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1. Introduction

In [1, p. 75], R. P. Boas states and proves the following uniqueness theorem.
Theorem 1. I f  f(z) is  a n  entire  function  o f exponentia l type  and if fo r som e

0,1f(rei°)1<e - A(r)r, where lim A(r)= co, then f(z)=0 identica lly.
r-poo

This theorem shows that if the function f(z) tends to  zero sufficiently rapidly
along some ray arg z = 0, then it must be identically zero. Instead of a ray, in
[4, Theorem 1], we have extended the same result to an arbitrary curve having a limit
point at infinity. M o re o v e r , the same type of uniqueness theorems can also be
considered in a half-plane instead of the entire plane, see [3, 6]. In this connection,
instead of a curve, we can also regard only a sequence of Jordan arcs tending to the
point at infinity, see [5]. The shape of Jordan arcs can behave in different ways.
The one considered in [5] looks like arc, and the other which we are going to discuss
looks like radial. I n  this case, our results are somewhat equivalent to those of
V. I. Gavrilov [2] and D. C. Rung [8] in the unit disk.

To introduce our results, let us begin with the following two definitions.

Definition 1. Let H={z: Re z > 0}  be  the right halfplane and let {y„; be  a
sequence of disjoint Jordan arcs in H .  Denote I n the angle subtended by y,, at the
origin and set

/„ = min zi ,  L„= max 0„ = min arg z.
z e y „ zey,, zey,,

We call {y„} a radial-like sequence if it tends to infinity nontangentially and satisfies
the following two conditions

( j ) lim 1„=lim•L„= c o ,  and
rt--, z0 /I-4oz

0<  l iM 1 „ 1  L„= lim1„IL„<
11— .00 11—.00

Definition 2. Let {y„} be a radial-like sequence and let ao be a fixed angle sati-
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sfying 0<ocn <s(0 < rz . Then there is a  (5 with 0 «5 < a 0  su c h  th a t the angle fin =
— (5 satisfies

— n/2 <fl„< On <On + c(„<,8„+ c(0 <_ n/2.

F„(oco )= {:: 0 < <L „, /3„<arg z</3„-Fao }

and

M(f, F)=  max (sup log If(z)1, 1), where F=F„(c( o ).
ZEF

With the help of the above two definitions, we are now able to state the following
main result.

Theorem 2. Let f(z) be a janction holomorphic in  H  u {0} and let fon} be a
radial-like sequence in  H .  I f  IA„; is  a  sequence o f positive num bers tending to
in fin ity and satisfy ing

lim A l(f, Fn(a0))1 A„< cc, a n d

f ( z )I < e —  A „lz I ' f o r  zey„, n= 1, 2,...,

then f(z)=0 identica lly.

2. Harmonic measure

To prove Theorem 2, we shall need the following estimate of harmonic measure,
due to R. Nevanlinna [7, p . 103].

Lemma 1. Let D be the unit disk and let 1-
0  be a simple arc sta rting  from  the

orig in  and tending to the b o u n d a ry  o f D . Let co(z, T 0 ) denote the harmonic measure
a t the po in t z of the arc T 0 re la tive  to  the dom ain D -1 -'0 , then the lower bound of
co(z, TO satisfies

—2I 1 z 1w (z , Fo )
n I +1 2 1

> (rc — 1z1), fo r  every z E D— F 0 .

Now, if 1-  does not start from the origin, then we can consider the following
conformal mapping:

z(w)= 
— a e i 2  

' 
where a =  min jwl, ae 1 e T.

1— ae- ta w we r

It is obvious that

—1zI) —ae w12—lw 
— 0  IC nII —ac i Œwl(11 lw

We define
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I
(1 -1w1 2 )(1—a 2 ) .— 87r

By the conformal invariance o f harmonic measure, we thus have

co(w, F)= a)(z, 1 -
0 ), where T o = z ( f) ,

1 lw12)(1 —a 2 ).

Th is  yields the following result.

Lemma 2. [8, R u n g ] .  L e t  F  be an  arc  in  D  tending to the boundary  of  D.
Let w(w, n be the harm onic m easure at w of  F  relative to D— r. Then f or each
WE D—F, we have

a)(w, F)> •(1 —1w12)( I —a2 ), where a= m in .8n W E  r

With the help of Lemma 2, we are able to prove the following lemma which is the

is the only one we shall need in  the proof o f our m ain  theorem . W e rem ark that in

Definitions 1 and  2, by choosing a  subarc o f  y„, we m ay assum e, for the proof o f

Theorem 2, that the complement F„(a 0 )—y„ is connected.

Lemma 3. L et F (oc0 ), y„, l„ and L „  be def ined by  Definitions 1 and 2. Let
co(reikk, y„) be the harm onic m easure at re' o of  y„ relative to  F„(a0 ) —y„. Then for
each ITN' E F„( 20 ) — y„, we have

1  y  r i n   Y' r 1 (  n )

21

•[ nco(rei#, y„)_
87r L „  )  L „  )  L

)21

.sin a(4) -fl„)- sin rx(5,

where cx-=-7r1Œ„, fl„=0„-6, 0 <oc(4)— fl„)<n, and 0<5<7r.

P ro o f . F o r  sim plic ity, we w rite F(a o ), y, I, L  a n d  0 instead o f  F,,(Œ0 ), y„, In ,
L „  a n d  0„. W e m ap  F(a 0 )  conformally on to  th e  u n it  d is k  D„, b y  th e  following
mapping

(1) w(z) - ] 2 +01([ ] 2 - i)

where [ ]  =  
Q

+ (e - ifi L
I-1 ) 1 )/(i — (e - ifl 

=---.7r/a0  and  fi = fi„ +0( 0 /2.
Le t lw(le0 )1= a and let F  be the subarc of the im age w(y) which connects the circle
lwl = a  to  the  un it circle = 1 .  Then by Carleman's princip le, fo r  each W E D„, —
w(y), we have

(2) w(w, w (y)). co(w, T).

According to Lemma 2, we know that
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(3 ) co(w , F)  — 1w12 )(1 —a2 ) .

By virtue of the conformal invariance of harmonic measure, inequalities (1), (2) and
(3) allow us to write for z E F(a.0)— y,

(4) (0(z, Y)= (0 (w, w(Y))

F)

8
1

1r
 ( 1 ---1w12)(1 _a2)

= 
8

1
7z (1 — lw(z)12 )(1 — w(ie")1 2 )

We set z =reio, and  we want to estimate I —1w(z)12 a n d  I —1w(/ei°)12 . By (I),
we have

(5) 1— 111)(Z)I2 =

= IC 7 I  +'+1+ifC  7 2 — C 7 2 } —{IC 714 1+i [  ]2— [ 
IC 72 -112

_ 2 i {C  72 —E 7 2 7
IC 72  — i12

e yc- 2 ri ( e  1 3  a  i2 [ i  + ( 6, f l  z

)21{ [i+(e - i fl - ) 1 12 [i —( LL
Li + ( e - ip f y - 2 i _

)12
 2

L et ( c i f i f ) œ =peio, then p 4 '1 ,1 1 <1, tfr a(4) —13), and

(6) I [1+ p e in  2  _ i[ i_  p e i01212

=211 +2peio — p 2 e i 2 4 '1 2

=2{ —4p 2 cos2 1// +4p(1—p2 ) cos 1P + (1 +6p2 +p 4 )}

=4i — 2p2 (cos —  1 -
2 : 2 ) 2 + (1 + p2 ) 2 }

. 4(1+p 2 ) 2 _ 16.

(7 ) 24[11- peiq 2 [i — pei0 ] 2 — [i — pe1o] 2 [i+ pelq 2 }

=2i{[(— 1+ p 2 e1 2 4') +2ipeio][(-1+

— [(-1+ p 2 ei 2 4 ) -2ipe 4 f r][(-1+ p 2 e- i2119-2 ipe - iq l
=8p(l _p2)(ei,/,+
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= 16p(1 — p 2 ) cos 0

=16(Tr ) 1 [ 1 — ( n 2 2 -

 
cos a(0 —fl).

Equalities (5), (7) and inequality (6) give

(8) I — w(z)1 2 ( i ) Œ [1 —(f1) 2 2 1 cos cx(0 — fi)

Replacing r and 0 by / and 0 respectively, we get

(9) 1— w ( l e 03) 12 y [ i —  -;: ) 2 21 cos of (e — fl)  .

Since the angles /1=fin +a 0 /2 and 0 —/3= 6—a 0 /2, hence the lemma follows from
inequalities (4), (8), and (9).

3. Proof of Theorem 2

According to the hypothesis, there is a  subsequence which for convenience will
still be denoted by the same sequence {n} such that

(10) lim A  = oo
n - 4 0 0

l•m  A f ( f '  F n(œ°) )   — M < co
A„

lim 0</<1.(12) L„ '

Let y,*, be a subarc of y„ such that y,,* meets the circles =I„ and =L „ only at the
points In e i"  and L„e '", respectively. S i n c e  y,*, h a s  the same associated lengths
I„ and L„ as those of y„, hence by Definition 1, {y:} is also a  radial-like sequence.
Moreover, the function f(z) satisfies the same inequality in the hypothesis for each
z e y, because y,*, is only a subarc of y„. Clearly {y} contains a subsequence which
will be denoted by {y,„} such that

(13) lim O,,= O, -  <  < - -

Let co(z, y )  be the harmonic measure at z of y„, relative to  F„,(oto ) — y„,. Then
by  the hypothesis and the two-constants Theorem , w e know  that fo r each z E
F m(t ø )  Y„, we have

(14) log 1.1.(z)15_ ( 0 ( z ,  y,,,) — A„,1) + ( I  — co(z, Y.))M(f, F.(oto))

< — A„,{1w(z, y„,)— A " ' A
F 'n( c t °) ) }

By virtue of Lemma 3, for z= reio, inequality (14) becomes the following
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(15) log
 I f ( r e ) 1 -

A m {  it  r l ( n,'„) 2 a   )22] )221

.sin cx(0 -  p„,) sin ab -  1/1( f' F in(œ°) )  .

F or a  given s  witn 0 < s < / < 1 and 1+e< 1, by (11), (12), and (13), there exists a
positive integer N  such that m >N  implies

m_ e < MV Fm(cto)) < m +
A„,

0 < l - e < < I + e < 1  and

t <sin a(4) 13„,), for some 0 - (5.

For sufficiently large m, inequality (15) becomes

(16) log  f (rei d91_<_ -
( t m)

2
( M+ 8 )}

w here  k = - ( 1 - e ) 2 Œ[1-(1+ e) 2 ]c sin ca5 > 0. L e t  g ( r) =k ,r 1 [ 1 - ( L
r
m )  1-

(M- 1- 0 . T hen  g : 7,(r)=alc c ra - '[ . 1 - 3 ( L
r  

 

) 2 2 1 > 0  p ro v id e d  0 <  r< L,,,/\ / .  T h is

shows that the function g ( r )  is strictly increasing for 0 < r< L,„/J .  Moreover,
for any fixed r, g„,(r) is also strictly increasing for m, because I -(r/L ,n)2 x  increases
to I. Clearly, we can choose a sufficiently large K >N  so that

(17) g,„(r)_>:gK(r) gK(LK13)>O,

p rov ided  m  K  and re  IK ={1,K 13, LKIN / 3 1  It follows from (16) and (17) that for
any In> K  and r E

(18) log I f ( re io ) l<  - A g ( r)  -  A ,„g K (L K 13),

where the angle is chosen to satisfy sin 4 0  -1 3 „,)>e . Allowing ln - * c13 and ap-
plying (10) and (18), we thus establish that log If(rei 0 )1= -  co or .f(re 149= 0 for
any point re "0  w ith  r e  J .  This concludes that f (z )= 0 identically due  to  the
classical uniqueness theorem.

4 .  Bounded functions

In this section, we shall develop some uniqueness theorems for functions bounded
and holomorphic in H.

Corollary 1. L et f (z ) be a function bounded and holom orphic in H. tyn}
is a radial-lik e sequence in H for w hich

If (z ) j_ e - I=" f o r e ac h  z e y„,
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11 = i ,  2,..., and some s>0, then f(z)7,-_-0.

P ro o f . Let A„=4,, then the inequality becomes

l.f ( z )1< e - 1.1' < e - (ftk i= e - A"izi, for e a c h  z E y „ , n=1, 2 ,....

Clearly we have lim A n = co. In  o rder to  use Theorem 2, we choose /3„=
n--00

for each n a n d  a = i r .  According to Definition 2, we know that

F„(a0 ) = F„(7r)= iz : 0 <12.1 < L„, - -7-71-<arg .

Thus M(f, F„(n))<M <co, and therefore the result follows from Theorem 2.

Instead of a sequence of arcs, we now consider a curve.

Corollary 2. If f (z ) is bounded and  holomorphic in  H  a n d  i f  If(z)1<e - I:P "
f o r  each z ly ing o n  a  curve F c H  which ex tends to inf inity  nontangentially and
s>0, then f (z ) O.

Pro o f . To prove this corollary, we need only construct a  radial-like sequence
from the given curve F. Let F„= {z: < 1 z 1  < 2 " ,  z E T }  and  le t yn  b e  a  con-
nected subset o f  F n su c h  th a t l„=minlz1=2" - ', L„=m ax Izi =2". Then w e have

Z  E  

(i) lim 1„=lim  L„= oo and
n - •00 11 - . 0 0

(ii) 0 < lim  1   = < 1 .
n - 4  L„

It follows from Definition 1 that this sequence {y„} is a  radial-like sequence. The
assertion now follows from Corollary I.

5 .  Functions having angular limits.

Finally, we shall prove a  uniqueness theorem fo r functions having angular
lim its .  Our result is equivalent to that of Gavrilov [2] and Rung [8] for functions
normal in the unit disk.

Corollary 3. Let f (z )  be a  function holomorphic in  H  a n d  hav ing angular
lim its at 0 an d  c o . I f F  is a  curve in H  tending to inf inity  non-tangentially  and
if  for some e>0,

I.f (z)I f o r  each Z E F ,

then f(z)==_O.

P ro o f . By the hypothesis of F, we can choose N such that

Fc F(a 0 ) ={z:0<lz1<oo,larg zi <o(0 /2}, oco =n/(1+sIN ).

Since f (z ) has angular limits at 0 and co, we have M(f, F(Œ0 ))<  co.
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N ow , by  the  same argument as Corollary 2 ,  we can construct a  radial-like
sequence { y„} for which

If(z)1<e-A„Izini-o, for e a c h  z E y„, n= 1 , 2 ,...,

where A„=- 1 .( 1 - 1 1 N ) e .  The result now follows from Theorem 2.
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