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GLOBAL BIFURCATION IN NONLINEAR DIRAC PROBLEMS

WITH SPECTRAL PARAMETER

IN THE BOUNDARY CONDITION

Ziyatkhan S. Aliyev — Parvana R. Manafova

Abstract. In this paper we consider nonlinear eigenvalue problems for

a one-dimensional Dirac equation with spectral parameter in the boundary
condition. We investigate local and global bifurcations of nontrivial solu-

tions to these problems. The existence of unbounded continua of nontrivial

solutions bifurcating from points and intervals of the line of trivial solutions
is shown.

1. Introduction

We consider the nonlinear eigenvalue problem for the Dirac equation

(1.1) `w(x) ≡ Bw′(x)− P (x)w(x) = λw(x) + h(x,w(x), λ), 0 < x < π,

subject to the boundary conditions

U(λ,w) =

(
U1(w)

U2(λ,w)

)
given by

(1.2) U1(w) := (sinα, cosα)w(0) = v(0) cosα+ u(0) sinα = 0,

2010 Mathematics Subject Classification. Primary: 34A30, 34B05, 34K29, 47J10; Secon-

dary: 34B15, 34C10, 34C23, 47J15.
Key words and phrases. Nonlinear Dirac problem; spectral parameter; bifurcation point;

eigenvector-function; global continua.

817



818 Z.S. Aliyev — P.R. Manafova

U2(λ,w) := (λ sinβ + b1, λ cosβ + a1)w(π)(1.3)

= (λ cosβ + a1) v(π) + (λ sinβ + b1)u (π) = 0,

where

B =

(
0 1

−1 0

)
, P (x) =

(
p(x) 0

0 r(x)

)
, w(x) =

(
u(x)

v(x)

)
,

λ ∈ R is a spectral parameter, p(x) and r(x) are real valued, continuous functions

on the interval [0, π], α, β, a1 and b1 are real constants such that 0 ≤ α, β < π

and

(1.4) σ = a1 sinβ − b1 cosβ > 0.

The function h : [0, π] × R2 × R → R2 is assumed to be continuous and has

a representation h = f + g, where f =
(
f1
f2

)
and g =

(
g1
g2

)
are continuous

functions on [0, π]× R2 × R and satisfy the following conditions:

(1.5) |f1(x,w, λ)| ≤ K|w|, |f2(x,w, λ)| ≤M |w|,

for x ∈ [0, π], 0 < |w| ≤ 1, λ ∈ R,

where K and M are the positive constants;

(1.6) g(x,w, λ) = o(|w|) as |w| → 0,

uniformly in x ∈ [0, π] and λ ∈ Λ for every bounded interval Λ ⊂ R (here | · |
denotes a norm in R2).

Similar problems for nonlinear Sturm–Liouville equation of second and fourth

order when the spectral parameter is not involved in the boundary conditions

have been considered before by Rabinowitz [21], Schmitt and Smith [23], Chiap-

pinelli [12], Rynne [22], Dai [13], Przybycin [20], Lazer and McKenna [17], Ma

and Tompson [19], Aliyev [2], and when the spectral parameter is involved in

the boundary condition have been considered by Binding, Browne, Watson [11],

Aliyev and Mamedova [3], Aliyev [1]. These authors prove the existence of un-

bounded continua of nontrivial solutions in R×C1 and R×C3 bifurcating from

eigenvalues or intervals (in R× {0}, which we identify with R) surrounding the

eigenvalues of the corresponding linear problem and having usual nodal proper-

ties.

In Schmitt and Smith [23] a special case of (1.1)–(1.3), with a1 = b1 = 0

and K + M < 1/2, was considered. But these authors have not been able to

investigate the structure and behavior of global continua of nontrivial solutions

emanating from bifurcation intervals completely. The reason for this was that

at this time the oscillatory properties of the one-dimensional Dirac system were

not known. For the first time Aliev and Rzayeva [6] investigated completely the

oscillatory properties of eigenvector-functions of the linear one dimensional Dirac
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system (1.1)–(1.3) with h ≡ 0̃ and a1 = b1 = 0 (see also [7]), where 0̃ =
(
0
0

)
.

To study the global bifurcation of solutions of the nonlinear problem (1.1)–(1.3)

with a1 = b1 = 0 in [8] uses oscillatory properties of eigenvector-functions and

refined asymptotic formulas for eigenvalues of problem (1.1)–(1.3) with h ≡ 0̃

and a1 = b1 = 0 which are obtained in [6], [7].

In our recent papers [4], [5] we consider the linear eigenvalue problem ob-

tained from (1.1)–(1.3) by setting h ≡ 0̃, where we show that the eigenvalues

of this problem are real, algebraically simple and the values range from −∞ to

+∞, and can be numerated in increasing order. Moreover, we study the location

of eigenvalues on the real axis, the oscillation properties of eigenvector-functions

and the asymptotic behaviors of eigenvalues and eigenvector-functions of this

problem.

The purpose of this paper is to study the structure and behavior of global

continua of nontrivial solutions of problem (1.1)–(1.3) bifurcating from points

and intervals of the line of trivial solutions.

The structure of this paper is follows. In Section 2, by using angular function,

we study the oscillatory properties of eigenvector-functions of the linear Dirac

system (1.1)–(1.3) with h ≡ 0̃. In Section 3 we define classes of functions that

have the obtained oscillation properties of eigenvector-functions of this linear

problem by using technique from [11]. Here we reduce problem (1.1)–(1.3) to

a nonlinear operator equation, and we apply Rabinowitz’s global bifurcation

theorem to this equation with f ≡ 0̃. By extending the approximation technique

used in [10] and using the basic properties of the angular functions in Section 4

we find bifurcation intervals for problem (1.1)–(1.3). Next we show that the

connected components of the set of solutions of this problem bifurcating from

these intervals are unbounded and lie in the classes of functions from Section 3.

2. Preliminaries

If h ≡ 0, then from (1.1)–(1.3) we get the following linear one-dimensional

Dirac system

(2.1)
`w(x) = λw(x), 0 < x < π,

U(λ,w) = 0̃.

It follows from [4, Lemma 2.1 and Theorem 3.2] that eigenvalues of the boundary

value problem (2.1) are real, algebraically simple and the values range from −∞
to +∞, and can be numerated in increasing order.

In order to study the bifurcation of solutions of nonlinear problem (1.1)–(1.3)

we consider a more general linear problem

(2.2)
˜̀w(x) ≡ Bw′(x)− P̃ (x)w(x) = λw(x), 0 < x < π,

U(λ,w) = 0̃,
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where

P̃ (x) =

(
p(x) q(x)

s(x) r(x)

)
,

q(x) and s(x) are real-valued continuous functions on the interval [0, π].

Remark 2.1. In view of [8, Remark 2.1] without loss of generality we can

assume that s(x) ≡ q(x).

Lemma 2.2. The eigenvalues of the boundary value problem (2.2) are real,

simple and form a countable set without finite limit points.

The proof of this lemma is similar to that of [4, Lemma 2.1].

It should be noted that there exists a unique solution

w(x, λ) =

(
u(x, λ)

v(x, λ)

)
of the Dirac equation ˜̀w(x) = λw(x), 0 < x < π,

satisfying the initial condition

(2.3) u(0, λ) = cosα, v(0, λ) = − sinα;

moreover, for each fixed x ∈ [0, π] the functions u(x, λ) and v(x, λ) are entire

functions of λ. The proof of this assertion is similar to that of [18, Chapter 1,

§ 1, Theorem 1.1] with obvious modifications.

Let us introduce the boundary condition

(2.4) U2(w) := (sin γ, cos γ)w(π) = v(π) cos γ + u(π) sin γ = 0,

where γ ∈ [0, π).

Along with problem (2.2) consider the following boundary value problem

(2.5)
˜̀w(x) = λw(x), 0 < x < π,

U(w) = 0̃,

where U(w) =
(
U1(w)
U2(w)

)
(see (1.2) and (2.4)).

The problem (2.5) has been considered in [7], where the authors study the

oscillation properties of the eigenvector-functions of this problem. The eigenva-

lues λk = λk(α, γ), k ∈ Z, of problem (2.5) are real, algebraically simple and the

values range from −∞ to +∞, and can be numerated in increasing order on the

real axis.

To study the oscillatory properties of eigenvector-functions of problem (2.2),

we introduce the Prüfer angular variable

(2.6) θ(x, λ) = cot−1(u(x, λ)/v(x, λ))
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(see [9, Chapter 8, § 3]), or more precisely,

(2.7) θ(x, λ) = arg{u(x, λ) + iv(x, λ)}.

We recall that u, v have fixed initial values for x = 0, and all λ, given by

(2.3). We define initially

(2.8) θ(0, λ) = −α,

in view of (2.3). For other x and λ, θ(x, λ) is given by (2.7) (or (2.6)) except

for an arbitrary multiple of 2π, since u and v cannot vanish simultaneously.

This multiple of 2π is to be fixed so that θ(x, λ) satisfies (2.7) and is continuous

in x and λ. Since the (x, λ)-region, namely, 0 ≤ x ≤ π, −∞ < λ < +∞, is

simply-connected, this defines θ(x, λ) uniquely.

Remark 2.3. From (2.7) it is obvious that the zeros of the functions u(x, λ)

and v(x, λ) are the same as the occasions on which θ(x, λ) is an odd or even

multiple of π/2, respectively.

Remark 2.4. In virtue of [7, Theorem 1] the eigenvalues λk(α, γ), k ∈ Z, of

problem (2.5) can be numbered in increasing order on the real axis so that the

angular function θ(x, λk(α, γ)) at x = π satisfy the condition

θ(π, λk(α, γ)) = −γ + kπ.

The next lemma follows from [7, Lemmas 1–3 and Theorem 2] and is useful

in the sequel.

Lemma 2.5. (a) θ(x, λ) satisfies the differential equation, with respect to x,

(2.9) θ′ = λ+ p cos2 θ + r sin2 θ +
1

2
(q + s) sin 2θ.

(b) If λ > λ∗, then as x increases, θ cannot tend to a multiple of π/2 from

above, and as x decreases, θ cannot tend to a multiple of π/2 from below. If

λ < λ∗, then as x increases, θ cannot tend to a multiple of π/2 from below, and as

x decreases, θ cannot tend to a multiple of π/2 from above, where λ∗ = λ0(α, α).

(c) As λ increases, for fixed x, the function θ is increasing; in particular,

θ(π, λ) is a strictly increasing function of λ.

For the function

Φ(λ) =
λ cosβ + a1
λ sinβ + b1

we have

Φ′(λ) =
−σ

(λ sinβ + b1)2
.

Since σ > 0 (see (1.4)), it follows that for β = 0 the function Φ(λ) is strictly

decreasing on the interval (−∞,+∞), and we have lim
λ→±∞

Φ(λ) = ∓∞; for β 6= 0
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the function Φ(λ) is decreasing on each of the intervals (−∞,−b1/sinβ) and

(−b1/sinβ,+∞), and we have

lim
λ→−b1/sin β−0

Φ(λ) = −∞, lim
λ→−b1/sin β+0

Φ(λ) = +∞, lim
λ→±∞

Φ(λ) = cotβ.

Following arguments of [11, p. 251] and taking into account Remark 2.4, we define

a continuous function %(λ), λ ∈ R, as follows:

%(λ) = − cot−1 Φ(λ) for β = 0,

%(λ) =

− cot−1 Φ(λ) if λ ∈ (−∞,−b1/sinβ],

− cot−1 Φ(λ)− π if λ ∈ (−b1/sinβ,+∞),
for β 6= 0.

It is obvious that

cot %(λ) = −Φ(λ) = −λ cosβ + a1
λ sinβ + b1

, %

(
− b1

sinβ

)
= −π.

It follows from the above consideration that the function %(λ) is strictly decreas-

ing on R. Moreover, we have

(2.10) lim
λ→−∞

%(λ) = −β, lim
λ→+∞

%(λ) = −β − π.

Theorem 2.6. The eigenvalues λk, k ∈ Z, of problem (2.2) can be numbered

in ascending order on the real axis so that the corresponding angular function

θ(x, λk) at x = π satisfy the condition

(2.11) θ(π, λk) = %(λk) + kπ.

Proof. By virtue of statement (c) of Lemma 2.5, θ(π, λ) is a strictly in-

creasing function of λ, λ ∈ R. Moreover, by Remark 2.1 it follows from [7, (10)]

that

(2.12) θ(π, λ)→ −∞ as λ→ −∞, θ(π, λ)→ +∞ as λ→ +∞.

Note that the eigenvalues of problem (2.2) are the roots of the equation

(2.13) (λ cosβ + a1) v(π, λ) + (λ sinβ + b1)u (π, λ) = 0.

Equation (2.13) can be expressed in the following equivalent form:

(2.14) θ(π, λ) = %(λ) + kπ, k ∈ Z.

It follows from relations (2.10), (2.12) and the properties of continuity and strict

monotonicity of functions θ(π, λ) and %(λ) that for each k ∈ Z there exists

a unique root λ = λk of equation (2.14), i.e.

θ(π, λk) = %(λk) + kπ, k ∈ Z,

where . . . < λ−k < . . . < λ−1 < λ0 < λ1 < . . . < λk < . . . �
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Remark 2.7. By virtue of Theorem 2.6 and the definition of the function

%(λ) when numbering the eigenvalues of problem (2.2) will be proceed from the

following consideration: the zero sequence number will be assigned to eigenvalue

which is contained in (λ−1(α, 0), λ0(α, 0)] and is closest to λ0(α, 0).

3. The classes Sνk , k ∈ Z, ν ∈ {+,−},
and global bifurcation of solutions of problem (1.1)–(1.3)

in the case f ≡ 0

Consider E = C
(
[0, π];R2

)
∩ {w : U1(w) = 0} with the usual norm

‖w‖ = max
x∈[0,π]

|u(x)|+ max
x∈[0,π]

|v(x)|;

then E is a Banach space. Let S be the subset of E given by

S = {w ∈ E : |u(x) + |v(x)| > 0, for all x ∈ [0, π]}

with metric inherited from E. For each w =
(
u
v

)
∈ S we define θ(w, · ) to be

continuous function on [0, π] satisfying

cot(w, x) =
u(x)

v(x)
, θ(w, 0) = −α

(see, e.g. [8], [11]). It is apparent that θ : S × [0, π] → R is continuous. From

(2.8) and (2.11) we have

(3.1) θ(wk, 0) = −α, θ(wk, π) = %(λk) + kπ, k ∈ Z,

where wk(x) is an eigenfunction corresponding to the eigenvalue λk of prob-

lem (2.2).

For each k ∈ Z and each λ ∈ R let S+
k, λ be the set of functions w =

(
u
v

)
∈ S

satisfying the following conditions:

(i) θ(w, π) = %(λ) + kπ;

(ii) the function u(x) is positive in a neighbourhood of x = 0;

(iii) if β = 0, k > 0 or β = 0, k = 0, %(λ) ≥ −α or β 6= 0, k > 1 or

β 6= 0, k = 0, 1, %(λ) ≥ −α, then for fixed w, as x increases from 0 to π,

the function θ cannot tend to a multiple of π/2 from above, and as x

decreases, the function θ cannot tend to a multiple of π/2 from below;

if β = 0, k < 0 or β = 0, k = 0, %(λ) < −α or β 6= 0, k < 1 or β 6= 0,

k = 0, 1, %(λ) < −α, then for fixed w, as x increases, the function θ

cannot tend to a multiple of π/2 from below, and as x decreases, the

function θ cannot tend to a multiple of π/2 from above.

Let S−k,λ = −S+
k, λ and Sk,λ = S+

k,λ ∪ S
−
k,λ. It follows from (3.1), Remark 2.7

and statement (b) of Lemma 2.5 that for each λ ∈ R the sets S+
k,λ, S−k,λ and Sk,λ,

k ∈ Z, are nonempty.
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From now on ν will denote an element of {+,−} that is, either ν = + or

ν = −.

Remark 3.1. It follows from the definition of the sets Sνk,λ, k ∈ Z, that for

each λ ∈ R these sets are disjoint and open in E. Furthermore, if w ∈ ∂Sνk,λ,

then there exists t ∈ [0, π] such that |w(t)| = 0, i.e. u(t) = v(t) = 0 (see [8]).

Now we define the sets Sk and Sνk , k ∈ Z, as follows:

Sk =
⋃
λ∈R

Sk,λ and Sνk =
⋃
λ∈R

Sνk,λ.

In view of Remark 3.1 the sets Sk and Sνk , k ∈ Z, are disjoint and open in E.

Moreover, if w ∈ ∂Sνk , k ∈ Z, then there exists a point t ∈ [0, π] such that

|w(t)| = 0, i.e. u(t) = v(t) = 0.

Lemma 3.2 ([8, Lemma 2.8]). If (λ,w) ∈ R × E is a solution of problem

(1.1)–(1.3) and w ∈ ∂Sνk , then w ≡ 0̃ (more precisely, u ≡ 0 and v ≡ 0).

Let Ê = E ⊕ R be the Banach space with the norm

‖ŵ‖ =

∥∥∥∥(wη
)∥∥∥∥ = ‖w‖+ |η|.

Let us define the operator L by

L(ŵ) = L

(
w

η

)
=

(
`(w)

a1v(π) + b1u (π)

)
with the domain

D(L) =

{
ŵ =

(
w

η

)
∈ Ê : w ∈ C1

(
[0, π];R2

)
,

η = −(v(π) cosβ + u(π) sinβ)

}
.

Obviously, the operator L is well defined in Ê. Then linear problem (2.1) takes

the form

(3.2) Lŵ = λŵ,

i.e. the eigenvalues λk, k ∈ Z, of problem (2.1) and the operator L coincide, and

between the eigenvector-functions, there is an one-to-one correspondence

wk =

(
uk
vk

)
↔ ŵk =

(
wk
ηk

)
=

( uk
vk
ηk

)
,

ηk = −(vk(π) cosβ + uk(π) sinβ).

It is obvious that L is a closed (nonself-adjoint) operator in Ê with compact

resolvent.
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We define the operators F : R× Ê → Ê and G : R× Ê → Ê as follows:

F (λ, ŵ) = F

(
λ,

(
w

η

))
=

(
f(x,w, λ)

0

)
=

 f1(x,w, λ)

f2(x,w, λ)

0

 ,

G(λ, ŵ) = G

(
λ,

(
w

η

))
=

(
g(x,w, λ)

0

)
=

 g1(x,w, λ)

g2(x,w, λ)

0

 ,

where η = −(v(π) cosβ + u(π) sinβ). Then problem (1.1)–(1.3) reduces to the

nonlinear problem

(3.3) Lŵ = λŵ + F (λ, ŵ) +G(λ, ŵ).

i.e., there is a one-to-one correspondence

(λ,w)↔ (λ, ŵ)

between solutions of these problems. If λ = 0 is not an eigenvalue of the linear

problem (2.1), then L−1 exists and L−1 : Ê → Ê. We define the operators

L̂ : Ê → Ê, F̂ : R× Ê → Ê and Ĝ : R× Ê → Ê as follows:

L̂ = L−1, F̂ = L−1F and Ĝ = L−1G.

Then problem (3.3) (or (1.1)–(1.3)) can be written in the following equivalent

form:

(3.4) ŵ = λL̂ŵ + F̂ (λ, ŵ) + Ĝ(λ, ŵ).

Since L has the compact resolvent in Ê, we can regard L̂ as a completely con-

tinuous operator in Ê. Hence F̂ : R× Ê → Ê and Ĝ : R× Ê → Ê are completely

continuous. Moreover, by virtue of (1.6), we have

(3.5) Ĝ(λ, ŵ) = o(‖ŵ‖) as ‖ŵ‖ → 0,

uniformly in λ ∈ Λ for every bounded interval Λ ⊂ R. Let

Ŝνk = {ŵ ∈ Ê : w ∈ Sνk}, Ŝk = {ŵ ∈ Ê : w ∈ Sk}, k ∈ Z.

We denote by Ĉ the closure in R × Ê of the set of nontrivial solutions of prob-

lem (3.4). We suppose that

(3.6) f ≡ 0̃

(in effect, we suppose that the nonlinearity h itself satisfies (1.6)). In this case

problem (1.1)–(1.3) is equivalent to the following problem

(3.7) ŵ = λL̂ŵ + Ĝ(λ, ŵ).
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Note that problem (3.7) is of the form (0.1) of [21] (see also [14]). The lineariza-

tion of (3.7) at ŵ = 0̂ =
(

0
0
0

)
is the linear problem

(3.8) ŵ = λL̂ŵ.

It is obvious that problem (3.8) is equivalent to the linear problem (2.1) (also to

problem (3.2)). For problem (3.7) we the have the following global bifurcation

result.

Theorem 3.3. Suppose that (3.6) holds. Then for each k ∈ Z and each ν

there exists a continuum Ĉνk of solutions of problem (3.7) which contains (λk, 0̂),

lies in
(
R× Ŝνk

)
∪
{(
λk, 0̂

)}
and is unbounded in R× Ê.

Proof. If λ = 0 is not an eigenvalue of problem (3.2) the proof of this

statement is similar to that of [21, Theorem 2.3] with use the above arguments

and relation (3.5). If λ = 0 is an eigenvalue of (3.2), then replacing ` by `+ε (we

can obviously choose ε in a way that the number zero will not be an eigenvalue

of the new linear problem), and passing to a limit using the already established

result and the completely continuity of L̂ and Ĝ, completes the proof of this

theorem. �

Since there exists an isomorphism (λ, ŵ)↔ (λ,w) between solutions of prob-

lem (3.7) and (1.1)–(1.3), Theorem 3.3 yields the following result.

Theorem 3.4. Suppose that (3.6) holds. Then for each k ∈ Z and each ν

there exists a continuum Cνk of solutions of problem (1.1)–(1.3) which contains(
λk, 0̃

)
, lies in (R× Sνk ) ∪ {(λk, 0̃)} and is unbounded in R× E.

4. Global bifurcation of solutions of problem (1.1)–(1.3)

in the general case

We say that (λ, 0̃) is a bifurcation point of problem (1.1)–(1.3) with respect

to the set R × Sνk , k ∈ Z, if any small neighbuorhood of this point there is

a solution of this problem which is contained in R× Sνk .

To study the bifurcation of solutions of problem (1.1)–(1.3) we consider the

following approximation problem

(4.1)
`w(x) = λw(x) + f(x, |w(x)|εw(x), λ) + g(x,w(x), λ), 0 < x < π,

U(λ,w) = 0̃,

where ε ∈ (0, 1]. By virtue of (1.5) for any ε ∈ (0, 1] we have

(4.2) f(x, |w(x)|εw(x), λ) = o(|w|) as |w| → 0,

uniformly in x ∈ [0, π] and λ ∈ Λ. Then, because of Theorem 3.4, for each k ∈ Z
and each ν there exists an unbounded continuum Cνk, ε of solutions of problem

(4.1) such that

(λk, 0̃) ∈ Cνk,ε ⊂ (R× Sνk ) ∪
{

(λk, 0̃)
}
.
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Lemma 4.1. For each k ∈ Z and each ν and for sufficiently small τ > 0 there

exists a solution (λτ , wτ ) of the nonlinear problem (1.1)–(1.3) which satisfies the

conditions wτ ∈ Sνk and ‖wτ‖ = τ .

Proof. It follows from the above reasoning that for any ε ∈ (0, 1] there

exists a solution (
λτ,ε, wτ, ε

)
=

(
λτ,ε,

(
uτ,ε
vτ,ε

))
of problem (4.1) such that wτ,ε ∈ Sνk and ‖wτ,ε‖ = τ .

Obviously,
(
λτ,ε, wτ,ε

)
solves the nonlinear problem

(4.3)
`w(x) = λw(x) + Pτ,ε(x)w(x) + g(x,w(x), λ), 0 < x < π,

U(λ,w) = 0̃.

where

Pτ,ε(x) =

(
ϕτ,ε(x) ψτ,ε(x)

φτ, ε(x) ωτ,ε(x)

)
and the functions ϕτ,ε(x), ψτ,ε(x), φτ,ε(x) and ττ,ε(x) are determined as follows:

(4.4)

ϕτ,ε(x) =
f1(x, |wτ, ε(x)|εuτ,ε(x), |wτ, ε(x)|εvτ,ε(x), λτ,ε)uτ,ε(x)

u2τ,ε(x) + v2τ,ε(x)
,

ψτ,ε(x) =
f1(x, |wτ,ε(x)|εuτ,ε(x), |wτ,ε(x)|εvτ,ε(x), λτ,ε)vτ,ε(x)

u2τ,ε(x) + v2τ,ε(x)
,

φτ,ε(x) =
f2(x, |wτ,ε(x)|εuτ,ε(x), |wτ,ε(x)|εvτ,ε(x), λτ,ε)uτ,ε(x)

u2τ,ε(x) + v2τ,ε(x)
,

ωτ,ε(x) =
f2(x, |wτ,ε(x)|εuτ,ε(x), |wτ,ε(x)|εvτ,ε(x), λτ,ε) vτ,ε(x)

u2τ,ε(x) + v2τ,ε(x)
.

By (1.6) the linearization of the nonlinear eigenvalue problem (4.3) at w = 0 is

the linear eigenvalue problem

(4.5)
`w(x) = λw(x) + Pτ,ε(x)w(x), 0 < x < π,

U(λ,w) = 0̃.

By [16, Chapter 4, § 2, Theorem 2.1] and Theorem 3.4 the point (λk,τ,ε, 0̃) is an

only bifurcation point of problem (4.3) with respect to the set R× Sνk , and this

point corresponds to a continuous branch of nontrivial solutions of this problem,

where λk,τ,ε is the kth eigenvalue of the linear problem (4.5). Hence to each

small τ > 0 we can assign a small ρτ,ε > 0 such that

(4.6) λτ,ε ∈ (λk,τ,ε − ρτ,ε, λk,τ,ε + ρτ,ε).

In view of (1.5) it follows from (4.4) that

(4.7) |ϕτ,ε(x)|, |ψτ,,ε(x)| ≤M, |φτ,ε(x)|, |ωτ,,ε(x)| ≤ K, x ∈ [0, π].
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Let wk,τ,ε, k ∈ Z, be the eigenvector-function corresponding to the eigenvalue

λk,τ,ε of problem (4.5). In virtue of (2.9) we have

θ′k(x) =λk +
1

2
{p(x) + r(x)}+

1

2
{p(x)− r(x)} cos 2 θk(x),(4.8)

θ′k,τ,ε(x) =λk,τ,ε + {p(x) + r(x) + ϕτ,ε(x) + ωτ,ε(x)}(4.9)

+
1

2
{p(x) + ϕτ,ε(x)− r(x)− ωτ,ε(x)} cos 2θτ,ε(x)

+
1

2
{ψτ,ε(x) + φτ,ε(x)} sin 2θτ,ε,

where θk(x) = θ(wk, x) and θk,τ,ε(x) = θ(wk,τ,ε, x). Moreover, it follows from

(2.8) and (2.11) that

(4.10)
θk(0) = θk,τ,ε(0) = −α, θk(π) = %(λk) + kπ,

θk,τ,ε(π) = %(λk,τ,ε) + kπ.

Integrating both sides of (4.8) and (4.9) from 0 to π and using (4.10) we obtain

ρ(λk) + kπ + α =λkπ +
1

2

∫ π

0

{p(x) + r(x)} dx

+
1

2

∫ π

0

{p(x)− r(x)} cos 2θk(x) dx,

ρ(λk,τ,ε) + kπ + α =λk,τ,επ +
1

2

∫ π

0

{p(x) + r(x) + ϕτ,ε(x) + ωτ, ε(x)} dx

+
1

2

∫ π

0

{p(x) + ϕτ,ε(x)− r(x)− ωτ,ε(x)} cos 2θk,τ,ε(x) dx

+
1

2

∫ π

0

{ψτ,ε(x) + φτ,ε(x)} sin 2θk,τ,ε(x) dx,

respectively. Subtracting the first equality from the second equality we obtain

ρ(λk,τ,ε) − ρ(λk) = (λk,τ,ε − λk)π +
1

2

∫ π

0

{ϕτ, ε(x) + ωτ,ε(x)} dx(4.11)

+
1

2

∫ π

0

{p(x) + ϕτ,ε(x)− r(x)− ωτ,ε(x)} cos 2θk,τ,ε(x) dx

+
1

2

∫ π

0

{ψk,τ,ε(x) + φτ,ε(x)} sin 2θk,τ,ε(x) dx

− 1

2

∫ π

0

{p(x)− r(x)} cos 2θk(x) dx.

It follows from [15, Lemma 4.3] that, for sufficiently large |k|, the following

relations hold:

(4.12)

∫ π

0

{p(x) + ϕτ,ε(x)− r(x)− ωτ,ε(x)} cos 2θk,τ,ε(x) dx = O

(
1

k

)
,
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0

{ψτ,ε(x) + φτ,ε(x)} sin 2θk,τ,ε dx = O

(
1

k

)
,(4.13) ∫ π

0

{p(x)− r(x)} cos 2θk(x) dx = O

(
1

k

)
.(4.14)

Since the function %(λ) is strictly decreasing on R it follows from (2.10) that

(4.15) |ρ(λk,τ,ε)− ρ(λk)| < π.

Using (4.7) and (4.12)–(4.15) from (4.11) we obtain

(4.16) |λk,τ,ε − λk| ≤
1

2
(M +K) + 1 + ck

where ck = O(1/k). Then by virtue of (4.16) it follows from (4.6) that

(4.17) λτ, ε ∈
[
λk − c̃k − ρ0, λk + c̃k + ρ0

]
,

where c̃k = (M +K)/2 + 1 + ck, ρ0 = sup
τ,ε

ρτ,ε > 0.

Since ‖wτ,ε‖ = τ for 0 < ε ≤ 1, f, g ∈ C([0, π] × R2 × R;R2) and λτ,ε ∈
[λk − c̃k − ρ0, λk + c̃k + ρ0] for 0 < ε ≤ 1 (see (4.17)) it follows from (4.1) that

the set {wτ,ε ∈ E : 0 < ε ≤ 1} is bounded in C1([0, π];R2). Then the set

{wτ,ε ∈ E : 0 < ε ≤ 1} is precompact in E by the Arzelà–Ascoli theorem.

Let {εn}∞n=1 ⊂ (0, 1) be a sequence such that εn → 0 and (λτ,εn , wτ,εn) →
(λτ , wτ ) in R×E. Taking the limit in (4.1) we see that (λτ , wτ ) is a solution of

problem (1.1)–(1.3). Note that wτ ∈ Sνk = Sνk ∪ ∂Sνk . Since ‖wτ‖ = τ it follows

from Lemma 3.2 that wτ ∈ Sνk . �

Corollary 4.2. The set of bifurcation points of problem (1.1)–(1.3) with

respect to the set R× Sνk is nonempty.

Lemma 4.3. Let {εn}∞n=1 ⊂ (0, 1) be a sequence converging to 0. If (λεn , wεn)

in R × Sνk is a solution of problem (4.1) corresponding to ε = εn and sequence{
(λεn , wεn)

}∞
n=1

converges to (ζ, 0̃) in R× E, then ζ ∈ Ik, where Ik = [λk − c̃k,
λk + c̃k].

The proof of this lemma is similar to that of [8, Lemma 5.3].

Corollary 4.4. If (λ, 0̃) is a bifurcation point of problem (1.1)–(1.3) with

respect to the set Sνk , then λ ∈ Ik.

For each k ∈ Z and each ν, let D̃νk ⊂ C denote the union of all connected

components Dνk, λ of C emanating from bifurcation points (λ, 0̃) ∈ Ik × {0̃} with

respect to the set R × Sνk . It follows from Corollaries 4.2 and 4.4 that D̃νk 6= ∅.
Note that Dνk = D̃νk ∪ (Ik × {0̃}) is a connected subset of R × E, but D̃νk is not

necessarily connected in R× E.

Theorem 4.5. For each k ∈ Z and each ν the connected component Dνk of C
lies in (R× Sνk ) ∪ (Ik × {0̃}) and is unbounded in R× E.
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The proof of this theorem is similar to that of [2, Theorem 1.3] with the use

Lemmas 4.1, 4.3 and Corollaries 4.2, 4.4.

Since between solutions of problem (1.1)–(1.3) and (3.3) there exists an iso-

morphism (λ,w)↔ (λ, ŵ) Theorem 4.5 yields the following result.

Theorem 4.6. For each k ∈ Z and each ν the connected component D̂νk ={
ŵ ∈ Ê : w ∈ Dνk

}
of Ĉ lies in

(
R× Ŝνk

)
∪
(
Ik×{0̂}

)
and is unbounded in R× Ê.
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[16] M.A. Krasnosel’skĭı, Topological Methods in the Theory of Nonlinear Integral Equations,

Macmillan, New York, 1965.

[17] A.C. Lazer and P.J. McKenna, Global bifurcation and a theorem of Tarantello, J. Math.

Anal. Appl. 181 (1994), no. 3, 648–655.



Global Bifurcation in Nonlinear Dirac Broblems 831

[18] B.M. Levitan and I.S. Sargsjan, Introduction to Spectral Theory; Selfadjoint Ordinary

Differential Operators, Transl. Math. Monogr., vol. 39, Amer. Math. Soc., Providence,

R.I., 1975.

[19] R. Ma and B. Thompson, Nodal solutions for a nonlinear fourth-order eigenvalue prob-

lem, Acta Math. Sinica (Engl. Ser.) 24 (2008), no. 1, 27–34.

[20] J. Przybycin, Some applications of bifurcation theory to ordinary differential equations

of the fourth order, Ann. Polon. Math. 53 (1991), no. 2, 153–160.

[21] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal.

7 (1971), 487–513.

[22] B.P. Rynne, Bifurcation from zero or infinity in Sturm–Liouville problems which are not

linearizable, J. Math. Anal. Appl. 228 (1998), 141–156.

[23] K. Schmitt and H.L. Smith, On eigenvalue problems for nondifferentiable mappings,

J. Differential Equations 33 (1979), no. 3, 294–319.

Manuscript received December 7, 2018

accepted April 5, 2019

Ziyatkhan S. Aliyev
Department of Mathematical Analysis

Baku State University

Baku AZ1148, AZERBAIJAN
and

Department of Differential Equations

Institute of Mathematics and Mechanics
NAS Azerbaijan

Baku AZ1141, AZERBAIJAN

E-mail address: z aliyev@mail.ru

Parvana R. Manafova

Department of Mathematical Analysis
Baku State University

Baku AZ1148, AZERBAIJAN

E-mail address: manafova.pervane@bk.ru

TMNA : Volume 54 – 2019 – No 2A


