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1. Introduction

In [1, p. 75], R. P. Boas states and proves the following uniqueness theorem.
Theorem 1. If f(z) is an entire function of exponential type and if for some
0,|f(rei®)| <e=4"r where lim A(r)=co, then f(z)=0 identically.

r—-o

This theorem shows that if the function f(z) tends to zero sufficiently rapidly
along some ray arg z=0, then it must be identically zero. Instead of a ray, in
[4, Theorem 1], we have extended the same result to an arbitrary curve having a limit
point at infinity. Moreover, the same type of uniqueness theorems can also be
considered in a half-plane instead of the entire plane, see [3, 6]. In this connection,
instead of a curve, we can also regard only a sequence of Jordan arcs tending to the
point at infinity, see [S]. The shape of Jordan arcs can behave in different ways.
The one considered in [5] looks like arc, and the other which we are going to discuss
looks like radial. In this case, our results are somewhat equivalent to those of
V. 1. Gavrilov [2] and D. C. Rung [8] in the unit disk.

To introduce our results, let us begin with the following two definitions.

Definition 1. Let H={z: Rez>0} be the right halfplane and let {y,} be a
sequence of disjoint Jordan arcs in H. Denote a, the angle subtended by 7, at the
origin and set

/,=min |z|, L,=max |z|, 0,=min arg :z.

ZEYn Z€Vn ZE€ETN

We call {y,} a radial-like sequence if it tends to infinity nontangentially and satisfies
the following two conditions

(i) lim/,=lim L,=00, and
n—oo n—00
(ii) 0<lim/,/L,=Timl,/L,<].
n—oc n—ao0

Definition 2. Let {y,} be a radial-like sequence and let a4 be a fixed angle sati-



286 J. S. Hwang

sfying 0<a,<ao<m. Then there is a d with 0<d<a, such that the angle f,=
0,— 6 satisfies

—n/2<p,<0,<0,+o,<p,+o,< /2.
We define
F,(ag)={z:0<]z|<L,, B,<arg =< f,+a}
and

M(f, F)=max (sup log | f(z)], 1), where F=F,(ag).
zel

With the help of the above two definitions, we are now able to state the following
main result.

Theorem 2. Let f(z) be a function holomorphic in HU {0} and let {y,} be a
radial-like sequence in H. If {A,} is a sequence of positive numbers tending to
infinity and satisfying

[im M(f, F,(2))]A, <o, and

n—o

|f(z)|£e-z4"|:|"/'o’ fof ZEY,, n=1’ 2,-'-9

then f(z)=0 identically.

2. Harmonic measure

To prove Theorem 2, we shall need the following estimate of harmonic measure,
due to R. Nevanlinna [7, p. 103].

Lemma 1. Let D be the unit disk and let I'y be a simple arc starting from the
origin and tending to the boundary of D. Let oz, I'y) denote the harmonic measure
at the point z of the arc Ty relative to the domain D—T,, then the lower bound of

oz, Ty) satisfies

5
w(z, 1"0)2% sin~! -

>%(l —|zl), for every ze D—T.

Now, if I does not start from the origin, then we can consider the following
conformal mapping:

w—ae'* . ix
z(w)= ——-, where a=min |w|, ge'*erl.
I —ae "*w wel

1t is obvious that

|1 —ae i*w|?—|w —aei*|?
—ae *w|(|l —ae~*w|+|w —ae'*|)

1 =
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> (=) (1 -a?).

By the conformal invariance of harmonic measure, we thus have

w(w, N=w(z, I'y), where I'y=:z(I"),
> g (1=Iw) (1 —a?).
This yields the following result.

Lemma 2. [8, Rung]. Let I' be an arc in D tending to the boundary of D.
Let w(w, I') be the harmonic measure at w of I relative to D—T. Then for each
weD—T, we have

w(w, ) 2'—7[([ —|w|?)(1l —a?), where a=min |w|.
wel
With the help of Lemma 2, we are able to prove the following lemma which is the
is the only one we shall need in the proof of our main theorem. We remark that in
Definitions 1 and 2, by choosing a subarc of y,, we may assume, for the proof of
Theorem 2, that the complement F,(a,)—7, is connected.

Lemma 3. Let F (o). 7,. |, and L, be defined by Definitions 1 and 2. Let
w(rei®, y,) be the harmonic measure at re'® of y, relative to F,(0g)—7%,. Then for
each rei¢ e F,(0g)—7,. we have

w1 ()T Mo

-sin a(¢p — f,) - sin ad,

where a=mnja,, f,=0,—9, 0<a(p—B,)<m, and O<ad<m.

Proof. For simplicity, we write F(og), 7, [, L and 0 instead of F,(0t), Vs lus
L, and 0,. We map F(a,) conformally onto the unit disk D, by the following
mapping

(1 w(z)=( PP+ 1*=0),

O )

a=n/a,and f=f,+a/2.

Let |w(le?®)|=a and let I' be the subarc of the image w(y) which connects the circle
|w|=a to the unit circle |[w|=1. Then by Carleman’s principle, for each we D, —
w(y), we have

ol

(2) o(w,w(y)=ww, ).

According to Lemma 2, we know that
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(3) o(w, F)zgl—n(l —|wl?)(1 —a?).

By virtue of the conformal invariance of harmonic measure, inequalities (1), (2) and
(3) allow us to write for z e F(xg)—7,

4 o(z, y)=w(w, w(y))

>wo(w, T)

>z (1—-|w*)(1-a?)

1
8n
2 (=W (@1 = w(let)]?).

We set z=re'®, and we want to estimate |—|w(z)]? and 1—|w(lei®)|2. By (1),
we have

6 1-lw@P=
-

A0 1+ 120 12 -{0 J¢+1+4{ 12-[ 1°}
IL 12—

L]
_afle i) [lim(ee) () [ (D) )

EEHEEC

Let (e‘”’i—)a =pei¥, then p=(~£~>a <l, y=a(¢—p), and

(6) |G+ petv]?—ili—pet]?|?
=2|1+2pei¥ — p2ei?¥|?

=2{—4p2cos? Y +4p(1—p?) cos Y + (1 +6p2+p*)}

=4{—2p2(cos y—L —2—pp2 >2+(1 +p2)2}
<4(1+p3)3*<16.
) 2{li+ peW P T pe™ T~ [i - ped [T pe™T?)
=2 {[(—=1+p2ei?¥)+2ipeV][(— 1 +p2ei2¥)+2ipe V]
—[(—1+p2ei?¥)=2ipe][(— 1 +pe™i?¥) —2ipeV]}
=8p(1—p?)(eV +e¥)
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=16p(1 —p?) cos Y

- 16(%)’[1 - ({-)2} cos a(¢ — ) .

Equalities (5), (7) and inequality (6) give

(8) l—|w(z)|22<—£~)a[l—<—£—)h] cos a(p—p).
Replacing r and ¢ by | and 0 respectively, we get
9) - |w(1e"0)|22<%>’[1 —(%)2] cos a(0—B) .

Since the angles f=f§,+a,/2 and 0 — =05 —a,/2, hence the lemma follows from
inequalities (4), (8), and (9).

3. Proof of Theorem 2

According to the hypothesis, there is a subsequence which for convenience will
still be denoted by the same sequence {n} such that

(10) lim A, = oo
(11) lim MU Fal@)) _ pr< o
(12) lim é =1 0<l<l.

Let y* be a subarc of y, such that y* meets the circles |z|=1, and |z|=L, only at the
points I,ei% and L,ei® respectively. Since y* has the same associated lengths
I, and L, as those of y,, hence by Definition 1, {y¥} is also a radial-like sequence.
Moreover, the function f(z) satisfies the same inequality in the hypothesis for each
z €y}, because y¥ is only a subarc of y,. Clearly {y*} contains a subsequence which
will be denoted by {y,} such that

. bid Fid
(13) lim 0, =0, -5 <0<

m=— Q0

Let w(z, y,) be the harmonic measure at z of y,, relative to F,(xy)—7,. Then
by the hypothesis and the two-constants Theorem, we know that for each ze
F,(2g) —7..» We have

(14) log | /()| 2 @(z, ym) (= A4,l7) +(1 - (2, ¥,))M(f, F(a0))

< —A,,,{I,’,,w(z, ) _M_(.%FL(a_o)_)}

By virtue of Lemma 3, for z=re'?4, inequality (14) becomes the following
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09 toelsteents —aufg () [ -(2)7 (2]

.sin Ot(¢ - ﬂm) sin ad — _MA(I’;AE."L(_a_O)_l} X

m

For a given ¢ witn 0<g<I<1 and I+e<|, by (11), (12), and (13), there exists a
positive integer N such that m > N implies

M —e< MU Ful@)) j’"(%))~<M+a

m

0<l—e<%’”—<1+a<1 and

e<sin a(¢p —p,,), for some ¢p#6—9.

For sufficiently large m, inequality (15) becomes

i6) < — gl 1= 2“]_ l
(16) log | f(rei%)| < A,,,{ksr[] <Lm> (M+e)|
where k,=—(I—g)?2[1—(I + 8)*]esinad>0. Let g, (n=kr*| 1 —(-L=)"]=
£ 87'[ . gm — R Lm
2a .
(M+o). Then gi(n=akr*[1-3(7-)7[>0 provided 0<r<L,/\/3. This

shows that the function g,,(r) is strictly increasing for 0<t~<L,,,/V/§. Moreover,
for any fixed r, g,(r) is also strictly increasing for m, because 1—(r/L,)?* increases
to 1. Clearly, we can choose a sufficiently large K> N so that

(17) Im(r)=gx(r)=gx(Lg/3)>0,

provided m> K and rely=[Lg/3, LK/\/3]. It follows from (16) and (17) that for
any m>K and rely

(18) log | f(re®)|< — A4,9,(r) < — A4, 9x(Lk/3),

where the angle ¢ is chosen to satisfy sina(¢—f,)>6. Allowing m— oo and ap-
plying (10) and (18), we thus establish that log|f(rei®)|=—oc0 or f(rei*)=0 for
any point re¢ with rely. This concludes that f(z)=0 identically due to the
classical uniqueness theorem.

4. Bounded functions

In this section, we shall develop some uniqueness theorems for functions bounded
and holomorphic in H.

Corollary 1. Let f(z) be a function bounded and holomorphic in H. If {y,}
is a radial-like sequence in H for which

| f(z)|<e”'=1"**  for each zevy,,
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n=1, 2,..., and some ¢>0, then f(z)=0.
Proof. Let A,=1%, then the inequality becomes

[f(z)| e lzI'" E < e lalzl = g=Anlzl, for each zey,,n=1,2,....

. on
Clearly we have lim A,=0c0. In order to use Theorem 2, we choose ﬁ,,=—7,
-0

for each n and cxo;n. According to Definition 2, we know that
F,(29)=F,(n)= {z; 0<lzl<L, —Z%<arg z<§} .

Thus M(f, F,(n))<M <o, and therefore the result follows from Theorem 2.
Instead of a sequence of arcs, we now consider a curve.

Corollary 2. If f(z) is bounded and holomorphic in H and if |f(z)|<e”171'"*
for each z lying on a curve '« H which extends to infinity nontangentially and
>0, then f(z)=0.

Proof. To prove this corollary, we need only construct a radial-like sequence
from the given curve I'. Let I',={z:2"'<|z|<2", zeTl} and let y, be a con-
nected subset of I', such that [,=min|z|=2""1, L, =max |z|=2". Then we have

ZEYn ZEYn
(i) lim/,=lim L,=0 and
n—ao n—o0
(i) O<limto=L <y,
n— n 2

It follows from Definition 1 that this sequence {y,} is a radial-like sequence. The
assertion now follows from Corollary 1.

5. Functions having angular limits.

Finally, we shall prove a uniqueness theorem for functions having angular
limits. Our result is equivalent to that of Gavrilov [2] and Rung [8] for functions
normal in the unit disk.

Corollary 3. Let f(z) be a function holomorphic in H and having angular
limits at 0 and oco. If I is a curve in H tending to infinity non-tangentially and
if for some £>0,

|f(z)|<e 121" for each zel,
then f(z)=0.
Proof. By the hypothesis of I', we can choose N such that
I'cF(ag)={z: 0<|z| <0, |arg z| <ay/2}, ag=m/(1 +¢/N).

Since f(z) has angular limits at 0 and oo, we have M(f, F(ag)) < co.
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Now, by the same argument as Corollary 2, we can construct a radial-like
sequence {y,} for which

| f(2)]| e AnlzImI%, for each zey,, n=1,2,...,

where A,=1{'""/M=,  The result now follows from Theorem 2.
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