TRANSFORMATION GROUPS ON A K(m, 1), II

P. E. Conner

1. INTRODUCTION

This note is concerned with the study, by methods introduced in [31, of involutions
on a finite-dimensional K(w, 1). For the sake of simplicity, we shall restrict our
discussion to involutions, although our methods apply equally well to cyclic transfor-
mations of prime order.

Throughout this note, we denote by (T, X) an involution with at least one fixed
point. The fixed point set of (T, X) is denoted by F ¢ X. We assume that X is lo-
cally compact, connected, separable metric, and locally contractible. We denote by
Y the universal covering space of X, and

a: Y —X

is the covering map. I 7 = 7,(X) is the fundamental group of X, then (m, Y) is the
action of 7 on Y defining a principal fibre structure in the covering space. The ele-
ments of 7 are denoted by the letter ¢, with suitable subscripts when it is necessary
to consider more than one element at a time.

An involutior with base point, (T, (X, x)), is an involution for which a fixed point
x is chosen as the reference point. An involution with base point induces an auto-
morphism T,: 7,(X, x) — 7,(X, x) of period 2. It was shown in [3] that an involution
with a base point (T, (X, X)) admits a covering involution (t, Y) such that
a(ty)) = T(a(y)) and

t(o(y)) = T(0)(t(y)),

for any element o0 € 7 and any point y €Y.

2. PRELIMINARY FORMULAS

We let (T, (X, x)) be a fixed involution with base point, and we let (t, Y) be the
covering involution. We define a subset C C 7 = 7,(X, x) by

C ={ o] ofy) = t(y) for some y€ Y}.

Furthermore, for o € C, let

Fo) ={ylye ¥, oy) =tx)}.
The importance of the sets F(o) lies in the fact that a(y) € F if and only if y € F(0)
for some o €C.

(2.1) LEMMA. If ¢ €C, then T,(0) = 0~, and the map tz: Y — Y defined by
y — o~ Yt(y)) is an involution.
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Let z be a point in F(0). By definition, t(z) = 0(z). This means that
z = t(0(z)) = Tx(0)(t(2)) = (Tx(0)o)(z).

Since 7 operates freely on Y, it follows that Tx(0o) = o~%.

To show that t4(ty{y)) =y for y € Y, we consider
o~(t(o™X(t(y)))) = oY Tylo~ N (y)) = o~ta(y) = y.

It follows from the definition of F(¢) that F(o) can be thought of as the fixed point
set of the involution tg. In particular, if Y is contractible and finite-dimensional,
then F(o) is acyclic mod 2, by Smith’s theorem [6, p. 364].

(2.2) LEMMA. Let 0,,0,€ C and let o€ 1 be an element for which
oF(o,) NF(o,) # 9;

then T,(0) = 0,007' and oF(c,) = F(0,).
Suppose that z € F(0,) is a point for which o(z) € F(o,). By definition,
0,(0(z)) = t(o(z)). This implies that
0(z) = t(0,(0(2)) = T,(0,)(t(c(z)) = 07T (0)(t(2))) = (05 T, (0)0y)z.

Since 7 acts freely on Y, 0 = 071 T(0)0, or 0,007t = Tx(0).
We next show that F(o,) C F(0,). The relation
t(0(y)) = T«(0)(t(y)) = 0,007%(0,(y)) = o,(o(y))
implies that o(y) € F(o,). It is now simple to show that 0-!F(0,) c F(0,), so that
oF(o,) = F(0,).

As a particular case, we note that the relation F(o,)N F(o,) # @ implies that
F(o,) = F(o0,), since we may apply (2.2) for o = e, the identity element of 7. If o € C,
let

H(o) = {0,] 0, € w, 0,F(0) = F(0)} .

Of course, H(0) is a subgroup of 7. We may use (2.2) to characterize H(o) as fol-
lows:

H(o) = {0,| 0,€ 7, T (0) = 00,071}

Let us note in particular that if # is abelian, then H(o) is independent of o0 € C and
it consists of elements o, for which T«(o,) = 0;,. For an abelian group, too, C is a
subgroup.

We define a set L C Y by ¢ ™(F) = L. If y € L, then there is a unique element
o € C for which y € F(0). Note that L is invariant under the action of 7 on Y.

(2.3) LEMMA. The set F(0) c L is both open and closed in L.
Suppose y € F(o). Let Vy be an open neighborhood in Y for which

alvyﬂ chVY +0
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implies that o, = 0,. Let Uy = Vy, N L; then t(Vy) N o(Uy) contains t(y) = o(y), so that
t(V n (U ) is an open neighborhood of o(y) (in' L). By continuity, there is an open
nelghborhood Ny in L such that Nyc Uy C Vy, and t(NY) C cr(UY). If z€ N, let z
be in F(o,); then t(z) = 0,(z), and 03(2z) € t(N,) C a(U ), so that o; (V )no(V ‘5 +0
and o = 0,. This implies that Ny C F(o) ancf that F(O‘) is open in L The set F(o)
is closed in Y, since it is the flxed point set of the involution tg.

(2.4) LEMMA. Let F. c X be a component of the fixed point set F. Let y € F(0)
be a point such that o(y) € F_;then F. C a(F(0)) C F.

Under our assumptions on X, it can be shown that F. is arc-wise connected [5].
Let x be any point in F_, and let f(t) denote a path in F_ for which f(0) = a(y) and
(1) = x. By the covering homotopy theorem, there is some path h(t) in Y which
covers f(t) and for which h(0) = y. Since h(t) covers a path in F, it follows that
h(t) belongs to L. We have just seen, however, that F(o) is both open and closed in
L, so that the path h(t) must be in F(0). In particular, h(1) € F(0) and a(h(1)) = x.

An equivalence relation may be introduced in C. If oy, 0, € C, then 0, ~ 0, if and
only if there is an element 0 € 7 such that Tx(0)o, = 0,0. Let ¢ be the set of equiva-
lence classes in C under this equivalence relation.

(2.5) LEMMA. Two elements o,, 0, € C are equivalent if and only if theve is an
element o € m such that oF(o,) = F(0,).

This follows from (2.2) and the definition of equivalence. We shall take up the
application of these lemmas to involutions with base point on finite-dimensional
K(m, 1)-spaces. The K(w, 1)-space is particularly suitable for applying the foregoing
remarks, because the universal covering space of a K(w, 1) is contractible. We can
apply Smith’s results to the involutions t; on the covering space, to list their basic
properties.

3. APPLICATIONS TO A FINITE-DIMENSIONAL K(w, 1)

(3.1) THEOREM. If (T, (K(m, 1), X)) is an involution on a finite-dimensional
K(w, 1)-space, then C C m consists of all elements which satisfy Tx(0) = o~1, ,and the
components of the fixed point set ¥ are in one-to-one correspondence with C

Since m;(K(w, 1), x) = 0 for i > 1, it follows that the universal covering space Y
of K(m, 1) is contractible. If o€ 7 is an element for which Tx(0) = 0-1, then
tg(y) = 0-(t(y)) is an involution. Since Y is acyclic and finite-dimensional, it follows
that t; has a nonvoid fixed point set which is acyclic mod 2 [6, p. 363]. In particular,
o€ C, and F(0) is connected. From (2.4) it follows that a(F(o)) c K(w, 1) is a com-
ponent of the fixed point set of (T, K(w, 1)). Furthermore, if a(F(0,)) = a(F{(o,)), then
for some ¢ € w, oF(0,) = F(0,), and o, ~ 0, by (2.5). Therefore, the components of F
are in one-to-one correspondence with C.

For the next result, we shall make use of the cohomology of a discrete group.
We refer to [1, Exposé 1-13] for this concept.

(3.2) THEOREM. I (T, (K(m, 1), X)) is an involution with a base point, then for
every component F . of the fixed point set theve is an element o € C such that

H(F_; 2,) ~ H (H(0); Z;) .

We are to understand that the Alexander-Wallace-Spanier cohomology groups of
F_ are isomorphic to the cohomology groups of the subgroup H(o) c 7. We choose
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an element o€ C such that a(F(0)) = F.. The subgroup H(o) consists of those ele-
ments o, € 7 for which ¢,F(0) = F(0). Since (m, Y) is a proper transformation group,
the induced transformation group (H(o), F(0)) is also proper, and the quotient space
F(0)/H(0) is homeomorphic to F.. We may regard (H(0), F(0)) as a covering of F_.
As we mentioned earlier, it can be shown that F(o) is locally connected, arc-wise
connected and acyclic mod 2. As pointed out by Cartan [1, pp. 10-11], there is a
spectral sequence {ES-*}, with ES't~ HS(H(o); H(F(0); Z,)), whose E-term is
associated with H¥*(F_; Z,). Since F(o) is acyclic mod 2, however,

Hi(H(0); Z,) ~ H\(F ; Z,).

For involutions with base point on a finite-dimensional K(#, 1), the cohomology
mod 2 of the components of the fixed point set is entirely determined by the auto-
morphism Tx. In a way, P. A. Smith’s theorem about the fixed point set of an involu-
tion on a contractible space is one case of (3.2). It seems plausible that both results
are special cases of a more extensive relation between the homotopy groups of a
space and the involutions on that space. In this direction, we have continued to study
the influence of higher homotopy groups on the fixed point set of an involution [ 2].

4. EXAMPLES

In this section we shall give some specific examples to illustrate our results.

(4.1) THEOREM. Let (T, K(m, 1), X)) be an involution with base point on a
finite-dimensional K(m, 1) for which © is a free abelian group of vank n. There is
an integer 0 < r < n such that each component of the fixed point set has the cohom-
ology ring mod 2 of an r-dimensional torus. If one fixed point is isolated, there are
exactly 2 components in F.

We note that K(7, 1) has the homotopy type of the n-torus. The subgroup
H(o) C v is independent of o € C, and it consists of those elements o, € 7 for which
Tx(0;) = 0,. Of course, H(0) is a free abelian group of rank 0 < r < n, so that F_
has the mod 2 cohomology of an r-torus, in view of (3.2). In this case, C is a sub-
group of 7. The components of the fixed point set are in one-to-one correspondence
with the quotient of C by the elements of the form o - T,(0), where g€ 7.

If one fixed point is isolated, then H(0) consists only of the identity. Since
o, + Tx(0,) € H(0), it follows that Tx(0,) = -0, for all elements in 7. Accordingly,
C = w, and the components of F are in one-to-one correspondence with the quotient
group w/2w, which has order 271,

Our results also apply to involutions on an aspherical 3-manifold. We denote by
B3 a connected, locally Euclidean 3-manifold (possibly open) for which

m(B) =0 (i>1).

Such a manifold is obtained, for example, by removing from the 3-sphere a tamely
imbedded simple closed curve. Involutions on such a manifold have special proper-
ties. Using only the fact that B is a locally Euclidean 3-space, Smith has observed
that every component of the fixed point set is a 0-, 1-, or 2-dimensional manifold
[6, p. 372]. If B3 is orientable, and if T preserves the orientation, then each com-
ponent of the fixed point set is either a simple closed curve or an open arc.
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(4.2) THEOREM. Let (T, (B3, X)) be an orientation-preserving involution with
base point on an ovientable, aspherical 3- manifold. The subgroup of elements of
7,(B3, x) which satisfy T, (0) = o is either trivial or free cyclic.

Let F(e) C Y be the set of points fixed under the involution (t, ¥Y). The subgroup
H(e) consists of exactly those elements o € 7,(B3, x) for which T,(0) = 0. The fixed
point set F(e) is an open arc, and therefore (H(e), F(e)) represents the universal
covering space of F_ = a(F(e)). Now F_ is an open arc or a simple closed curve,
and accordingly H(e) is trivial or free cyclic since it is isomorphic to the funda-
mental group of F.. We point out that in this case F_ is that component of the fixed
point set which happens to contain the base point x.

R. H. Fox raised a question about the type of knot which can be imbedded in the
3-sphere in such a way that it is invariant under some involution of the sphere. H. F.
Trotter pointed out an application of (4.2) to this type of question.

(4.3) THEOREM. Let (T, S?) be an orientation-preserving involution on the 3-
sphere with a simple closed curve of fixed points. If K c S3 is a tovus knot of type
(m, n) in the complement of the fixed point set of (T, S3) which is carried onto itself
by T, then mn is even.

We take B® to be the complement S3\K of the torus knot. We select any fixed
point, and we apply (4.2) to the involution (T, (B3, x)) to conclude that the automorph-
ism T,: 7,(B3 x) is nontrivial. The involution (T, (B3, x)) is orientation-preserving;
therefore, by Schreier’s structure theorems for a torus knot group, T, is an inner
automorphism [4]. The group of all the inner automorphisms of a torus knot group
is isomorphic to the free product of the cyclic groups Z, and Z,,. This free product
can contain a nontrivial element of order 2 only if m or n is even.

This remark does not require that the involution be linear, or even that the fixed
point set be tamely imbedded. Trotter also pointed out that in (4.3) an involution may
be replaced by any cyclic transformation group of order k. X K is an invariant
torus knot of type (m, n) in the complement of the fixed point set of the cyclic trans-
formation, then m or n is divisible by k.
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