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1. Introduction

This paper is devoted, for the most part, to a new proof of a theorem
proved by Gunning [3]. In essence the theorem originates with Eichler [2]
who first investigated systematically the cohomology of a Riemann surface
R obtained from the generalized periods arising from the integrals of auto-
morphic forms. The automorphic forms in question are of degree

_
-2 with

respect to discontinuous groups related to R by means of uniformization theory.
Our method, totally differen.t from that of Gunning, employs only the classical
theory of automorphic forms and a device introduced in [4]. Throughout we
ignore the Riemann surface and work only with the discontinuous group.

Before we can state the main results we must introduce some definitions and
notation. Let denote the upper half-plane and let 1 be a discontinuous
group of linear fractional transformations acting on 3. For convenience we
normalize r so that an element of I has the form z (az - b)/(cz d),
with a, b, c, d real and ad bc 1. We also identify the element V e r with
the matrices

+(:
We say that F is an H-group if

(i)
(ii)

line,
(iii)

1 is finitely generated,
I is discontinuous in 3C but is discontinuous at no point of the real

contains translations.

The automorphic forms to be considered here are of integral degree with mul-
tiplier system, are holomorphic in , and are, as usual, restricted to those which
are meromorphic (in the appropriate uniformizing variables) at all of the
parabolic cusps of a fundamental region of 1. The characteristic functional
equation satisfied by an automorphic form F of degree r, with multiplier system
v, with respect to F, is

(1) F (Vz) v(V) (cz + d)-rF (z),

for all V ( )eF, where v(V) is independent of z and Iv(V)[ 1.
From (1) we can immediately derive a consistency condition for v which
reduces in the case when r is an integer to v(V1. V.) v(V).v(V2), for all
V1, V2 e 1. That is, v is a complex character on F thought of as a matrix
group. We denote the complex vector space of automorphic forms of degree
r, with multiplier system v, with respect to F by {F, r, v}.
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From now on we assume that r is a nonnegative integer and that v is a
multiplier system on r with respect to the degree r. (Note that v is then a
multiplier system with respect to the degree-r 2 and V is also a multiplier
system with respect to the degrees r and -r 2.) A well-known result due
to Bol [1] states that

dr+(2)
dzr+

(cz -+- d)rE(Vz) (cz + d)-r-2FCr+) (Vz),

for any V ( ), with ad bc 1. This can be proved either by induc-
tion on r or directly by the use of Cauchy’s integral formula. It follows im-
mediately from (2) that if F e {P, r, v/, then

dr+ F F(r+l) e IT, --r 2,
dzr+

The converse is not quite true. However it is easy to see from (2) that if
f e {r, -r 2, v} and F is any (r - 1)-fold indefinite integral of f, then F
satisfies the following functional equation"

(3) v(Y)(cz - d)rF(Yz) F(z) - p,(z),

for all V ( )e F. Here pv (z) is a polynomial in z of degree _r which
depends on V. If it should happen that p v (z) 0 for all V e 1, then in fact
(3) reduces to (1) and F e {F, r, v }. In keeping with recent usage, a function
satisfying (3), which is meromorphic in 3C and meromorphic in the appropriate
variables at all of the parabolic cusps of a fundamental region of 1, will be
called an automorphic integral of degree r, with multiplier system u and period
polynomials p, with respect to F. The polynomials p are also called the
period polynomials of the automorphic form f.
Ifwe put (f V)(z) v(Y)(cz + d)rF(Vz),for V ( ) el:, then (3)

becomes F V F pr and we conclude from this that

+
for V, V2 e l:. For the moment we will concentrate our ttention upon (4).
Suppose {plV e F} is ny collection of polynomials of degree _<r satisfying
(4); then we call lP V e l:/ cocycle. A coboundary is set {pv V e rl of
polynomials of degree _< r such that

P P IV- p forallVeF,

with p fixed polynomial of degree _<r. With these definitions every co-
boundury is u cocycle. The cohomology group H (F, P) is defined as usual
to be the vector spce obtuined by forming the quotient of the cocycles by the
coboundries. Here P is the vector spuce of polynomials of degree _<r. It
is of interest to note that if we begin with an automorphic form f of degree
-r 2 and ttach to f the cocycle of period polynomials/pl by means of
(3), this cocycle is not uniquely determined by f. For the indefinite integral
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F is determined only up to a polynomial p of degree r. Replacing F by F + p,
we find that {pv} is replaced by/P-*}, where p* p, (p IV p). The
important feature here is that the cocycle P*} is in the same cohomology class
as is {pv}. Thus f uniquely determines an element of H (F, Pr) by means of
(3).
Let C+ (F, -r 2, v) denote the subspace of {F, -r 2, v/ consisting of

entire automorphic forms, that is, those which are holomorphic in 3C and
holomorphic at all of the parabolic cusps of a fundamental region. Let
Co (r, -r 2, ) be the subspace of cusp forms, that is, those entire auto-
morphic forms which vanish at all of the parabolic cusps of a fundamental
region. We are now in a position to state our main results.

THEOREM 1. Let F be an H-group, r a positive integer, and v a multiplier
system on 17 corresponding to the degree r. Then as vector spaces,

C(F,--r-- 2, V) @ C+(F, --r-- 2, v) and H (F, Pr)

are isomorphic under a mapping which is "canonical" in the sense that its con-
struction is independent of F, r, and v.

TEoE 2. Let F, r, and v be as in Theorem 1. Then given a cohomology
class in H (F, P) there exists an automorphic form h in {]7, -r 2, v} whose
period polynomials are in the given cohomology class. In fact h can be so chosen
that it is holomorphic in 3C and at all of the parabolic cusps except for the cusp
at i.

Remarks. 1. Theorem 1 was stated by Gunning [3, Theorem 5] as follows"
there exists an exact sequence of spaces and maps of the form

0 -- C+ (F, -r 2, v) --* S (F1, P) --* C (F, -r 2, V) --. 0.

Gunning assumes that the multiplier system v consists entirely of roots of
unity, while here we make no such assumption on v. On the other hand
Gunning assumes only that F is a finitely generated Fuchsian group of the
first kind, not necessarily an H-group.

2. Eichler’s version of Theorem 1 [2, p. 283] (the original version) deals not
with HI (1, Pr) but rather with a modification of H (1, Pr) which we will
denote/ (1, P,). / does not contain all of the elements of H, but only
those whose cocycles {PI V e F} satisfy the following condition"

(5) Let Q, Qt represent all of the parabolic classes in F. Then for each h,
1

_
h

_
t, there exists a polynonial ph of degree

_
r such that

P Phi Q P.

Eichler’s theorem can be stated as

COROLnV 1. With F, r, and v as in Theorem 1,

C(I" --r-- 2, V) C(I -r- 2, v)
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is isomorphic to
(r, p,).

3. In [2], Corollary 1 is proved only for r even and v 1. In [3, pp. 61-2]
it was proved under the assumption that v consists entirely of roots of unity.
In [2], the case r 0, v 1 is included. As we have stated Corollary 1, the
case r 0 is not included. However in the Appendix we give a proof of
Theorem 1 for r 0. (The case r 0 is treated in an appendix as it requires,
at least at present, a proof different from that for r > 0.) In 6 we present a
deduction of Corollary 1 from Theorem 1 that is valid for r >_ 0. Thus
Corollary 1 for r 0 is actually included among our results here.

2. Cusp forms and the supplementary function
The key to our proof of Theorems 1 and 2 is the use of the "supplementary

function". This is very nearly the same concept as the "supplementary
series" introduced in [4, pp. 183-184].

Let
s=

be the minimal positive translation in F, let v (S) =e2ix, 0

_
x < 1, and let

be an integer and r a positive integer. Consider the Poincari series

g z, exp 12ci( + x) Vz/
v(V)(cz + d)

where V (* ’) runs through a complete set of elements of r with distinct
lower row. The following facts concerning the Poincarti series are well known
[6, 272-289].

(i) v) {r, -r 2,
(ii) g (z,V) vanishes at all cusps .of F except possibly at i. At i oo it has

an expansion of the form

g (Z, V) 2e2i(+x)ztx -- 2 +>oan 0’, V )e2i(+x)zlx.

Thus if v -t- x > 0, g (z, V) e C (r, -r 2, v).
(iii) There exist integers 0 _< x < < ,, such that g, g. form

a basis for Co (F, r 2, V).

C(I’, -r 2, v). By (iii), there exist complex numbersSuppose g e

b, ..-, b, such that g =b g, (z, ). Put *
_

6 g,, (z,v), where

’ if x 0

-1- ifx>O.

Note that with V (S) -2x e’ 0 _< x’ < 1e ,0_<x< 1, we also have v (S
where

x’ 0 if x 0

1--x if x>0.
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Thus we have the expansion at i

g,, (z, v) 2exp {2ri(v + x’)z/X} + 2 ,+,>0a(, v)exp {2ri(m + x’)z/X}

2e-’i(i+)x + 2 ,+,>0 a(, v)e’(+’’):x.

It follows that g* e {r, --r 2, v}, g* has a pole at i with principal part

2 -x , exp 2ri( + x)z/X},

and g* vanishes at all of the other parabolic cusps of F. Let G* be the
(r + 1 )-fold indefinite integral of g*, so normalized that

G* (z -t- X) v (S)G* (z) e:’’’G* (z).

We call G* (z the function supplementary to g.
In analogy with (3) we have

(6) v(V) (cz -4- d)G* (Vz) G* (z) - q*(z),
for all V (* e ) e F, where qr (z) is a polynomial in z of degree g r. Also
if we let G be the (r A- 1 )-fold integral of g, so normalized that

G(z "4- X) V(S)G(z) eG(z)
and G has no constant term in its expansion at i, then

(7) v(V) (cz -b d)G(Vz) G(z) -4- q,(z),

for all V (* e ) e F, where q (z) is a polynomial in z of degree _< r. The
fact upon which our entire proof hinges is that with q*v (z), q (z) as in (6) and
(7), respectively, we have

(8) qr() q*(z) for allVeF.

This was proved in [4, IV] under the assumption r > 0.
As an immediate consequence of (8) we have the following result which has

already ppeared, in a slightly different form, as Theorem (4.9) of [4].

TEO.M 3. Let r be a positive integer, g C(F, -r 2, ), and G* the
function supplementary to g. Then g =- 0 if and only if G* {F, r, v}.

Proof. Suppose g 0. Then G, the (r -t- 1)-fold integral of g, is also
identically 0. Then q,(z) - 0 for ll V e 1, where q is as in (7). By (8)
q (z) 0 for all V e F. Thus by (6), we have

V (V) (cz + d)rG* (Vz) G* (z),

for all V (* a ) I’. There remains only the question of the behavior of
G* at the parabolic cusps. That G* is meromorphic at the parabolic cusps
follows since G* is an (r -b 1)-fold integral of g* and g* as an element of
{F, -r 2, v} is meromorphic at the parabolic cusps. Thus G* {F, r, v}

Conversely, suppose G* e {I’, r, v}. Then q* (z) --= 0 for all V e 1". By (8)
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q,(z) 0 for all V 1. It follows as above that G e {r, r, v}. But G, the
(r W 1 )-fold integral of a cusp form, is regular in and also at all of the para-
bolic cusps of F. It is well known that under these circumstances G 0,
since r > 0 [6, p. 301]. It follows that g - 0.

Remarks. 1. Theorem 3 follows directly from Petersson’s "Principal Parts
Condition" [9].

2. The mapping from g to the cocycle {q V e r} appears from our con-
struction to depend upon the choice of a basis for C (1, -r 2, v) from among
the functions g (z, V); v 1, 2, .... However our mapping is in fact inde-

C(F, r 2, V)pendent of the choice of the basis, The point is that if g e

is expressed in any way at all as a finite sum

g "=1 bg (z,

then the periods of g* -1 g, (z, ) are related to those of g by means of
the equation (8). Thus, although g* depends not upon g but upon a particu-
lar representation of g in the form b g (z, V) the corresponding cocycle
{q* V e r} depends only upon g. Another way of stating this is that to each
cusp form g e C (I’, -r 2, V) there corresponds not a single, supplementary
function but rather an infinite class of supplementary functions, all with the
same cocycle of periods. In this context we may expand Theorem 3 to

C (I’, -r 2,v). Then g =- 0THEOREM 3’ Let r be a positive integer and g e

if and only if G* e {r, r, v} for every function G* supplementary to g. This in
turn holds if and only if G* e r, r, v} for a single function G* supplementary to g.
Furthermore with G* defined as in Theorem 3, with respect to a fixed basis of
CO (F, -r 2, v), we have g 0 if and only if G* O.

The last statement follows immediately, since ’=1 bi g (z, V) 0, with
g, g, a basis, of course implies b 0 for 1 _< i _< s. Thus g* 0 and
consequently G* is constant. Since G* e {1, r, v} and r > 0, it follows that
G* 0.

3. The mapping into H(r, Pr)
We now exhibit explicitly the mapping referred to in Theorem 1. Let

f e C+ (F, -r 2, v). Put (f) equal to the cohomology class of the cocycle
/PI V e I’} of period polynomials of F, an (r 1)-fold integral of f (refer to

C (I’, r 2, v) put (g) equal to the cohomologyequation (3)) Forge
class of the cocycle {q* V e F} of period polynomials of G*. Here G* is the
function supplementary to g, and q* are the polynomials occurring in (6).

For (g,f) e C(I’, -r 2,e) X C+(F,--r 2, v) put (g,f) (g) + (j’)
Since a and are linear maps, so is . We now show that is 1 1. For
this is sufficient to prove that the kernel of is (0, 0). With this in mind sup-
pose (g, f) 0. This implies that there exists a polynomial p (z) of degree
<_ r such that F + G* p e {F, r,v}. Here F is an (r 1)-fold integral of f
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and G* is the function supplementary to g. Now F + G* + p is regular in
54 and at all of the cusps of r except at the cusp i. The principal part of
F + G* if- p at io agrees with that of G* at i. Hence by a well-known
formula for the Fourier coefficients of automorphic forms of positive dimension
on H-groups, obtained first by Petersson [8] and later by Lehner using the circle
method [7], it follows thatF + G* q- p G*. HenceF --p, so that
f= D(r+I)F 0. AlsoG* Fq- G* ff-pe{r,r,v}. Thus by Theorem3
g 0. We have proved that the kernel of g is (0, 0), so that g is 1 1.

4. Completion of the proof of Theorem
In section 3 we showed how to imbed C (r, -r 2, ) C+(F, -r 2,v)

isomorphically intoH (P, P) via the linear mapping . The proof of Theorem
1 will be complete if we show that g is onto H (F, P). To accomplish this we
will prove that

(9) dim C(r,-r- 2,) +dimC+(F,-r- 2, v) dimHl(F, Pr).

Put D1 dim C(r,-r- 2, V)and D dim C+(r,-r 2,v). The
equality (9) is correct for r _> 0, not merely for r > 0, and we prove it under
the assumption that r >_ 0 and v is a multiplier system on F for the degree
-r 2. The case r 0, v -= 1 is slightly exceptional.
To calculate the left-hand side of (9) we apply Petersson’s generalized

Riemann-Roch Theorem [10, Theorem 9]. It is a familiar fact that r can be
presented in terms of generators and relations as follows"

A,BI, ,A,,B,E, ,E, Q, Qt,

(10) . --I forl _<j_< s,

A B7.’"% Et" E, Q.. Q (-I)"+ withT AB - -t

Here I (0 ), the A and B are hyperbolic matrices, the E are elliptic
matrices, and the Qh are parabolic matrices. Also every elliptic element in r
is conjugate to one of the E. and every parabolic element to one of the Qa.
Following Petersson [10] we put

2ixhv(Q) e 0 g x, < 1 (lg h g t)
and

v (E.) exp ri (r + 2 + 2a.)/l}

where a. is an integer such that 0 _< ai _< li 1. Also define

0a 1 ifx 0

0 if x > 0,

put q t+ = (1- 1/1), and let

(l_<j <_ s),

8 1 ifr 0andv---- 1

0 otherwise.
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Then by [10, Theorem 9] we have

D1

and
D (r + 2) (p 1 + q/2 )-’ xa 2= a/l p + 1.

Here x and a. are defined by means of

(Q) exp{2mxh}, 0_< xh < 1
and

(E.) exp ri (r + 2 +
respectively, with a an integer such ha 0 _< <_ li 1.

z-t-z 1- h. Then we have

(1 _< h _< t)

(1 _< j _< s),

It is clear that

D1 + D2 2(r + 2) (p 1 + q/2) "=1 (Oh + 1

(11) 2p + 2 =x (aj + a.)/lj -t- 6

(r + 1)(2p 2 + t) -t- (r + 2) ’=x (1 1/lj)

= (a+ a)/ly+ 6.

To calculate dim Hv (F, Pr) we put D3 equal to the dimension of the space of
cocycles and Da equal to the dimension of the space of coboundaries. We can
tuke any polynomial p(z) of degree _< r and form the coboundary
(P V p) V e F}. For such a coboundary to vanish identically means thut

p (z) e {F, r, v}. Among other things this implies that p (z )) e’p (z)
which unless r 0 implies that p(z) -= 0. If r 0, butv 1 again
p (z) e {F, r, v} is impossible unless p (z) 0. Thus except in the case r 0
v--- l it turns out that D r + 1. In the exceptional casep] V-p-- 0
alwuys, so that D 0. In general, then, D r + 1 6.

In the calculation of D3 we first observe that because of the condition (4)
sutisfied by cocycle we need only assign polynomials of degree _< r to the
generators of F in such a way that the assignment is consistent with the rela-
tions given in (10). We now make use of the fact that, since F is an H-group,

_> 1. We may arbitrarily assign polynomials to Aa, B1, ..., A, B,
Q, ..., Q_. This contributes to D the number (r + 1)(2p 1).
Then once an assignment of polynomials is made to El, ..., E,, the poly-
nomial for Q will be determined by the relation.), .....E E.Q Q
(-I)+’.

It remains only to calculate the contribution made to Da by the polynomials
assigned to E., 1 _< j _< s. In this calculation we follow Eichler [2, pp. 274-
276]. Let p. be the polynomial assigned to E in an arbitrary cocycle. From
(4) and the relation E." -I it follows that there exists a polynomial p of
degree <_ r such that p. P’I E. p, for 1 _< j _< s. Hence the number of



EICHLER COHOMOLOG AND AUTOMORPHIC FORMS 573

linearly independent polynomials we can attach to E. is the dimension of the
vector space

Vj (p E. P) P is a polynomial of degree _< r/.
But dim Vj is the number of linearly independent elements among z E- zm,
0

_
m

_
r. Normalize E to the form

Ej
e-/z"

Then
e(E)(e-’) (e".z) z

zm[e(Ej)exp {2vi(m -r/2)/lj} 1],

(13)

The proof of (9), and thus of Theorem 1, will be complete if we show that
D1 -F D Da D4. A comparison of (11) and (13) shows that it is suf-
ficient to prove

(r-F 2) "._1 (1- 1/l)- ’-1 (a-F a)ll
s(r 4- 1) ...l[(r +aj+ 1)/l],

-I-(r-i-1--Er+a+lj
(r-+- 1--ti)

(r+ 1)(2p+t--2)q-s(r+ 1)- Fr+ a.+ 11
j-=I--L l J

-t- a.

so that dim V. is the number of integers m, 0

_
m <_ r, such that

exp 12ri (m r/2)/ll} v (E).

Since v(E) exp {ri(r + 2 H- 2aj)/ll, we consider the equation

(12) exp {2i(m r/2)/l} exp {ri(r + 2 -F 2a)/l}.

Equation (12) is satisfied if and only if

m- r/2 (r + 2)/2+a. (modl),

and this in turn is equivalent to m r -= a. + 1 (rood l.). Putting u r m
we find that the number of solutions of u -a 1 (mod l), 0

_
m

_
r, is

exactly [(r + a + 1)/1], where as usual [x] denotes the largest integer

_
x.

Hence
dimV r+ 1- [(r+a.+ 1)/1].

We conclude finally that

D, (r-F l)(2p-Ft-1)-F(rH- 1- Ir-Fa+ 11)j=’l l.
and thus

Da- D (r + 1)(2p-+-t- 1)
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that is,

(14) s

_
(a. - a. - r - 2)/1 _-_ [(r + a - 1)/l].

Equation (14) is equivalent to

5-1 (ai a" r 2)/li {[r ai

l
which, in turn, will follow from

(15) (ajWa.Wr-2)/1] [(rWa+ 1)//j]+ 1 forl_<j_< s.

From the definition of a. and a. it follows that

exp {2ri(a + a.)/l} exp {-2ri(r + 2)//},
or a. -t- a + r + 2 z. l., with z. an integer. Since 0 _< a <_ l. 1, we
conclude that

(at +r + 2 )/1 <_ z <_ (at + lr 1)/l,
or

1/l - (a + r -t- 1)/l <_ z <_ 1 -t- (a -t- r - 1)/l.
Hence (a] - a:. + r + 2)/1 z [(r -t- a + 1)/1] + 1, and (15) follows.
The proof of Theorem 1 is complete.

5. Proof of Theorem 2
The proof of Theorem 2 is actually contained in the proof of Theorem 1.

In Theorem 1 we proved that given a cocycle {Pvl V e r}, then there exists

(g,f) e C(F, -r 2, V) X C+(F, --r 2, y)

such that (g, f) a(g) - (f) the cohomology class of {p
Let {q V e F} be the cocycle of period polynomials of f and let {q*l V e 1}
be the cocycle of period polynomials of g*. Then (g, f) is the cohomology
class of the cocycle qv -f- q*[ V e F} and q - q*l V e F} is the set of period
polynomials of f -f- g* e 1, -r 2, v}. This completes the proof of Theorem
2.

6. Proof that Theorem implies Corollary 1
In view of Theorem 1 it suffices to prove that, with

(g,f) C(I’, -r 2, V) X C+(F, r 2, v), (g,f) a(g) -t- [(f)

C(F, r 2, v). Let xlsatisfies condition (5) if and only if f e x be
Xdefined as in 4; suppose S Q so that x x!, with as in 2. Further,

let q, 1 _< h <_ t, be the parabolic cusp of 1 left fixed by Q. Then q i
With these definitions it is known [6, pp. 272-3] that f e IF, -r 2, v/ has
expansions at the parabolic cusps q of the form

f (z (z qh
-r- ,>_, b, (h exp {-2ri(m + x (z

(16) 1 _< h_< t- 1,

f(z) >-m, b (t) exp 2ri (m + x’ )z/} h t.
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In (].6) , 1 _< h <_ are certain positive numbers depending on the structure
of F, and mh, 1 _< h _< are integers. (Note that )t .)
Suppose F (z) is an (r -{- 1)-fold integral of f(z). If i <_ h <_ 1, then

applying (2), we find that F (z) has an expansion at qh of the form

F (z) (z qh)r (2’i/)h)--"--I
)--r--1,>-, b, (h) (m - xh exp 2i (m - xh) (z q)-l/}

+ , )+ (z q)- + p(z),
(r + )!

where p (z) is a polynomial of degree

_
r and b0 (h) or 0 according as the

expansion (16) has a term with m -- x 0 (i.e. m xh 0) or not. At
qt i, F (t) has the expansion

)--r--1F (z) (2ri/kt)--r--1 Em__m b, (t) (m - xt exp 2’i (m - xt

+ tit z’+I/(r + 1)! + pt (z)

here tit has the same meaning as before and pt (z) is a polynomial of degree

_
r.

It follows from these expansions of F (z) that the cocycle of periods off satisfies
(5) if and only if ti 0, for 1

_
h

_
t. Thus the cocycle of periods satisfies

(5) if and only if none of the expansions (16) off(z) has a term with m x 0.
With f e C+ (r, -r 2, v) it follows that f (f) satisfies (5) if and only if
C (r, r 2,f e v). On the other hand, for

C (r, -r 2, ), g*ge e{r, --r-- 2, v}

and g* has no term with m - x 0, for 1

_
h _< t. Thus a (g) always satis-

fied (5), so that (g, f) a (g) -t- t (f) satisfies (5) if and only if f e C (r,
-r 2, v). The proof is complete.

Appendix. A proof of Theorem for r 0
In this appendix we give a proof of Theorem 1 or r 0. Since equation (8), a

key feature of our proof of Theorem 1, depends upon the assumption r > 0, we
give a different proof for r 0, based upon results of Petersson. Then
Theorem 2 and Corollary 1 also follow for r 0.

Since equation (9) is value for r 0, it is sufficient to display a mupping
which imbeds C(F, -2, 9) @ C+(r, -2,v) isomorphicully into H(r, P0),
P0 complex numbers. In [12], [13], Petersson has carried out a construction
of automorphic forms of degree -2 with arbitrary multiplier system v on H-
groups. He obtains these uutomorphic forms from the usual Poincar series
of degree -r 2, r > 0, by a passage to the limit as r -- 0W. In this way he
produces functions g,,(z, ), with aa arbitrary integer, satisfying conditions
(i), (ii), (iii) of 2, but now with r 0.
In [11], Peterson establishes two further results which are essential in our

proof. The first of these is the existence of "gap sequence" in a setting
more general than that of the classical gap sequence of Weierstrass [11, p. 207].
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We apply only a very special case of this Petersson gap sequence. The second
result connects this gap sequence with a basis for cusp forms [11, p. 211, The-
orem 9a]. We state both results together under the single title of

t)ETERSSON GAe THEOREM. Let s be the dimension over the complex field of
the vector space C (F, 2, ). Then there exist exactly s integers w 0 wl

ws, such that there does not exist an element of (F, O, v} having as its only
singularity in a fundamental region of F a pole at i of order w x’, 1

_
i

_
s.

Furthermore

gwl g,, form a basis for C (F, -2, ) if x O,
(:7)

gwl-1 "", gw,- form a basis for C(F, -2, ) if x O.

We are now in a position to describe the mapping into HI (I’: P0). For
f e C+ (F, 2,v), (f) is as described in 3; that is, (f) is the cohomology class
of the cocycle of periods of F, an indefinite integral of f. Suppose g e C (F,
-2, V). From (17) and the definition of ’ given in 2 it follows that the
functions g(_<,, 1

_
i

_
s, form a basis for C (F, -2, ) whether x 0 or

x > 0. Thus there exist complex numbers b:, ..., b8 such that
g = b g(_,), (z, e). Put

and let a (g) be the cohomology class of the cocycle of periods of G*, an indefi-
nite integral of g* so normalized that G* (z + e"’G* (z). Note that
the principal part of g* at i is

2 _- expl-2ri(-wi + x’)z/h},

so that the principal part of G* at i is

2 ]=: :<{2ri(x’ w<)/k}- exp {2ri(--w< + x’)z/k}.

Since g* is regular at all points of a fundamental region other than the point at
i oo, the same is true of G*, so that if G* were in F, 0, /it would contradict the
Petersson Gap Theorem, unless b 0 for 1 < i

_
s. Thus G* e {F, 0, vl

if and only if g 0. This is Theorem 3 for the case r 0.
For (g, f) e C (I’, 2, v) X C+ (F, 2,v) put t (g, f) a (g) -t- t (f). Then

t is a linear map and we want to show that t is 1-1. Suppose t (g, f) 0.
Then there exists a complex number c such that F G* - c {F, 0,v}. Now
F - G* -- c is regular in 3C and at all of the cusps of F except at the cusp i
at i the principal part ofF - G* z c agrees with that of G*. ThusF G* - c
is an element of F, 0, vl, with a singularity of the type excluded by the Peters-
son Gap Theorem, unless b 0 for 1

_
i

_
s. Since all b 0, it follows

that g 0 and G* is a constant. Thus F G* - c is an everywhere regular
element of {I’, 0, vl. By the result of [5], F -- G* - c is constant. Thus F is
constant and f F 0. Therefore the kernel of t is (0, 0), t is 1-1, and
Theorem 1 is proved for the case r 0.
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