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A GENERALIZED HAWKINS SIEVE
AND PRIME K-TUPLETS

JOHN LORCH

ABSTRACT. The Hawkins random sieve, obtained from a
simple probabilistic variation of Eratoshenes’s sieve, provides
a compelling model for the primes. Building on the Hawkins’
sieve, we introduce a general random sieve, and prove analogs
of both the Prime Number Theorem and Mertens’ theorem.
Applications include a new probabilistic model for prime
k-tuplets.

1. Introduction.

1.1 Purpose. In this paper, we introduce a natural generalization
of the Hawkins’ random sieve, and prove analogs of both the Prime
Number Theorem (PNT) and Mertens’ theorem in the more general
setting. As an application we present a new probabilistic model for
prime k-tuplets.

1.2 Background. When faced with the complexity of prime dis-
tribution theory, it is tempting to employ mathematical models. One
of the most compelling models for the prime numbers is known as
the Hawkins’ primes. The Hawkins’ model, first introduced by David
Hawkins [13], is based on a simple stochastic variation of the sieve of
Eratosthenes. Hawkins’ sieve works as follows: Starting with all nat-
ural numbers two and larger, we identify X1 = 2 as our first ‘sieving
number.’ In the first step we independently sieve numbers from our
list with probability 1/X1, and identify X2 as the smallest surviving
number which is larger than X1. In the second step, we sieve numbers
from our remaining list with probability 1/X2 and identify X3 as the
smallest surviving number which is larger than X2. If we carry on with
the process, we produce a list {X1, X2, . . . , } of sieving numbers which
are called Hawkins’ primes.

2000 AMS Mathematics Subject Classification. Primary 11B05, 11N05, 60F15,
60G35.

Received by the editors on October 4, 2004.

Copyright c©2007 Rocky Mountain Mathematics Consortium

533



534 J. LORCH

A good model should be accurate enough to yield useful information,
yet simple enough to be approachable. The Hawkins’ model appears
to be accurate, in that it shares two important characteristics with the
real primes, see [13]:

• The Hawkins’ primes have the same asymptotic density as the real
primes.

• Like the real primes, the events of Hawkins primality are interde-
pendent.

Further, the model has proved to be approachable. Results established
for the Hawkins’ primes parallel many of the famous existing results
and conjectures concerning the distribution of primes, including PNT,
Mertens’ theorem, the twin primes conjecture, and the Riemann hy-
pothesis. (A sampling is given in [3, 14, 19 21, 24]. See [18] for a
survey of such results.) For example, letting Xn denote the nth mem-
ber of a Hawkins’ prime sequence, the analogs of PNT and Mertens’
theorem, respectively, are (see [21, 24]):

Xn ∼ n log n a.s. and
∏
k≤n

(1− 1/Xk)−1 ∼ log n a.s.

(Unfortunately, but perhaps not surprisingly, the analog of Mertens’
theorem predicted by the Hawkins’ model fails to detect the tantalizing
factor of eγ which is present in the ‘real’ Mertens’ theorem, and which
reflects the special nature of the primes, see [12]. We are reminded
that the Hawkins’ model is not entirely ideal.)

There have been, more or less, two types of techniques used to prove
probabilistic results about the Hawkins’ primes. The first features
clever tinkering with limit theory of various types of random variables,
including orthogonal random variables and martingales, e.g., see [14,
20, 21]. The second involves a frontal approach in which one directly
computes expectations of random variables by constructing an appro-
priate probability measure on a sample space of sequences, e.g., see
[24]. The first technique is elegant, the second is flexible, and both are
effective. In the sequel, as we consider a generalization of the Hawkins’
sieve, we find that a marriage of these techniques is useful.

1.3 Main results. In Hawkins’ original model, a sieving number
n sieves subsequent numbers with probability 1/n. We generalize
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the model by simply allowing sieving numbers n to sieve subsequent
numbers with (fixed) probability p(n). A sequence generated by such
a sieve will be called a set of Hawkins’ p-primes. The main questions
we must address are:

(1) What results can be established for the new model, and do they
bear resemblance to those for Hawkins’ original model?

(2) What kinds of interesting integer sequences can be modeled by
choosing p(n) appropriately?

Regarding the first question, given certain conditions on the decay of
p(n) we produce an asymptotic formula for the density of Hawkins’
p-primes, see Theorem 2.1. Further, with additional conditions on
p(n), we obtain asymptotic formulas for both Xn (the nth term of
a sequence of Hawkins’ p-primes) and

∏
k<n(1 − p(Xk))−1, thereby

obtaining probabilistic generalizations of PNT and Mertens’ theorem,
see Theorem 5.6 and Corollary 4.3, respectively. To obtain these
latter results, we employ a combination of techniques previously used
separately on the Hawkins’ sieve.

For the second question, we show that in the case p(n) = n−1 logk n,
the sieve provides a new probabilistic model for prime (k + 1)-tuplets.
These results and a precise definition of ‘prime k-tuplet’ may be found
in Section 6.

1.4 Additional comments and references. The present paper is
concerned with a collection of random sieves which generalize a random
model of the classical sieve. However, we note that there are well-known
nonrandom sieves which generalize the sieve of Eratosthenes. A key
example is Beurling’s generalized primes [2], which have been studied
extensively, e.g., see [1, 4 6]. Also, those seeking general background
in probabilistic number theory might wish to consult, for example, [7,
8, 15, 16, 22].

2. Generalized primes and their density. In this section we
introduce a random sieving procedure on the natural numbers remi-
niscent of the Hawkins’ sieve, and investigate the density of sequences
produced by the sieve.
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To begin, we set p : N≥2 → [0, 1]. The sieve works in the following
way. Starting with all natural numbers two and larger, we identify
X1 = 2 as our first ‘sieving number.’ In the first step we independently
sieve numbers from our list with probability p(X1), and identify X2 as
the smallest surviving number which is larger than X1. In the second
step, we sieve numbers from our remaining list with probability p(X2)
and identify X3 as the smallest surviving number which is larger than
X2. If we carry on with the process, we produce a list {X1, X2, . . . , }
of sieving numbers which we call Hawkins’ p-primes. In the case
p(n) = 1/n, this specializes to the Hawkins’ random sieve.

In the following theorem, we determine the local behavior of the
Hawkins’ p-primes, subject to some conditions on the decay of p(n).

Theorem 2.1. Let Sn denote the event that a natural number n
is a sieving number, and suppose that

∑
p2(k) converges while

∑
p(k)

diverges. Then

P (Sn) ∼
( ∑

k≤n

p(k)
)−1

.

Proof. We first show that

(1) P (Sn+1) = P (Sn)− p(n)P (Sn)2,

which, with Tn denoting the event complementary to Sn, is equivalent
to

(2) P (Tn+1) = P (Tn)2 + P (Tn)P (Sn) + p(n)P (Sn)2.

To verify (2), we begin with

(3) P (Tn+1) = P (Tn+1|Tn)P (Tn) + P (Tn+1|Sn)P (Sn),

and use elementary facts about conditional probability together with
the definition of the sieve to show

(4) P (Tn+1|Tn) = P (Tn) and P (Tn+1|Sn) = P (Tn) + ′(n)P (Sn).

The results of (4) and (3) together imply (2).
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With (1) in hand, we proceed with the proof of the theorem. If we
put gn = 1/P (Sn), then (1) together with basic facts about geometric
series gives

gn+1 =
gn

1− (p(n)/gn)
=

∞∑
k=0

gn

(
p(n)
gn

)k

= gn + p(n) +
p2(n)

gn − p(n)
.

Therefore,

(5) gn = g2 +
n−1∑
k=2

(gk+1 − gk) = g2 +
n−1∑
k=2

p(k) +
n−1∑
k=2

p2(k)
gk − p(k)

.

Our hypotheses on p(n) imply that the righthand-most sum in (5)
converges as n→∞. Therefore, from (5) we have

lim
n→∞ gn

⎡
⎣∑

k≤n

′(k)

⎤
⎦
−1

= 1,

concluding the proof.

3. Some random variables and their expectations. In order
to establish analogs of Mertens’ theorem and PNT for the Hawkins’
p-primes, we need the expected values of certain random variables
defined on a sample space of sequences. In this section, we specify
the sample space and associated probability measure, and we compute
the desired expected values. Techniques in this section are drawn from
Wunderlich [24].

3.1 Sample space and probability measure. Let X denote the
set of all strictly increasing sequences of integers larger than 1. A
set A ⊂ X is said to be elementary if there exists a finite sequence
{a1, a2, . . . , ak} ∈ X and an integer n > ak (called the order of A) for
which a sequence α lies in A if and only if the terms of α strictly less
than n are precisely a1, a2, . . . , ak. An elementary set A of order n will
be denoted by (a1, . . . , ak; n). Finally, let A denote the σ-field on X
generated by the collection of elementary sets.
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Theorem 3.1 [24]. Let p : N → [0, 1] be given. There is a
probability measure P on A defined recursively on elementary sequences
as follows :

(a) P ( ; 2) = 1.

(b) P (a1, a2, . . . , ak, n; n + 1) = P (a1, a2, . . . , ak; n)
∏k

i=1 (1− ′(ai)).

(c) P (a1, a2, . . . , ak; n+1)=P (a1, a2, . . . , ak; n)
(
1−∏k

i=1(1−′(ai))
)
.

Proof. The proof in case p(n) = 1/n is given by Wunderlich [24].
The same proof works in the more general setting.

3.2 Expectations. For the immediate future, our main concern will
be the following sequence of random variables.

Definition 3.2. For n ≥ 2 and α ∈ X , put

yn(α) =
∏
a∈α
a<n

(1− p(a))

for n > 2, and put y2(α) = 1.

Observe that when p(n) = 1/n and α is the sequence of ‘real’ primes,
we obtain

yn(α) =
∏
p∈α
p<n

(1− 1/p),

an asymptotic formula for which constitutes the ‘real’ Mertens’ theo-
rem. Also, note that yn is constant on any elementary set An of order
n, and we will often write y(An) in place of yn(α) for α ∈ An.

Lemma 3.3. Let n, k ∈ Z with n ≥ 2. We have

E[yk
n+1]− E[yk

n] =
(
(1− p(n))k − 1

)
E[yk+1

n ].

Proof. For α ∈ X , put

zn(α) =
{

yn(α) if n ∈ α,
1− yn(α) if n /∈ α,
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and observe from Theorem 3.1 that if α is any sequence in an elementary
set An, then

(6) P (An) =
n−1∏
j=3

zj(α).

Now, appealing to (6) and Definition 3.2, we have

E[yk
n+1] =

∑
An+1

yk(An+1)P (An+1)

=
∑
An

P (An)(1−y(An))yk(An)+P (An)y(An)yk(An)(1−p(n))k

=
∑
An

P (An)((1− p(n))k − 1)yk+1(An) + P (An)yk(An)

= ((1− p(n))k − 1)E[yk+1
n ] + E[yk

n],

where the sums extend over all elementary sets of the indicated order,
and the two types of terms in the second sum correspond to whether
or not n lies in a given An+1.

We now set about using the recursive formula in Lemma 3.3 to
compute E[yk

n], but before doing so, we place some conditions on the
sieving probabilities p(n).

Condition 3.4. Extend p to a function p : [2,∞)→ [0, 1] such that

(i) p is positive, continuous, and decreasing to zero, with p(2) < 1.

(ii)
∑

p(n) diverges.

(iii)
∑

p2(n) converges.

Lemma 3.5. Suppose that p satisfies Condition 3.4, and put I(n) =∫ n

2
p(t) dt. Then

E[y−1
n ] = I(n) + O(1) and E[yn] = I−1(n) + O(I−2(n)).
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Proof. By putting k = −1 in Lemma 3.3 and adding successive
differences, one obtains

(7) E[y−1
n ] = 1 +

n−1∑
k=2

p(k)
1− p(k)

.

Meanwhile, by putting k = 1 in Lemma 3.3 and recalling that (by the
Schwarz inequality) E2[yn] ≤ E[y2

n], we have

1
E[yn+1]

− 1
E[yn]

=
(

p−1(n)E2[yn]
E[y2

n]
− E[yn]

)−1

≥ 1
p−1 (n)− E[yn]

≥ p(n).

Therefore, by adding successive differences we obtain

(8) E−1[yn] ≥ 1 +
n−1∑
k=2

p(k).

Another application of the Schwarz inequality together with (7) and
(8) gives

(9) 1 +
n−1∑
k=2

p(k) ≤ E−1[yn] ≤ E[y−1
n ] = 1 +

n−1∑
k=2

p(k)
1− p(k)

.

From (9), parts (i) and (iii) of Condition 3.4 imply that E[y−1
n ] =

I(n) + O(1) and E−1[yn] = I(n) + O(1). The latter estimate implies
that E[yn] = I−1(n) + O(I−2(n)). In all three estimates, part (ii) of
Condition 3.4 ensures that the error terms are strictly smaller than the
leading terms.

Proposition 3.6. If p satisfies Condition 3.4 and k is a positive
integer, then

(a) E[y−k
n ] = Ik(n) + O(Ik−1(n)), and

(b) E[yk
n] = I−k(n) + O(I−(k+1)(n)).
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Proof. First, we note that I(n)p(n) is bounded as a consequence of
parts (i) and (iii) of Condition 3.4:

I(n)p(n) =
∫ n

2

p(n)p(t) dt ≤
∫ ∞

2

p2(t) dt <∞.

In particular, this implies that, for k ≥ 1,

(10) p2(n)Ik(n) = O(p(n)Ik−1(n)).

We apply induction to both statements in the theorem. Part (a) holds
for k = 1 by Lemma 3.5. Suppose now that k > 1 and the statement
holds for k − 1. Using the induction hypothesis, Lemma 3.3, and (10),
we have

E[y−k
n+1]− E[y−k

n ] =

[(
1 +

p(n)
1− p(n)

)k

− 1

]
E[y−(k−1)

n ]

=

[
kp(n)

1− p(n)
+ O

((
p(n)

1− p(n)

)2)]

× [
Ik−1(n) + O(Ik−2(n))

]
=

kp(n)Ik−1(n)
1− p(n)

+ O(p(n)Ik−2(n))

= kp(n)Ik−1(n) + O(p(n)Ik−2(n)),

where the last step is accomplished by expanding (1 − p(n))−1 as a
series and then applying (10) again for the error term. Part (a) then
follows by adding successive differences.

By Lemma 3.5, part (b) holds for k = 1. Now assume k > 1 and the
statement holds for k−1. Part (a) together with the Schwarz inequality
give

(11)
E[yk

n] ≥ E−1[y−k
n ] = (Ik(n) + O(Ik−1(n))−1

= I−k(n) + O(I−(k+1)(n)).

Using Lemma 3.3 we find that

E−1[yk
n+1]− E−1[yk

n] =
(

E[yk
n+1]E[yk

n]
E[yk

n]− E[yk
n+1]

)−1

=
[
E2[yk

n]−(kp(n)+ O(p2(n)))E[yk+1
n ]E[yn]

(kp(n)+ O(p2(n)))E[yk+1
n ]

]−1

.
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This together with the Schwarz inequality and the induction hypothesis
gives

E−1[yk
n+1]− E−1[yk

n] ≥
[

E2[yk
n]

(kp(n) + O(p2(n)))E[yk+1
n ]

]−1

≥ kp(n) + O(p2(n))
E[yk−1

n ]

=
kp(n) + O(p2(n))

I−(k−1)(n) + O(I−k(n))

= kp(n)Ik−1(n) + O(p(n)Ik−2(n)).

Adding successive differences then gives

E−1[yk
n] ≥ Ik(n) + O(Ik−1(n)),

which implies

(12) E[yk
n] ≤ I−k(n) + O(I−(k+1)(n)).

Equations (11) and (12) together imply part (b) of the theorem.

4. Mertens’ theorem. In this section we prove a strong proba-
bilistic analog of Mertens’ theorem for the Hawkins p-primes, subject
to certain conditions on the sieving function p.

Theorem 4.1 [24]. Suppose that xn is a sequence of random
variables on X with mean E[xn] and variance V [xn]. Suppose further
that we can choose functions E(n), V (n), and R(n) on N satisfying

E(n) ∼ E[xn], V (n) = O(V [xn]), and R(n) = V (n)/E2(n)

and

(a) lima→1

(
limn→∞

E(an)
E(an+1)

)
= 1 where E(a) = E([a]),

(b) R(n) is monotonically decreasing and
∑

R(k)/k converges,

(c) xn is monotonic in n when applied to any α ∈ X .

Then xn ∼ E(n) a.s.
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Condition 4.2. Extend p to a continuous function p : [2,∞)→ [0, 1]
such that

(i) lima→1

(
limn→∞ I(an+1)/I(an)

)
= 1, and

(ii)
∑

(n I(n))−1 converges,

where I(n) =
∫ n

2
′(t) dt.

Now we have the following analog of Mertens’ theorem.

Corollary 4.3. Suppose the sieving probability function p satisfies
Conditions 3.4 and 4.2. Then yn ∼ I−1(n) a.s.

Proof. By applying part (b) of Proposition 3.6 (valid here since we
are assuming Condition 3.4), we obtain

V [yn] = I−2(n) + O(I−3(n))− (I−1(n) + o(I−2(n)))2 = O(I−3(n)).

So, in applying Theorem 4.1 to yn, we should choose E(n) = I−1(n),
V (n) = I−3(n) and R(n) = I−1(n). Condition 4.2 then insures that
the three conditions of Theorem 4.1 will be satisfied, and the result
follows.

Remark 4.4. Observe that the special case p(n) = 1/n (the original
Hawkins’ sieve) does not satisfy part (ii) of Condition 4.2. Using these
techniques, somewhat different estimates for V [yn] are needed to obtain
an analog of Mertens’ theorem (and PNT) in this case. Interested
readers should refer to [24].

5. Limit theory and the prime number theorem. The
techniques used thus far, which have gained us an analog of Mertens’
theorem (Corollary 4.3), do not lend themselves well for an analog of
PNT for the Hawkins p-primes. In this section, we use the analog of
Mertens’ theorem together with limit theory for orthogonal random
variables to prove a version of PNT for Hawkins p-primes. Techniques
in this section are reminiscent of those in [14, 20, 21]. Those seeking a
refresher in conditional expectations and orthogonality should consult
either [9] or [17].
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5.1 Limit theory. Before approaching PNT, we establish the limit
theory of certain random variables. We begin with notation.

Notation 5.1. Let n ∈ Z+ and a sieving probability function p be
given.

(i) Xn denotes the random variable on X giving the nth generalized
prime.

(ii) Yn :=
∏

k≤n(1 − p(Xk))−1. (One may think of Yn as the nth
partial Euler product of Hawkins p-primes. Also, observe Yn = y−1

Xn
,

where yn is as in Definition 3.2.)

(iii) Put Un+1 = Y −1
n (Xn+1 −Xn).

(iv) Bn represents the sub σ-field of A generated by {Xj , Yj | j ≤ n}.

The following limit theorem for orthogonal random variables is par-
ticularly useful, see [17, Section 33].

Theorem 5.2. Let {Zn} be a sequence of orthogonal r.v.’s on a
probability space (Ω,A, μ).

(i) If
∑

log2 n · E|Zn|2 < ∞, then the series
∑

Zn converges in
L2(Ω) and a.s.

(ii) If
∑

(log n/bn)2 E|Zn|2 < ∞ with {bn} increasing to infinity,
then

1
bn

n∑
k=1

Zk −→ 0 a.s.

Proposition 5.3. Given a sieving probability function p, we have

lim
n→∞

(
1
n

∑
k≤n

Uk+1

)
= 1 a.s.

Proof. For j ∈ Z+, one may use the definition of the sieve (Section
2) to see that Xn+1 −Xn is geometric, with

(13) P (Xn+1 −Xn = j | Bn) = Y −1
n (1− Y −1

n )j−1.
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Then, via summation using (13), one obtains

(14) E[Un+1 − 1 | Bn] = 0,

and

(15) E[(Un+1 − 1)2 | Bn] = 1− Y −1
n ≤ 1.

Since Uk is Bn-measurable for k ≤ n, it follows from (14) that Un+1−1
is orthogonal to Uk − 1 for k ≤ n, and so {Un − 1 | n ∈ N} forms a
collection of orthogonal random variables.

To finish, from (15) we see that part (ii) of Theorem 5.2 applies with
bn = n1/2+ε to give

1
n1/2+ε

∑
k≤n

Uk+1 − 1 −→ 0 a.s.

In case ε = 1/2, this specializes to

1
n

∑
k≤n

Uk+1 −→ 1 a.s.

5.2 The prime number theorem. We now put our generalization
of Mertens’ theorem (Corollary 4.3) together with the limit theory given
above to obtain a generalization of the Prime Number theorem for
Hawkins’ p-primes.

Lemma 5.4. Suppose the sieving probability function p satisfies parts
(i) and (ii) of Conditions 3.4. Then

(a) Yn increases to infinity.

(b) If (Xn+1 p(Xn+1))/Yn → 0 a.s., then Xn ∼ n Yn a.s.

Proof. We begin with part (a). For a contradiction, suppose Yn

increases to a finite limit Y . Note that

Yn =
∏
k≤n

(1− p(Xk))−1 =
∏
k≤n

(
1 +

p(Xk)
1− p(Xk)

)
,
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yielding

Yn increases to Y ←→
∞∑

k=1

p(Xk)
1− p(Xk)

<∞←→
∞∑

k=1

p(Xk) <∞.

Meanwhile, appealing to Proposition 5.3, we have

0 <
Xn+1 −Xn

nY
=

1
nY

[(X2 −X1) + · · ·+ (Xn+1 −Xn)]

≤ 1
n

[
X2 −X1

Y1
+ · · ·+ Xn+1 −Xn

Yn

]

=
1
n

[U2 + · · ·+ Un+1] −→ 1 a.s.

Since Y is finite, it follows that Xn/n is bounded. This, taken together
with part (i) of Condition 3.4s and the fact that

∑
p(Xk) converges,

implies that
∑

p(n) converges, contradicting part (ii) of Condition 3.4.

For part (b), observe that

Xn+1Y
−1
n+1 −XnY −1

n = Xn+1(1− p (Xn+1))Y −1
n −XnY −1

n

= Y −1
n [(Xn+1 −Xn)−Xn+1 p(Xn+1)]

= Un+1 − Xn+1 p(Xn+1)
Yn

.

By adding successive differences and applying Proposition 5.3 and the
part (b) hypotheses, we obtain

Xn+1

nYn+1
=

1
n

∑
k≤n

Uk+1 − 1
n

∑
k≤n

Xn+1 p(Xn+1)
Yn

−→ 1− 0 = 1 a.s.

Therefore, Xn ∼ nYn.

The previous lemma tells us that Yn tends to infinity under rather
mild conditions on p, but that something stronger must be imposed in
order to force Xn ∼ nYn. This leads to our final condition on p:

Condition 5.5. Extend the sieving probability function p to a
continuous function p : [2,∞) → [0, 1] such that n p(n)/I(n) → 0 as
n→∞.
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Theorem 5.6. Suppose the sieving probability function p satisfies
Conditions 3.4, 4.2 and 5.5. Then

1
n

Xn ∼ Yn ∼ I(Xn).

(Here, the asymptotic equivalence n−1Xn ∼ I(Xn) is an analog of
PNT, while Yn ∼ I(Xn) is another analog of Mertens’ theorem.)

Proof. From Corollary 4.3 and Notation 5.1 we deduce that I(Xn) ∼
Yn. Further, note that

Yn+1Yn
−1 = (1− p(Xn+1))−1,

so Yn+1Y
−1
n → 1 a.s. Putting these facts together with Condition 5.5

gives

(16)
Xn+1 p(Xn+1)

Yn
=

Xn+1 p(Xn+1)
I(Xn+1)

· I(Xn+1)
Yn+1

· Yn+1

Yn

→ 0 · 1 · 1 = 0 a.s.

Due to (16), the hypotheses of part (b) of Lemma 5.4 are satisfied, and
we conclude that Xn ∼ nYn a.s. Therefore,

I(Xn) ∼ Yn ∼ 1
n

Xn a.s.

6. An application: Prime k-tuplets. In this section we present
evidence that certain choices for p(n) will yield probabilistic sieving
models for prime k-tuplets.

To begin, we recall that, given natural numbers 0 < a1 < a2 · · · <
ak−1, the k-tuplet conjecture asserts that the number of primes p ≤ x
such that each of p, p + 2a1, . . . , p + 2ak−1 is prime approaches

Ca1,... ,ak−1x

logk x

asymptotically, where Ca1,... ,ak−1 is a constant, and where we as-
sume that there are no divisibility conditions preventing all of p, p +
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2a1, . . . , p + 2ak−1 from being prime infinitely often. This conjecture,
including specific values for Ca1,... ,ak−1 , was given first by Hardy and
Littlewood [11] in the case of 2-tuples, and later generalized, see, for
example, [10].

Now, we wish to examine our results in the special case p(n) =
logk n/n, where k is a fixed nonnegative integer. In the case k = 0,
this is simply the original Hawkins’ sieve modeling the prime numbers,
and it is known [13, 21, 24] that

P (Sn) ∼ 1
log n

,

and

Xn ∼ n log n a.s. and Yn ∼ log n a.s.

In the case k ≥ 1, a moment’s work shows that the sieving probability
function p(n) satisfies Conditions 3.4, 4.2 and 5.5, so that Theorem 2.1,
Corollary 4.3 and Theorem 5.6 all apply.

Since I(n) = (k+1)−1 logk+1(n), from Theorem 2.1 we conclude that

P (Sn) ∼ (k + 1)
logk+1 n

,

which is (more or less) the conjectured asymptotic density of prime
(k + 1)-tuplets. So, for k ≥ 0, the sieving probabilities p(n) =
logk n/n are likely candidates for probabilistic sieving models for prime
(k + 1)-tuplets.

We now produce specific probabilistic analogs of Mertens’ theorem
and PNT for the prime (k + 1)-tuplets. From Theorem 5.6, in case
p(n) = logk n/n we have

(17) Yn ∼ n
logk+1 Xn

k + 1
∼ Xn,

so that taking logarithms on both sides of the latter equivalence yields

log n + (k + 1) log(log Xn)− log(k + 1) ∼ log Xn.

This implies that log n ∼ log Xn, and substituting back into (17) gives
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Theorem 6.1. In case p(n) = logk n/n, we have

Xn ∼ n

k + 1
logk+1 n a.s. and Yn ∼ 1

k + 1
logk+1 n a.s.
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