. However, we

have an explicit representation of tg. Set z ¼ zq ¼ expð2p
ffiffiffiffiffiffiffi
�1

p
=qÞ. A symplectic

basis fAi;Bigi¼1;2;...;g of H1ðCq;1;ZÞ is defined later. For variables x1; x2; . . . ; xn,

we denote by siðx1; x2; . . . ; xnÞ the symmetric polynomialX
1a j1<���< jian

xj1 � � � xji

for 1a ia n and s0ðx1; x2; . . . ; xnÞ ¼ 1.
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Theorem 4.4. With respect to the symplectic basis fAi;Bigi¼1;2;...;g, the period

matrix tg of Cq;1 is

tg ¼
Xg
k¼1

ð�1Þ iþg

2gþ 1
ð1� z2kjÞsg�iðz2; z4; . . . ;cz2jz2j ; . . . ; z2gÞ

Y2g�k

m¼g�kþ1

ð1� z2mÞ
 !

i; j

;

where the ‘hat’ symbol b over an element z2j indicates that this element is deleted

from the sequence z2; z4; . . . ; z2g.
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2. Algorithm

We begin by writing down the geometric algorithm, called the chord slide

algorithm, for finding a symplectic basis of the first integral homology groups

of the smooth projective algebraic curves defined by the a‰ne equation yp ¼
xlð1� xÞm. Here pb 5 is a prime number, l, m are coprime, and 1a l;m; l þm

< p� 1. We denote this curve by Xp; l;m. This is a Riemann surface of genus

g ¼ ðp� 1Þ=2 and can be considered as a p-sheeted cyclic covering of CP1

branched over f0; 1;ygHCP1. In particular, we simply write the curve Xp;1;m ¼
Cp;m for the case l ¼ 1. Throughout this section, we work with the Klein quartic

C7;2 as an example. Moreover, we detail an algorithm for calculating the period

matrix of Xp; l;m using holomorphic 1-forms of Bennama and Carbonne [6]. It is

known that up to isomorphism there are only two curves X7; l;m. They are C7;1

and C7;2; see [10, § 1.3.2] for example. We next calculate their period matrices.

2.1. Dessins D’enfants. Let X be a smooth projective algebraic curve over

a field k. We assume that k is C and there exists a covering p : X ! CP1
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branched over f0; 1;ygHCP1. The inverse image p�1ð½0; 1�Þ in X of the unit

interval in CP1 is called a dessin d’enfants [11]. It is a topological bipartite graph

illustrated on the Riemann surface X . Belyi [3] proved that all algebraic curves

over Q correspond to dessins d’enfants. The map p is often called the Belyi map;

see also [25]. In the rest of this paper, we assume that X is Xp; l;m and p : X C

ðx; yÞ 7! x A CP1 is a p-cyclic covering branched over f0; 1;ygHCP1. Set the

order-p holomorphic automorphism sðx; yÞ ¼ ðx; zp yÞ. Here, we denote zp ¼
expð2p

ffiffiffiffiffiffiffi
�1

p
=pÞ. Let y0ðtÞ be a real analytic function

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tlð1� tÞmp

p
. A continuous

path I0 : ½0; 1� ! X is defined by the equation I0ðtÞ ¼ ðt; y0ðtÞÞ A X for 0a ta 1.

We immediately obtain pðI0Þ ¼ ½0; 1�HCP1 and the dessin d’enfants p�1ð½0; 1�Þ ¼
6p�1

i¼0
s i
�ðI0Þ. We call p�1ð0Þ and p�1ð1Þ the white and black vertices, respectively.

The dessin p�1ð½0; 1�Þ in X is a bipartite graph. Take a point bi on s i
�ðI0Þ except

for endpoints for each i. For the Klein quartic C7;2, we draw a dessin d’enfants

p�1ð½0; 1�Þ; see Figure 1.

2.2. Intersection Numbers. We now introduce the method of Tretko¤ and

Tretko¤ [24], based on the Hurwitz system, from dessins d’enfants to the in-

tersection numbers of the loops in X . Let V be the set of 2g ¼ p� 1 labeled

points on the unit circle S1. A chord diagram on V is a set of oriented simple

chords between points of V .

For i ¼ 1; 2; . . . ; p� 1, let ci denote the loop I0 � s i
�ðI0Þ

�1 in X . Here, the

product I0 � s i
�ðI0Þ

�1 signifies that we traverse I0 first and then s i
�ðI0Þ

�1. It follows

that the dessin d’enfants p�1ð½0; 1�Þ equals the union 6p�1

i¼0
ci. We deform the

dessin topologically and consider ci as not loops but chords. We get a chord

diagram and compute the intersection numbers ci � cj ¼ 0 orG1. This satisfies the

property in [4, § 8.1]. Let ðai; jÞ denote the matrix with ði; jÞ-th entry ai; j. If

Figure 1: Dessin d’enfants for the Klein quartic C7; 2
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the 2g� 2g intersection matrix ðci � cjÞ is regular, then fcigi¼1;2;...;2g is a basis of

the first integral homology group H1ðX ;ZÞ.
For C7;2, we obtain the chord diagram in Figure 2 that corresponds to

Figure 1. For convenience, the origin and terminal point of ci is denoted by i and

i, respectively. The intersection matrix is as follows [24, pp. 482]

0 0 1 0 1 0

0 0 1 1 1 1

�1 �1 0 0 1 0

0 �1 0 0 1 1

�1 �1 �1 �1 0 0

0 �1 0 �1 0 0

0BBBBBBBB@

1CCCCCCCCA
:

We can choose from many bases of H1ðX ;ZÞ. For example, we [22] can choose

the basis fligi¼1;2;...;6 such that li ¼ ci�1 � c�1
i for C7;2.

We write down the intersection number ci � cj for Xp; l;m. For 1a ia p� 1,

the integer il A f1; 2; . . . ; p� 1g is uniquely determined such that il l1 i modulo

p. We define im similarly. Draw the loops ci and cj . The initial point i of ci is

the il-th point moving counter-clockwise from the point l and the terminal point

i is the im-th point from the point m. We give the associated chord diagram

in Figure 3 for the case jl � il > 0 and jm � im > 0. In this case, we have

ci � cj ¼ 1.

Figure 2: Chord diagram of C7; 2
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Remark 2.1. We have the intersection number

ci � cj ¼
1 ð jl � il > 0 and jm � im > 0Þ;
�1 ð jl � il < 0 and jm � im < 0Þ;
0 ðotherwiseÞ:

8<:
This is easily seen to be true.

2.3. Linear Chord Diagrams. We identify chord diagrams with linear chord

diagrams. A linear chord diagram in the plane with k chords is defined as an

interval ½0; 2k�, together with k oriented simple arcs in the upper half plane

between the integer points f1; 2; . . . ; 2kg.
Cut open a chord diagram from Section 2.2 at a certain point on S1. By

identifying the 2g chords with loops fc1; c2; . . . ; c2gg, we have the corresponding

linear chord diagram. The end points of ci’s on S1 determine the intersection

number ci � cj. We remark that ci � cj is independent of the choice of cutting

points, but the chord slide method depends on it.

For C7;2, choosing point 3 in Figure 2 produces the linear chord diagram in

Figure 4.

2.4. Chord Slides. Andersen, Bene, and Penner [1] used chord slides for the

linear chord diagrams. They studied chord slides with the Whitehead moves on

the dual of the fat graphs embedded in a surface of genus g with one boundary

component; see also [4]. We simply use chord slides to compute the intersection

numbers and find the matrix T such that ðc1; c2; . . . ; c2gÞ tT is a symplectic matrix.

Figure 3: ci � cj ¼ 1 for jl � il > 0 and jm � im > 0
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For the linear chord diagram, we define a chord slide of ci along cj for the same

position by the transformation from ðc1; c2; . . . ; c2gÞ to ðc 01; c 02; . . . ; c 02gÞ such that

c 0k ¼ ci � cj ðk ¼ iÞ;
ck ðk0 iÞ:

�
as homology classes. For the opposite position, the c 0i is replaced with ci þ cj. We

define the position of a chord slide of ci along cj in the linear chord diagram. It is

the same position that ci initially (ultimately) moves in the direction towards the

origin (terminal) point of cj. The others are opposite positions. We remark that

the position does not depend on the orientation of the chord; see Figures 5 and 6.

Using the origin and terminal points, we simply write the chord slide in Figure 5

and 6 as c ! d and c ! d, respectively.

For i0 j, let Msða; bÞ and Moða; bÞ denote the 2g� 2g matrices for which

the ði; jÞ-th entries are �1 and 1 respectively for ði; jÞ ¼ ða; bÞ and di; j for

ði; jÞ0 ða; bÞ. Here di; j is Kronecker’s delta. After a chord slide of ci along cj

for the same position, we have

ðc 01; c 02; . . . ; c 02gÞ ¼ ðc1; c2; . . . ; c2gÞ tMsði; jÞ:

Figure 4: A linear chord diagram of C7; 2

Figure 5: A chord slide of ci along cj for the same position

Figure 6: A chord slide for the opposite position
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For the opposite position, tMsði; jÞ may be replaced with tMoði; jÞ. Let si; jðAÞ
and oi; jðAÞ denote, respectively, matrices Msði; jÞAtMsði; jÞ and Moði; jÞAtMoði; jÞ.
By noting the changes in the intersection numbers of the chords ðc1; c2; . . . ; c2gÞ,
we have

Proposition 2.2. Consider loops fckgk¼1;2;...;2g as chords in the linear chord

diagram and A its intersection matrix. If we slide ci along cj for the same position,

the intersection matrix of fc 0kgk¼1;2;...;2g is si; jðAÞ. For the opposite position, it is

oi; jðAÞ.

Using this proposition, we have only to deform the intersection matrix into a

2g� 2g symplectic matrix
O Ig

�Ig O

� �
. Here Ig is the identity matrix of size g.

For the Klein quartic C7;2, the chord slide algorithm yields the matrices

s6;4 � o6;2 � o5;2 � o5;1 � s2;1ðAÞ
and

M ¼ Msð6; 4ÞMoð6; 2ÞMoð5; 2ÞMsð5; 3ÞMoð5; 1ÞMsð2; 1Þ;

or explicitly

0 0 1 0 0 0

0 0 0 1 0 0

�1 0 0 0 0 0

0 �1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 �1 0

0BBBBBBBB@

1CCCCCCCCA
and

1 0 0 0 0 0

�1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 �1 0 1 0

�1 1 0 �1 0 1

0BBBBBBBB@

1CCCCCCCCA
;

respectively. We denote ðc1; c2; . . . ; c6Þ tM by ðc 01; c 02; . . . ; c 06Þ such that c 03 ¼ c5,

c 04 ¼ c3, and c 05 ¼ c4. The resulting matrix is denoted by T7;2. We have the

following matrices T7;2 and T7;2A
tT7;2,

T7;2 ¼

1 0 0 0 0 0

�1 1 0 0 0 0

0 1 �1 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

�1 1 0 �1 0 1

0BBBBBBBB@

1CCCCCCCCA
; T7;2A

tT7;2 ¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�1 0 0 0 0 0

0 �1 0 0 0 0

0 0 �1 0 0 0

0BBBBBBBB@

1CCCCCCCCA
;

from which we then obtain a symplectic basis ða1; a2; a3; b1; b2; b3Þ ¼
ðc1; c2; . . . ; c6Þ tT7;2 of H1ðC7;2;ZÞ. The matrix T7;2 is di¤erent from that given

in [24].
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2.5. Period Matrices. We introduce a method for calculating the period

matrix of X using holomorphic 1-forms of Bennama and Carbonne [6]. We

compute those of C7;1 and C7;2.

Let H 1;0ðXÞ be the space of holomorphic 1-forms on X . The floor function

is denoted by b�c. For n ¼ 1; 2; . . . ; p� 1ð¼ 2gÞ, we define al and am by
nl

p

� �
and

nm

p

� �
, respectively. Set dn ¼

nðl þmÞ
p

� �
� al � am � 1. Bennama and Carbonne

[6] derived a basis for H 1;0ðXÞ

on;d ¼ xal ð1� xÞamxd

yn
with 0a da dn and 1a na p� 1:

Take a symplectic basis fai; bigi¼1;2;...;g of H1ðX ;ZÞ, i.e., their intersection numbers

are ai � bj ¼ di; j and ai � aj ¼ bi � bj ¼ 0. We define two g� g matrices WA and WB

by ð
Ð
aj
oiÞ and ð

Ð
bj
oiÞ. It is known that the period matrix with respect to

fai; bigi¼1;2;...;g is obtained by W�1
A WB; see [16], for example.

We illustrate with curves C7;1 and C7;2. For k ¼ 1; 2, we define a basis hk
1 ,

hk
2 , hk

3 of H 1;0ðC7;kÞ as follows:

hk
1 hk

2 hk
3

C7;1
dx

y6
dx

y5
dx

y4

C7;2
ð1� xÞ dx

y6
ð1� xÞ dx

y5
dx

y3

:

Let Bðu; vÞ denote the beta function
Ð 1
0 t

u�1ð1� tÞv�1
dt for u; v > 0. Put

ðh1; h2; h3; h4Þ ¼ ð1=7; 2=7; 4=7; 1=7Þ. Fromð
I0

hk
i ¼ Bði=7; i=7Þ ðk ¼ 1Þ

Bðhi; hiþ1Þ ðk ¼ 2Þ

�
;

the holomorphic 1-forms o1
i and o2

i are denoted by h1i =Bði=7; i=7Þ and

h2i =Bðhi; hiþ1Þ, respectively. The equationð
cj

ok
i ¼

ð
I0

ok
i �

ð
s

j
� I0

ok
i ¼

ð
I0

ok
i �

ð
I0

ðs�Þ jok
i

yields

Lemma 2.3. ð
cj

ok
i ¼

1� z
ij
7 ðk ¼ 1Þ;

1� z
7hi j
7 ðk ¼ 2Þ:

(
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Remark 2.4. These integrals depend only on the cohomology class of ok
i

and the homology class of cj.

For k ¼ 1; 2, let Ak and Bk be the 3� 3 matrices ð
Ð
aj
ok

i Þ and ð
Ð
bj
ok

i Þ,
respectively. We construct the 3� 6 matrices

ðAk;BkÞ ¼
ð
cj

ok
i

 !
tT7;k:

Here, for the case p ¼ 7, we denote T7;1 ¼ T , the matrix (3.1) in Remark 3.6. We

obtain the period matrix for C7;k.

Proposition 2.5. Let t7;k be the period matrix A�1
k Bk of C7;k. Then we have

t7;1 ¼
4þ zþ 2z2 þ 2z3 þ z4 þ 2z5 �1� 2z� 2z3 � 2z5 �1þ z� z2

�1� 2z� 2z3 � 2z5 �1þ z� z2 � z4 � z5 1þ z3 þ z5

�1þ z� z2 1þ z3 þ z5 1þ z2

0B@
1CA

and

t7;2 ¼
1

4

6þ 3x 4þ 2x �2� x

4þ 2x 4þ 4x �2x

�2� x �2x 2þ 3x

0B@
1CA;

where z ¼ z7 and x ¼ zþ z2 þ z4 ¼ ð�1þ
ffiffiffiffiffiffiffi
�7

p
Þ=2.

Proof. By definition of Ak and Bk, we have matrices

A1 ¼
1� z 1� zþ z2 � z3 1� zþ z2 � z3 þ z4 � z5

1� z2 1� z2 þ z4 � z6 1� z2 þ z4 � z6 þ z8 � z10

1� z3 1� z3 þ z6 � z9 1� z3 þ z6 � z9 þ z12 � z15

0B@
1CA;

B1 ¼
1� z2 1� zþ z2 � z4 1� zþ z2 � z3 þ z4 � z6

1� z4 1� z2 þ z4 � z8 1� z2 þ z4 � z6 þ z8 � z12

1� z6 1� z3 þ z6 � z12 1� z3 þ z6 � z9 þ z12 � z18

0B@
1CA;

A2 ¼
1� z z� z2 1� z2 þ z3 � z5

1� z2 z2 � z4 1� z4 þ z6 � z10

1� z4 z4 � z8 1� z8 þ z12 � z20

0B@
1CA;

B2 ¼
1� z3 1� z4 z� z2 þ z4 � z6

1� z6 1� z8 z2 � z4 þ z8 � z12

1� z12 1� z16 z4 � z8 þ z16 � z24

0B@
1CA:
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The determinants of A1 and A2 are �7ðz4 þ z5Þ and 7ð1� xÞ, respectively. Using

the adjoint matrices of A1 and A2, we obtain their inverse matrices

A�1
1 ¼ � 1þ z2 þ z3 þ z5

7

�zþ 3z2 þ 4z3 þ z4 �1þ 3z� z2 þ 2z3 � z4 � 2z5 �3� 2z� 2z2 � z3 � 4z4 � 2z5

1þ 4zþ 3z2 � z3 1� zþ 3z3 þ 4z5 �zþ 2z2 � 2z4 þ z5

�1� 3z� 4z2 � 2z3 � 2z4 � 2z5 1þ 2z2 � 2z3 � z5 2þ zþ 2z3 þ 3z4 � z5

0B@
1CA;

A�1
2 ¼ 2þ x

28

3þ z� z3 � 3z4 4� 2zþ 2z2 þ z3 þ z4 þ z5 3� 3z2 þ z4 � z5

�z� z2 � 5z3 � 4z4 � 3z5 5þ zþ 4z2 þ 2z3 þ 4z4 þ 5z5 3þ 2z� z2 þ 3z3 þ 2z4 � 2z5

�2z� z2 þ z3 þ 2z4 �1þ z� 3z2 � z3 � 2z4 � z5 �zþ 2z2 � 2z4 þ z5

0B@
1CA:

It su‰ces to calculate A�1
1 B1 and A�1

2 B2. r

3. Two Symplectic Bases of One Family of Hyperelliptic Curves

For odd integer qb 5, let Cq;1 be a plane algebraic curve defined by

the a‰ne equation yq ¼ xð1� xÞ. We obtain two symplectic bases for the

first integral homology group H1ðCq;1;ZÞ. By substituting y ¼
ffiffiffi
1

4

q

r
z and

x ¼
ffiffiffiffiffiffiffi
�1

p
wþ 1

2
into the above equation, we have w2 ¼ zq � 1, corresponding

to a hyperelliptic curve of genus g ¼ ðq� 1Þ=2. Set the order-q holo-

morphic automorphism sðx; yÞ ¼ ðx; zyÞ with z ¼ zq ¼ expð2p
ffiffiffiffiffiffiffi
�1

p
=qÞ. In terms

of parameters z and w, we define a loop gk : ½0; 1� ! Cq;1, k ¼ 0; 1; . . . ; 2g;

by

gkðtÞ ¼
ðzk � 2t;

ffiffiffiffiffiffiffi
�1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2tÞp

p
Þ ð0a ta 1=2Þ;

ðzkð2� 2tÞ;�
ffiffiffiffiffiffiffi
�1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2� 2tÞp

p
Þ ð1=2a ta 1Þ:

(
We define the path I0 : ½0; 1� ! Cq;1 in a similar manner as in Section 2.1. It is

easy to prove

Lemma 3.1. For k ¼ 0; 1; . . . ; 2g, the two paths sk
� ðI0Þ and gk are homotopic

with relative endpoints.

We recall the following well-known fact (see [2], for example).

Proposition 3.2. For i ¼ 1; 2; . . . ; g, we denote Ai ¼ g2i�1 � g�1
2i and Bi ¼

g2i�1 � g�1
2i�2 � . . . � g1 � g�1

0 . We then have fAi;Bigi¼1;2;...;g is a symplectic basis of

H1ðCq;1;ZÞ.
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We call this basis a natural type. Indeed, this proposition immediately

follows from a two-sheeted covering Cq;1 C ðz;wÞ ! z A CP1 branched over the

2gþ 2 points f1; z; z2; . . . ; z2g;ygHCP1. We find another symplectic basis of

H1ðCq;1;ZÞ. Although in general q is not prime, the chord slide algorithm can

be similarly applied to Cq;1. We recall ci ¼ I0 � s i
�ðI0Þ

�1. Remark 2.1 gives us the

intersection numbers of ci’s

ci � cj ¼
1 ði < jÞ;
0 ði ¼ jÞ;
�1 ði > jÞ:

8<:
For k ¼ 1; 2; . . . ; g� 1 and i ¼ 1; 2; . . . ; 2g, let hi;k be the composition oi;2k�1 �
si;2k. Moreover, we define the move fk by

h2g;k � h2g�1;k � � � � � h2kþ2;k � h2kþ1;k:

Lemma 3.3. Let A ¼ ðci � cjÞ be the intersection matrix of ci’s. Then, the

2g� 2g matrix

fg�1 � fg�2 � � � � � f2 � f1ðAÞ

is equal to the 2g� 2g matrix

Jg ¼

J O
J

. .
.

O J

0BBBBB@
1CCCCCA;

where J ¼ 0 1

�1 0

� �
.

Proof. The intersection matrices of ci’s in Figures 7, 8, 9, and 10 represent

A, h3;1ðAÞ, f1ðAÞ, and fg�1 � fg�2 � � � � � f2 � f1ðAÞ respectively. We illustrate each

move fi, in particular f1. We place emphasis on the endpoint series in the linear

chord diagrams. The endpoint series in Figure 7 is

1; 2; 3; . . . ; 2g� 1; 2g; 1; 2; 3; . . . ; 2g� 1; 2g:

In this figure, we first take chord slides 3 ! 2 and 3 ! 1. Figure 8 is obtained

and the intersection matrix becomes h3;1ðAÞ. Similarly, we take chord slides

4 ! 2; 4 ! 1; 5 ! 2; 5 ! 1; . . . ; 2g ! 2; 2g ! 1:
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We obtain Figure 9 and the intersection matrix becomes f1ðAÞ. The endpoints

series in this figure is

1; 2; 3; . . . ; 2g� 1; 2g; 3; 4; 5; . . . ; 2g� 1; 2g; 1; 2:

For each k-th step, k ¼ 2; 3; . . . ; g� 1, we take chord slides

2k þ 1 ! 2k; 2k þ 1 ! 2k � 1; 2k þ 2 ! 2k; 2k þ 2

! 2k � 1; . . . ; 2g ! 2k; 2g ! 2k � 1:

This step corresponds to fk. Finally, we have Figure 10 and the intersection

matrix becomes fg�1 � fg�2 � � � � � f2 � f1ðAÞ. The endpoint series in this figure is

1; 2; 3; . . . ; 2g� 1; 2g; 2g� 1; 2g; 2g� 3; 2g� 2; . . . ; 3; 4; 1; 2:

Clearly, the intersection matrix fg�1 � fg�2 � � � � � f2 � f1ðAÞ is equal to Jg from

Figure 10. r

Figure 8: After chord slides 3 ! 2 and 3 ! 1 in Figure 7

Figure 9: After the first step in Figure 7

Figure 7: The initial linear chord diagram
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For g ¼ 3, we give explicit forms for the intersection matrices A, f1ðAÞ, and
f2 � f1ðAÞ corresponding to Figure 7, 9, and 10, respectively.

0 1 1 1 1 1

�1 0 1 1 1 1

�1 �1 0 1 1 1

�1 �1 �1 0 1 1

�1 �1 �1 �1 0 1

�1 �1 �1 �1 �1 0

0BBBBBBBB@

1CCCCCCCCA
;

0 1 0 0 0 0

�1 0 0 0 0 0

0 0 0 1 1 1

0 0 �1 0 1 1

0 0 �1 �1 0 1

0 0 �1 �1 �1 0

0BBBBBBBB@

1CCCCCCCCA
; and

0 1 0 0 0 0

�1 0 0 0 0 0

0 0 0 1 0 0

0 0 �1 0 0 0

0 0 0 0 0 1

0 0 0 0 �1 0

0BBBBBBBB@

1CCCCCCCCA
:

Remark 3.4. We obtain the matrix T 0 such that fg�1 � fg�2 � � � � � f2 � f1ðAÞ
¼ T 0AtT 0

T 0 ¼

1 0 0 0 � � � 0 0

0 1 0 0 � � � 0 0

1 �1 1 0 � � � 0 0

1 �1 0 1 0 0

1 �1 1 �1 . .
. ..

. ..
.

..

. ..
. ..

. ..
.

1 0

1 �1 1 �1 0 1

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
:

Let c 01; c
0
2; . . . ; c

0
2g be a basis of H1ðCq;1;ZÞ obtained by Lemma 3.3. Inter-

changing this basis gives us a symplectic basis

ða1; . . . ; ag; b1; . . . ; bgÞ ¼ ðc 01; c 03; . . . ; c 02g�1; c
0
2; c

0
4; . . . ; c

0
2gÞ:

Figure 10: The final linear chord diagram
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We interchange the rows of the matrix fg�1 � fg�2 � � � � � f2 � f1ðAÞ in the

following way. All odd rows move to rows 1; 2; . . . ; g-th and all even rows to

rows gþ 1; gþ 2; . . . ; 2g. The resulting matrix is denoted by T .

Theorem 3.5. Set ða1; . . . ; ag; b1; . . . ; bgÞ ¼ ðc1; c2; . . . ; c2gÞ tT. Then,

fai; bigi¼1;2;...;g is a symplectic basis of H1ðCq;1;ZÞ.

Remark 3.6. The matrix T takes the explicit form

T ¼

1 0 � � � 0

1 �1 1 0 � � � 0

1 �1 1 �1 1 0 � � � 0

..

.

1 �1 1 �1 1 �1 1 � � � �1 1 0

0 1 0 � � � 0

1 �1 0 1 0 � � � 0

1 �1 1 �1 0 1 0 � � � 0

..

.

1 �1 1 �1 1 �1 � � � �1 0 1

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

:

For g ¼ 3, the matrix T ¼ T7;1 is given by

1 0 0 0 0 0

1 �1 1 0 0 0

1 �1 1 �1 1 0

0 1 0 0 0 0

1 �1 0 1 0 0

1 �1 1 �1 0 1

0BBBBBBBB@

1CCCCCCCCA
:ð3:1Þ

We prove that the two symplectic bases fAi;Bigi¼1;2;...;g and fai; bigi¼1;2;...;g

are di¤erent. From Lemma 3.1, we have matrix K

K ¼

�1 1 0 � � � 0

0 0 �1 1 0 � � � 0

..

.

0 � � � 0 �1 1

�1 0 � � � 0

�1 1 �1 0 � � � 0

..

.

�1 1 �1 1 � � � �1 0

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
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such that ðA1; . . . ;Ag;B1; . . . ;BgÞ ¼ ðc1; c2; . . . ; c2gÞ tK . By comparing T and K ,

we have

Proposition 3.7. The two symplectic bases fAi;Bigi¼1;2;...;g and fai; bigi¼1;2;...;g

are not equal up to ordering.

4. Period Matrices for Hyperelliptic Curves

Let tg and tCSg denote the period matrices of Cq;1 with respect to symplectic

bases fAi;Bigi¼1;2;...;g and fai; bigi¼1;2;...;g of H1ðCq;1;ZÞ. We compute tg of Cq;1.

Moreover, we obtain the relations among tg, t
CS
g , and Schindler’s period matrix

[20]. Set hi ¼
dx

yq�i
for i ¼ 1; 2; . . . ; g. Bennama [5] proved that fhigi¼1;2;...;g is a

basis of H 1;0ðCq;1Þ. From Section 2.5, we have for the period of hi along cjð
cj

hi ¼ ð1� z ijÞBði=q; i=qÞ:

For simplicity, we denote oi ¼ hi=Bði=q; i=qÞ. We recall the two g� g matrices

WA and WB which are ð
Ð
Aj
oiÞ and ð

Ð
Bj
oiÞ, respectively. We form the g� 2g

matrix,

ðWA;WBÞ ¼
ð
cj

oi

 !
tK :

We have the periods of the matrices WA and WB, for which Tashiro, Yamazaki,

Ito, and Higuchi [23] obtained the same result.

Proposition 4.1. We have

WA ¼ �diagð�1þ z iÞ diagðz iÞðz2ið j�1ÞÞ and

WB ¼ diagð�1þ z iÞ
Xj�1

k¼0

z2ik

 !
;

where diagðaiÞ is the diagonal matrix with ði; iÞ-th entry ai.

Proof. From the definition of WA and WB, we obtain WA ¼ ðz ið2j�1Þ � z2ijÞ

and WB ¼
X2j�1

k¼0

ð�1Þkþ1z ik

 !
. We have only to compute the ði; jÞ-th entries of WA

and WB
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z ið2j�1Þ � z2ij ¼ �ð�1þ z iÞz iz2ið j�1Þ;

X2j�1

k¼0

ð�1Þkþ1z ik ¼ � 1� z2ij

1þ z i
¼ ð�1þ z iÞ 1� z2ij

1� z2i
¼ ð�1þ z iÞ

Xj�1

k¼0

z2ik: r

Remark 4.2. The matrix ðz2ið j�1ÞÞ is a Vandermonde matrix.

To compute the matrix tg from W�1
A WB, we introduce a lemma. For variables

x1; x2; . . . ; xn, we denote by siðx1; x2; . . . ; xnÞ the symmetric polynomialX
1a j1<���< jian

xj1 � � � xji

for 1a ia n and s0ðx1; x2; . . . ; xnÞ ¼ 1. Knuth [14, Excercise 40 in § 1.2.3] derived

the inverse matrix of a Vandermonde matrix.

Lemma 4.3. Let a1; a2; . . . ; an be distinct complex constants. We denote the

Vandermonde matrix of size n by Vn ¼ ða j�1
i Þ. Its inverse matrix is then

V�1
n ¼ ð�1Þ i�1 sn�iða1; . . . ; bajaj; . . . ; anÞQn

m¼1;m0 jðam � ajÞ

 !
:

The ‘hat’ symbol is as defined earlier.

The above proposition and lemma give

Theorem 4.4. The period matrix tg of Cq;1 with respect to the symplectic

basis fAi;Bigi¼1;2;...;g is expressible as

tg ¼
Xg
k¼1

ð�1Þ iþg

2gþ 1
ð1� z2kjÞsg�iðz2; z4; . . . ;cz2jz2j; . . . ; z2gÞ

Y2g�k

m¼g�kþ1

ð1� z2mÞ
 !

:

Proof. We compute W�1
A WB as follows:

W�1
A WB ¼ �ðz2ið j�1ÞÞ�1 diagðz�iÞ

Xj�1

k¼0

z2ik

 !

¼ �ðz2ið j�1ÞÞ�1
z�i 1� z2ij

1� z2i

 !
:
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From the equation

ðz2ið j�1ÞÞ�1 ¼ ð�1Þ i�1 sg�iðz2; z4; . . . ;cz2jz2j; . . . ; z2gÞQn
m¼1;m0 jðz

2m � z2kÞ

0@ 1A;

we have for the ði; jÞ-th entry of tg

Xg
k¼1

ð�1Þ i sg�iðz2; z4; . . . ;cz2jz2j ; . . . ; z2gÞQg
m¼1;m0kðz

2m � z2kÞ
1� z2kj

zkð1� z2kÞ
:

Moreover, we obtain

zkð1� z2kÞ
Yg

m¼1;m0k

ðz2m � z2kÞ ¼ zkþ2kðg�1Þþ2kðz�2k � 1Þ
Yg

m¼1;m0k

ðz2ðm�kÞ � 1Þ

¼ ð�1Þg
Yg�k

m¼�k;m00

ð1� z2mÞ

¼ ð�1Þg 2gþ 1Q2g�k
m¼g�kþ1ð1� z2mÞ

;

for each k ¼ 1; 2; . . . ; g. The last equality follows from

Yg�k

m¼�k;m00

ð1� z2mÞ
Y2g�k

m¼g�kþ1

ð1� z2mÞ ¼
Y2g
l¼1

ð1� z lÞ ¼ 2gþ 1:

This establishes the result. r

Setting z ¼ z7, we calculate t3 of C7;1 to be

�z5 �1� z2 � z4 � z5 1þ zþ z3 þ z5

�1� z2 � z4 � z5 1þ zþ 2z3 � z4 þ z5 2þ z2 þ z3 þ z5

1þ zþ z3 þ z5 2þ z2 þ z3 þ z5 1þ z2

0B@
1CA:

In general, the period matrix depends only on the choice of the symplectic

basis and the complex structure of the compact Riemann surface. Two period

matrices tg and t 0g are obtained from the same compact Riemann surface if

and only if there exists a symplectic matrix
P Q

R S

� �
A Spð2g;ZÞ such that

t 0g ¼ ðPþ tgRÞ�1ðQþ tgSÞ. Here P, Q, R, and S are g� g Z-coe‰cient

matrices.
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The symplectic matrix
P Q

R S

� �
for the two period matrices of Cq;1 with

respect to fai; bigi¼1;2;...;g and fAi;Bigi¼1;2;...;g is given by ð tKÞ�1 tT , which we

denote by H. This matrix can be computed as

H ¼ P Q

R S

� �
¼

O Ig

�Ig �Ig

� �
A Spð2g;ZÞ:

Here Ig is the identity matrix of size g. The equation

tCSg ¼ ðOþ tg � ð�IgÞÞ�1ðIg � tgÞ

gives us

Proposition 4.5. The relation between the two period matrices tg and tCSg

is

tCSg ¼ �t�1
g þ Ig:

In particular, for g ¼ 3, we have t7;1 ¼ �t�1
3 þ I3. Nevertheless, the period

matrix tCSg is complicated.

We introduce Schindler’s period matrix, denoted by tSg , for the hyperelliptic

curve defined by the a‰ne equation w2
1 ¼ z1ðz2gþ1

1 � 1Þ, and here denoted C 0
q;1.

This curve is biholomorphic to Cq;1. For i ¼ 1; 2; . . . ; g, elements ti of the q-th

cyclotomic field QðzÞ are defined as follows:

t1 ¼ ð�1Þgzg2

;

t2 ¼ t1 1� 1

1þ z

� �
;

tiþ1 ¼
t1ð1�

P i
k¼2 z

g�iþk�1tkti�kþ2Þ
1þ z�i

ði ¼ 2; 3; . . . ; g� 1Þ:

Theorem 4.6 (Schindler [20]). The ði; jÞ-th entry of the period matrix tSg is

obtained by

si; j ¼ 1� 1

t1

Xi

k¼1

tktj�iþk

for 1a ia ja g and sj; i for gb i > jb 1.
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If we set z1 ¼ 1=z and w1 ¼
ffiffiffiffiffiffiffi
�1

p
w=zgþ1, we obtain the biholomorphism from

C 0
q;1 to Cq;1. This implies that a symplectic basis for Schindler’s period matrix

[20] is given by

ðAg;Ag�1; . . . ;A1;Bg;Bg�1; . . . ;B1Þ ¼ ðA1;A2; . . . ;Ag;B1;B2; . . . ;BgÞ
Lg O

O Lg

� �
;

using the symplectic basis of natural type. Here the ði; jÞ-th entry of the g� g

matrix Lg is 1 for i þ j ¼ gþ 1 and 0 otherwise. It immediately follows that

L�1
g ¼ Lg and

Lg O

O Lg

� �
A Spð2g;ZÞ. From the equation

tSg ¼ ðLg þ tg �OÞ�1ðOþ tgLgÞ;

we have

Proposition 4.7. The relation between the two period matrices tg and

tSg is

tSg ¼ LgtgLg:

Acknowledgements

The author would like to thank Nariya Kawazumi and Takashi Taniguchi

for their useful comments. He also would like to thank the referee for valuable

comments. This work was partially supported by JSPS Grant-in-Aid for Young

Scientists (B) 25800053 and Fellowship for Research Abroad of Institute of

National Colleges of Technology. The work was performed while staying at the

Danish National Research Foundation Centre of Excellence, QGM (Centre for

Quantum Geometry of Moduli Spaces) in Aarhus University. He is very grateful

for the warm hospitality of QGM.

References

[ 1 ] Jørgen Ellegaard Andersen, Alex James Bene, and R. C. Penner, Groupoid extensions of

mapping class representations for bordered surfaces., Topology Appl. 156 (2009), no. 17,

2713–2725 (English).

[ 2 ] V. I. Arnol’d, Remark on the branching of hyperelliptic integrals as functions of the parameters.,

Funct. Anal. Appl. 2 (1968), 187–189 (English. Russian original).

[ 3 ] G. V. Belyı̆, On Galois extensions of a maximal cyclotomic field., Math. USSR, Izv. 14 (1980),

247–256 (English).

[ 4 ] Alex James Bene, A chord diagrammatic presentation of the mapping class group of a once

bordered surface., Geom. Dedicata 144 (2010), 171–190 (English).

156 Yuuki Tadokoro



[ 5 ] H. Bennama, Base of di¤erentials of the first kind of the curves yq ¼
Qp

i¼0ðx� aiÞai : Applica-
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