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Abstract. Properties of spectral synthesis are exploited to show that, for
a large class of commutative hypergroups and for every compact hypergroup,
every closed, reflexive, left-translation-invariant subspace of L∞(K) is finite-
dimensional. Also, we show that, for a class of hypergroups which includes
many commutative hypergroups and all Z-hypergroups, every derivation of
L1(K) into an arbitrary Banach L1-bimodule is continuous.

1. Introduction

Spectral synthesis has been studied for hypergroups by various authors, includ-
ing Chilana and Ross [2], Lasser [8], and Vogel [15], [16]. In this paper, we will
consider two problems related to spectral synthesis of finite sets.

In Section 3, we show that if K is either compact or if K belongs to a rich class
of commutative hypergroups, then every closed, reflexive, translation-invariant
subspace of L∞(K) must be finite-dimensional. This extends a beautiful theorem
of Glicksberg [4] for compact groups and locally compact commutative groups.

In Section 4, we consider derivations of the hypergroup algebra L1(K). We
prove that if K is a Z-hypergroup or if K is in a subclass of those commutative
hypergroups for which finite sets admit synthesis, then every derivation of L1(K)
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into an arbitrary Banach L1(K)-bimodule is automatically continuous. For related
results on group algebras, we refer the reader to [18].

For the standard properties of hypergroups and their measure algebras, and
for the notation which we will use throughout this paper, the reader is referred
to [6].

2. Preliminaries

Throughout this paper, K will denote a hypergroup which is either commuta-
tive or a Z-hypergroup. In either case, K admits a Haar measure λ (see [14]), and
L1(K) will denote the closed ideal of M(K) consisting of those measures which
are absolutely continuous with respect to λ.

If K is commutative, then Ωb(K) will denote the space of all bounded contin-

uous multiplicative functions on K; K̂ will denote the functions ϕ in Ωb(K) for

which ϕ(x∼) = ϕ(x). In general, K̂ may be a proper subset of Ωb(K), and K̂ need
not be a hypergroup (see [6]). We will follow Chilana and Ross [2] and assume
that K also satisfies

(H1) K̂ is a hypergroup under pointwise multiplication, and

(H2) K̂ = Ωb(K).

Under these assumptions, L1(K) can be identified via the Fourier transform

with the pointwise algebra A(K̂); A(K̂) is a regular Banach algebra of continuous

functions which vanish at infinity on its structure space K̂. Moreover, A(K̂) ∩
C00(K̂) is dense in A(K̂). For these and many other properties of L1(K) and

A(K̂), we refer the reader to [2].

It follows from [2, Theorem 2.6] that if α ∈ K̂ and Uα is a neighborhood of α in

K̂, then there exists g ∈ L1(K) such that ĝ(α) = 1 and ĝ(β) = 0 if β /∈ Uα. In case
K is a group, we may choose g such that ‖g‖1 = 1. In general, for hypergroups,
the norm of g depends on Uα. In Section 4, we will need to assume that K satisfies
the following:

(H3) For every α ∈ K̂ there exists Mα > 0 such that if Uα is a neighborhood

of α in K̂, then there exists g ∈ L1(K) such that ĝ(α) = 1 and ĝ(β) = 0
if β /∈ Uα and

‖g‖1 ≤Mα (see [8]).

Let A be a commutative semisimple Banach algebra with maximal ideal space
∆(A). We will consider A to be an algebra of continuous functions on ∆A via
the Gelfand transform.

Given a closed subset of A of ∆A, define

I(A) =
{
u ∈ A

∣∣ u(α) = 0 for every α ∈ A
}
,

j(A) =
{
u ∈ A

∣∣ u ∈ I(A) and suppu is compact and disjoint from A
}
,

J(A) is the closure of j(A) in A.
Then I(A), J(A), and j(A) are ideals in A with I(A) and J(A) being closed.

Given an ideal I in A, define

Z(I) =
{
α ∈ ∆(A)

∣∣ u(α) = 0 for every u ∈ I
}
.
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Then Z(I) is a closed subset of ∆(A). A set A ⊆ ∆(A) is called a set of
spectral synthesis or simply a spectral set if I(A) is the only closed ideal I in A
with Z(I) = A. If A is regular, then A is a spectral set if and only if J(A) = I(A)
(see [5, Theorem 39.18]).

Let K be a commutative hypergroup satisfying (H1) and (H2). Let X be a
weak-* closed translation invariant subspace of L∞(K). The spectrum Σ(X) of

X is defined to be the set X ∩ K̂. By [6, Theorem 5.1D] and [2, Theorem 2.11],

X⊥ is a closed ideal in L1(K). Then Σ(X) = Z(X⊥) is closed in K̂. If X 6= {0},
then Σ(X) 6= ∅ [5, Theorem 39.27] (see also [5, Theorem 40.7]). For f ∈ L∞(K),
let [f ]∗ be the weak-* closure of the linear span of {xf | x ∈ K}. Then [f ]∗ is
translation invariant and the spectrum Σ(f) of f is by definition Σ([f ]∗).

Lemma 2.1. Let A be a closed set in K̂ and f ∈ L∞(K). Then the following are
equivalent:

(i) Σ(f) ⊆ A;
(ii) f ∈ J(A)⊥;
(iii) I(A) ∗ f∼ = {0}.

Proof. (i) ↔ (ii) This follows as in [5, Theorem 40.8].

(ii) ↔ (iii) If (ii) holds, then for g ∈ I(A), g ∗ f∼(x) =
∫
K xg(y)f(y) dy = 0, by

[1, Theorem 2.11]. Thus (iii) holds.
If (iii) holds, then

∫
K
gf dλ = g ∗ f∼(e) = 0. Hence (ii) holds. �

Proposition 2.2. Let A ⊆ K̂ be closed. Then the following are equivalent:

(i) A is a spectral set of L1(K).
(ii) If f ∈ L∞(K) and Σ(f) ⊆ A, then f ∈ I(A)⊥.

Proof. (i) → (ii) follows from Lemma 2.1.
Conversely, if (i) fails, then there is an h ∈ I(A)\J(A). Hence there exists

f ∈ J(A)⊥ such that
∫
K
hf dλ 6= 0. By the previous lemma, Σ(F ) ⊆ A, which is

impossible if (ii) holds. �

Remark 2.3. It can be shown that [5, Lemma 40.9] and hence [5, Theorem 40.10]
are valid for hypergroups. We will omit the details.

Corollary 2.4. Let X be a weak-* closed invariant subspace of L∞(K) such that
Σ(X) is a spectral set. Then X is the smallest weak-* closed subspace of L∞(K)
containing Σ(X).

3. On a theorem of Glicksberg

Glicksberg proved in [4] that if G is a locally compact abelian group or a
compact group, then any closed, reflexive invariant subspace of L∞(G) is finite-
dimensional. In this section, we extend this result to a large class of commutative
hypergroups and to all compact hypergroups.

Let AP(K) denote the space of almost periodic functions in C(K). Then
AP(K) is a norm-closed, conjugate-closed, translation-invariant subspace ofC(K).
Furthermore, Ωb(K) ⊆ AP(K). Let Ka denote the almost periodic compactifi-
cation of K. Then there is a linear isometry f → f∼ of AP(K) onto a closed
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subspace A(Ka) of C(Ka) which separates points of Ka (see [8, Proposition 3]).
A(Ka) becomes a commutative Banach *-algebra with a unit in a natural way. If
K is a locally compact abelian group, then A(Ka)

∗ =M(Ka), the measure alge-
bra of the Bohr compactification Ka of K. Following Lasser [8], we will assume
throughout this section that K also satisfies the following:

(A1) For each α ∈ Ωb(K) there exists να ∈ A(Ka)
∗ such that να(α̃) = 1 and

να(LSF ) = α̃(S)να(F ) for each S ∈ Ka, F ∈ A(Ka).

Let K be any hypergroup with a left Haar measure λ. Let

UC r(K) =
{
f ∈ C(K) | x 7→ xf is continuous

}
.

Then it is easy to see that UC r(K) is a left Banach L1(K)-module. In fact, by
Cohen’s factorization theorem, we have UC r(K) = L1(K) ∗ UC r(K). Similarly,
L1(K) ∗ Lp(K) = Lp(K) for 1 ≤ p < ∞. The next result is due to Mitchell [11,
Theorem 7] for locally compact groups. The proof uses a method of Johnson [7,
pp. 26–27].

Proposition 3.1. Let f ∈ L∞(K), and suppose that x 7→ xf is weakly continu-
ous. Then f ∈ UC r(K).

Proof. Let U be the set of all neighborhoods of e directed by containment. For
each U ∈ U , choose a function ϕU ∈ C+

00(K) with
∫
K
ϕU dλ = 1 and suppϕ ⊆ U .

Then {ϕU}U∈U is a bounded approximate identity for L1(K). Since x 7→ xf is
weakly continuous, the weak vector-valued integral∫

K

δx ∗ f(Y )ϕU(Y ) dY

exists (see [13, Theorem 3.27]) and is equal to ϕU ∗ f because L1(K) is weak-*

dense in L∞(K)∗. Thus, ϕU ∗ f weakly−→ f , so f ∈ UC r(K). �

Theorem 3.2. Let K be a commutative hypergroup such that (H1), (H2), and

(A1) hold. Assume also that every finite subset of K̂ is a spectral set. Then, any
closed reflexive invariant subspace X of L∞(K) is finite-dimensional.

Proof. As in [4], X is weak-* closed, and if f ∈ X, then the mapping x 7→ xf is
weakly continuous. Hence f is (uniformly) continuous by Proposition 3.1. Assume

that X contains a sequence {γn} of distinct elements of K̂. Since ‖γn‖∞ = 1 and
the unit ball of X is weakly compact, we can assume that γn converges weakly
to γ and γ 6= γn for any n = 1, 2, . . . . Since γn −→ γ pointwise, the Lebesgue
dominated convergence theorem shows that γ ∈ K̂.

Choose νγ ∈ A(Ka)
∗ such that νγ(γ̃) = 1 and νγ(LSF ) = γ̃(S)νγ(F ) for every

S ∈ Ka and F ∈ A(Ka). By the proof of [8, Theorem 1], νγ(γ̃n) = 0 for each n.

So γ̃n 6−→ γ̃ weakly. However, this is a contradiction since f −→ f̃ is weak–weak
continuous. Hence, Σ(X) is finite. By Corollary 2.4, X is the finite-dimensional
subspace spanned by Σ(X). �

Corollary 3.3. Let I be a closed ideal in L1(K). If I is infinite-codimensional,
then L1(K)/I is not reflexive.
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Proof. If L1(K)/I is reflexive, then so is (L1(K)/I)∗ = I⊥. It follows that
(L1(K)/I)∗ is finite-dimensional by Theorem 3.2 and hence I has finite codi-
mension. �

When K is a locally compact abelian group, the next result is due to Rosenthal
[12, Corollary 2.6].

Corollary 3.4. Let A ⊆ K be closed. Then L1(K)/I(A) is reflexive if and only
if A is finite.

Proof. (L1(K)/I(A))∗ = I(A)⊥ and Σ(I(A)⊥) = Z(I(A)) = A. If L1(K)/I(A)
is reflexive, then so is I(A)⊥. Hence, I(A)⊥ is finite-dimensional. By (A1), the
characters are linearly independent. Hence A is finite. The converse follows from
Corollary 2.4. �

Examples. We give some examples of hypergroups which satisfy (H1), (H2), and
(A1) and for which finite sets are spectral.

(1) All locally compact abelian groups have these properties.
(2) Let G be a locally compact group, and let IG denote the (topological)

group of inner automorphisms ofG. Let IG ⊆ B andG ∈ [FD ]−∩[SIN ]B ⊆
[FIA]−B. Let GB be the commutative hypergroup of conjugacy classes of G.
It is shown in [6, Section 3] that GB satisfies (H1), (H2), and (A1). It is
also proved in [8, Proposition 3.1] that every finite subset of (GB )̂ is a
spectral set in L1(GB).

(3) All compact commutative hypergroups for which K̂ is a hypergroup have
the desired properties.

Compact hypergroups always satisfy (H2), but (H1) may fail even for a three-

element hypergroup (see [6, Example 9.1C]). As K̂ is discrete, all subsets are

spectral sets for L1(K). To see that K satisfies (A1), for each α ∈ K̂, let
να ∈ A(Ka)

∗ =M(K) be given by

να(f) =
1∫

K
|α(x)|2 dα(x)

f̂(α).

The remainder of this section will be devoted to showing that Glicksberg’s
result holds for all compact hypergroups, including those compact commutative
hypergroups for which (H1) fails.

Lemma 3.5. Let X be a closed subspace of either UC r(K) or Lp(K) for 1 ≤
p < ∞. Then X is left translation invariant if and only if L1(K) ∗ X ⊆ X. In
this case, L1(K) ∗ X = X. Moreover, if K is compact, then the trigonometric
polynomials in X are dense in X.

Proof. Assume that X ⊆ Lp(K) such that L1(K) ∗ X ⊆ X. Let x ∈ K and
f ∈ X. Let {ϕα}α∈I ∈ L1(K)+ be such that ϕαλ −→ δx in the cone topology (see
[9, Section 3]). Then ‖ϕα ∗ f − δx ∗ f‖p −→ 0 (see [6, Lemma 5.4H]).

The converse is obtained similarly.
If X ⊆ UC r(K), for f ∈ X write f = g∗h, where g ∈ L1(K) and h ∈ UC r(K).

Then

‖µ ∗ f − f‖∞ ≤ ‖µ ∗ g − g‖1‖h‖∞
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for every µ ∈ M(K). Hence, if µα −→ µ in M+(K), then ‖µα ∗ f − f‖∞ −→ 0.
Therefore, if X ⊆ UC r(K), then the result follows just as above.

Finally, if K is compact, then we can choose a bounded approximate identity
{hα} in L1(K) which consists of trigonometric polynomials (see [17, Lemma 2.12]).
If f ∈ X, then hα ∗ f −→ f is norm and each hα ∗ f is a trigonometric polyno-
mial. �

Theorem 3.6. Let K be a compact hypergroup. Let X be a closed, reflexive,
invariant subspace of L∞(K). Then X is finite-dimensional.

Proof. By Lemma 3.5 the trigonometric polynomials in X are dense in X. It
follows thatX is the closed linear span of minimal finite-dimensional left-invariant
subspaces (i.e., minimal left ideals in the Hilbert algebra L2(K)). Each minimal
left ideal is contained in a minimal closed two-sided ideal. Minimal closed ideals
are pairwise orthogonal (see [10, Section 27]). Since minimal closed ideals in L2(K)
are finite-dimensional (see [6, Theorem 7.2C]), each minimal closed two-sided ideal
contains at most finitely many closed minimal left ideals.

If X is not the linear span of finitely many minimal left ideals, then it contains
a sequence {In} of pairwise orthogonal minimal left ideals. Each In contains a
positive definite function ψn with ψn(e) = 1. As in the proof of Theorem 3.2,
ψn −→ ψ weakly. Therefore, ψ(e) = 1. This is a contradiction since

0 = lim
n

lim
n

∫
ψnψm dλ =

∫
ψψ dλ > 0. �

4. Automatic continuity and spectral synthesis

We begin this section with a series of results which hold for a large class of com-
mutative Banach algebras. We will assume that A is a commutative, semisimple,
regular Banach algebra. As such, A may be viewed as an algebra of functions
in C0(∆(A)). We will also assume that A has a bounded approximate identity
{ui}i∈I with ‖ui‖A ≤M and ui ∈ C00(∆(A)) for each i ∈ I.

Given a closed subset A of ∆(A), let

F(A) =
{
F ⊆ ∆(A)

∣∣ F ∩ A = ∅ and F is compact
}
.

We say that A can be uniformly separated if there is an L such that for each
F ∈ F(A) there exists a uF ∈ A with uF (α) = 1 if α ∈ A and uF (α) = 0 if
α ∈ F , and ‖uF‖A ≤ L. We say that A has the uniform separation property or
(USP) if {α} is uniformly separated for every α ∈ ∆(A).

Lemma 4.1. Assume that A is a uniformly separated spectral set. Then I(A) has
a bounded approximate identity {vj}j∈J with vj ∈ C00(∆(A)) for every j ∈ J .

Proof. Let F ∈ F(A), and let uF be as above. Let v ∈ A with supp v ⊆ F .
Then (ui−uiuF )v = uiv. Hence, limi(ui−uiuF )v = v. Moreover, ‖ui−uiuF‖A ≤
M(L+1). Order F(A) by inclusion. Let vi,F = ui−uiuF for each (i, F ) ∈ I×F(A).
If u ∈ A is such that suppu∩A = ∅ and supp u is compact, then lim(i,F ) vi,Fu = u.
However, since A is a spectral set, such functions are dense in I(A). Therefore,
{vi,F}(i,F )∈I×F(A) is the desired bounded approximate identity. �
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Theorem 4.2. Assume that A has the USP. Assume also that {α} is a spectral
set for every α ∈ ∆(A). Then the following hold:

(1) I(A) has a bounded approximate identity for every finite set A ⊆ ∆(A).
(2) Every finite subset of ∆(A) is a spectral set.
(3) An ideal I in A is cofinite if and only if I = I(A) for some finite set

A ⊆ ∆(A).

Proof. (1) Let A = {α1, . . . , αn}. By Lemma 4.1, the ideal I({αi}) has a
bounded approximate identity {vji}ji∈Ji

. Standard arguments show that
{vji · · · vjn}(j1,...,jn)∈J1×···×Jn is a bounded approximate identity for I(A).

(2) If A is finite, then by (1), I(A) has a bounded approximate identity which
can be constructed so as to be in C00(∆(A)). Since A is regular, A is a
spectral set (see [5, Theorem 39.18]).

(3) If A is finite, then I(A) is clearly cofinite.
Conversely, assume that I is closed and cofinite. Let A = Z(I). Then A
must be finite. Since A is a spectral set, I = I(A). Therefore, by (2), every
closed cofinite ideal of A has a bounded approximate identity and hence
is idempotent. By [3, Theorem 2.3], every cofinite ideal is closed. �

Corollary 4.3. Assume that A has the USP. If {α} is a spectral set for every
α ∈ ∆(A), then every homomorphism from A with finite-dimensional range is
continuous.

Proof. This follows immediately from Theorem 4.2 and from [3, Theorem 2.3]. �

Lemma 4.4. Let I be a closed ideal in A for which Z(I) is infinite. Then there
exists a sequence {un} ⊂ A such that unum = 0 if n 6= m and u2n /∈ I for every n.

Proof. Since Z(I) is infinite, we can find a sequence {αn} ⊆ Z(I) and a sequence
{vn} of compact neighborhoods of the αn’s such that vn ∩ (

⋃n−1
i=1 vi) = ∅. We can

also find un ∈ A such that un(αn) = 1 and supp un ⊆ vn. Clearly, unum = 0 if
n 6= m. Since u2n(αn) = 1, un /∈ I. �

Theorem 4.5. Assume that A has the USP. If {α} is a spectral set for every
α ∈ ∆(A), then every derivation from A into a Banach A-bimodule is continuous.

Proof. It follows from Theorem 4.2 that every cofinite ideal in A has a bounded
approximate identity and that if I is a closed ideal with infinite codimension,
then Z(I) is infinite. The theorem now follows immediately from Lemma 4.4 and
from [1, Corollary 2.6]. �

Theorem 4.6. Let K be a commutative hypergroup which satisfies (H1), (H2),

and (H3). If {α} is a spectral set for every α ∈ K̂, then every derivation from
L1(K) into a Banach L1(K)-bimodule is continuous.

Proof. L1(K) is commutative, regular, and semisimple (see [2]). Condition (H3)
is simply that L1(K) has the USP. The theorem follows from Theorem 4.5. �

Corollary 4.7. Let K = GB, where G ∈ [FD ]− ∩ [SIN ]B and IG ⊆ B. Then
every derivation from L1(K) into a Banach L1(K)-bimodule is continuous.
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Proof. K satisfies all of the conditions of Theorem 4.6 (see [8, Proposition 7]). �

Remark 4.8. If K is a locally compact abelian group, then conditions (H1), (H2),
and (H3) always hold. In this case, Theorem 4.6 is due to Willis (see [18]).

The class of Banach algebras considered here also includes the Fourier alge-
bra of any locally compact amenable group. In fact, for any 1 < p < ∞, the
Figà–Talamanca–Herz algebras, Ap(G), satisfy the conditions of Theorem 4.5,
provided that G is amenable. Hence, these algebras all have automatically con-
tinuous derivations. Moreover, this can be shown to characterize the class of
amenable groups among all locally compact groups.

In contrast, spectral synthesis for finite sets fails for many commutative hy-
pergroups. Vogel considers spectral synthesis for hypergroups which arise from
algebras of orthogonal polynomial series in [16]. He gives many examples of hy-
pergroups for which even singletons need not be spectral sets (see also [2, Exam-
ple 4.5]). In lieu of [16, Corollary 3.13], the automatic continuity of derivations
on L1(K) for an arbitrary commutative hypergroup K seems to be in doubt.

For noncommutative algebras, the procedures used to establish automatic con-
tinuity of derivations are essentially the same as for commutative algebras. How-
ever, in general, the technical difficulties become much greater. We are nonethe-
less able to establish the analogue of Theorem 4.6 for a large class of hypergroups
which includes all compact hypergroups.

A hypergroupK is a Z-hypergroup ifK/Z(K) is compact, where Z(K) denotes
the intersection of the center of K with the maximal subgroup of K.

If K is a Z-hypergroup, let C∗(K) denote the enveloping C∗-algebra of L1(K).

Let K̂ = C∗(K )̂ denote the set of equivalence classes of irreducible representa-
tions of K. Let Prim∗ L

1(K) = {ker ρ | ρ ∈ K̂} be endowed with the hull-kernel
topology. Let PrimC∗(K) and MaxL1(K) denote the set of primitive ideals of
C∗(K) and the set of maximal modular ideals of L1(K), respectively. Then,

for a Z-hypergroup, K̂ ∼= PrimC∗(K) ∼= Prim∗ L
1(K) = MaxL1(K) (see [15,

Lemma 2.7]).
Given E ⊆ Prim∗ L

1(K), define I(E) =
⋂
{P | P ∈ E}. Given an ideal I in

L1(K), define

Z(I) =
{
P ∈ Prim∗ L

1(K)
∣∣ I ⊆ P

}
.

A set E ⊆ Prim∗ L
1(K) is called a spectral set if I(E) is the only closed ideal I

in L1(K) such that Z(I) = E.

Theorem 4.9. Let K be a Z-hypergroup. Then every homomorphism from L1(K)
with finite-dimensional range is continuous.

Proof. If I is a closed cofinite ideal in L1(K), then I has a bounded approximate
identity (see [15, Remark 3.10(b)]). Therefore, every closed cofinite ideal of L1(K)
is idempotent. It follows from [3, Theorem 2.3] that every homomorphism with
finite-dimensional range is continuous. �

Theorem 4.10. Let K be a Z-hypergroup. Then every derivation from L1(K)
into a Banach L1(K)-bimodule is continuous.
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Proof. As before, closed cofinite ideals have bounded approximate identities.
Let I be a closed ideal with infinite codimension. Since every finite subset of

K̂ is a spectral set (see [15, Corollary 3.6]), Z(I) is infinite. Since K̂ is Hausdorff,
we can find a sequence {ρn} ⊆ Z(I) and a sequence {Un} of neighborhoods of
the ρn’s such that Un ∩ (

⋂n−1
k=1 Uk) = ∅ (see [15, Corollary 2.8]). We can also

find gn ∈ L1(K) such that ρn(gn) = IdHpn
and τ(gn) = 0 for every τ /∈ Un.

If n 6= m, then τ(gn ∗ gm) = 0 for every τ ∈ K̂. Hence, gn ∗ gm = 0. Finally,
ρn(gn ∗ gn) = IdHpn

, so gn ∗ gn /∈ I. By [1, Corollary 2.6], every derivation from
L1(K) into a Banach L1(K)-bimodule is continuous. �
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