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THE STRONG FUTURE TENSE

STORRS McCALL

1 Introduction If the universe is deterministic, to say at time t that it
will be the case that p is to say that p is true in the only physically possible
future relative to t. But if the universe is indeterministic, the meaning of
"it will be the case that/?" becomes more problematic. Relative to t there
are many alternative possible futures instead of one. In which of these
should we require that p be true? The answer given by classical tense
logic is that F/> is true iff p is true at some point in at least one such
future (see for example [6], p. 38.). But this answer makes it quite possible
for Ψp to be true while p never is; this happens if p is true in some
possible future which turns out not to be actual, i.e., not to be the one that
the history of the world follows. This is a defect of F qua representative
of the future tense of natural languages. If p turned out not to be true we
would be justified in accusing the person who previously uttered "?p" of
speaking falsely. In what follows we shall examine a different sort of
future tense operator which avoids this defect.

The most straightforward way of avoiding the difficulty of having Ψp
true and p false in an indeterministic future-branching universe is to
replace F by a stronger operator. "Fp" says in effect that p is true
somewhere on some future branch. Let "S/>" assert that p is true some-
where on every future branch. Then a situation in which Sp is true and p
never is cannot arise. However, the converse situation can arise: it is
possible for Sp to fail to be true even though p turns out later to be true.
(This can occur when p is true on some future branches but not on all.)
Although this might seem to render Sp as deficient as Ψp, on balance Sp
appears to fit the use of the future tense in natural languages better. The
man who arrives at the powerhouse during a torrential downpour and asks
breathlessly, "Will the dam burst?", is not asking if the dam's bursting is
a feature of some possible futures, but of all.

Against what has just been said it might be objected that what deter-
mines the truth of any statement of the form "it will be the case that p" is
not whether p is true in some possible futures, or in all, but whether p is
ture in the actual future. That is, in the branch that becomes history. But
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this presupposes that there is such a branch: that of all the possible
futures relative to a given moment there is one and only one singled out as
the future. (We may not know, according to this theory which the branch is,
but this is irrelevant; one branch is ontologically distinguished from its
neighbors.) We may call such a view predestinarian. It represents a
philosophical tradition which is not without interest, but the author can at
present find no metaphysical (or for that matter theological) justification
for it.1 More interesting is the view that there is only one way to evaluate
the truth or falsehood of a future contingent statement, namely by waiting
and seeing. This view does not require the existence of an ontologically
distinguished future, but to elaborate it formally as a tense logic would
require a semantics the model structures of which were dynamic rather
than static. (At time t a given future-branching model structure would
have a certain tree-like form; at time t + δt it would have lost some
branches and its main stem would be longer.) In this paper, no attempt will
be made to deal with dynamic model structures. Instead we shall confine
ourselves to exploring the properties of the strong future tense operator S,
which corresponds to what Prior in [6], p. 132, calls the "Peircian" theory
of the future tense.

2 Semantics for the strong future tense We have, then, the two future
tense operators F and S, and defining G as ~ F ~ and I as ~S~ we arrive at
the following truth-conditions:

Fp is true iff p is true somewhere on some future branch.
Gp is true iff p is true everywhere on every future branch.
Sp is true iff p is true somewhere on every future branch.
\p is true iff p is true everywhere on some future branch.

Embedding these truth-conditions in a formal semantics requires that
we have some way of quantifying over branches, and branches (i.e.,
possible "histories" or "scenarios") may be regarded as sets of
instantaneous world-states, the latter being 3-dimensional cross-sections
of 4-dimensional manifolds of events.2 These world-states are ordered by
the relation "later than". The model structures for our semantics will
therefore be ordered pairs (W, L), where W is the set of instantaneous
world-states and L the relation "later than". Branches are defined as
maximal L-chains on W. Let v be an assignment of truth-values to
propositional variables over (W, L). Then the valuation function vm deter-
mined by the model 3W = (W, L, υ) is defined inductively as follows, where
x, z e Wand b is any branch on (W, L). Note that truth-conditions are given
for formulae containing not only the future-tense operators F, G, S, and I,
but also the past-tense operators P and H.3

1. (Base clause). Where A is any propositional variable,

%(A,s) =v(A,z)

2. (Induction step).
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Vw(~A,z) = T iff υ^A.z) = F

v^(A & B, z) = T iff VwU, z) = υm{B, z) = T

^(JFA, *) = T iff (3x)(Lxz & z ^ U , * ) = T)

Vw(GA,z) = T iff (*)(Lxε D WA,*) = T)

zλ^SA,*) = T iff (b)[zeb D (3x)(xe b & Lxε & vm(A,x) = T)]

^ ( M , * ) = T iff (3b)[ze b & (#)[(#€ & & Lxe) 3 υm{A,x) = T]]

^ ( P A , * ) = T iff (3x)(Lzx & ̂ ( A , x ) = T)

Vw(HA,z) = T iff (x)(Lzx D vm(Afx) = T)

The relation L may be subjected to a number of different constraints,

each of which restricts the variety of acceptable model structures. For

example, L may be transitive, or be subject to conditions which produce

model structures which are non-beginning and/or non-ending, dense, and

non-branching toward the past and/or future. In classical tense logic,

without the operators S and I, it is not difficult to investigate the set of

valid formulae corresponding to each successive restriction on L, and to

produce characteristic axioms for the corresponding deductive systems.

But with S and I, the problem becomes more difficult. The author has

succeeded in constructing a cumbersome axiomatization of the future-tense

fragment of "minimal" tense logic (i.e., operators F, G, S, and I only, and

no restrictions on L). But he has so far found no way of adding past-tense

operators without imposing restrictions on L and hence abandoning the

minimal system. In the next two sections, a system will be presented and

proved complete with respect to an L-transitive semantics with non-

beginning and non-ending model structures.4

3 The system TNKts The following is the basis of the axiomatic system

TNKts, corresponding to the restrictions (Lxy & Lyz) 3 Lxz, (3x)Lyx and

(3x)Lxy placed upon the relation L.

Primitive symbols &, ~, G, S, H.

Definitions Usual definitions of >̂, V, =, and

F = ̂ G~, I = ^S^, P = ^H^.

Rules of inference

1. Substitution

2. Detachment

3. RG: HA — hGA

4. RH: h-A — HHA

Axioms

1. Any set sufficient for 2-valued logic

2. G(p^> q) ^ (Gp^Gq)

3. G ( p q) ^{Sp D S<?)

4. H(/>D q)Ό(Hp^ HV?)

5. p^GPp

6. />=> HFp

7. Sp 3 ψp
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8. Hp D ?p
9. Gp D Sp

10. FFp=> Fp
11. PP/>3 P£
12. S(Spv p) => S£
13. PS/>3 (/>v S/>v ?p)

1 4 . ( F / > & S # ) 3 F [(/> & tf) v (/> & Stf) v ( F ' / > & # ) ]
15. The sequence TIS2, TIS3, . . ., TISn, . . .

where

TIS2 is: (l/> & Sq & Sr) D F [(/> & # & r) v (£ & <? & F(p & r))
v(/> & r & F'(/>& <?))]

TIS3 is: (l./> & S# & Sr & St) D F [(/> & ? & r & t) v (/> & q & r & F</> & t))
v (p & ? & t & F"(/> & r)) v (p & r & t & F(/> & ?))
v (p & ^ & F'(/> & r & t)) v (p & r & F(/> & q & t))
v (/> & t & ϊ{pbq&r))v{p &q& ?{p & r & F(/> & t)))
v(p& q& F(p & t & F(p & r))) v (p & r & F(J> & ? & F(/> & t)))
v (/> & r & F (/> & t & F'(/> & ^))) v (p & t & F'(p & q & F (/> & r)))
v (/> & t & F'(/> & r & F'(/> & Q')))]

and where the number of disjuncts in TISn is the number of different ways
in which, allowing multiple occupation and ignoring empty boxes, n dis-
tinguishable objects can occupy a row of n boxes.5

The fact that 15 consists of a sequence of axioms rather than one
indicates that TNKts is not finitely axiomatizable. A proof of this will be
found in section 6 below. TNKits is, however, decidable, and the complete-
ness proof given for it provides a decision procedure. Of the axioms listed
above, 8 is falsifiable if any branch of our model structures has a first
moment, 9 if any branch has a last moment, and 9-14 if L is not transitive.
The remaining axioms hold unrestrictedly.

Certain important features of TNKts distinguishing the strong from the
weak future tense are the absence of the theses p 3 HSp and Sp v S ~p, and
the presence of PSp 3 (p v Sp v P/>). By contrast, we have p 3 HFp and
?p v F ~p, but not PF/> 3 (p v Fp v ?p). The first of these theses has played
an important role since the time of Cicero or earlier in discussions of
fatalism, God's omniscience and the freedom of the will. Prior devotes
quite a lot of space to discussing how to get rid of it in [6], pp. 117-134, and
[5], pp. 157-161. Concerning the second thesis, Thomason in [8], p. 2,67,
remarks that " I t will or it won't" has the force of tautology, from which it
might seem that Sp v S~p ought to hold. But the reason why " i t will or it
won't" has the force of tautology is that " i t will" and " i t won't" are
generally thought of as contradictories. Sp and S ~p, on the other hand, are
not contradictories; nor are they, unlike Fp and F ~/>, sub-contraries,
which is the reason why Fp v F ~p holds and Sp v S ^ does not. " I t will or
it won't" is representable either by Fp v ~Fp or Sp v ~Sp. Finally, although
P Fp 3 (p v Fp v ?p) is falsifiable in future-branching model structures,
PSp 3 (p v Sp v ?'p) is not. Use of the strong future tense, then, avoids the
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awkwardness of ever being in a position to assert that it was the case that p
would be true, while at the same time denying that/) is, was, or ever will
be.

4 Completeness of TNKts The completeness proof given here makes use
of semantic tableaux, and is patterned on Kripke's proof in [2], Two
different kinds of tableau constructions will be used, in one of which the
^-relation between tableaux is transitive, while in the other it is not.
These will be known, respectively, as R-constructions and R-constructions.
The overall structure of the completeness proof is as follows. Where

@ denotes "A is a thesis of TNKts" (abbreviated "hA")
@ denotes "A is valid" (in the semantics of section 2)
(3) denotes "The R-construction for ~A closes"

(4) denotes "The R-construction for ~A closes",

we show, successively, (I) 3 (2), @ 3 (3), (3) 3 (4), (ϊ) 3 (T).

Theorem 1 If \-A, then A is valid.

Proof: Detailed verification that each axiom of TNKts is valid, and that the
rules of inference preserve validity, presents no great difficulty. Assume
for example, in the case of Axiom 9, that for some model 9W and some
world-state z the following hold:

1. υn{Gp,z) = T
2. υm(Sp,z)= F

We derive a contradiction as follows:

3. (x)(Lxz ^vvi(p,z) =T) [1]
4. (3b)[ze b & (x)({xeb & Lxz) ̂ vm(pfx) = F)] [2]
5. zeb' & (x)[(xeb' & Lxz) ^v^(pfx) = F] [4, El]
6. zebf 3 (3x)(xe b* & Lxz) [Condition of non-endingness, which together

with the transitivity of L ensures that every
branch is non-ending]

7. web' & Lwz [6, 5, MP, El]
8. υm(p,w)= F [5, UI, 7, MP]

9. vm(p,w) = T [3, UI, 7, MP]

It is worth noting the role played by the transitivity of L in the validity
of such axioms as 13. If L were not transitive, the following would be a
countermodel for 13:

P

-Psfy
~P // ~P

w x z

Branches are {#,3>}, {x, z], {w,x,y} but not {w,x,z} (i.e., we have Lxw and
Lzx but not Lzw). PSp is true at x, but not p, Sp, or Pp.
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Before proceeding to Theorem 2, we shall give semantic tableaux rules
for R-constructions. Our tableaux will differ from Kripke's in being
one-sided rather than two-sided, but each alternative set T of tableaux will
be written Kripke-style on a separate piece of paper.6 Instead of there
being, as in modal logic, only one relation R among tableaux, we shall have
for tense-logical tableaux two distinct relations RE, corresponding to
"earlier", and RL, corresponding to "later". Note that RE and RL are
both transitive.

1. Starting rule. To start an R-construction for A, begin a tableau t'with
A as initial item.

2. ~ ~ If ~~A appears in any tableau t, put A in tableau t.
3. & If A & B appears in tableau t, add A and B separately to t.
4. ~& If ~ {A & B) appears in tableau t, where t belongs to the set T of

tableaux, we replace T by two alternative sets T' and T", formed by
copying out T twice. Let t f and t" be the copies of t in T' and T" respec-
tively. Then add ~A to t f and ~B to t".

5. ~ F. If ~ FA appears in t>, add G~A to t.
6. ~G. If ~GA appears in t, add F ~A to t.
7. ~ P. If ~ PA appears in t, add H ~A to t.
8. ~ H. If ~ H A appears in t, add P ~ A to t.
9. ~ S. If ~SA appears in t, add I ~A to t.

10. ~l. If ~ |Ά appears in t, add S~A to t.
11. F. If FA appears in t, begin a new tableau t f such that \RE\' with A as
initial item.
12. G. If GA appears in t, put A in any tableau t' such that \RE\r or \'RL*.
13. GN. IfGΛ appears in t, begin a new tableau t f such that \RE\' with A
as initial item.
14. P. If ?A appears in t, begin a new tableau tf such that \RL\' with A as
initial item.
15. H. If HA appears in t, put A in any tableau tf such that tRLt* or \'RE\.
16. HN. If HA appears in t, begin a new tableau t1 such that tRLϊ' with A
as initial item.
17. S. If SA appears in t, begin a new tableau tr such that \RE\* with A as
initial item.
18. SI. If Ŝ 4 appears in t, where t e T, and if there is a tableau tf "next"
to t such that \RE\* or t'RL\ and no further tableau falls between tf and t,
then replace T by three alternative sets T1, T", and Tln, formed by copying
out T three times. In one copy Tr add A to t'; in T" add SA to t f; and in 71'"
begin a new tableau t" with initial item A such that, if \RE\\ then ti?£t" and
\"RE\', and if t'ΛLt, then \'RLt'r and t'ΉLt.
19. I. If \A appears in t, begin a new tableau t f such that tR£t f with A as
initial item.
20. IS. If items \A and Si? appear in t, begin a new tableau t f such that
\RE\* with A and B as initial items.7

21. IS2. If items I A, SB, and SC appear in t, where te T, replace T by
three alternative sets T', T", and 71'", formed by copying out T three
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times. In Tr add a new tableau t' such that \RE\* with initial items A, B,
and C. In T" add a new tableau t'/, with initial items A and B, such that
tΛJSY/; and a new tableau tί/, with initial items A and C, such that \'{RE^.
In T" do the same as in T", but with B and C interchanged.
22. IS3. If \A, SB, SC, and SD appear in teT, proceed as in rule IS2,
replacing T by the thirteen alternative sets corresponding to the thirteen
disjuncts in the axiom TIS3.
23. ISw. n > 3 Again analogous to IS2, the number of alternative sets
required being equal to the number of disjuncts in axiom TISn.

This completes the list of Λ-rules. We now stipulate that a tableau
closes iff it contains a pair of mutually contradictory items A and ~A, that
a set of tableaux closes iff one of its tableaux closes, and that an
R-construction closes iff all its alternative sets close.

Theorem 2 If A is valid, then the R-construction for ~A closes.

Proof: Assume that the R-construction for ~A does not close. As is
pointed out by Kripke ([2], p. 77) this assumption assures us only of an
open alternative set at each stage in the (possibly infinite) construction—
not that there is a set open for the whole construction. Note, however, that
an R-construction may be infinite either through possessing an open
infinite set, in which case we have what we require, or through possessing
an infinite number of alternative sets.8 In the latter case, we can construct
what amounts to an open infinite set by diagramming in tree form the splits
in alternative sets as follows:

τ4 τδ τ6

etc.

Each set "contains" each set above it on a branch of the tree in the sense
that it was formed from it by first copying it out and then adding something
to it (as is specified by the rules ~&, SI, IS2, etc.) If the R-construction
comprises an infinite number of sets the tree will be infinite, and by
Koenig's lemma, since it forks finitely, it will contain an infinite branch.
This branch defines what we may call an open infinite quasi-set: by
following down the branch we may specify the quasi-set to any length
desired.

The R-construction for ~A being completed and open, we now define a
countermodel 9W for A as follows. Select any open alternative set or
quasi-set Ti9 and define 9W as (W, L, v), where W is the set of tableaux ή
comprising T, ; L is defined as the union of RL with the converse of RE
(i.e., L\j\k iff \jRL\k or ttfiEtj); branches are maximal L-chains in Tf ; and
v is defined for propositional variables pk as follows:
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»(/>*>'/) = T iff/>A€t, .

We then show, for any formula A and any tableau t e Tz :

Lemma 1 If A e t, then vm(A, t) = T.

Proof: By induction on the length of A. The basis of the induction follows
from the definition of v. The induction step breaks down into cases as
follows:

Case 1. A is ~By where B is atomic. Since T{ is open, and since ~Be t,
Bjί\. Hence vm(Bfv) = F, hence vJίA9\) = T.
Case 2. A is of the form ~~B. Since the R-construction is completed,
ΰ e t by an application of the rule ~~. Hence vm(B,f) = T by the inductive
hypothesis, hence 0w(A,t ) = T.
Case 3. A is B & C. By rule &, B e t and C e f, hence t^GS, 0 = ŝw(C, t) = T.
Hence %(A,t) = T.
Case 4. A is ~(£ & C). By rule ~&, ~ £ e t> or ~C e t, hence uw(~J3,t) = T
or ww(-C,t) = T. Hence i^U?,*) = F or ι%(C,t') = F, hence ^ ( 5 & C,t) = F,
hence z%C4,t) = T.
Case 5. A is ~ F£. By the rule ~.F. G~Be \\ andt^CΛ^t) = vm(G~B>\).
This case reduces to case 12 below.
Case 6. A is ~Gi?. Reduced to case 11 below.
Case 7. A is ~ P£. Reduced to case 14 below.
Case 8. A is ~HJ5. Reduced to case 13 below.
Case 9. A is ~SB. Reduced to case 16 below.
Case 10. A is ~l!£. Reduced to case 15 below.
Case 11. A is JFB. The rule F guarantees that there exists a tableau t'
such that \RE\?, i.e., Lt'f, and that Beϊ'. By the inductive hypothesis
vm(B,\') = T, hence vm(A9t) = T.
Case 12. A is GB. The rule G guarantees that for every tableau t' such
that \REϊr or \'RL\, i.e., Lt't, £ e t f. By the inductive hypothesis %,(£, t') =T,
hence %,(Λ,t) = T.
Case i3. A is P£. Similar to case 11.
Case 14. A is KB. Similar to case 12.
Case 15. A is SB. The rules IS, IS2, . . . guarantee that, if t contains any
I-items, the item B will occur somewhere on every branch of the JR-
construction which is "future" relative to t. Furthermore, the rule SI
guarantees that if, at any given stage in the R-construction, there exists a
future branch relative to t on which B does not occur, B will eventually be
added to that branch. For suppose there is a future branch & nodes long on
which B does not occur. Let tr be the first node of this branch. An
application of SI will result in three new alternative sets:

(i) In the first set, we have B e\*.
(ii) In the second set, we have SJ5 e t f. Relative to t f, there is now a
future branch k - 1 nodes long on which B does not occur. If k = 1 (i.e., if
tf is the last node of the branch) an application of rule S provides a " t ip" to
the branch on which B occurs. If k > 1, we repeat the procedure until
eventually the branch is furnished with a B-bearing tip.
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(iii) In the third set, a new tableau t" is constructed which constitutes the
new first node of the branch and which contains B. Hence in every case,
where SBe t, application of the i?-rules ensures that B holds somewhere on
every future branch of t. Hence υm(5B,ϊ) = T.

Case 16. A is \B. If t contains no S-items, application of the rule I
ensures that B occurs everywhere on at least one future branch of t. If t
contains k S-items, the rule \Sk will be used once for each distinct I-item
of t, and will ensure the desired result in each alternative set. If, at a later
stage in the R-construction, a new (k + l)th S-item is added to t, application
of the rule \Sk + 1 produces the same result. Hence in every case,
vJIB,\) = T.

This completes the proof of the lemma. We note now that ~A, the
initial item of the R-construction, is the initial item of the main tableau tx

of T, . Hence vm(~A, tx) = T by the Lemma 1. It follows that A is not valid,
which completes the proof of Theorem 2.

Theorem 3 If the R-construction for ~A closes, then the R-construction
for ~A closes.

Proof: We must first define the difference between an R-construction and
an R-construction. Following Kripke [2], the relations RE and RL of
R-constructions will not reflect any special properties of the relation L:
in particular, unlike RE and RL, they will not be transitive. The rules for
R-constructions will differ slightly from those of R-constructions: we
substitute RE and RL throughout for RE and RL, and re-write rules G, H,
and \Sn as follows:

G. If GA appears in f, put GA and A in any tableau i' such that t|REitf or
t'RLt.

H. Add HA as additional transferred item.
IS. Add \A as additional initial item.
ISw, n ̂  2. Similar to the re-writing of IS.

The re-written rules plainly give the effect of transitivity (cf. [2],
p. 81). Their advantage over Λ-rules is that, in the proof of Theorem 4
below, we need only consider, for any given application of the rules, the
changes wrought on a tableau by its immediate neighbors. (By constrast,
R-rules may affect far-away tableaux.) For the proof of Theorem 4, it
suffices to note that for any closed R-construction there will be a closed
R-construction with precisely corresponding tableaux and sets of tableaux.

Theorem 4 If the R -construction for ~A closes, then KA.

Proof: We begin with some definitions.

Definition 1 Rank of a tableau t in a set T.

(i) t has rank 0 if there is no t' such that tREt' or tRLt'
(ii) If ti, . . . t^ are all the immediate RE- or RL-descendants of t, then
Rαnk(t) = Max {Ran kit,)} + 1.
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Definition 2 The associated formula (a.f.) of a tableau t at a stage in an
R-construction is the conjunction of all the items of t.

Definition 3 The characteristic formula (c.f.) of a tableau t at a stage is
defined inductively as follows:

(i) If Rαnk(t) = 0, then the c.f. is the a.f.
(ii) Rαnk(t) > 0. Suppose t bears RE to \1} . . . \m, and RL to \m+1, . . ., tw.
Let Bi be the c.f. of t, , and let A be the a.f. of t. Then the c.f. of t is:

A & ?BX & . . . & ?Bm & P£w + i & . . . & PBn.

Definition 4 The c.f. of a set T at a stage is the c.f. of the main tableau of
T. The c.f. of an R-construction comprising sets Tu . . . Tr at a stage is
D l V i ) 2 v . . . v D.r, where Z>f is the c.f. of Tf .

Lemma 2 If A^ is the c.f. of the initial stage of an R-construction, and Bo

the c.f. o/ αwy stage, then \-A0 D J30.

Proof: The proof, which is by induction on stages, proceeds exactly as in
[2], pp. 83-85. The proof is by cases, according to which R-rule produces
the (m + l)th stage from the rath stage, and the tense-logical theses
(corresponding to Kripke's modal theses) needed to justify the cases
generated by the rules ~~, &, and ~& are the following:

1. G ( p D ? ) 3 ( F ί 3 ?q)
2. H(pz> q) D (P/>D ?q)

3. Hpvq) =>(F£v ?q)
4. P ( p v ^ ) => (P/>v P^).

In addition, the rules RG and RH are needed. The following cases are new:

Case 4. The (ra + l)th stage comes by the rule ~F. Justified by

5. ~F/>=> G~/>.

Cases 5-9. ~ G , ~ P, ~ H , ~S, ~ |. Similar to case 4.
Case 10. F. The c.f. of tableau t at stage ra is Xh FA, and at stage ra + 1
it is X & FA & FA. Justified by v-p 3 (p & p).

Case i i . G. The c.f. of t at stage m is GA & X & F ^ & . . . & FJBW

(i) If there is no t ' such that t'RLt, the c.f. of t at stage ra + 1 is

GA&X& ?(Bγ &GA&A)k...k ?(Bn & GA & A),

and the case is justified by repeated use of

6. (Gp& ?q) ^ F(<? & G/> & p).

(ii) If there is a t f such that t'RLt, the c.f. of t f at stage ra is

F & P(GA& X& FJ5i& . . . & FJBJ.

The c.f. of t f at stage ra + 1 is

GAL A& F& P[GA& X& F(5L& GAL A) & . . . & F(£M& GA & A)]
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and the case is justified by 6,

7. P(/>& q) ^ ?p

8. PGp^Gp

and

9. ?Gp~3p.

Case 12. GN. The c.f. of t at stage w i s l & GA. At stage ra + 1 it is

X & GA & FA. Justified by

10. Gp D F/>

Case 13. P. Similar to case 10.

Case 14. H. Similar to case 11, using

11. (H£& ?q) => P'(? & H/>&/>)

12. F(/> & #) 3 F/>

13. FH£=)H£

14. FHp^p.

Case 15. HN. Similar to case 12, using

15. H £ 3 ?p

Case 16. S. The c.f. of t at stage m is X &, SA. At stage m + 1 it is

X & SA & FA. Justfied by

16. S/>3 F/>

Cαs£ 17. S1. (i) Suppose t e T and there is a tableau t' "next" to t such that

tREt'. The c.f. of t at stage m is

E: X&SA& FB

and at stage m + 1 T, with cΛ.Dj, is replaced by the three alternative sets

7", Γ", and Γ'", with c.t.'sDμ,Dj2, andD 7 3 . The c.f. of t

i n T f i s £ f : X & S A & F ( 5 & Λ )

in T" is £ " : X & SA & F(JB & SA)

in Tr" is E " f : X & SA & F(A & FB)

(Note that in Ttn we have inserted a new tableau t' f between t and tF and

thereby increased the rank of t by one.) Using

17. (Sp & ?q) 3 [ F ( ^ ί ) v F ( ^ & Sp) v F(p & ?q)]

we can show that \-E 3 (E* v E" v Ettf), and by an argument similar to

Kripke's for the case of the rule ~&we derive eventually

\rDj =) (Dμv Dj2vDj3).

(ii) Suppose there is a tableau tf next to t such that t'RLf. The c.f. of t f at
stage m is

E: 7& P(X& SA)
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and at stage m + 1 the c.f. of t '

in T' is £ ' : A & Y & P(X & SA)
in T" is £ " : SA & Y & P(X & SA)
i n T ' " i s £ ' " : Y & P(A & ?(X & SA)).

(Note that in Γ " f we have increased the rank of t' by one.) To prove

v-E 3 (E' v £ " v £ ' " ) we need

18. ?(p & Sq) D [(? & P(/> & S?)) v (Stf & ?{p & Stf)) v P(? & P(/> & Stf))].

Cαs^ 18. I. The c.f. of t at stage m is X & I A, and at stage m + 1 it is
X& IA & FA. Justified by

19. I/>D F/>.

Case i9. IS. The c.f. of t at stage m is X & IΛ & SJB, and at stage m + 1 it
is X & IA & SJ5 & F(IA & A & B). Justified by

20. (\p& Sq) D ?(\p&p& q).

Case 20. IS2. The c.f. of t at stage m is

E: X& U & SJB& SC,

and at stage m + 1 the c.f. of t

in T' is E'ι X & U & SJ3 & SC & F(lA & A & .B & C)

in T " is E": X & IA & S£ & SC & F(lΛ & A & 5 & F(U & A & C))
in Γ' f f is E'": X & IA & SB & SC & F(lA & A & C & F(lA & A & B)).

We derive HE D (Er v JS" v £ f f f ) by means of the thesis

21. (\p& Sq & Sr) =>[F(I£&£& q & r) V F(\p & /> & # & F(lp&/)& r))
v F(1/> & /> & r & F(i/> & /> & #))].

Cαs^ 2i. ISn, n > 2. Similar to case 20, using a derivative of axiom TISn
in place of 21.

The theses 1-21 are all derivable in TNK ts.

This completes the proof of Lemma 2. The proof of Theorem 4 follows
as in [2], p. 86, and our completeness proof for TNKts is ended.

5 Decision procedure for TNKιts The use made of semantic tableaux in
the completeness proof allows a decision procedure to be devised for
TNKts Since all items occurring in all tableaux in R-constructions are
sub-formulae of the initial item of the main tableau, they are finite in
number. Hence the number of distinct tableaux (disregarding redundant
items) is also finite, and any sufficiently large R-construction will contain
"repet i t ive" tableaux. The existence of such tableaux may be used to
prevent the growth of infinite R-constructions, so that all non-theorems of
TISIKts will have finite countermodels.

Every alternative set of every R-construction has the form of a tree,
each tableau at every node of the tree being related to its successor-
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tableaux by one of the relations RE or RL. Branches of this tree have one
of the following three forms:

(i) An RE-chain of tableaux: i.e., a sequence each member of which is
related to its successor by the relation RE.
(ii) An RL-chain.
(iii) An R-chain which is neither an RE- nor an RL-chain: i.e., a sequence
some members of which bear RE1 to their immediate successors and some
RL. We call such a chain an R*-chain.9

The tableaux which make up a chain of any one of the above types may
be divided into "parent" and "offspring" tableaux, as the following picture
of an RE-chain indicates:

•' ;*s . y ^ : •
1 2 3 4 5 6 7

Tableaux 1, 3, 6, and 7 are "parent" tableaux, which is to say that at one
stage in the construction they formed the end of the chain and other
members of the chain were subsequently started from them. For example,
2 and 3 might have been started from 1 by S1; 4, 5, and 6 from 3 by IS3,
etc. No tableaux on the chain are started from the "offspring" tableaux 2,
4, and 5, although tableaux on other chains may be (in which case, relative
to these chains, the tableaux in question become "parent" tableaux).10

It will be evident that all items in all tableaux on a chain are sub-
formulae of items in any "parent" tableau above them. (This is not true of
"offspring" tableaux: tableau 3 for example in the diagram above may
contain items which are not subformulae of tableau 2.) This fact leads to
the following

Theorem No R*-chain in any R-construction can be infinite, unless it
culminates in an infinite RE- or RL-chain.

Proof: R*-chains consist of alternating sections of RE-chains and RL-
chains. Let t and t' be two members of an R*-chain such that each tableau
is both the last tableau of an RE-section and the first tableau of an
RL-section. Furthermore let t' be below t. Both t and t' are "parent"
tableaux. Defining the power P of a tableau as the number of symbols in
the longest item it contains, we see that P(t) > P(t'). (If the longest item of
t (which need not be unique) is either a truth-function or begins with F, G,
P, S, or I, it will not appear in any tableau below t. If it begins with H, it
will appear in all tableau belonging to the RL-section below t, but it will not
appear in tf.) Since the power of the first tableau of any R*-chain is finite,
no such chain can have more than a finite number of RE- and RL-sections.
Hence any infinite R*-chain must terminate in an infinite RE- or RL-chain.

We are now in a position to see how to prevent the growth of infinite
R-constructions. Let us call two tableaux equivalent if (ignoring re-
dundancies) they contain the same items. We can limit the growth of
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RE- and RL-chains by running together equivalent tabelaux as follows.
Suppose ti and t2 are equivalent tableaux on the same RE- or RL-chain,
formed from the same initial formula by the application of the same
R-rules at each stage in their construction. Suppose at some later stage a
new tableau t3 is about to be started, with the same initial formula, the
same R-rules again being applicable at each stage. Plainly all and only
those items which went into tx and t2 will go into t3, so instead of starting t3

as a new tableau, we relate its "parent" tableau back to either tx or t2,
using whichever of the relations RE or RL is appropriate.11

What has been done is to provide the chain with a terminal loop, and when
this has been accomplished for each RE- and RL-chain the resulting
R-construction will be finite. Note that model structures with cyclical
branches are quite compatiable with the transitivity and non-endingness of
the relation L of our semantics, so that the models resulting from reducing
infinite to finite R-constructions are still TIM Kts-mode Is.

6 Non-finite axiomatizability ofTNKts Consider the set of axioms 1-15
of section 3. Let the sequence of systems Sl9 S2, . . ., Sw, . . .be defined as
follows. Each system S, is closed under the rules of TNKts, Si is
axiomatized by the set of axioms 1-14, and Sw = Sw-χ U {TISrc}. We shall show
that the sequence {Sw} constitutes a chain of systems of increasing strength.
To show this, take any axiom A of TIMKts and replace S by F and I by G
throughout to obtain A*. Let {S*} be the corresponding sequence of systems
obtained by so doing. To show that S* is a proper supersystem of S*-i, we
see that the following model falsifies TISj, while satisfying all the axioms
of S*.i:

x

y

(Let p19 p2, . . ., pn+1 be all the variables of TISn*, and pu p29 p3 those of
axioms 1-14. Let Gpu F£2, . . ., F/>w+1 be true at z\ p19 p2, . . ., pn true at
x; and pι and pw+1 true at y. Then the antecedent of TISw* is true but the
consequent false. Since pn+λ occurs in TISw* but not in TISw - 1*, and since
the other axioms of S* hold in transitive non-beginning, non-ending model
structures, the linear model {. . ., z, x, . . .} satisfies all the axioms

of Stx.)
It can be shown by induction on the length of proof that if any formula B

is provable in Sw, then B* is provable in S*. Since ΎlSn* is not provable in
S*_i, ΎlSn is not provable in S»-i. Hence Si c S2 c . . . c Sw c . . ., and we
have that, for all n, Sn Φ TNKts.



THE STRONG FUTURE TENSE 503

Lemmon has shown in [3] that a necessary and sufficient condition for
any system S not to be finitely axiomatizable is that there be an infinity of
systems Si, S2, . . ., Sw, . . . such that (i) Sn c Sw+1, (ii) Sn Φ S for all n, and
(iii) S = U SΛ. These conditions are satisfied by the sequence {Sn} defined
above, hence we conclude that TNKts is not finitely axiomatizable.

NOTES

1. In [8], p. 270, Thomason conceives the point at issue to be whether it is meaningful to assert
the existence of an ontologically distinguished future.

2. It does not matter that there is no unique way of defining a world-state of mutually simul-
taneous events; any 3-dimensional cross-section comprised of points separated by space-like
intervals will do.

3. The truth-conditions given here for S differ in one important respect from those found in
[4]. In [4] there is no quantification over branches, and the truth-conditions for S are:

υm(SA,z) = T iff (x)[Lxz D (3y)(Bxy & Lyz & v^(A,y) = T)]

where "Bxy" is defined as "Lxy v Lyx v Λ: =y". It was pointed out to the author, however,
by Mr. Alasdair Urquhart, that these truth-conditions allow for the following:

?_7_7_7_7_7_7_p/
~p ~p ~p ~p ~p ~p ~p

Sp is true at z, butp is never true on the main branch. Hence the future tense operator of [4]
might be better described as representing the idea of a "hopeful" future, where p is always
"just around the corner," rather than of a future in which p is definitely going to be true.

4. Prior would say, complete with respect to transitive, non-beginning and non-ending time.
But it is intuitively more plausible to regard time as having the structure of a one-dimensional
continuum, and to consider the four-dimensional universe of events as being non-ending,
branched, etc.

5. For « = 4, this number is 75; for n = 5, 541; for n = 6, 4683.

6. Jeffrey [ 1] credits Smullyan (see, e.g., [7]) with the invention of one-sided tableaux. For con-
venience, instead of writing different alternative sets on different pieces of paper, one can
divide tableaux into branches as Jeffrey does. For example:

~[G(pDq)D(SpDFq)}
G(pDq)

~(Sp D Fq)
Sp p

~F</ pDq

A
~P q
x x

t t'
7. Since \A means that A is true everywhere on some branch, and SB that B is true somewhere

on every branch, the rule IS expresses what may be called the principle of the arrow and the
net: the net always catches the arrow, and the arrow always pierces the net.
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8. R-constructions for GFp and G(p v Fp) exemplify these two possibilities.

9. In term of model structures, RE- and RL-chains correspond to branches, and R*-chains to
zig-zag paths directed alternately past- and future-wards.

10. Although further tableaux belonging to a chain may be started by an application of S1
(alternative set no. 3) from a tableau already introduced by SI, the latter tableau does not
qualify as a "parent" tableau because at no time did it form the end of the chain.

11. The reason why we waited until tj began to repeat itself for the second time, rather than the
first, will become apparent upon examining the R-construction for ~(G//p D FGp). Again, it
should not be thought that if tx and t2 are equivalent, their "parent" tableaux must also be
equivalent, as is shown by the R-construction for G(Fp & Fq).
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