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GAUSS’S THREE SQUARES THEOREM
INVOLVING ALMOST-PRIMES

YINGCHUN CAI

ABSTRACT. Let Pr denote an almost prime with at most
r prime factors, counted according to multiplicity. In this
paper it is proved that, for every sufficiently large integer
n satisfying the conditions n ≡ 3 (mod 24) and 5 � n, the

equation n = x2
1 + x2

2 + x2
3 is solvable, with solutions of the

type xj = P106 (j = 1, 2, 3), or of the type x1x2x3 = P304.
These results constitute improvements upon the previous ones
due to V. Blomer and to G.S. Lű, respectively.

1. Introduction. Gauss proved the classical three squares theorem,
which states that all positive integers not of the form 4k(8m + 7) can
be represented as the sum of three squares. Even more, the number
of such representations can be given explicitly [10]. Up until now this
result is still one of the most elegant in the circle of additive number
theory.

It is conjectured that the three squares theorem still holds even if
multiplicative structures are imposed on the variables. The strongest
plausible conjecture in this respect concerns the sum of three squares
of primes, as long as its validity is not precluded by local conditions.
Here local conditions mean that

(1.1) n ≡ 3 (mod 24) and 5 � n.

The local conditions are necessary here since, for prime p > 5, we have
p2 ≡ 1 (mod 24) and p2 ≡ ±1 (mod 5).

This conjecture still remains open and is probably beyond the grasp
of modern number theory. Let Pr denote an almost prime with at
most r prime factors, counted according to multiplicity. Then the first
approximation to this conjecture is due to Blomer and Brűdern [2].
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They showed that every sufficiently large integer n, which satisfies the
local conditions (1.1), can be represented as the sum of three squares
of Pr, with

(1.2) r =

{
371, n is square-free,

521, otherwise.

In their paper [2] Blomer and Brűdern combined the vector sieve in
[3] with a mean value theorem which is deduced from the theory of
theta-functions and modular forms.

In 2008 Blomer [1] refined the mean value theorem in [2] and showed
that, for every sufficiently large n satisfying the conditions (1.1), the
equation n = x2

1 + x2
2 + x2

3 is solvable with x1, x2 and x3 of the type
P284.

By a weighted sieve of dimension exceeding one and the mean value
theorem in [2], Lű [9] proved that, for every sufficiently large integer n
satisfying the local conditions (1.1), the equation n = x2

1 + x2
2 + x2

3 is
solvable, with x1x2x3 = Pr, where

(1.3) r =

{
397, n is square-free,

551, otherwise.

Another topic about this conjecture involves the investigation of the
exceptional set. Let E(N) denote the number of positive integers not
exceeding N , satisfying the local conditions (1.1) and not represented
as the sum of three squares of primes. Then the first result in this
direction goes to Hua [6], who proved in 1938 that E(N) � N log−A N
for some positive A, and the best result was obtained by Harman and
Kumchev [5], E(N) � N (6/7)+ε.

The aim of this paper is to show that the power of the vector
sieve can be enhanced considerably by inserting a weighted process
into it. By combing the weighted vector sieve with the mean value
theorem developed by Blomer in [1], the following sharper results can
be obtained, which constitute improvements upon that of Blomer and
of Lű, respectively.

Theorem 1. For every sufficiently large integer n satisfying the local
conditions (1.1), the equation

(1.4) n = x2
1 + x2

2 + x2
3
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is solvable in square-free P106, and the number of solutions is �
n(1/2)−ε for any ε > 0.

Theorem 2. Every sufficiently large integer n, which satisfies the
local conditions (1.1), can be represented in the form

(1.5) n = x2
1 + x2

2 + x2
3

with x1x2x3 = P304, and the number of representations is � n(1/2)−ε

for any ε > 0.

2. Some preliminary lemmas. In this paper, n denotes a
sufficiently large integer satisfying the local condition (1.1). ε ∈
(0, 10−10). The constants in O-terms and �-symbols depend at most
upon ε. The letter p is reserved for prime numbers. Bold style letters
denote vectors of dimension three. As usual, μ(n), ϕ(n), τ(n), Ω(n)
denote the Mőbius function, Euler’s function, the number of divisors of
n and the number of prime factors (counted according to multiplicity)
of n, respectively. If pl | m but pl+1 � m, then we write pl‖m. We
use e(α) to denote e2πiα and eq(α) = e(α/q). We denote by

∑
x(q)

and
∑

x(q)∗ sums with x running over a complete system and a reduced
system of residues modulo q, respectively. If q is an odd integer, then
by (l/q) we denote the Jacobi symbol. We denote by N the set of
positive integers. For d = 〈d1, d2, d3〉 ∈ N3, l = 〈l1, l2, l3〉 ∈ N3, define
dl = 〈d1l1, d2l2, d3l3〉. The congruence l ≡ 0 (mod d) means that
lj ≡ 0 (mod dj), j = 1, 2, 3. Put

|d| = max
1≤j≤3

dj ,

μ2(d) = μ2(d1)μ
2(d3)μ

2(d3)

and

S(q, a) =
∑
x(q)

eq(ax
2),

Sd(q, a) =
3∏

i=1

S(q, ad2i ),
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d = 〈d1, d2, d3〉 ∈ N3,

A(q,d, n) =
1

q3

∑
a(q)∗

Sd(q, a)eq(−an),

S(n,d) =

∞∑
q=1

A(q,d, n),

S(n) = S(n, 〈1, 1, 1〉),
X =

π

4
S(n)n1/2.

By Siegel’s theorem in [10] and the Hilfssa̋tze 12 and 16 in Siegel [11],
we have

(2.1) S(n) � L(1, χ−4n)

log logn
�ε n

−ε

for n ≡ 3 (mod 8) and for all ε > 0. Hence, we may set

ω(d) = ω(n,d) =
S(n,d)

S(n)
.

For pθ‖n, θ ≥ 1, we define

fθ(p) =

{
p−1 − p−(1+θ)/2 − p−(3+θ)/2, θ ≡ 1 (mod 2),

p−1 − p−(2+θ)/2 −
(

−np−θ

p

)
p−(2+θ)/2, θ ≡ 0 (mod 2),

and

ω1(p) =

⎧⎨⎩
1+(−1/p)[(p−1)/p]+pfθ(p)

1+fθ(p)
, p | n,

p−(−1/p)
p+(−n/p) , p � n,

ω2(p) =

⎧⎨⎩
1+p2fθ(p)
1+fθ(p)

, p | n,
p(1+(n/p))
p+(−n/p) , p � n,

ω3(p) =

{
p+p3fθ(p)
1+fθ(p)

, p | n,
0, p � n.
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Lemma 1 (see [2]). For d ∈ N3 with μ2(d) = 1 and n which satisfies
the local condition (1.1), we have

ω(d) =
∏

pv‖d1d2d3

v≥1

ωv(p).

Lemma 2 (see [2]). For square-free d ∈ N and n satisfying the local
condition (1.1), set

(2.2) ω(d) = ω(d, n) =
∏
p|d

ω1(p),

and, for d ∈ N3 with square-free components, put di,j = (di, dj) for
1 ≤ i < j ≤ 3. Then the following statements hold.

(i) There exists a function g : N3 → R such that, for any d ∈ N3

with μ2(d) = 1, we have

ω(d) = ω(d1)ω(d2)ω(d3)g(d1,2, d1,3, d2,3).

(ii) There exists an absolute constant C > 0 such that, for any
d ∈ N3 such that μ2(d) = 1, we have

g(d1,2, d1,3, d2,3) ≤
(

max
1≤i<j≤3

di,j

)C

.

(iii) For any d ∈ N3 with μ2(d) = 1, we have the inequality

ω(d) ≤ ω̃(d1)ω̃(d2)ω̃(d3),

where ω̃ denotes the multiplicative function defined on square-free inte-
gers by

ω̃(p) =

{
p2/3, p | n,
2, p � n.
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(iv) For the function ω1, we have

ω1(p) ≤
⎧⎨⎩

1 + (1/p), if p | n and p ≡ −1 (mod 4),

3, if p | n and p ≡ 1 (mod 4),

[(p+ 1)/(p− 1)], if p � n.

Lemma 3 (see [1]). For a sufficiently large integer n satisfying the
local condition (1.1), let

A = {x ∈ N3 : x2
1 + x2

2 + x2
3 = n},

and for d ∈ N3 with square-free odd components, put

Ad = {x ∈ A : x ≡ 0 (mod d)}
= {x ∈ N3 : d21x

2
1 + d22x

2
2 + d23x

2
3 = n}

=
ω(d)

d1d2d3
X +R(n,d),

η =
1

192
− ε.

Then we have ∑
|d|≤nη

μ2(d)|R(n,d)| � n(1/2)−4ε,(2.3)

X =
π

4
S(n)n1/2 � n(1/2)−ε.(2.4)

Lemma 4 (see [2]). Let z0 ≥ 2. For l ∈ N3 with square-free odd
components and all prime factors of l1l2l3 exceeding z0, put

S(Al, z0) = �{x ∈ Al : p | x1x2x3 ⇒ p ≥ z0},
Ω′(p) = 3ω1(p)− 3ω2(p)

p
+

ω3(p)

p2
,

W (z) =
∏
p<z

(
1− Ω′(p)

p

)
,

H(n) =
∏
p|n

(
1 + p−1/6

)
,

s0 =
logD0

log z0
,

E = H4(n)Δ−1/2 log19 D0 +Δce−s0 logL n,
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where c and L are some absolute constants. Then for D0 ≥ z20 and
Δ ≥ 1 we have

S(Al, z0) = (W (z0) +O(E))
ω(l)

l1l2l3
X

+O

( ∑
|d|≤D0

p|d1d2d3⇒p<z0

μ2(d)|R(n,dl)|
)
.

For a fixed D ≥ 1 we define Rosser’s weights λ±(d) of order D as
follows: for d = p1p2 · · · pr with p1 > p2 > · · · > pr, let

λ+(d) =

⎧⎪⎨⎪⎩
(−1)r, if p1p2 · · · p2lp32l+1 < D

whenever 0 ≤ l ≤ (1/2)(r − 1),

0, otherwise,

λ−(d) =

{
(−1)r, if p1p2 · · · p2lp32l < D whenever 1 ≤ l ≤ (r/2),

0, otherwise.

Finally, put λ±(1) = 1 and λ±(d) = 0 if d is not square-free.

Lemma 5 (see [3, 7, 8]). Let P denote a set of primes, and put

P (z) =
∏
p<z

p∈A

p.

Then, for Rosser’s weights λ±(d) of order D, any integer n ≥ 1 and
real number z ≥ 2, we have

(2.5)
∑

d|(n,P (z))

λ−(d) ≤
∑

d|(n,P (z))

μ(d) ≤
∑

d|(n,P (z))

λ+(d).

For any multiplicative functions ω satisfying

(2.6)

{
0 < ω(p) < p, if p ∈ P,

ω(p) = 0, if p /∈ P,
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and

(2.7)
∏

w1≤p<w2

(
1− ω(p)

p

)−1

≤ logw2

logw1

(
1 +

L

logw1

)
,

(for all 2 ≤ w1 < w2, where L is a positive constant), set

V (z) =
∏
p<z

(
1− ω(p)

p

)
, s =

logD

log z
.

Then we have
(2.8)

V (z) ≥
∑

d|P (z)

λ−(d)
ω(d)

d
≥ V (z)

(
f(s) +O(e

√
L−s log−(1/3) D)

)
,

for 2 ≤ z ≤ D1/2, and

V (z) ≤
∑

d|P (z)

λ+(d)
ω(d)

d
≤ V (z)

(
F (s) +O(e

√
L−s log−1/3 D)

)
,

for 2 ≤ z ≤ D, where f(s) and F (s) denote the classical functions in
the linear sieve.

Lemma 6 (see [4]). For the functions f(s) and F (s), we have

sf(s) = 2eγ
(
log(s− 1) +

∫ s−2

2

log(t− 1)

t
log

s− 1

t+ 1
dt

)
, 4 ≤ s ≤ 6;

sF (s) = 2eγ , 1 ≤ s ≤ 3;

sF (s) = 2eγ
(
1 +

∫ s−1

2

log(t− 1)

t
dt

)
, 3 ≤ s ≤ 5;

sF (s) = 2eγ
(
1 +

∫ s−1

2

log(t− 1)

t
dt

+

∫ s−3

2

log(t− 1)

t
dt

∫ s−1

t+2

log
u− 1

t+ 1

du

u

)
, 5 ≤ s ≤ 7,

where γ = 0.577 . . . denotes Euler’s constant.
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3. Proof of the theorems. In the proof of the theorems we adopt
the following notation. Let η = 1/192, and

D0 = nε, D1 = nη−2ε, D = D0D1,

z0 = log1000 n, z1 = D
1/34
1 , z2 = D

33/34
1 ,

P0 =
∏

2<p<z0

p, P1 =
∏

z0≤p<z1

p, P = P0P1,

g0(p) = 1− log p

log z2
, g(x) =

∑
z1≤p<z2

p|x

g0(p),

λ±(d) Rosser’s weights of order D1,

λ±(p)(d) Rosser’s weights of order
D1

p
, z1 ≤ p < z2,

Λj =
∑

l|(xj,P1)

μ(l), Λ±
j =

∑
l|(xj ,P1)

λ±(l), j = 1, 2, 3,

Λ
±(p)
j =

∑
l|(xj ,P1)

λ±(p)(l), z1 ≤ p < z2, j = 1, 2, 3.

Let 0 < ϑ < 1 denote a constant to be chosen later. For the proof of
the theorems, we consider the sum

(3.1)

F =
∑

x2
1+x2

2+x2
3=n

(x1x2x3,P )=1

(
1− ϑ

3∑
j=1

g(xj)

)

=
∑

x2
1+x2

2+x2
3=n

(x1x2x3,P )=1

1− ϑ

3∑
j=1

∑
x2
1+x2

2+x2
3=n

(x1x2x3,P )=1

g(xj)

= F (0) − ϑ

3∑
j=1

F
(1)
j = F (0) − ϑF (1).

By the assumption n ≡ 3 (mod 24) we know that those solutions of
(1.4) such that 2 | x1x2x3 are not counted in F . Next we show that for
some 0 < ϑ < 1, F has a positive lower bound.

3.1. A lower bound for F (0). By the inequality

Λ1Λ2Λ3 ≥ Λ−
1 Λ

+
2 Λ

+
3 + Λ+

1 Λ
−
2 Λ

+
3 + Λ+

1 Λ
+
2 Λ

−
3 − 2Λ+

1 Λ
+
2 Λ

+
3 ,
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(see Lemma 4.2 in [2]), we have

(3.2) F (0) =
∑

x2
1+x2

2+x2
3=n

(x1x2x3,P0)=1

Λ1Λ2Λ3 ≥
3∑

j=1

F
(0)
j − 2F

(0)
4 ,

where

F
(0)
1 =

∑
x2
1+x2

2+x2
3=n

(x1x2x3,P0)=1

Λ−
1 Λ

+
2 Λ

+
3 ,

F
(0)
2 =

∑
x2
1+x2

2+x2
3=n

(x1x2x3,P0)=1

Λ+
1 Λ

−
2 Λ

+
3 ,

F
(0)
3 =

∑
x2
1+x2

2+x2
3=n

(x1x2x3,P0)=1

Λ+
1 Λ

+
2 Λ

−
3 ,

F
(0)
4 =

∑
x2
1+x2

2+x2
3=n

(x1x2x3,P0)=1

Λ+
1 Λ

+
2 Λ

+
3 .

Some trivial arrangements lead to

(3.3)

F
(0)
1 =

∑
l1,l2,l3|P1

λ−(l1)λ+(l2)λ
+(l3)

∑
x2
1+x2

2+x2
3=n

(x1x2x3,P0)=1
x≡0 (mod l)

1

=
∑

l1,l2,l3|P1

λ−(l1)λ+(l2)λ
+(l3)S(Al, z0).

Take

Δ = H8(n) log240 n, s0 =
logD0

log z0
=

ε logn

1000 log logn
,

in Lemma 4. Then we obtain

(3.4) E = H4(n)Δ−1/2 log19 D0 +Δce−s0 logL n = O

(
1

log100 n

)
,
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where the bound logH(n) � log5/6 n is used. By (3.4) and Lemma 4,
we have

(3.5)

S(Al, z0) =

(
W (z0) +O

(
1

log100 n

))
ω(l)

l1l2l3
X

+O

( ∑
|d|≤D0

p|d1d2d3⇒p<z0

μ2(d)|R(n,dl)|
)
.

By (3.3) and (3.5) we find that
(3.6)

F
(0)
1 =

(
W (z0) +O

(
1

log100 n

))
X

+
∑

l1,l2,l3|P1

λ−(l1)λ+(l2)λ
+(l3)

ω(l)

l1l2l3

+O

( ∑
|l|≤D1

p|l1l2l3⇒z0≤p<z1

μ2(l)
∑

|d|≤D0

p|d1d2d3⇒p<z0

μ2(d)|R(n,dl)|
)
.

Since any positive integer m with the property p|m ⇒ p < z1 can
be decomposed into the form m = m1m2 with p|m1 ⇒ p < z0 and
p|m2 ⇒ z0 ≤ p < z1 uniquely, we have

(3.7)
∑

|l|≤D1

p|l1l2l3⇒z0≤p<z1

μ2(l)
∑

|d|≤D0

p|d1d2d3⇒p<z0

μ2(d)|R(n,dl)|

�
∑

|d|≤D

μ2(d)|R(n,d)| � n(1/2)−4ε,

in the last step Lemma 3 is used.

Write

(3.8)

G =
∑

l1,l2,l3|P1

λ−(l1)λ+(l2)λ
+(l3)

ω(l)

l1l2l3

=

( ∑
l1,l2,l3|P1

μ2(l1l2l3)=1

+
∑

l1,l2,l3|P1

μ2(l1l2l3)=0

)
λ−(l1)λ+(l2)λ

+(l3)
ω(l)

l1l2l3

= G1 +G2.
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By Lemma 2 (iii), we get
(3.9)

G2 �
∑

l1,l2,l3|P1

(l1,l2)>1

ω̃(l1)ω̃(l2)ω̃(l3)

l1l2l3
�
∑
d|P1

d≥z0

ω̃2(d)

d2

∑
l1,l2,l3|P1

ω̃(l1)ω̃(l2)ω̃(l3)

l1l2l3
.

By Rankin’s trick and Lemma 2 (iii), we find that
(3.10)∑

d|P1

d≥z0

ω̃2(d)

d2
�
∑
d|P1

(
d

z0

)1/3
ω̃2(d)

d2

� z
−1/3
0

∏
p<z1

(
1 +

4

p5/3

) ∏
p|n,p≥z0

(
1 +

1

p1/3

)
� z

−1/3
0 ,

and

(3.11)
∑

l1,l2,l3|P1

ω̃(l1)ω̃(l2)ω̃(l3)

l1l2l3

�
∏
p<z1

(
1 +

2

p

)3 ∏
p|n,z0≤p<z1

(
1 +

1

p1/3

)3

� log6 z1.

From (3.9) (3.11), we get

(3.12) G2 = O(z
−1/3
0 log6 z1).

By Lemma 1 and (2.2), we have
(3.13)

G1 =
∑

l1,l2,l3|P1

μ2(l1l2l3)=1

λ−(l1)λ+(l2)λ
+(l3)

ω(l1)ω(l2)ω(l3)

l1l2l3

=

( ∑
l1,l2,l3|P1

−
∑

l1,l2,l3|P1

μ2(l1l2l3)=0

)
λ−(l1)λ+(l2)λ

+(l3)
ω(l1)ω(l2)ω(l3)

l1l2l3

= G3 −G4.

By arguments similar to the estimation of G2, we get

(3.14) G4 = O(z
−1/3
0 log6 z1).
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It is easy to see that

(3.15) G3 = (I+)2I−,

where

(3.16) I± =
∑
d|P1

λ±(d)ω(d)
d

.

It follows from (3.8) and (3.12) (3.15) that

(3.17) G = (I+)2I− +O(z
−1/3
0 log6 z1).

By Lemma 2 iv), it is easy to verify that assumptions (2.6) (2.7) are
satisfied by the function ω(p) = ω1(p) for z0 ≤ p < z1, so if we set

V (z0, z1) =
∏

z0≤p<z1

(
1− ω1(p)

p

)
.

Then by (2.8) (2.9) in Lemma 5, we have

V (z0, z1) ≤ I+ ≤ V (z0, z1)(F (34) +O(log−1/3 n)),

(3.18)

V (z0, z1) ≥ I− ≥ V (z0, z1)(f(34) +O(log−1/3 n)).

(3.19)

By the definitions of ωv(p) and Lemma 2 iv), it is easy to verify that

(3.20) Ω′(p) ≤
⎧⎨⎩

3, p � n,

7, p | n, p ≡ 1 (mod 4)

1, p | n, p ≡ −1 (mod 4),

and hence 0 ≤ Ω′(p) < p for n satisfying (1.1). Therefore, by Mertens
prime formula and (3.20), we have

(3.21) W (z0) � log−7 z0 � 1

(log logn)7
.
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In a similar manner, by Lemma 2 iv) and Mertens prime formula, we
find that

(3.22) V (z0, z1) � log z0
log z1

� log logn

logn
.

It follows from (3.18) (3.19) and (3.22) that

(3.23) I± � V (z0, z1) � log logn

logn
.

Now, by (3.6) (3.7), (3.17) and (3.21) (3.23), we obtain

(3.24) F
(0)
1 = (1 + o(1))W (z0)(I

+)2I−X,

where (2.4) is employed. By symmetry, we get

(3.25) F
(0)
j = (1 + o(1))W (z0)(I

+)2I−X, j = 2, 3.

The same method leads to

(3.26) F
(0)
4 = (1 + o(1))W (z0)(I

+)3X.

By (3.2) and (3.24) (3.26), we get

(3.27) F (0) ≥ (1 + o(1))W (z0)(I
+)2(3I− − 2I+)X.

From (3.18) (3.19) and (3.27), we get

(3.28) F (0) ≥ (1 + o(1))W (z0)V (z0, z1)
3(3f(34)− 2F (34))X.

3.2. An upper bound for F (1). Since the arguments about F (1)

are similar to those about F
(0)
1 , we therefore present it in a sketchy

manner. Let

(3.29) β(l) =
∑
k|P1

z1≤p<z2
kp=l

g0(p)λ
+(p)(k).
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Then by (2.5) and some routine arrangements, we have

F
(1)
1 =

∑
x2
1+x2

2+x2
3=n

(x1x2x3,P )=1

g(x1) =
∑

z1≤p<z2

g0(p)
∑

x2
1+x2

2+x2
3=n

(x1x2x3,P )=1
x1≡0(modp)

1

(3.30)

≤
∑

z1≤p<z2

g0(p)
∑

x2
1+x2

2+x2
3=n

(x1x2x3,P0)=1
x1≡0(modp)

Λ
+(p)
1 Λ+

2 Λ
+
3

=
∑

|l|≤D1

l2,l3|P1

β(l1)λ
+(l2)λ

+(l3)
∑

x2
1+x2

2+x2
3=n

(x1x2x3,P0)=1
x≡0 (mod l)

1

=
∑

|l|≤D1

l2,l3|P1

β(l1)λ
+(l2)λ

+(l3)S(Al, z0)

=

(
W (z0) +O

(
1

log100 n

))
X

+
∑

|l|≤D1

l2,l3|P1

β(l1)λ
+(l2)λ

+(l3)
ω(l)

l1l2l3
+O(n(1/2)−4ε),

in the last step (3.5) and the argument leading to (3.7) which are
applied. Let

I =
∑

β(l)
ω(l)

l
.

Then, by arguments similar to those about G, we have

(3.31)
∑

|l|≤D1

l2,l3|P1

β(l1)λ
+(l2)λ

+(l3)
ω(l)

l1l2l3
= (I+)2I +O(z

−1/3
0 log6 z1).
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By the definition of β(l) and (2.2) in Lemma 2, we find that

(3.32)

I =
∑

z1≤p<z2
k|P1

g0(p)λ
+(p)(k)ω(pk)

pk

=
∑

z1≤p<z2
k|P1

g0(p)λ
+(p)(k)ω(p)ω(k)

pk

=
∑

z1≤p<z2

g0(p)ω(p)

p
I+(p),

where we have set

(3.33) I+(p) =
∑
k|P1

λ+(p)(k)ω(k)

k
.

By arguments similar to those for I± and (2.9) in Lemma 5, we deduce
that

(3.34) I+(p) ≤ V (z0, z1)

(
F

(
logD1p

−1

log z1

)
+O(log−1/3 n)

)
.

By (2.2), (3.34) and Lemma 2 iv), we get

(3.35)

I =

( ∑
z1≤p<z2
(p,n)=1

+
∑

z1≤p<z2
p|n

)
g0(p)ω(p)

p
I+(p)

=
∑

z1≤p<z2
(p,n)=1

g0(p)ω1(p)

p
I+(p) +O(z−1

1 V (z0, z1) log n)

≤ (1 + o(1))V (z0, z1)

∫ 33/34

1/34

(
1− 34

33
t

)
F (34(1− t)) dt

t
,

in the last step the prime number theorem and summation by parts are
employed.

By (2.4), (3.30), (3.31), (3.18) and (3.35), we conclude that

F
(1)
1 ≤ (1 + o(1))W (z0)V (z0, z1)

3X

× F 2(34)

∫ 33/34

1/34

(
1− 34

33
t

)
F (34(1− t)) dt

t
,
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and

(3.36)

F (1) =
3∑

j=1

F
(1)
j = 3F

(1)
1

≤ 3(1 + o(1))W (z0)V (z0, z1)
3X

× F 2(34)

∫ 33/34

1/34

(
1− 34

33
t

)
F (34(1− t)) dt

t
,

where the symmetry between F
(1)
1 , F

(1)
2 and F

(1)
3 is used.

3.3. Proof of the theorems. By Lemma 6 and numerical inte-
gration, we have

(3.37) F (6) ≤ 1.00011, f(6) ≥ 0.99989.

From (3.37) and the well-known monotonic properties of F (s) and f(s),
we get

(3.38) 3f(34)− 2F (34) ≥ 3f(6)− 2F (6) = 0.99945,

and

(3.39) F 2(34)

∫ 33/34

1/34

(
1− 34

33
t

)
F (34(1− t))dt

t

≤ 1.000112 ×
∫ 33/34

28/34

(
1− 34

33
t

)
F (34(1− t)) dt

t

+ 1.000113 ×
∫ 28/34

1/34

(
1− 34

33
t

)
dt

t

≤ 2.52902,

where Lemma 6 and numerical integration are used.

By (3.28), (3.36), (3.38) and (3.39), we have

F (0) ≥ 0.99940W (z0)V (z0, z1)
3X,(3.40)

F (1) ≤ 7.58708W (z0)V (z0, z1)
3X.(3.41)



1132 YINGCHUN CAI

Let ϑ = 0.1315. Then (3.1), (3.40), (3.41), (3.21), (3.22) and (2.4)
imply that

(3.42)

F = F (0) − ϑF (1)

> (0.99940− 0.99756)W (z0)V (z0, z1)
3X

≥ 0.0016W (z0)V (z0, z1)
3X

� n(1/2)−2ε.

Let F+ denote the sub-sum of F which is composed of those terms such
that

1− ϑ

3∑
j=1

g(xj) > 0.

Then, by (3.42), we have

(3.43) F+ ≥ F � n(1/2)−2ε.

Let F+
2 be that part of F+ which consists of all terms such that

xj ≡ 0(p2) for some p and j, where z1 ≤ p < n1/4, 1 ≤ j ≤ 3. Then we
find that

(3.44)

F+
2 �

∑
z1≤p<n1/4

∑
x2
1+x2

2+x2
3=n

x1≡0(p2)

1

≤
∑

z1≤p<n1/4

∑
x1≤n1/2

x1≡0(p2)

∑
x2
2+x2

3=n−x2
1

1

� nε
∑

z1≤p<n1/4

∑
x1≤n1/2

x1≡0(p2)

1

� nε(n1/2z−1
1 + n1/4)

� n(1/2)−10ε.

By (3.43) and (3.44), we deduce that � n(1/2)−2ε triples (x1, x2, x3)
exist such that

μ2(x) = μ2(x1)μ
2(x2)μ

2(x3) = 1,(3.45)

(x1x2x3, P ) = 1,(3.46)

x2
1 + x2

2 + x2
3 = n,(3.47)

1− ϑ

3∑
j=1

g(xj) > 0.(3.48)
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For any triples (x1, x2, x3) satisfying (3.45) (3.48), we have

(3.49) Ω(xj) =
∑
p≥z1
p|xj

1, j = 1, 2, 3.

3.3.1. Proof of Theorem 1. For a triple (x1, x2, x3) satisfying
(3.45) (3.48), it follows from (3.48) that

1− ϑg(xj) > 0, j = 1, 2, 3,

and this implies that

(3.50)
∑
p≥z1
p|xj

1 <
1

ϑ
+

17

33
(η − 2ε)−1, j = 1, 2, 3.

By (3.49) and (3.50), we find that, for any triples (x1, x2, x3) which
satisfy (3.45) (3.48), we have

(3.51) Ω(xj) =
∑
p≥z1
p|xj

1 ≤ 106, j = 1, 2, 3.

Since � n(1/2)−2ε, such triples (x1, x2, x3) exist, by (3.51), and the
proof of Theorem 1 is completed.

3.3.2. Proof of Theorem 2. For a triple (x1, x2, x3) satisfying
(3.45) (3.48), from (3.48), we find that

(3.52)

3∑
j=1

∑
p≥z1
p|xj

1 <
1

ϑ
+ 3× 17

33
(η − 2ε)−1.

By (3.49) and (3.52), we conclude that, for any triples (x1, x2, x3) which
satisfy (3.45) (3.48), we have

(3.53) Ω(x1x2x3) =

3∑
j=1

Ω(xj) =

3∑
j=1

∑
p≥z1
p|xj

1 ≤ 304.

By (3.53), the Proof of Theorem 2 is completed.
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