EICHLER COHOMOLOGY AND AUTOMORPHIC FORMS

 \mathbf{BY}

SUFIAN Y. HUSSEINI AND MARVIN I. KNOPP

1. Introduction

This paper is devoted, for the most part, to a new proof of a theorem proved by Gunning [3]. In essence the theorem originates with Eichler [2] who first investigated systematically the cohomology of a Riemann surface R obtained from the generalized periods arising from the integrals of automorphic forms. The automorphic forms in question are of degree ≤ -2 with respect to discontinuous groups related to R by means of uniformization theory. Our method, totally different from that of Gunning, employs only the classical theory of automorphic forms and a device introduced in [4]. Throughout we ignore the Riemann surface and work only with the discontinuous group.

Before we can state the main results we must introduce some definitions and notation. Let \mathfrak{F} denote the upper half-plane and let Γ be a discontinuous group of linear fractional transformations acting on \mathfrak{F} . For convenience we normalize Γ so that an element of Γ has the form $z \to (az + b)/(cz + d)$, with a, b, c, d real and ad - bc = 1. We also identify the element $V \in \Gamma$ with the matrices

$$\pm \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

We say that Γ is an *H*-group if

- (i) Γ is finitely generated,
- (ii) Γ is discontinuous in 30 but is discontinuous at no point of the real line,
 - (iii) Γ contains translations.

The automorphic forms to be considered here are of *integral* degree with multiplier system, are *holomorphic* in \mathcal{K} , and are, as usual, restricted to those which are meromorphic (in the appropriate uniformizing variables) at all of the parabolic cusps of a fundamental region of Γ . The characteristic functional equation satisfied by an automorphic form F of degree r, with multiplier system ν , with respect to Γ , is

(1)
$$F(Vz) = \nu(V)(cz+d)^{-r}F(z),$$

for all $V = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, where v(V) is independent of z and |v(V)| = 1. From (1) we can immediately derive a consistency condition for v which reduces in the case when r is an integer to $v(V_1 \cdot V_2) = v(V_1) \cdot v(V_2)$, for all V_1 , $V_2 \in \Gamma$. That is, v is a complex character on Γ thought of as a matrix group. We denote the complex vector space of automorphic forms of degree r, with multiplier system v, with respect to Γ by $\{\Gamma, r, v\}$.

Received March 27, 1969.

From now on we assume that r is a nonnegative integer and that v is a multiplier system on Γ with respect to the degree r. (Note that v is then a multiplier system with respect to the degree -r-2 and \bar{v} is also a multiplier system with respect to the degrees r and -r-2.) A well-known result due to Bol [1] states that

(2)
$$\frac{d^{r+1}}{dz^{r+1}}\left\{(cz+d)^rF(Vz)\right\} = (cz+d)^{-r-2}F^{(r+1)}(Vz),$$

for any $V = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, with ad - bc = 1. This can be proved either by induction on r or directly by the use of Cauchy's integral formula. It follows immediately from (2) that if $F \in \{\Gamma, r, v\}$, then

$$\frac{d^{r+1}}{dz^{r+1}}F = F^{(r+1)} \epsilon \{\Gamma, -r - 2, \nu\}.$$

The converse is not quite true. However it is easy to see from (2) that if $f \in \{\Gamma, -r - 2, \nu\}$ and F is any (r + 1)-fold indefinite integral of f, then F satisfies the following functional equation:

$$\bar{v}(V)(cz+d)^r F(Vz) = F(z) + p_v(z),$$

for all $V = \begin{pmatrix} a & b \\ c \end{pmatrix} \in \Gamma$. Here $p_V(z)$ is a polynomial in z of degree $\leq r$ which depends on V. If it should happen that $p_V(z) \equiv 0$ for all $V \in \Gamma$, then in fact (3) reduces to (1) and $F \in \{\Gamma, r, v\}$. In keeping with recent usage, a function satisfying (3), which is meromorphic in \mathcal{K} and meromorphic in the appropriate variables at all of the parabolic cusps of a fundamental region of Γ , will be called an *automorphic integral* of degree r, with multiplier system v and period polynomials p_V , with respect to Γ . The polynomials p_V are also called the *period polynomials* of the automorphic form f.

If we put $(F \mid V)(z) = \bar{v}(V)(cz+d)^r F(Vz)$, for $V = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \epsilon \Gamma$, then (3) becomes $F \mid V = F + p_V$ and we conclude from this that

$$(4) p_{v_1v_2} = p_{v_1} | V_2 + p_{v_2},$$

for V_1 , $V_2 \in \Gamma$. For the moment we will concentrate our attention upon (4). Suppose $\{p_V \mid V \in \Gamma\}$ is any collection of polynomials of degree $\leq r$ satisfying (4); then we call $\{p_V \mid V \in \Gamma\}$ a cocycle. A coboundary is a set $\{p_V \mid V \in \Gamma\}$ of polynomials of degree $\leq r$ such that

$$p_V = p \mid V - p$$
 for all $V \in \Gamma$,

with p a fixed polynomial of degree $\leq r$. With these definitions every coboundary is a cocycle. The cohomology group $H^1_v(\Gamma, P_r)$ is defined as usual to be the vector space obtained by forming the quotient of the cocycles by the coboundaries. Here P_r is the vector space of polynomials of degree $\leq r$. It is of interest to note that if we begin with an automorphic form f of degree -r-2 and attach to f the cocycle of period polynomials $\{p_v\}$ by means of (3), this cocycle is not uniquely determined by f. For the indefinite integral

F is determined only up to a polynomial p of degree r. Replacing F by F + p, we find that $\{p_v\}$ is replaced by $\{p_v^*\}$, where $p_v^* = p_v - (p \mid V - p)$. The important feature here is that the cocycle $\{p_v^*\}$ is in the same cohomology class as is $\{p_v\}$. Thus f uniquely determines an element of $H_v^1(\Gamma, P_r)$ by means of (3).

Let $C^+(\Gamma, -r-2, \nu)$ denote the subspace of $\{\Gamma, -r-2, \nu\}$ consisting of *entire* automorphic forms, that is, those which are holomorphic in \mathcal{K} and holomorphic at all of the parabolic cusps of a fundamental region. Let $C^0(\Gamma, -r-2, \nu)$ be the subspace of *cusp forms*, that is, those entire automorphic forms which vanish at all of the parabolic cusps of a fundamental region. We are now in a position to state our main results.

THEOREM 1. Let Γ be an H-group, r a positive integer, and v a multiplier system on Γ corresponding to the degree r. Then as vector spaces,

$$C^0(\Gamma, -r-2, \bar{\nu}) \oplus C^+(\Gamma, -r-2, \nu)$$
 and $H^1_{\bar{\nu}}(\Gamma, P_r)$

are isomorphic under a mapping which is "canonical" in the sense that its construction is independent of Γ , r, and v.

THEOREM 2. Let Γ , r, and v be as in Theorem 1. Then given a cohomology class in $H^1_v(\Gamma, P_r)$ there exists an automorphic form h in $\{\Gamma, -r-2, v\}$ whose period polynomials are in the given cohomology class. In fact h can be so chosen that it is holomorphic in \Re and at all of the parabolic cusps except for the cusp at $i \infty$.

Remarks. 1. Theorem 1 was stated by Gunning [3, Theorem 5] as follows: there exists an exact sequence of spaces and maps of the form

$$0 \to C^+(\Gamma, \, -r \, - \, 2, \, v) \to H^1_v(\Gamma_1, P_r) \to C^0(\Gamma, \, -r \, - \, 2, \, \bar{v}) \to 0.$$

Gunning assumes that the multiplier system ν consists entirely of roots of unity, while here we make no such assumption on ν . On the other hand Gunning assumes only that Γ is a finitely generated Fuchsian group of the first kind, not necessarily an H-group.

- 2. Eichler's version of Theorem 1 [2, p. 283] (the original version) deals not with $H_v^1(\Gamma, P_r)$ but rather with a modification of $H_v^1(\Gamma, P_r)$ which we will denote $\tilde{H}_v^1(\Gamma, P_r)$. \tilde{H}_v^1 does not contain all of the elements of H_v^1 , but only those whose cocycles $\{p_v \mid V \in \Gamma\}$ satisfy the following condition:
- (5) Let Q_1, \cdot, Q_t represent all of the parabolic classes in Γ . Then for each h, $1 \leq h \leq t$, there exists a polynomial p_h of degree $\leq r$ such that

$$p_{Q_h} = p_h | Q_h - p_h.$$

Eichler's theorem can be stated as

COROLLARY 1. With Γ , r, and ν as in Theorem 1,

$$C^0(\Gamma, -r-2, \bar{v}) \oplus C^0(\Gamma, -r-2, v)$$

is isomorphic to

$$\tilde{H}_{n}^{1}(\Gamma, P_{r}).$$

3. In [2], Corollary 1 is proved only for r even and $v \equiv 1$. In [3, pp. 61-2] it was proved under the assumption that v consists entirely of roots of unity. In [2], the case r=0, $v\equiv 1$ is included. As we have stated Corollary 1, the case r=0 is not included. However in the Appendix we give a proof of Theorem 1 for r=0. (The case r=0 is treated in an appendix as it requires, at least at present, a proof different from that for r>0.) In §6 we present a deduction of Corollary 1 from Theorem 1 that is valid for $r\geq 0$. Thus Corollary 1 for r=0 is actually included among our results here.

2. Cusp forms and the supplementary function

The key to our proof of Theorems 1 and 2 is the use of the "supplementary function". This is very nearly the same concept as the "supplementary series" introduced in [4, pp. 183–184].

Let

$$S = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}, \qquad \lambda > 0,$$

be the minimal positive translation in Γ , let $\nu(S) = e^{2\pi i x}$, $0 \le x < 1$, and let ν be an integer and r a positive integer. Consider the Poincaré series

$$g_{\nu}(z, \bar{v}) = \sum_{V} \frac{\exp \left\{2\pi i(\nu + x)Vz/\lambda\right\}}{\bar{v}(V)(cz+d)^{r+2}}$$

where $V = {* \choose c} {* \choose d}$ runs through a complete set of elements of Γ with distinct lower row. The following facts concerning the Poincaré series are well known [6, 272–289].

- (i) $g_{\nu}(z, \bar{\nu}) \in \{\Gamma, -r-2, \bar{\nu}\}.$
- (ii) $g_{\nu}(z,\bar{\nu})$ vanishes at all cusps of Γ except possibly at $i \infty$. At $i \infty$ it has an expansion of the form

$$g_{\nu}(z, \bar{\nu}) = 2e^{2\pi i(\nu+x)z/\lambda} + 2\sum_{m+x>0} a_m(\nu, \bar{\nu})e^{2\pi i(m+x)z/\lambda}.$$

Thus if $\nu + x > 0$, $g_{\nu}(z, \bar{\nu}) \in C^{0}(\Gamma, -r - 2, \bar{\nu})$.

(iii) There exist integers $0 \le \nu_1 < \cdots < \nu_s$ such that $g_{\nu_1}, \cdots, g_{\nu_s}$ form a basis for $C^0(\Gamma, -r-2, \bar{\nu})$.

Suppose $g \in C^0(\Gamma, -r-2, \bar{\nu})$. By (iii), there exist complex numbers b_1, \dots, b_s such that $g = \sum_{i=1}^s b_i g_{\nu_i}(z, \bar{\nu})$. Put $g^* = \sum_{i=1}^s \bar{b}_i g_{\nu_i'}(z, \bar{\nu})$, where

$$v' = -v$$
 if $x = 0$
= -1 - v if $x > 0$.

Note that with $\bar{v}(S)=e^{2\pi ix}, 0\leq x<1$, we also have $v(S)=e^{2\pi ix'}, 0\leq x'<1$ where

$$x' = 0$$
 if $x = 0$
= 1 - x if $x > 0$.

Thus we have the expansion at $i \infty$

$$g_{\nu_{i'}}(z, \psi) = 2 \exp \left\{ 2\pi i (\nu'_{i} + x') z/\lambda \right\} + 2 \sum_{m+x'>0} a_{m}(\nu'_{i}, \psi) \exp \left\{ 2\pi i (m+x') z/\lambda \right\}$$

$$= 2e^{-2\pi i (\nu_{i} + x) z/\lambda} + 2 \sum_{m+x'>0} a_{m}(\nu'_{i}, \psi) e^{2\pi i (m+x') z/\lambda}.$$

It follows that $g^* \in \{\Gamma, -r-2, \nu\}, g^*$ has a pole at $i \infty$ with principal part

$$2 \sum_{i=1}^{s} \bar{b}_{i} \exp \{-2\pi i (\nu_{i} + x) z/\lambda\},$$

and g^* vanishes at all of the other parabolic cusps of Γ . Let G^* be the (r+1)-fold indefinite integral of g^* , so normalized that

$$G^*(z + \lambda) = \nu(S)G^*(z) = e^{2\pi i x'}G^*(z).$$

We call $G^*(z)$ the function supplementary to g.

In analogy with (3) we have

(6)
$$\bar{v}(V)(cz+d)^r G^*(Vz) = G^*(z) + q_V^*(z),$$

for all $V = {* \choose c} {* \choose d} \epsilon \Gamma$, where $q_v^*(z)$ is a polynomial in z of degree $\leq r$. Also if we let G be the (r+1)-fold integral of g, so normalized that

$$G(z + \lambda) = \bar{v}(S)G(z) = e^{2\pi i x}G(z)$$

and G has no constant term in its expansion at $i\infty$, then

(7)
$$\nu(V)(cz+d)^rG(Vz) = G(z) + q_V(z),$$

for all $V = {* \choose c} {* \choose d} \epsilon \Gamma$, where $q_V(z)$ is a polynomial in z of degree $\leq r$. The fact upon which our entire proof hinges is that with $q_V^*(z)$, $q_V(z)$ as in (6) and (7), respectively, we have

(8)
$$\overline{q_{V}(\bar{z})} = q_{V}^{*}(z) \text{ for all } V \in \Gamma.$$

This was proved in [4, \S IV] under the assumption r > 0.

As an immediate consequence of (8) we have the following result which has already appeared, in a slightly different form, as Theorem (4.9) of [4].

THEOREM 3. Let r be a positive integer, $g \in C^0(\Gamma, -r - 2, \bar{\nu})$, and G^* the function supplementary to g. Then $g \equiv 0$ if and only if $G^* \in {\Gamma, r, \nu}$.

Proof. Suppose $g \equiv 0$. Then G, the (r+1)-fold integral of g, is also identically 0. Then $q_v(z) \equiv 0$ for all $V \in \Gamma$, where q_v is as in (7). By (8) $q_v^*(z) \equiv 0$ for all $V \in \Gamma$. Thus by (6), we have

$$\bar{v}(V)(cz+d)^rG^*(Vz)=G^*(z),$$

for all $V = \begin{pmatrix} * & * \\ c & d \end{pmatrix}$ $\epsilon \Gamma$. There remains only the question of the behavior of G^* at the parabolic cusps. That G^* is meromorphic at the parabolic cusps follows since G^* is an (r+1)-fold integral of g^* and g^* as an element of $\{\Gamma, -r-2, v\}$ is meromorphic at the parabolic cusps. Thus $G^* \epsilon \{\Gamma, r, v\}$

Conversely, suppose $G^* \in \{\Gamma, r, v\}$. Then $q_v^*(z) \equiv 0$ for all $V \in \Gamma$. By (8)

 $q_V(z) \equiv 0$ for all $V \in \Gamma$. It follows as above that $G \in \{\Gamma, r, \bar{v}\}$. But G, the (r+1)-fold integral of a cusp form, is regular in \mathcal{K} and also at all of the parabolic cusps of Γ . It is well known that under these circumstances $G \equiv 0$, since r > 0 [6, p. 301]. It follows that $g \equiv 0$.

Remarks. 1. Theorem 3 follows directly from Petersson's "Principal Parts Condition" [9].

2. The mapping from g to the cocycle $\{q_{\nu}^{*} \mid V \in \Gamma\}$ appears from our construction to depend upon the choice of a basis for $C^{0}(\Gamma, -r-2, \bar{\nu})$ from among the functions $g_{\nu}(z, \bar{\nu}); \nu = 1, 2, \cdots$. However our mapping is in fact *independent* of the choice of the basis, The point is that if $g \in C^{0}(\Gamma, -r-2, \bar{\nu})$ is expressed in any way at all as a finite sum

$$g = \sum_{\nu=1}^{N} b_{\nu} g_{\nu}(z, \bar{\nu}),$$

then the periods of $g^* = \sum_{\nu=1}^N \bar{b}_{\nu} g_{\nu'}(z, \nu)$ are related to those of g by means of the equation (8). Thus, although g^* depends not upon g but upon a particular representation of g in the form $\sum_{\nu=1}^N b_{\nu} g_{\nu}(z, \bar{\nu})$ the corresponding cocycle $\{q^*_{\nu} \mid V \in \Gamma\}$ depends only upon g. Another way of stating this is that to each cusp form $g \in C^0(\Gamma, -r-2, \bar{\nu})$ there corresponds not a *single* supplementary function but rather an *infinite class* of supplementary functions, all with the same cocycle of periods. In this context we may expand Theorem 3 to

Theorem 3'. Let r be a positive integer and $g \in C^0(\Gamma, -r-2, \overline{v})$. Then $g \equiv 0$ if and only if $G^* \in \{\Gamma, r, v\}$ for every function G^* supplementary to g. This in turn holds if and only if $G^* \in \{\Gamma, r, v\}$ for a single function G^* supplementary to g. Furthermore with G^* defined as in Theorem 3, with respect to a fixed basis of $C^0(\Gamma, -r-2, \overline{v})$, we have g = 0 if and only if $G^* = 0$.

The last statement follows immediately, since $\sum_{i=1}^{s} b_i g_{\nu_i}(z, \bar{\nu}) = 0$, with $g_{\nu_i}, \dots, g_{\nu_s}$ a basis, of course implies $b_i = 0$ for $1 \le i \le s$. Thus $g^* = 0$ and consequently G^* is constant. Since $G^* \in \{\Gamma, r, \nu\}$ and r > 0, it follows that $G^* = 0$.

3. The mapping into $H_v^1(\Gamma, P_r)$

We now exhibit explicitly the mapping referred to in Theorem 1. Let $f \in C^+(\Gamma, -r-2, v)$. Put $\beta(f)$ equal to the cohomology class of the cocycle $\{p_v \mid V \in \Gamma\}$ of period polynomials of F, an (r+1)-fold integral of f (refer to equation (3)). For $g \in C^0(\Gamma, -r-2, \bar{v})$ put $\alpha(g)$ equal to the cohomology class of the cocycle $\{q_v^* \mid V \in \Gamma\}$ of period polynomials of G^* . Here G^* is the function supplementary to g, and g_v^* are the polynomials occurring in (6).

For $(g,f) \in C^0(\Gamma, -r-2, \bar{v}) \times C^+(\Gamma, -r-2, v)$ put $\mu(g,f) = \alpha(g) + \beta(f)$ Since α and β are linear maps, so is μ . We now show that μ is 1-1. For this is sufficient to prove that the kernel of μ is (0,0). With this in mind suppose $\mu(g,f) = 0$. This implies that there exists a polynomial p(z) of degree $\leq r$ such that $F + G^* + p \in \{\Gamma, r, v\}$. Here F is an (r+1)-fold integral of f and G^* is the function supplementary to g. Now $F+G^*+p$ is regular in 30 and at all of the cusps of Γ except at the cusp $i\infty$. The principal part of $F+G^*+p$ at $i\infty$ agrees with that of G^* at $i\infty$. Hence by a well-known formula for the Fourier coefficients of automorphic forms of positive dimension on H-groups, obtained first by Petersson [8] and later by Lehner using the circle method [7], it follows that $F+G^*+p=G^*$. Hence F=-p, so that $f=D^{(r+1)}F=0$. Also $G^*=F+G^*+p$ ϵ $\{\Gamma,r,v\}$. Thus by Theorem 3 g=0. We have proved that the kernel of μ is (0,0), so that μ is 1-1.

4. Completion of the proof of Theorem 1

In section 3 we showed how to imbed $C^0(\Gamma, -r-2, \bar{\nu}) \oplus C^+(\Gamma, -r-2, \nu)$ isomorphically into $H^1_v(\Gamma, P_r)$ via the linear mapping μ . The proof of Theorem 1 will be complete if we show that μ is onto $H^1_v(\Gamma, P_r)$. To accomplish this we will prove that

(9)
$$\dim C^0(\Gamma, -r-2, \bar{\nu}) + \dim C^+(\Gamma, -r-2, \nu) = \dim H^1_{\nu}(\Gamma, P_r).$$

Put $D_1 = \dim C^0(\Gamma, -r - 2, \bar{\nu})$ and $D_2 = \dim C^+(\Gamma, -r - 2, \nu)$. The equality (9) is correct for $r \geq 0$, not merely for r > 0, and we prove it under the assumption that $r \geq 0$ and ν is a multiplier system on Γ for the degree -r - 2. The case r = 0, $\nu \equiv 1$ is slightly exceptional.

To calculate the left-hand side of (9) we apply Petersson's generalized Riemann-Roch Theorem [10, Theorem 9]. It is a familiar fact that Γ can be presented in terms of generators and relations as follows:

(10)
$$E_{j}^{l_{j}} = -I \quad \text{for } 1 \leq j \leq s,$$

$$\gamma_{1} \cdots \gamma_{n} \cdot E_{1} \cdots E_{s} \cdot Q_{1} \cdots Q_{t} = (-I)^{s+t} \quad \text{with } \gamma_{i} = A_{i} B_{i} A_{i}^{-1} B_{i}^{-1}.$$

Here $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, the A_i and B_i are hyperbolic matrices, the E_j are elliptic matrices, and the Q_h are parabolic matrices. Also every elliptic element in Γ is conjugate to one of the E_j and every parabolic element to one of the Q_h . Following Petersson [10] we put

$$\nu(Q_h) = e^{2\pi i x_h}, \quad 0 \le x_h < 1 \qquad (1 \le h \le t)$$

and

$$\nu(E_j) = \exp \{\pi i (r + 2 + 2a_j)/l_j\}$$
 $(1 \le j \le s),$

where a_j is an integer such that $0 \le a_j \le l_j - 1$. Also define

$$\vartheta_h = 1 \quad \text{if } x_h = 0$$
$$= 0 \quad \text{if } x_h > 0,$$

put
$$q = t + \sum_{j=1}^{s} (1 - 1/l_j)$$
, and let
$$\delta = 1 \quad \text{if } r = 0 \text{ and } \nu \equiv 1$$
$$= 0 \quad \text{otherwise.}$$

Then by [10, Theorem 9] we have

 D_1

$$= -\sum_{h=1}^t \vartheta_h + (r+2)(p-1+q/2) - \sum_{h=1}^t x_h - \sum_{j=1}^s a_j/l_j - p + 1 + \delta,$$

and

$$D_2 = (r+2)(p-1+q/2) - \sum_{h=1}^t x_h' - \sum_{j=1}^s a_j'/l_j - p + 1.$$

Here x'_h and a'_i are defined by means of

$$\bar{v}(Q_h) = \exp\{2\pi i x_h'\}, \quad 0 \le x_h' < 1 \quad (1 \le h \le t)$$

and

$$\bar{v}(E_j) = \exp \left\{ \pi i (r + 2 + 2a'_j) / l_j \right\} \qquad (1 \le j \le s),$$

respectively, with a_j' an integer such that $0 \le a_j' \le l_j - 1$. It is clear that $x_h + x_h' = 1 - \vartheta_h$. Then we have

$$D_{1} + D_{2} = 2(r+2)(p-1+q/2) - \sum_{h=1}^{t} (\vartheta_{h} + 1 - \vartheta_{h})$$

$$-2p+2 - \sum_{j=1}^{s} (a_{j} + a'_{j})/l_{j} + \delta$$

$$= (r+1)(2p-2+t) + (r+2) \sum_{j=1}^{s} (1-1/l_{j})$$

$$- \sum_{j=1}^{s} (a_{j} + a'_{j})/l_{j} + \delta.$$

To calculate dim $H^1_v(\Gamma, P_r)$ we put D_3 equal to the dimension of the space of cocycles and D_4 equal to the dimension of the space of coboundaries. We can take any polynomial p(z) of degree $\leq r$ and form the coboundary $\{(p \mid V - p) \mid V \in \Gamma\}$. For such a coboundary to vanish identically means that $p(z) \in \{\Gamma, r, v\}$. Among other things this implies that $p(z + \lambda) = e^{2\pi i x} p(z)$ which unless r = 0 implies that $p(z) \equiv 0$. If r = 0, but $v \neq 1$ again $p(z) \in \{\Gamma, r, v\}$ is impossible unless $p(z) \equiv 0$. Thus except in the case r = 0 $v \equiv 1$ it turns out that $D_4 = r + 1$. In the exceptional case $p \mid V - p \equiv 0$ always, so that $D_4 = 0$. In general, then, $D_4 = r + 1 - \delta$.

In the calculation of D_3 we first observe that because of the condition (4) satisfied by a cocycle we need only assign polynomials of degree $\leq r$ to the generators of Γ in such a way that the assignment is consistent with the relations given in (10). We now make use of the fact that, since Γ is an H-group, $t \geq 1$. We may arbitrarily assign polynomials to $A_1, B_1, \dots, A_p, B_p$, Q_1, \dots, Q_{t-1} . This contributes to D_3 the number (r+1)(2p+t-1). Then once an assignment of polynomials is made to E_1, \dots, E_s , the polynomial for Q_t will be determined by the relation $\gamma_1 \dots \gamma_p \cdot E_1 \dots E_s \cdot Q_1 \dots Q_t = (-I)^{s+t}$.

It remains only to calculate the contribution made to D_3 by the polynomials assigned to E_j , $1 \le j \le s$. In this calculation we follow Eichler [2, pp. 274–276]. Let p_{E_j} be the polynomial assigned to E_j in an arbitrary cocycle. From (4) and the relation $E_j^{lj} = -I$ it follows that there exists a polynomial p_j of degree $\le r$ such that $p_{E_j} = p_j \mid E_j - p_j$, for $1 \le j \le s$. Hence the number of

linearly independent polynomials we can attach to E_j is the dimension of the vector space

$$V_j = \{ (p \mid E_j - p) \mid p \text{ is a polynomial of degree } \leq r \}.$$

But dim V_j is the number of linearly independent elements among $z^m \mid E_j - z^m$, $0 \le m \le r$. Normalize E_j to the form

$$E_j = \begin{pmatrix} e^{\pi i/l_j} & 0 \\ 0 & e^{-\pi i/l_j} \end{pmatrix}.$$

Then

$$z^{m} \mid E_{j} - z^{m} = \overline{v}(E_{j}) (e^{-\pi i \mid l_{j}})^{r} (e^{2\pi i \mid l_{j}} \cdot z)^{m} - z^{m}$$

= $z^{m} [\overline{v}(E_{j}) \exp \{2\pi i (m - r/2)/l_{j}\} - 1],$

so that dim V_i is the number of integers $m, 0 \le m \le r$, such that

$$\exp \left\{ 2\pi i (m - r/2)/l_i \right\} \neq v(E_i).$$

Since $v(E_i) = \exp \{\pi i (r + 2 + 2a_i)/l_i\}$, we consider the equation

(12)
$$\exp \left\{ 2\pi i \left(m - r/2 \right) / l_i \right\} = \exp \left\{ \pi i \left(r + 2 + 2a_i \right) / l_i \right\}.$$

Equation (12) is satisfied if and only if

$$m - r/2 \equiv (r+2)/2 + a_j \pmod{l_j},$$

and this in turn is equivalent to $m - r \equiv a_j + 1 \pmod{l_j}$. Putting u = r - m we find that the number of solutions of $u \equiv -a_j - 1 \pmod{l_j}$, $0 \leq m \leq r$, is exactly $[(r + a_j + 1)/l_j]$, where as usual [x] denotes the largest integer $\leq x$. Hence

$$\dim V_j = r + 1 - [(r + a_j + 1)/l_j].$$

We conclude finally that

$$D_3 = (r+1)(2p+t-1) + \sum_{j=1}^{s} \left(r+1 - \left\lceil \frac{r+a_j+1}{l_j} \right\rceil \right),$$

and thus

(13)
$$D_{3} - D_{4} = (r+1)(2p+t-1) + \sum_{j=1}^{s} \left(r+1 - \left[\frac{r+a_{j}+1}{l_{j}}\right]\right) - (r+1-\delta) = (r+1)(2p+t-2) + s(r+1) - \sum_{j=1}^{s} \left[\frac{r+a_{j}+1}{l_{j}}\right] + \delta.$$

The proof of (9), and thus of Theorem 1, will be complete if we show that $D_1 + D_2 = D_3 - D_4$. A comparison of (11) and (13) shows that it is sufficient to prove

$$(r+2) \sum_{j=1}^{s} (1-1/l_j) - \sum_{j=1}^{s} (a_j + a'_j)/l_j$$

= $s(r+1) - \sum_{j=1}^{s} [(r+a_j+1)/l_j],$

that is,

(14)
$$s - \sum_{j=1}^{s} (a_j + a'_j + r + 2)/l_j = -\sum_{j=1}^{s} [(r + a_j + 1)/l_j].$$

Equation (14) is equivalent to

$$\sum_{j=1}^{s} (a_j + a'_j + r + 2)/l_j = \sum_{j=1}^{s} \left\{ \left[\frac{r + a_j + 1}{l_j} \right] + 1 \right\},\,$$

which, in turn, will follow from

(15)
$$(a_j + a'_j + r + 2)/l_j = [(r + a_j + 1)/l_j] + 1$$
 for $1 \le j \le s$.

From the definition of a_i and a'_i it follows that

$$\exp \left\{ 2\pi i (a_j + a'_j)/l_j \right\} = \exp \left\{ -2\pi i (r+2)/l_j \right\},\,$$

or $a_j + a'_j + r + 2 = z_j l_j$, with z_j an integer. Since $0 \le a'_j \le l_j - 1$, we conclude that

$$(a_j + r + 2)/l_j \le z_j \le (a_j + l_j + r + 1)/l_j$$
,

or

$$1/l_j + (a_j + r + 1)/l_j \le z_j \le 1 + (a_j + r + 1)/l_j$$

Hence $(a_j + a'_j + r + 2)/l_j = z_j = [(r + a_j + 1)/l_j] + 1$, and (15) follows. The proof of Theorem 1 is complete.

5. Proof of Theorem 2

The proof of Theorem 2 is actually contained in the proof of Theorem 1. In Theorem 1 we proved that given a cocycle $\{p_v \mid V \in \Gamma\}$, then there exists

$$(g, f) \in C^0(\Gamma, -r-2, \bar{\nu}) \times C^+(\Gamma, -r-2, \nu)$$

such that $\mu(g, f) = \alpha(g) + \beta(f) = \text{the cohomology class of } \{p_v \mid V \in \Gamma\}$. Let $\{q_v \mid V \in \Gamma\}$ be the cocycle of period polynomials of f and let $\{q_v^* \mid V \in \Gamma\}$ be the cocycle of period polynomials of g^* . Then $\mu(g, f)$ is the cohomology class of the cocycle $\{q_v + q_v^* \mid V \in \Gamma\}$ and $\{q_v + q_v^* \mid V \in \Gamma\}$ is the set of period polynomials of $f + g^* \in \{\Gamma, -r - 2, v\}$. This completes the proof of Theorem 2.

6. Proof that Theorem 1 implies Corollary 1

In view of Theorem 1 it suffices to prove that, with

$$(g,f) \in C^{0}(\Gamma, -r-2, \bar{v}) \times C^{+}(\Gamma, -r-2, v), \quad \mu(g,f) = \alpha(g) + \beta(f)$$

satisfies condition (5) if and only if $f \in C^0(\Gamma, -r-2, \nu)$. Let x_1', \dots, x_t' be defined as in §4; suppose $S = Q_t$ so that $x_t' = x'$, with x' as in §2. Further, let q_h , $1 \le h \le t$, be the parabolic cusp of Γ left fixed by Q_h . Then $q_t = i \infty$. With these definitions it is known [6, pp. 272-3] that $f \in \{\Gamma, -r-2, \overline{\nu}\}$ has expansions at the parabolic cusps q_h of the form

$$f(z) = (z - q_h)^{-r-2} \sum_{m \ge -m_h} b_m(h) \exp \left\{ -2\pi i (m + x'_h) (z - q_h)^{-1} / \lambda_h \right\}$$

$$(16) \qquad 1 \le h \le t - 1,$$

$$\dot{f}(z) = \sum_{m \ge -m_t} b_m(t) \exp \left\{ 2\pi i (m + x'_t) z / \lambda_t \right\}, \qquad h = t.$$

In (16) λ_n , $1 \le h \le t$ are certain positive numbers depending on the structure of Γ , and m_h , $1 \le h \le t$ are integers. (Note that $\lambda_t = \lambda$.)

Suppose F(z) is an (r+1)-fold integral of f(z). If $1 \le h \le t-1$, then applying (2), we find that F(z) has an expansion at q_h of the form

$$F(z) = (z - q_h)^r (2\pi i/\lambda_h)^{-r-1}$$

$$\cdot \sum_{m \ge -m_h} b_m(h) (m + x'_h)^{-r-1} \exp \left\{ -2\pi i (m + x'_h) (z - q_h)^{-1}/\lambda_h \right\}$$

$$+ \delta_h \cdot \frac{(-1)^{r+1}}{(r+1)!} (z - q_h)^{-1} + p_h(z),$$

where $p_h(z)$ is a polynomial of degree $\leq r$ and $\delta_h = b_0(h)$ or 0 according as the expansion (16) has a term with $m + x'_h = 0$ (i.e. $m = x'_h = 0$) or not. At $q_t = i \infty$, F(t) has the expansion

$$F(z) = (2\pi i/\lambda_t)^{-r-1} \sum_{m \ge -m_t} b_m(t) (m + x_t')^{-r-1} \exp \{2\pi i (m + x_t') z/\lambda_t\} + \delta_t z^{r+1}/(r+1)! + p_t(z);$$

here δ_t has the same meaning as before and $p_t(z)$ is a polynomial of degree $\leq r$. It follows from these expansions of F(z) that the cocycle of periods of f satisfies (5) if and only if $\delta_h = 0$, for $1 \leq h \leq t$. Thus the cocycle of periods satisfies (5) if and only if none of the expansions (16) of f(z) has a term with $m = x'_h = 0$. With $f \in C^+(\Gamma, -r - 2, \nu)$ it follows that $\beta(f)$ satisfies (5) if and only if $f \in C^0(\Gamma, -r - 2, \nu)$. On the other hand, for

$$g \in C^0(\Gamma, -r-2, \bar{\nu}), g^* \in \{\Gamma, -r-2, \nu\}$$

and g^* has no term with $m + x'_h = 0$, for $1 \le h \le t$. Thus $\alpha(g)$ always satisfied (5), so that $\mu(g, f) = \alpha(g) + \beta(f)$ satisfies (5) if and only if $f \in C^0(\Gamma, -r-2, \nu)$. The proof is complete.

Appendix. A proof of Theorem 1 for r = 0

In this appendix we give a proof of Theorem 1 for r = 0. Since equation (8), a key feature of our proof of Theorem 1, depends upon the assumption r > 0, we give a different proof for r = 0, based upon results of Petersson. Then Theorem 2 and Corollary 1 also follow for r = 0.

Since equation (9) is value for r=0, it is sufficient to display a mapping which imbeds $C^0(\Gamma, -2, \bar{\nu}) \oplus C^+(\Gamma, -2, \nu)$ isomorphically into $H^1_{\nu}(\Gamma, P_0)$, $P_0 = \text{complex numbers}$. In [12], [13], Petersson has carried out a construction of automorphic forms of degree -2 with arbitrary multiplier system ν on H- groups. He obtains these automorphic forms from the usual Poincaré series of degree -r-2, r>0, by a passage to the limit as $r\to 0+$. In this way he produces functions $g_{\nu}(z, \bar{\nu})$, with ν an arbitrary integer, satisfying conditions (i), (ii) of §2, but now with r=0.

In [11], Peterson establishes two further results which are essential in our proof. The first of these is the existence of a "gap sequence" in a setting more general than that of the classical gap sequence of Weierstrass [11, p. 207].

We apply only a very special case of this Petersson gap sequence. The second result connects this gap sequence with a basis for cusp forms [11, p. 211, Theorem 9α]. We state both results together under the single title of

Petersson Gap Theorem. Let s be the dimension over the complex field of the vector space $C^0(\Gamma, -2, \overline{v})$. Then there exist exactly s integers w_i , $0 < w_1 < \cdots < w_s$, such that there does not exist an element of $\{\Gamma, 0, v\}$ having as its only singularity in a fundamental region of Γ a pole at $i \infty$ of order $w_i - x'$, $1 \le i \le s$. Furthermore

(17)
$$g_{w_1}, \dots, g_{w_s} \text{ form a basis for } C^0(\Gamma, -2, \bar{v}) \text{ if } x = 0, \\ g_{w_1-1}, \dots, g_{w_s-1} \text{ form a basis for } C^0(\Gamma, -2, \bar{v}) \text{ if } x \neq 0.$$

We are now in a position to describe the mapping into $H^1_v(\Gamma_1 P_0)$. For $f \in C^+(\Gamma, -2, v)$, $\beta(f)$ is as described in §3; that is, $\beta(f)$ is the cohomology class of the cocycle of periods of F, an indefinite integral of f. Suppose $g \in C^0(\Gamma, -2, \bar{v})$. From (17) and the definition of v' given in §2 it follows that the functions $g_{(-w_i)'}$, $1 \le i \le s$, form a basis for $C^0(\Gamma, -2, \bar{v})$ whether x = 0 or x > 0. Thus there exist complex numbers b_1, \dots, b_s such that $g = \sum_{i=1}^s b_i g_{(-w_i)'}(z, \bar{v})$. Put

$$g^* = \sum_{i=1}^{s} \bar{b}_i g_{(-w_i)}(z, v) \epsilon \{\Gamma, -2, v\}$$

and let $\alpha(g)$ be the cohomology class of the cocycle of periods of G^* , an indefinite integral of g^* so normalized that $G^*(z + \lambda) = e^{2\pi i x'} G^*(z)$. Note that the principal part of g^* at $i \infty$ is

$$2 \sum_{i=1}^{s} \bar{b}_{i} \exp \{+2\pi i (-w_{i} + x')z/\lambda\},$$

so that the principal part of G^* at $i \infty$ is

$$2 \sum_{i=1}^{s} \bar{b}_{i} \{2\pi i (x' - w_{i})/\lambda\}^{-1} \exp \{2\pi i (-w_{i} + x')z/\lambda\}.$$

Since g^* is regular at all points of a fundamental region other than the point at $i\infty$, the same is true of G^* , so that if G^* were in $\{\Gamma, 0, v\}$ it would contradict the Petersson Gap Theorem, unless $b_i = 0$ for $1 \le i \le s$. Thus $G^* \in \{\Gamma, 0, v\}$ if and only if $g \equiv 0$. This is Theorem 3 for the case r = 0.

For $(g,f) \in C^0(\Gamma, -2, \bar{\nu}) \times C^+(\Gamma, -2, \nu)$ put $\mu(g,f) = \alpha(g) + \beta(f)$. Then μ is a linear map and we want to show that μ is 1-1. Suppose $\mu(g,f) = 0$. Then there exists a complex number c such that $F + G^* + c \in \{\Gamma, 0, \nu\}$. Now $F + G^* + c$ is regular in \mathfrak{R} and at all of the cusps of Γ except at the cusp $i \approx \mathfrak{R}$; at $i \approx \mathfrak{R}$ the principal part of $F + G^* + c$ agrees with that of G^* . Thus $F + G^* + c$ is an element of $\{\Gamma, 0, \nu\}$, with a singularity of the type excluded by the Petersson Gap Theorem, unless $b_i = 0$ for $1 \leq i \leq s$. Since all $b_i = 0$, it follows that $g \equiv 0$ and G^* is a constant. Thus $F + G^* + c$ is an everywhere regular element of $\{\Gamma, 0, \nu\}$. By the result of [5], $F + G^* + c$ is constant. Thus F is constant and f = F' = 0. Therefore the kernel of μ is (0, 0), μ is 1-1, and Theorem 1 is proved for the case r = 0.

REFERENCES

- 1. G. Bol, Invarianten linearer differentialgleichungen, Abh. Math. Sem. Univ. Hamburg, vol. 16 (1949), pp. 1-28.
- 2. M. EICHLER, Eine Verallgemeinerung der Abelschen Integrale, Math. Zeitschrift, vol. 67 (1957), pp. 267-298.
- 3. R. C. Gunning, The Eichler cohomology groups and automorphic forms, Trans. Amer. Math. Soc., vol. 100 (1961), pp. 44-62.
- 4. M. I. Knopp, Construction of automorphic forms on H-groups and supplementary Fourier series, Trans. Amer. Math. Soc., vol. 103 (1962), pp. 168-188.
- 5. M. I. Knopp, J. Lehner, and M. Newman, A bounded automorphic form of dimension zero is constant, Duke Math. J., vol. 32 (1965), pp. 457-460.
- J. Lehner, Discontinuous groups and automorphic functions, Math. Surveys, no. 8, American Math. Soc., Providence, R. I., 1964.
- 7. ——, The Fourier coefficients of automorphic forms on horocyclic groups, II, Michigan Math. J., vol. 6 (1959), pp. 173-193.
- 8. H. Petersson, Konstruktion der Modulformen und zu gewissen Grenzkreisgruppen gehörigen automorphen Formen von positive reeller Dimension und die vollständige Bestimmung ihrer Fourierkoeffizienden, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl., 1950, pp. 417-494.
- 9. ———, Über automorphe Formen mit Singuläritaten im Diskontinuitätsgebeit, Math. Ann., vol. 129 (1955), pp. 370–390.
- 10. ——, Zur analytischen Theorie der Grenzkreisgruppen II, Math. Ann., vol. 115 (1937-38), pp. 175-204.
- 11. ——, Automorphe Formen als metrische Invarianten, I, Math. Nachr., vol. 1 (1948), pp. 158-212.
- 12. ——, Automorphe Formen als metrische Invarianten, II, Math. Nachr., vol. 1 (1948), pp. 218-257.
- 13. ——, Explizite Konstruktion der automorphen Orthogonalfunktionen in den multiplikativen Differentialklassen, Math. Nachr., vol. 16 (1957), pp. 343-368.

University of Wisconsin Madison, Wisconsin