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Abstract  The goal of this paper is to explore the significance of Montague’s
paradox—that is, any arithmetical theory T © Q over a language containing a
predicate P (x) satisfying (T) P("¢") > pand Nec) T ¢ . TH P("¢")
is inconsistent—as a limitative result pertaining to the notions of formal, infor-
mal, and constructive provability, in their respective historical contexts. To this
end, the paradox is reconstructed in a quantified extension @£ (the quantified
logic of proofs) of Artemov’s logic of proofs (£P). QL P contains both explicit
modalities t : ¢ (“t is a proof of ¢”) and also proof quantifiers (3x)x : ¢ (“there
exists a proof of ¢). In this system, the basis for the rule NEc is decomposed into
a number of distinct principles governing how various modes of reasoning about
proofs and provability can be internalized within the system itself. A conceptu-
ally motivated resolution to the paradox is proposed in the form of an argument
for rejecting the unrestricted rule NEc on the basis of its subsumption of an intu-
itively invalid principle pertaining to the interaction of proof quantifiers and the
proof-theorem relation expressed by explicit modalities.

1 On the Origins of Montague’s Paradox

In this paper I will take “Montague’s paradox” to correspond to the following result.

Proposition 1.1 ([43, Theorem 3]) Let Ty be a theory in the language £p = {0,
s, +, %, P} extending Q (Robinson arithmetic) such that P(x) is a unary predicate
satisfying the axiom scheme

M  Ple)—9
and the rule

(Nec) IfTyF o, thenT; - P(TpT).
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Then Ty is inconsistent.

Proof  Since 7; extends Q, by Godel’s diagonal lemma there exists a sentence §
such that

(1) Ti-8< —=P(38M.
We may now reason in 7; as follows:

() Ty 8« =P8

) ' P — 6 T

(iii) T; - =P (787 i, ii

(V) T) -8 i, iii

v) T1 = P8 NEc, iv

)Ty - L iii, v O

Proposition corresponds to Theorem 3 of Richard Montague’s 1963 paper [+ 3]
titled “Syntactical treatments of modality, with corollaries on reflexion principles
and finite axiomatizability.” As suggested by this title, Montague is concerned with
the interpretation

2) P("F7) if and only if F is logically necessary.

T and NEec are presumably both plausible principles about logical necessity, respec-
tively expressing that if F' is logically necessary, then it is true, and if F is provable
from logically necessary principles, then the fact that F is logically necessary is prov-
able from logically necessary principles. Montague hence presents Proposition

(as well as several other inconsistency results based on similar principles) as calling
into doubt our ability to consistently regard necessity as a predicate of sentences (i.e.,
“syntactically”). On this basis he famously remarked: “[I]f necessity is to be treated
syntactically, . . . then virtually all of modal logic. .. must be sacrificed” [ 3, p. 294].

Since the appearance of [ 3], the appropriateness of this reaction has repeatedly
been challenged. One reason for this is that despite Montague’s proposal that P (x)
should be interpreted according to (), the principles T and NEc are also compatible
with interpreting this predicate as expressing several other notions which have tra-
ditionally been treated as sentential or propositional operators—for example, truth,
knowledge, and provability.” The question thus naturally arises as to which of our
“naive” notions Proposition should be taken to reflect upon most directly.

The main thesis of this paper will be that the significance of Montague’s paradox
is most readily appreciated if we understand P(x) as expressing some form of math-
ematical provability. Such an interpretation provides the historical context for two
anticipations of Proposition (respectively by Myhill [44] and Kreisel [33]). But
in addition to this, I will suggest that by interpreting P (x) as expressing provability,
we not only gain some insight into what distinguishes the significance of Proposi-
tion from formally similar inconsistency results (such as Tarski’s formalization
of the liar paradox), but also open new avenues for resolving the underlying concep-
tual tension which the result might be taken to highlight on this interpretation.

1.1 Provability, necessitation, and internalization In attempting to interpret P (x)
in the manner just suggested, we must confront the fact that it is far from clear that
there is a univocal sense of provability in mathematics. For instance, it is possible to
identify at least three different senses which a statement of the form “¢ is provable”
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might be assigned in different settings: (1) ¢ is formally provable (i.e., derivable in
some relevant axiomatic system such as PA or ZF); (2) ¢ is informally provable
(i.e., demonstrable not in any particular formal system but by some recognizably
correct mathematical argument); (3) ¢ is constructively provable (i.e., demonstrable
by methods of proof recognized within intuitionistic or constructive mathematics).

These senses of provability are each associated with a different nexus of historical
and technical developments. But within all of the resulting traditions, attempts have
been made to investigate the relevant notion of provability axiomatically which are
similar in spirit to Montague’s exploration of logical necessity. For instance, prov-
ability logic (in the sense of Smorynski [/9] or Boolos [7]) can be understood as
an attempt to use modal logic to investigate the properties of formal provability by
considering a mapping (-)* between the languages of modal logic and formal arith-
metic which interprets statements of the form OOF as Provp (" F*7). Prior to this,
however, Godel [20] observed that we can reason schematically about provability
by treating the occurrence of “provable” in “p is provable” as a modal operator and
adopting appropriate axioms. As I will explore further below, this proposal gave rise
to independent traditions in the axiomatic investigation of informal and constructive
provability (see, e.g., Myhill [44], Halldén [ 7], Reinhardt [+ 7], and Leitgeb [39] on
informal provability, and Godel [23], Kreisel [33], [34], Sundholm [50], Beeson [4],
and Artemov [3] on constructive provability).

I will suggest below that not only do variants of Montague’s paradox arise for each
of the interpretations just considered, but also that a common resolution is available
in each case. As an initial step in this direction, it will be useful to distill an interpre-
tation of the predicate P (x) which is grounded as closely as possible in the principles
NEec and T on which the derivation of the inconsistency embodied by Proposition
depends.

NEec is an example of what I will refer to as an internalization principle—that is,
a rule or axiom by which part or all of the reasoning which can be conducted in an
&£ p-theory can be derived under the scope of P (x) (or in the case of a modal theory,
under the scope of its operator (). NEc is perhaps the strongest and simplest such
principle, as it allows for the internalization of arbitrary theorems of 7', including
those whose proofs rely on “nonlogical” axioms and rules (among which we might
place both the arithmetical axioms of Q and consequences of the principles T or Nec
themselves).

This principle will be recognized as a predicate analogue to the necessitation rule
common to all normal modal logics £—that is,

(Nec) If¢ F,thenky OF.

In the context of first-order theories such as 77 we might also consider restricting
NEc to some subclass of principles (e.g., the “logical” axioms of the system) and
then adopt principles which have the effect of ensuring that P(x) is closed under
derivable consequence. Several of the other results presented in [+ 3] attest to the fact
that other combinations of such principles also lead to inconsistency in conjunction
with the “reflection” axiom T, of which the following is characteristic.

Proposition 1.2 Let T, D Q be an L p-theory satisfying T and the following
three principles:

(K7) ifTh P>y NandTo - P(Tp"),then T, = P("y7);



160 Walter Dean

©  PCPCe) =9
(Log) T, = P(T¢") if ¢ is an axiom of first-order logic with identity.
Then T, is inconsistent.

From a formal perspective, results like Propositions and are often compared
with Tarski’s theorem (see [5”]) on the undefinability of truth—that is, that any £ p-
theory extending Q and containing all instances of the so-called T -schema

(TS) P(pT) <o

is inconsistent. In particular, as long as appropriate internalization principles are also
assumed, Propositions and show that over Q, only the left-to-right direction
of the T'-schema is needed in order for the resulting theory to be inconsistent.

Several other classical results can be understood as strengthening the impression
that what is characteristic about Montague’s paradox is its reliance on internalization
principles. For instance, whereas the principle T asserts that any sentence satisfying
P (x) is true, the following principle merely asserts that the set of sentences with this
property is consistent:

®)  P(=¢) = —P(¢)).

But now note that the schema

K  PCe—=>v)—>PCe)—> PV,

@ PCe)—PCP(Ce)

can both naturally be understood as principles by which reasoning conducted within
an £ p-theory T can be reproduced internally under the scope of P(x).” But even
though D can be understood as a further weakening of TS, Friedman and Sheard

[19] showed that together with NEc, these principles are again sufficient to lead to
inconsistency—that is, we have the following.

Proposition 1.3 Let T3 2 Q be an £ p-theory satisfying D, K, 4, and Nec. Then
T3 is inconsistent.

Friedman and Sheard’s paper is generally understood in the context of the develop-
ment of axiomatic theories of truth (see, e.g., [ 1], [38], [26]). In light of Tarski’s
theorem, however, they also issue the following caveat about the interpretation of a
predicate 7'(x) which might be added to an arithmetical base theory in an effort to
capture some portion of our intuitions about truth:

One may reasonably take the attitude that what we are really exploring here is

the axiomatic properties of concepts which are somewhere between ‘provability’

(which is well understood but somehow insufficient) and full ‘truth’ (which is

mysterious and perhaps inherently unstable). Possible interpretations of 7 (x)

might be ‘intuitively provable’ or ‘knowably true.” [19, p. 3]
This passage will set the tone for the rest of this paper in the sense that two of the
more refined theses for which I will argue are as follows: (1) the conceptual signifi-
cance of results like Montague’s paradox which show the inconsistency of combining
weakened forms of TS together with internalization principles like NEc may be most
directly appreciated when we interpret P (x) as expressing one of the aforementioned
forms of provability; (2) this fact is highlighted by the sort of justification which is
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available for the adoption of internalization principles. From this it follows that if we
seek a conceptually motivated resolution to Montague’s paradox, a reasonable strat-
egy is to consider the sort of basis which exists for adopting NEc relative to various
potential interpretations of P(x).

Such a justification seems near at hand if we understand P(x) as expressing a
form of provability which at least subsumes the resources of a system S which we
have adopted in order to formalize reasoning about this notion itself. For in this case,
we may reason informally as follows.

(3) (i) Suppose that S - ¢.

(ii) There thus exists some S-derivation ® of g—that is, a finite sequence (or
tree) of statements defined according to the relevant definition of “I with
hypotheses in S and conclusion ¢.

(iii) To say that such a ®© exists is to say that ¢ is provable in S. Since we intend-
ed P(x) to subsume the methods of proof available in S, we are thus justi-

fied in concluding that P (“¢”) (where “¢” denotes some method of naming
@ using the resources available in .S).

The evaluation of such an argument must, of course, depend on the precise interpre-
tation we wish to assign to P(x). But suppose that we adopt what is arguably the
most conservative interpretation available—that is, P(“¢”) if and only if ¢ is log-
ically demonstrable (i.e., either self-evidently a logical truth or provable from such
truths by logically valid means).” If ¢ is logically demonstrable it is presumably also
logically necessary, and hence not only (ipso facto) true, but also knowable and be-
lievable (in virtue of possessing a proof from logically valid principles which justify
it).” This suggests that as long as we are willing to concede that the axioms of S are
themselves logically demonstrable and that its rules preserve this property, then Nec
ought to be understood as a valid rule of inference on any of the interpretations of
P (x) relative to which Montague’s paradox has traditionally been discussed.

Another notable feature of this argument is that it exposes a sense in which the
justification of NEc relies on adopting an existential interpretation of P (x)—that is,
one on which P("¢™) expresses that there exists a proof or other sort of demon-
stration which serves to justify ¢. Although such quantification is not expressible
in the object language of theories like 77 which treat P(x) as a primitive predicate,
this observation is already helpful in seeing why results like Proposition might
be understood as demonstrating paradoxical features of the concepts of provability
or knowledge in addition to truth. For note that relative to these interpretations, we
do not expect the corresponding right-to-left direction of TS to hold—that is, if ¢ is
true, it need not (at least ipso facto) be provable or knowable. However, if we make
the stronger assumption that ¢ is provable in S, then it is presumably also knowable
on the basis of possessing an S-derivation.

If P(x) is treated as a defined predicate, the heuristic argument (3) may, of course,
be replaced by a mathematical one about the metatheory of S. In the paradig-
matic case, for instance, we may assume that S extends Q and that P(x) is taken
to represent formal provability in S via an explicit arithmetization of syntax. If S
is also recursively axiomatizable, it will be possible to define a A(l) proof predicate
Proofs (x, y) whose structure mirrors the inductive definition of g in the familiar
manner of Godel [21]. This allows us to express the existence of an S-proof of ¢
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via a £9-sentence of the form IxProofs(x, ¢") =47 Provg("¢™) using a numer-
ical quantifier. If we now assume that S - ¢, then Provg ("¢ ™) will thus be a true
statement about the natural numbers. Since theories extending Q are %9-complete
(i.e., they prove all true X9-sentences), it hence follows that S = Provs ("¢™). It thus
follows that if we think of P(x) as expressing derivability in a particular recursively
axiomatizable formal system, the validity of NEc may be understood as a matter of
mathematical necessity.

1.2 Constructive and informal provability The foregoing observations about arith-
metical provability predicates were codified by Hilbert and Bernays’s isolation of the
schema (see [30])

“) If S+ ¢, then S - Provsg("p™)

as one of the conditions which a definition of Provg (x) must satisfy in order to be
able to carry out the proof of Godel’s second incompleteness theorem for S. These
considerations aside, however, one of Montague’s goals in [*3] was to demonstrate
the extent to which inconsistency results like Proposition depend only on the
propositional (or more accurately, sentential) properties which are assumed to hold
of P(x), and not the details of any particular combinatorial analysis of provability or
arithmetization thereof.

It will be recalled, however, that Godel’s goal in [2(] was not to undertake a gen-
eral study of the properties of particular arithmetical proof predicates, but rather to
use modal logic to provide a formalization of Heyting’s [23], [29] proof interpreta-
tion (or, as it has come to be known, the Brouwer—Heyting—Kolmogorov (BHK) in-
terpretation) of the intuitionistic propositional connectives. This interpretation seeks
to associate with each formula F of intuitionistic propositional calculus (4 NT7) a
so-called proof condition which can be roughly understood as giving an account of
its constructive meaning by specifying what sort of object ought to be counted as a
proof of F.

As formulated by Troelstra and van Dalen [55], for instance, the BHK clauses for
conjunction and implication are as follows.

(BHK A) A proof of F' A G is given by presenting a proof of F and a proof of G.

(BHK_,) A proof of F — G is a construction which permits us to transform any
proof of F into a proof of G.

It is often stressed (e.g., [50], [50]) that clauses of the sort just exemplified should
be understood as explicating, rather than formally analyzing, the meaning of the
intuitionistic connectives. However, the BHK interpretation has been the inspiration
for a great deal of technical work which attempts to provide a formal characterization
of the notions “proof,” “construction,” and “transformation” as they appear in clauses
like BHK , and BHK .

Godel [20] provided one of the earliest such proposals by suggesting that the
clauses of the Heyting interpretation can be formalized in modal logic by using an
operator [1 with the intended interpretation:

®) OF if and only if F is constructively provable.

In order to substantiate this reading, he specified an embedding (-)& of intuitionistic
propositional calculus (N J) into the language of propositional modal logic for
which the following may be shown.
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Proposition 1.4 For all formulas F, JNT & F ifand only if 84 - (F)8.

This result has been said (see, e.g., [51]) to fall short of providing a completely
satisfactory account of the BHK interpretation, as it fails to render explicit the exis-
tential quantification over constructive proofs which is presumably implicit in
However, Godel [20] (see also [27]) also indicates that it is possible to interpret the
operator [J according to the following:

(6) OF if and only if F is informally provable.

It might initially be thought that the notion of informal provability is sufficiently
amorphous to not be amenable to logical treatment. In the wake of the incomplete-
ness theorems, however, a number of authors have proposed that there is a sense
of provability which underlies our ability to see, for example, that the Godel sen-
tence or the consistency statement for PA are true despite the fact that they are not
formally derivable in PA (assuming its consistency). It is this “absolute” notion of
provability—that is, demonstrability not in a particular axiomatic system but by any
correct mathematical means—which has provided the inspiration for most axiomatic
treatments of informal provability.

Godel [20] is also typically cited as the origin of the current consensus that §4
is the correct logic of informal provability understood as a propositional operator.
Such a case may be made by arguing that the axioms of §4 reflect conceptual truths
about the notion of informal provability—for example, the T axiom can be taken
to reflect the fact that what is provable by correct mathematical means is true, the
K axiom to reflect that the class of informally provable statements is closed under
modus ponens—and that intuitive counterexamples can be found to the validity of
the axioms of stronger modal systems (such as §4.2 or §4.3) when [ is interpreted
relative to (see, e.g., [27], [Z1, [29D).

But since §4 also contains the rule Nec (which we have seen is a modal analogue
of NEc), it is natural to ask after the status of results like Proposition on this
interpretation. At least on the face of things, however, propositional modal systems
do not provide the combinatorial apparatus necessary for generating self-referential
statements about provability on which results of this type depend. In fact, it is easy
to see that 84 is incompatible with the existence of a certain class of self-referential
statements—a point to which I will return below.

1.3 Myhill, Kreisel, and the anticipation of Montague’s paradox Attempts to in-
terpret a predicate P(x) as expressing informal or constructive provability provide
the context of two instances in which Proposition appears to have been discov-
ered independently of Montague’s paper. The first such anticipation was by Myhill
[44], who argued that while absolute provability is a legitimate notion, its properties
should be studied axiomatically rather than through an arithmetization of syntax. Al-
though he also endorses 84 as the correct logic of informal provability (treated as a
propositional operator), Myhill showed that a predicate version of this system—that
is, one which includes the principles K, T, 4, and an unrestricted form of Nec—is
inconsistent via a derivation which is essentially identical to that of Proposition

The other anticipation of Montague’s theorem which I wish to discuss originates
with Kreisel’s [33], [34] attempt to provide a formalization of the BHK interpretation
of intuitionistic predicate calculus (J@€). This represents one of several attempts
to extend Godel’s modal interpretation of 4 /7 in a manner which more directly
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accounts for the apparent quantification over proofs which is implicit in clauses like
BHK_,. The form of Kreisel’s system—which has come to be known as the theory of
constructions (€)—is thus quite different from the arithmetical and modal systems
we have been considering.

Kreisel proposed to take as basic the relation which an individual constructive
proof bears to a statement which it demonstrates. € hence contains a class of struc-
tured expressions ¢, u, v, ... (which I will refer to as proof terms) intended to denote
constructive proofs, and a binary function symbol IT which expresses the characteris-
tic function of this relation. Relative to a slight simplification of its syntax, € can be
understood to contain terms of the form IT(¢; F) such that the equation I1(z; F) = 0
is intended to express that ¢ is a constructive proof of F'.

The version of € considered in [37] took the form of an untyped equational theory
with terms of the form I1(¢; F') as well as terms denoting operations on proofs (e.g.,
pairing, projection, application, and function abstraction), and constants 0 and 1 to
respectively denote the values true and false. Kreisel’s central result about the theory
of constructions was as follows.

Proposition 1.5  If Q€ & F, then there exists a proof term t such that
CFTI(t; F) =0.

To the extent that derivability in J@€ can be taken to characterize intuitionistic
validity, this result can be seen as at least partially making good on the intuitionistic
credo that truth is to be equated with constructive provability.

Goodman [25], however, argued that if a system like € is to provide an adequate
foundation for intuitionistic logic, then its formulation should be “type- and logic-
free” (p. 101). To this end he proposed replacing € with a system formulated in
pure combinatorial logic, which he showed could be used to interpret a type-free
version of € in which arbitrary lambda-abstraction on proof terms is allowed. He
also showed that a variant €* of this theory which contains a version of what I will
refer to as an explicit reflection principle (i.e., I1(t; F) = 0 — F) is inconsistent.

This result—which has come to be known as the Kreisel-Goodman paradox'"—
has conventionally been attributed to various features of the BHK interpretation
which are particular to the intuitionistic interpretation of the logical connectives—for
example, the impredicativity of the proof condition for the conditional, or Kreisel’s
assumption that the relation T1(¢; F) = 0 must be decidable (see [57], [4], and note

). What is of more immediate significance, however, is that Goodman’s derivation
of the inconsistency is again essentially identical to the proof of Montague’s paradox
given above, with the exception of the following two differences.

First, since €* does not contain arithmetical terms or axioms, it is not imme-
diately obvious how it may be used to demonstrate the existence of self-referential
statements about provability. What Goodman shows, however, is that if the relation
I1(z; F) is taken as primitive, then it is possible to mirror the construction of the
so-called fixed-point (or “paradoxical””) combinator of untyped lambda calculus (see
[10]) to construct a statement D which is provably equivalent to the statement that it
is not provable. © Once D has been obtained, the reasoning of the first four steps of
Proposition can be mimicked in €* to yield that D is provable in €*.

The second respect in which Goodman’s derivation of an inconsistency in €* dif-
fers from that of Proposition | .1 is that €* does not possess a single rule analogous
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to NEc which allows it to internalize its own theorems in a single step. By individu-
ally internalizing the relevant applications of axioms and rules of €*, however, it is
possible to construct a term ¢ such that €* - TI(¢; D) = 0. This can then be shown
to lead to a contradiction similar to the clash between lines iii and v in the derivation
of Proposition

Goodman took this inconsistency to show that it is not legitimate to consider the
totality of constructive proofs as constituting a domain over which we may mean-
ingfully quantify (a feature which is required in order for D to be well-formed). He
therefore proposed to respond to the inconsistency in €* by arguing that we should
conceive of constructive proofs as being stratified into levels, such that a given for-
mula may only quantify over proofs of a fixed level.

1.4 Explicit modal logic Prior to Kreisel’s development of the theory of construc-
tions, Godel [23] had described in an unpublished lecture a system which attempts
to directly axiomatize the relation which constructive proofs bear to the statements
which they demonstrate. Essentially the same system was independently proposed
by Artemov [”], [?] in the form of the Logic of Proofs (£5). Rather than treating
the assertion that proof ¢ demonstrates F' as a relation, the systems of both Godel
and Artemov employ a form of labeled modal operator. In the syntax of £, such
expressions are known as explicit modalities t: F and are assigned the intended inter-
pretation

@) t:F if and only if 7 denotes a proof of F.

As we will see below, the axioms and rules of £ provide “explicit” analogues to
those of 84 wherein instances of [ are replaced by various forms of structured proof
terms.

A reasonable case can thus be made that whereas §4 is the correct logic of in-
formal provability, £ represents at least a sound means of reasoning about the
proof-theorem relation expressed by (7). More generally, explicit modal logics like
£ P can be understood as occupying a sort of middle ground between modal and
arithmetical systems for reasoning about provability. For instance, the use of explicit
modalities provides a means of formulating various combinatorial properties about
proofs which seem implicit in our acceptance of the §4 axioms under the interpre-
tations or (6), but which are arguably independent of what sorts of objects we
ultimately take informal or constructive proofs to be.

One way in which this is manifest is in the fact that although £4 also does not
contain a single rule which plays the role of NEc, it satisfies the following property
analogous to Proposition

Proposition 1.6 (Constructive necessitation)  For all formulas F, if £ + F,
then £P &t : F for some proof term t.

Proposition also provides a means of formalizing steps i—ii in the argument
given for the rule Nec above—that is, if F' is provable in £, then we can construct
a proof term ¢ which mirrors the derivation standing behind this fact such that #: F' is
provable in £ itself.

Note, however, that in order to formalize the statement that F is provable ap-
pearing at step iii of this argument requires that we introduce quantifiers over proofs
(or, as I will call them, proof quantifiers) into the object language of the system in



166 Walter Dean

question. Such quantifiers are eschewed in £ in favor of variables x, y, z, ... over
proofs (or, as I will call them, proof variables). Fitting [17] proposed a means of
introducing proof quantifiers into the language of explicit modal logic to yield a sys-
tem known as the Quantified Logic of Proofs (Q £ ). In the language of Q£ P, it is
possible to formulate statements of the form (3x)x : F with the intended interpreta-
tion

(8) (Ix)x : F if and only if there exists a proof of F.

Since it may be shown that Q £ satisfies a quantified analogue to Proposition
(ie., if QLP F F, then QLP F (Ix)x : F), this in turn suggests that it is also
possible to mimic step iii of the argument () within this system itself.

At the same time, however, the introduction of proof quantifiers allows for the for-
mulation of an object language statement expressing that a sentence D is equivalent
to its own unprovability—that is, D <> —(3x)x : D. On this basis one might think
that a version of the Kreisel-Goodman paradox would reemerge. But rather than
entailing the existence of self-referential statements like D, it may be shown that no
statement of this form is derivable in @£ in a manner reminiscent of §4. As we
will also see below, the proof of this fact can be taken to mirror the derivation of
Montague’s paradox, wherein an application of constructive necessitation is used to
achieve the role played by NEc in the original derivation.

It is this final observation which provides the context for the most specific point I
will attempt to demonstrate below—that is, that the assumption of NEc in the deriva-
tion of Montague’s paradox disguises a number of distinct principles about provabil-
ity which ought to be regarded as individual assumptions on which the paradox rests.
Once this is acknowledged, a particular principle (which I will refer to as justified
universal generalization (JUG)) pertaining to how reasoning by universal general-
ization about proofs should be internalized stands out as suspect.

In Section 3, I will argue that a reasonable case can be made that this princi-
ple should be rejected relative to each of the provability interpretations mentioned
above—that is, formal, informal, and constructive—albeit for somewhat different
reasons. Abandoning JUG thus provides a principled basis for rejecting an unre-
stricted form of NEc, and thereby also a conceptually motivated resolution to Mon-
tague’s paradox when P(x) is interpreted as expressing one of these forms of prov-
ability. In order to see why this is so, however, we must first see in detail how
the paradox can be reconstructed in @£ and also how this system interacts with
self-reference via an interpretation into formal arithmetic. This will be the topic of
Section

2 The Explicit Reconstruction of Montague’s Paradox

The considerations adduced in the previous section suggest that a system of explicit
modal logic such as @£ is an appropriate medium in which to reconstruct Mon-
tague’s paradox if we wish to better understand the role of the rule NEc in its deriva-
tion. The version of this system which will be presented here is a variant of the
formulation given by Fitting [ /] first presented in Dean [ |]. (See Artemov [~], [3]
for additional discussion of explicit modal logic in general.)

2.1 On @LPp and @LP The language of @ £ is similar to that of propositional
modal logic. However, rather than a single modal operator O, @£ possesses an
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infinite family of explicit modalities of the form ¢:F. The terms ¢ appearing in such
statements may themselves be structured expressions as specified by the grammar

ti=xilai(x) ||ty - 2|ty + 12 | {1(x)Vx),

where Xx1,X2,... are known as proof variables (which 1 will often abbreviate
X,y,2z,...) and ai(x),ax(x),... as primitive proof terms, and where !, -, 4+, and
(-V-) denote proof operations respectively called proof checker (unary), application
(binary), sum (binary), and uniform verifier (binary). The class of formulas of Q@ £ 5
may now be defined as follows.

Definition 2.1 If Py, Py, ... are propositional letters, then the class of formulas
of QL P is specified by the grammar

Fi=L1|Pi| FAG|FVG|F—G|—=F|t:F|(¥x)F(x)| @x)F(x).

The free variables of proof terms and formulas are respectively defined in the same
manner as those of terms and formulas in first-order logic, with the exception that in
terms of the form (z(x)Vx), x is considered bound. As usual, a sentence is taken to
be a formula with no free variables.

A Hilbert-style proof system for @£ can now be specified.

Definition 2.2 The axioms of £ are as follows:

(LP1)  All tautologies of classical propositional logic,

LP2) t:(F—>G)—>(s:F—>t-5:G),

(LP3) :F — F,

LP4) t:F —>lt:t:F,

@LP5) t:F—>t+s:Fands:F —>t+s:F,

(QLP1) (Vx)F(x) — F(t), for any proof term ¢ that is free for x in F(x),
(QLP2) F(t) — (Ix) F(x), for any proof term ¢ that is free for x in F(x),
(QLP3) (Vx)(F — G(x)) — (F — VxG(x)), where x ¢ FV(F),
(QLP4) (Vx)(F(x) > G) — ((Ax)F(x) — G), where x ¢ FV(G).

Axioms LP1-LP5 are the original axioms of £ presented in [?] and will be re-
spectively recognized as versions of the §4 axioms K, T, and 4 wherein instances of
the operator [J have been replaced with explicit modalities. Axiom LP3 is a version
of what I referred to above as an explicit reflection principle—that is, a codification
of the fact that if we accept that a particular proof ¢t demonstrates F, then we ought
also to accept that F is true. Axioms LP2, LP4, and LP5 can be taken to record func-
tional dependencies between proofs which are arguably implicit in the interpretation
of O when read in accordance with Godel’s [20] use of §4 to formalize the BHK
interpretation.” Axioms QLP1-QLP4 codify the fact that once we have elected to
regard proofs as objects over which we may quantify, the quantifier axioms of classi-
cal first-order logic should continue to hold.

In order to state the rules of @£, we must first provide several auxiliary def-
initions which generalize the notion of a constant specification for £P. Such a
specification is a mapping €& which to each proof constant a assigns a set €&(a)
of instances of axioms LP1-LP4 such that for each formula F € €&(a), a is under-
stood as an unstructured proof of F' (essentially recording the fact that, as an axiom,
F requires no further justification). However, in @£, axioms may contain free
variables which may ultimately be bound by proof quantifiers. As such, the proof
constant associated with an axiom ought to reflect which free variables it contains.
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Following Fitting [!7], I will adopt the expression primitive term specification
to refer to this generalization of the original definition of a constant specification.
More precisely, a primitive term specification is a mapping P8 which assigns to
each primitive proof term a a set of formulas (a) such that if F € P(a), then
FV(a) = FV(F). Such a specification is said to meet the free variable condition if
whenever F(xy,...,x,) € P(a(x1,...,x,)) and y1,..., y, are variables which do
not occur in F(xy,...,x,), then F(y1,...,yn) € Bla(y1,...,yn)). The mapping
B is said to be axiomatically appropriate if for all (and only) instances F of the
axioms listed above there exists a primitive proof term a such that F' € (a). For
the rest of this section, I will assume that P is a fixed primitive term specification
satisfying these requirements.

Definition 2.3 The rules of QL5 consist of modus ponens together with the
following.

(UPG) Tk F(x),then " F (Vx)F(x)if x ¢ FV(T').

(AxNec) If F is an axiom of QLP and F € P(a), thenta : F.

The names UPG and AxNEc are short for universal proof generalization and axiom
necessitation. With these rules in place, we can now define @ £ to be the system
consisting of axioms LP1-LP5, QLP1-QLP4, and the rules UPG and AxNEec. I will
write I'(B) Fazp, F todenote that F is derivable in @ £ from assumptions in I
such that F' € P(a) for all instances a : F of AxNEc employed in the corresponding
derivation. (I will suppress mention of {8 when it has been fixed as above.)

AxNEc may be considered as a special case of NEc in the case where the state-
ment internalized is an axiom of the system. We would also like internalization to
extend to the rest of the theorems of @ £ 5 in a manner which generalizes Proposi-

tion |.6. The general situation which is faced here may be illustrated by considering
the following example:

i (x:FAG)—>G LP1

(i) a(x):((x:F AN G) = G) AXNEC, i
(i) a(x) : (x:F A G) > G) = (y: (x:F A G) —a(x)-y:G) LP2

iv) y: (x:F A G) = ax)-y: G ii, iii

V) V) :(x:FAG)—alx)-y:G) UPG

Since steps i—iv use only the axioms and rules of the base system £, we can now
invoke Proposition |.0 to obtainaterm ¢ suchthatt : (y : (x:F AG) — a(x)-y : G)
is provable in £& (and hence in @£ P ). However, we are as yet unable to inter-
nalize the inference from iv to v which is mediated by UPG.

A variety of factors discussed in [ 7] and [/ |] suggest that the internalization of
reasoning by universal generalization about proofs is most appropriately handled by
adopting the rule which I referred to earlier as justified universal generalization:

JUG) 5T - t(x) : F(x) S 5T+ (t(x)Vx) : (Vx)F(x), where
x ¢FV(s:T)
where 5 : T' denotes a sequence of premises of the form 51 : G1,...,5, : Gj.

The adoption of this rule may be motivated by a comparison with the traditional

form of the universal generalization rule for first-order logic as well as a derived form
of the necessitation rule for §4 which allows for hypotheses (see [54])—that is,

(UG) T FF(x) .. Tk (¥x)F(x)ifx ¢ FV(D),
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(S4Nec) Ort+F .. O FOF where all G € OT are of the form G = OH.

The condition on I" in UG can be viewed as formalizing the fact that we are justified
in concluding that (Vx) F'(x) from a proof of F(x) as long as this proof has not relied
on any premises about the properties of the object denoted by the variable x. Simi-
larly, the condition on I" in S4Nec can be viewed as formalizing the fact that we are
justified in concluding that F is necessary from a proof of F from premises if these
premises are themselves necessary. JUG combines these conditions by requiring that
a proof justifying that a statement of the form (Vx) F(x) can be derived by UPG in
@ L2 must reflect both that we are able to prove F(x) uniformly (i.e., that there is a
term ¢ (x) such that 7 (s) functions as a proof of F(s) for all proof terms s), and also
that the proof of F(x) follows from premises which do not involve x and which are
also themselves explicitly provable.

The system QL5 is defined to be @ £ P with the addition of the rule JUG. We
define I' Fgep F similarly (I will suppress the subscript when clear from context).
QX P may be shown to satisfy the deduction theorem—that is, if I', F - G, then
I' H F — G. Using JUG we may now internalize the inference by UPG at step iv
in the previous derivation.”” More generally, it is now possible to demonstrate the
following.

Theorem 2.4 (Internalization) Ifs : T, ¥y : A & F, then there exists a proof term
1(3,y) suchthats : T,y : A bgep t(5,5) : F.

As an immediate corollary we have that if Q€% F F, then by Theorem and
QLP2, Q£P + (Ix)x : F. As we will see below, a particular instance of this
fact plays a significant role in reconstructing the derivation of Montague’s paradox
in @£P. Before embarking on this, however, it will also be useful to record two
additional facts about the connection between £, QL P, and §4 which were re-
spectively obtained in [3] and [ | 7].

Define a realization r of a propositional modal formula F to be an assignment of
proof terms to all occurrences of (I in . We write F” for the image of F under
the realization r. A realization is said to be normal if all occurrences of O in F
appearing in negative positions are replaced with proof variables.

Theorem 2.5 (Realization) If 84+ F, then Q€SP + F' for some normal real-
ization r.

This result can be taken to further substantiate the view that the constructive provabil-
ity interpretation of 84 provides a means of interpreting the operator (I as expressing
a form of implicit quantification over proofs. Note in particular, that it immediately
follows from the realization theorem and Proposition that

9) JNT FF << XL&PF (F8) for some normal realization r.

Since a normal realization replaces instances of [J in negative positions with proof
variables, a realization of the image of a formula of 4 N 7 under the Godel embed-
ding (-)8 can thus be seen as analyzing the proof conditions of a complex statement
in a manner which makes explicit the functional dependencies between the proofs of
its constituents in the manner envisioned by the BHK interpretation.

Finally, note that since realizations assign proof terms to instances of [1, Theo-
rem 2.5 can be understood as quantifying over proofs in the metatheory of @ £ P —
that is, the theorem promises that if F is provable in 84, then there is some way of
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replacing the occurrences of [ in F' with proof terms so as to yield a theorem of
QL P. In order to see how this quantification can be brought inside the object lan-
guage of @£ P, define the mapping (-) between the language of §4 and QL P as
follows: (P;)? = P; for P; a propositional letter; (-) commutes with propositional
connectives; (OF)? = (3x)x : F3. The following may then be shown.

Theorem 2.6 We have that 84 + F if and only if Q€2 + F3.

2.2 Reconstruction The goal of this section is to reconstruct in as precise a man-
ner as possible the derivation of Montague’s paradox in @ £5. However, the term
“reconstruction” must be taken with at least one grain of salt. For as we have just
seen, there is a close connection between derivability in @ £ and §4. And as I ob-
served in Section |, there is a sense in which &4 is incompatible with the existence
of statements which, like (| ), can be understood as asserting that a certain sentence
is equivalent to its own unprovability.

In order to make this observation precise, consider the following two sentences of
propositional modal logic:

(10) (a) D < —-0OD
(b) O(D < —=0OD)

If we interpret (1 as expressing provability, (10.a) can be taken to assert that D is
true if and only if D is unprovable, whereas (!(.b) asserts that this former fact is
provable.

It may easily be shown that both (10.a) and its negation are consistent with §4
(e.g., by constructing appropriate Kripke models). On the other hand, (!0.b) is
refutable in §4 for all formulas D as is evident from the following derivation:

(11 () O(D <« -0D)F D < —=0OD T, modus ponens

(i) O < -OD)+-OD — D T

(iii) O(D < —-0OD)+-0O0D i, ii

(iv) O <« —-0OD)+ D i, iii

(v) O < -0OD)+~0OD S4Nec, iv

(vi) OD < -0OD)+ L iii, v

(vii) F-0O(D < —0OD) vi, deduction theorem
Despite the fact that it is conducted in modal logic rather than arithmetic, the logical
structure of this derivation is again similar to that of Proposition |.!. One difference,
however, is that in the self-referential statement (10.b) is assumed as a hypoth-

esis, rather than being derived on its own via the diagonal lemma.~' This suggests
that rather than standing mute on the existence of statements which assert their own
unprovability, §4 is in fact incompatible with the provability of such statements (for
if 84 - F < —0OF for any formula F, then 84 - O(F <« —OF) via Nec and
would hence be inconsistent in virtue of the foregoing derivation).

From an instrumental perspective, however, this suggests that due to the close
relationship between @ £ and §4, the appropriate way to reconstruct the reasoning
of Montague’s paradox is to start from the assumption of a sentence expressing the
provability of a statement which expresses its own unprovability. For instance, in
parallel to (10.a,b) we have

(12) (@) D < —(Ax)x: D
(b) @y)y : (D < —=(3x)x : D)
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As might be expected, (12.a) is consistent with @ £, whereas (! 2.b) is refutable.
The latter fact can be taken to follow directly from Theorem . However, in order
to understand more precisely the principles on which this fact depends, it will be
useful to reconstruct its derivation in full detail. To this end, it is useful to adopt not
(12.b), but rather y : (D < —(3x)x : D) (where y is a free proof variable which
will ultimately be bound by UPG) as a reductio assumption. We may now reason in
QL P as follows:

13) G y: (D« —=Fx)x:D)FD <« —=3x)x: D LP3, modus ponens
@) y: (D<o —-@x)x:D)F@x)x: D - D derivable in Q£ P
(iii) y : (D < =(3x)x : D) —=@3x)x : D i, ii
@iv) y: (D < —=3x)x: D) D i, iii
V) y:(D<—=@x)x:D)Ft(y): D for some 7(y) via Theorem
V) y:(D < —=@x)x:D)F@3x)x:D v, QLP2
vi) y: (D« —-3x)x: D)L iii, v/
(vii) F=y:(D < —=3x)x:D) deduction theorem
(viii) F(Vy)—y:[D < —=(3x)x : D] UPG
(ix) F-=3y)y:[D < —(3x)x : D]

With the exception of the quantifier manipulations in steps vii—ix, this derivation
again shares the structure of the proof of Proposition |.!. As presented, however, the
argument is enthymemic as neither step ii nor step v correspond to @£ axioms,
nor are they derivable from the preceding steps by @ £P rules. The first of these
gaps may be filled in as follows:

14) ) Fx:F—>F LP3
i) F(MVx)(x: F—>F) UPG
(iii) F(Vx)(x: F > F) > (3x)x: F > F) QLP4
iv) F@x)x: F > F ii, iii

With respect to the second gap, recall that step v in Montague’s paradox and deriva-
tion respectively correspond to applications of Nec and S4Nec. Although @ £
does not have a single rule which allows for internalization in this manner, it does
satisfy Theorem 2 4. In virtue of this, we know that it is possible to construct a term
t(y) as displayed in line v of by internalizing the reasoning of steps i—iv. Steps
i, iii, and iv involve only propositional reasoning and are thus straightforward to in-
ternalize. In order to internalize step ii, however, we must show that the derivation of
(3x)x : F — F involving the application of the UPG rule can also be internalized.
This may be accomplished using the rule JUG in the following manner:

15 () Fx:F—>F LP3
) Fr(x):(x: F —> F) AxNEC
(i) F (r(x)Vx) : (Vx)(x : F = F) JUG, ii
vy Fqg: (VX)(x: F > F)—> (3x)x: F > F) AxNEc
V) Fqg-{r(x)Vx): (@x)x : F > F) LP2, iii, iv
It is now routine to establish that the term 7(y) in derivation may be taken to be

of the form (a; - y) - ((b- (g - (r(x)¥x)))-(az-y)), where ay, a and b are primitive
proof terms for the tautologies which underlie the derivation of step iii from steps i
and ii.

The axioms and rules of @£ required for the subderivations and cor-
respond to the additional principles required to justify the application of the rule Nec
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in the reasoning of Montague’s paradox which I alluded to at the end of Section
The remainder of this paper will be aimed at assessing whether these principles are
justified relative to our desire to interpret explicit modalities as expressing facts about
the various forms of provability discussed above. Consider, for example, the fol-
lowing principles in the language of @£, instances of which are involved in the
derivation

(Ty) @x)x: F > F,
Up @0y (@x: F - F).

It will be observed that T, and Uy are both related to the reflection principle T. For
instance, if we interpret the quantifiers of @£ as ranging over informal proofs, T,
reports that if there exists a proof of F, then F must be true, while U, expresses
that there is an informal proof of this fact. The former statement can most readily
be compared to the modal reflection axiom T (i.e., OF — F), which in turn can
be taken to express an apparent conceptual truth about both informal and construc-
tive provability. This formula is still valid if O is interpreted as expressing formal
provability—that is, all instances of Provpq (" F*™) — F* are true in the standard
model (where F* is an arithmetical realization of propositional modal logic in the
sense of [7]).
These two facts come apart in the case of the modal analogue of U,;—that is,

(U)y O(@OF — F).

For while U is derivable in 4, it has false realizations when [J is interpreted as
Provp4(x) (e.g., when F is mapped to 0 = 1 as noted in Section !). For this reason,
it seems prudent to at least reserve judgment as to whether U should be accepted as
an evident property of informal or constructive provability. One of the primary ques-
tions we will be concerned with below is whether U, should ultimately be accepted
on the informal and constructive proof interpretations of explicit modalities.

2.3 Arithmetical semantics for @£$ There are two goals one might hope to achieve
in providing a semantical interpretation of an explicit modal logic like £ or @ £5.
First, one might hope to provide a mathematical interpretation of explicit modalities
which provides an analysis of the nature of the objects which proof terms are intended
to denote or of the justificatory relationship these objects bear to statements in the
language of the systems. Second, one might hope to establish various metatheoretic
results about one of these systems—for example, the consistency or inconsistency of
certain sets of sentences, the conservativeness of a subsystem with respect to a certain
class of formulas, and so on—without claiming that the semantics itself provided an
adequate analysis of the relation expressed by 7: F.

The semantics formulated in this section is primarily intended to serve the latter
purpose. In particular, we will see that it is possible to provide an arithmetical in-
terpretation of the language of @£ which is similar in spirit to the definition of
an arithmetical realization in provability logic (see [/]) and even more similar to the
definition of an arithmetical interpretation of the language of £ P (see []).
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Such interpretations can be understood as means of mapping sentences from the
relevant modal or explicit modal language into arithmetical sentences such that state-
ments involving the operators [ and : are mapped to statements about formal prov-
ability with respect to an arithmetical theory such as PA. In particular, an arithmeti-
cal realization (-)* of propositional modal logic maps sentences of the form O F to
sentences of the form Provp (" F*7) in the language £, of first-order arithmetic.
Similarly, an arithmetical interpretation (-)™ of the language of £ maps sentences
of the form ¢: F to those of the form Proofp4("t™7," F* 7). Artemov [3] established
that relative to an appropriate formulation of the latter mapping, the images of the
theorems of £ are not only arithmetically sound (i.e., true in the standard model),
but they are also individually provable in PA itself.

Although we are about to see that the situation is more complex in the case of
QL P, it will be useful to base the definition of a @ £ P -interpretation (-)° as closely
as possible on the definition of (-)* given in []. To this end, let Prf(x, y) be a proof
predicate for PA which satisfies the following conditions:

(16) (a) Prf(x, y) is provably AY in PA,
(b) for every arithmetical formula ¢, PA - ¢ <= forsomen € N, N = Prf(n,
r.,1
¢,
(c)if we let T'(n) = {k | N |= Prf(, k)}, then Prf(x, y) satisfies
(i) for all n, m there is a k such that 7'(n) U T'(m) C T (k),
(ii) T'(n) is finite for all n.

It will also be useful to assume that the arithmetical language which we are working
in contains terms fp, f {, ... which represent all recursive functions. I will accord-
ingly assume that PA is formulated so as to contain the defining axioms for all these
functions (see [49] for details of how this can be handled). It follows from the fact
that Prf(x, y) is provably A9 that the set P = {n | N = 3yPrf(7, y)} of Godel num-
bers of proofs is recursive. There is hence a recursive function p : N — N which
enumerates P injectively. Let p be a name for an £,-representation of this function.
For readability, we revert to the official names for proof variables x¢, x1, ... and as-
sume that the official names for arithmetical variables in £, are yq, y1,.... We then
set (x;)° = p(yi). In the case where x; occurs free in a @£ formula ¢(x;), this
will mean that the y; will occur free in (¢(x;))° inside an arithmetical term of the
form p(y;).

Suppose as before that 3 is some fixed axiomatically appropriate primitive term
specification. For each instance of a @£ P axiom F, there is thus some primitive
proof term a such that F € L(a) and FV(a) = FV(F). We wish statements of the
form a(X) : F(X) with F(X) € $(a(X)) to be mapped to arithmetical open sentences
which are true for all numerical substitution instances of their free variables. This
means that the image of a primitive proof term must itself be a function mapping
numbers into functions on Godel numbers of proofs. For instance, if F(X) is an
axiom of @£ and we have defined (-)° so that F(X)® is an open sentence of &£,
provable in PA, then the interpretation of a(X) should be a function a gz (X°) which
for every assignment of @£ P-terms to X, returns the code of an arithmetical proof
of the image of the corresponding substitution instance of F(X).

We must also provide a means of interpreting the proof operations -, +, !, and
(-V-). In the case of the first three operators, this can be accomplished in a man-
ner similar to Artemov’s original arithmetical interpretation of £ via the use of
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three functions m(y1, y2), s(y1, ¥2), and c¢(y). In particular, m(y, y2) returns the
least Godel number of a proof containing all instances of sentences G such that
"F - G"'eT(y1)and"F" € T(y2), s(y1, y2) returns the least Godel number
of a proof containing T'(y;) and T (y,), and c(y) returns the least Godel number of
a proof z such that Prf(z," F7) € T(y) for all "F" € T(yy). Finally, in order to
interpret the universal verifier symbol (-V-), we define a function g(y1, y») which,
if y; is the Godel number of a proof and y, is the Godel number of a variable y,
returns the least Godel number of a proof z such that Prf(z," (Vy)F™) € T(z) for
all F € T(y;) suchthat y € FV(F).

Following [7], it is routine to show that these functions are primitive recursive
and may hence be represented by arithmetical terms m, s, ¢, and g. Finally, in the
manner of [7], let su(x, y,z) be the primitive recursive function such that for all
i, k,su(i,j, k) is the Godel number of the result of substituting the numeral i for
the jth free variable in formula with Godel number k.

Definition 2.7  An arithmetical interpretation for @ £ is a mapping (-)° on both
proof terms and formulas defined relative to the definitions of Prf(yy, y2), m(y1, ¥2),
p(y1,y2), c(y), and g(y1, y2) just given. The value of ¢° is defined inductively as
follows:
o x; = p);
o if F(x1,...,xn) € Bla(xy,...,x,)), then
@ty X)) = @Ry (K75 X0);
o (t-5)° = m(t°,5°), (t+s5)° = s(°,5°), (1)° = c(t°), ((tVx;)° =
gL Ty,
The value of F° is defined inductively as follows:
e (P;)° is an arbitrary closed sentence of £, and L° = | (where the latter is
understood to denote some fixed arithmetical sentence which is refutable in

PA—e.g,0=1);

e (-)° commutes with propositional connectives—for example, (F — G)° =
F° — G°;

o (Vxi))F)° = (Yy)F°.(@xi)F)° = @yi) F*

ot  F(xg,,...,Xk,) = Prf(t",su(x,‘;m,km,...,su(xg,kz,su(x;’,kl,

TR Lxg ))).L).

It will be useful to observe several differences between the way proof variables are
handled with respect to arithmetical interpretations for £ and for @ £ 5. Note that
both £& and QL P possess axioms containing free proof variables—for example,
X : P — P. Recall, however, that an arithmetical interpretation (-)™ for £ asso-
ciates each proof variable x with a fixed natural number, meaning that the image of
such an axiom under (-)* will always be a closed formula in the language of arith-
metic. On the other hand, under an arithmetical interpretation (-)° for @£, this
sentence will get mapped to an open formula of the form

a7 Prf(p(y),"F°™") — F°.

It will be useful to define arithmetical soundness for the language of @ £ so as to
accommodate this. The most straightforward way of doing so is to treat free arith-
metical variables as universally bound. In particular, I will say that a @ £ 5 sentence
F(xk,,...,xk,) with free variables displayed is arithmetically sound with respect
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to ()UNEVYYL....V9(F)°Vkys-- -, Yi,,)- If F° is arithmetically sound with
respect to all interpretations (-)° satisfying Definition 2.7, I will simply say that F°
is arithmetically sound.

On the route to demonstrating the arithmetical soundness of Q@£ P, we must
first convince ourselves that if 8 is an axiomatically appropriate primitive term spec-
ification, then there exist L-arithmetically sound interpretations. This essentially
involves showing that if the formula F with free variables x, ..., xg,, is an axiom
of QL Py, and F € L(a), then there exists an m-ary primitive recursive function
ap such that for all ny,...,n, € N, ap(ny,...,ny) returns a proof of the inter-
pretation of F when its free variables are mapped to p(n1),..., p(nm,). If we can
show that such functions exist for all primitive proof terms a and formulas F such
that F € B(a), then we will have obtained an arithmetically sound interpretation. If
P is a primitive term specification, we similarly say that an interpretation (-)° is L3-
arithmetically sound if a:F is arithmetically sound for all @, F' such that F' € L(a).

In order to make the case that arithmetically sound interpretations exist, I will
consider an example. Consider the axiom LP3 and recall that its arithmetical inter-
pretation is given by . Although this is an open arithmetical sentence, it is easy
to see that, forall n € N,

(18)  PAF Prf(p(m),"F°7) — F°.

For note that we have either (i) N = Prf(p(%)," F°7) or (ii) N F Prf(p(n)," F°7).
In the first case, Prf(p(n),” F°7) is a true AY-sentence and hence p(n) is indeed
the Gédel number of a proof of F° in PA. Hence by the £9-completeness of PA,
PA = F°, meaning that holds. In the second case, Prf(p(),” F°7) is a false
AY-sentence, meaning that —Prf(p(77), " F°7) is provably equivalent to a true X9-
sentence. Hence PA + —Prf(p (i), " F°7) by £9-completeness and again holds.

The foregoing reasoning is uniform in n in the sense that each substitution in-
stance of is true. But also note that given n € N, we can calculate the Godel
number of a proof of Prf(p(n),” F°7) — F° via the following procedure: (1) given
n, compute p(n) and check whether Prf(p (), " F°7) is true (this can be decided be-
cause Prf(p (1), " F°7) is A9); (2) if so, p(n) really is the Godel number of a proof of
F° in PA and we can hence construct the Godel number of a proof of this instance of

by composing the proof coded by p(n) with a proof of the appropriate instance
of the tautology F — (G — F); (3) if not, then since p(n) does not denote a proof
of F°, we can (i) obtain the Godel number ¢ of a proof of —Prf(p(7),” F°") by
simply examining the structure of the proof denoted by p(n) and noting that it does
not have " F° as a conclusion, and we can then (ii) construct the G6del number of a
proof of this instance of by composing ¢ with a proof of the appropriate instance
of the tautology =F — (F — G). Since the procedure just described is clearly ef-
fective and involves only bounded search, we know that there is a primitive recursive
function which for every n, returns the Gédel number of a proof demonstrating
in PA. Tt is this function which we take as a.r— r(y).

It is straightforward but tedious to show that there exist primitive recursive func-
tions which perform the same function for the other axioms of @ £ £, and that the
rules of this system preserve arithmetical soundness. Once this is accomplished we
have the following.
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Theorem 2.8 (Arithmetical soundness)  Suppose that B is an axiomatically ap-
propriate primitive term specification and that QL P o(B) = F. Then N = F° for
all B-sound interpretations (-)°.

Proof By induction on the derivation of F. O

This result is significant partly because it demonstrates the consistency of @£ 5.
But recall from [ 3] that if ()T is an &£ $-interpretation, then not only are the images
of all theorems of £ under (-)* true in N, but they are also provable in PA. As
we will now see, however, there is no hope of extending Theorem to an analo-
gous result for @£ where “true in N” is replaced with “provable in PA” in the
definition of arithmetical soundness.

In order to see this, first consider the case of the LP reflection axiom with
F = 1—that is,

19 x:1l—->1 (=-x:1).

Via UPG in Q£ P, we then have that
(20) QLPoF (Vx)—x: L.

The image of this statement under (-)° is
e (Yy)—Prf(p(y),"L7),

which can be seen to express “for all y, p(y) is not a proof of a contradiction in PA.”
Assuming that PA is consistent, this statement is true in the standard model. How-
ever, since p enumerates all arithmetical proofs, expresses the consistency of
PA and is thus not provable in PA by the second incompleteness theorem (assuming
that PA is itself consistent). It thus follows that although the images of all instances
of LP3 are true in the standard model for all choices of (-)°, the image of will
not be provable in PA for any @ £ arithmetical interpretation (-)°.

In fact, it is easy to see that in @ L it is possible to derive statements whose
images are false under all arithmetically sound interpretations. To be more precise,
it will be useful to record the following form of a familiar result about PA.

Proposition 2.9 (Internalized Lob’s theorem) For all £,-sentences F,
PAF @y)Prf(p(y)."@y)Prf(p(y)."F7) — F) — @y)Prf(p(y)."F7).

Proof A straightforward adaption of the traditional proof given in, for example,
[49]. O

Proposition 2.10 Let B be an axiomatically appropriate and arithmetically sound
primitive term specification. Then assuming that PA is sound, there are sentences I
such that QL P (R) - F, but N £ F°.

Proof Let 3 be as in the hypotheses. Then by LP3 and AxNEc,
(22) QEPB)F r(xg) : (xo: L — 1).

It then follows by JUG that

23)  QLP(PB)F (r(x0)Yxo0) : (Vxo)(x0: L — L),

and then by QLP2 that

24 QLP(PB)F Gxi)xi:(Yxo)(xo: L — 1).
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Note that the image of under (+)° is equivalent to

25 @y)Prf(p(y)."@y)Prf(p(y)." L) — L.

Assuming that PA is consistent, it follows that is not true in N. For if
it were, it would follow from Proposition and the soundness of PA that
N | 3y)Prf(p(y)," L™, which is true only if PA is inconsistent. O
Proposition shows that it is not possible to extend the arithmetical soundness
theorem from @ LP to @LP. One obvious reason for this is that JUG allows for
the internalization of statements expressing consistency like which are provable
in QL Py. In fact, it is routine to check that the image of under ()° is already

false in N by employing the definition of ({r(x)Vx))°® given above (in particular, as
long as PA is consistent, the number denoted by g("7(x¢)°™", xo™) cannot denote
a proof in the set P). It thus follows that JUG is not an arithmetically sound rule
of inference relative to the definition of g(y;, y2) given above. However, this fact
persists even when we limit our attention to those theorems of @£ that do not
contain the universal verifier symbol.

Proposition 2.11 Let B be axiomatically appropriate, and let
QLP- = {F | QLP (P) - F and F does not contain the symbol (V)}

Suppose also that (-)° is a B-arithmetically sound interpretation, and let (QLP™)°
denote the image of all sentences of QLP~ under (-)°. Then PA U (QLP7)° is
inconsistent.

Proof  Note that by and we have that
@)Pr(p(y)."@IPrE(p(y)."L7) - 17) € (QLP7)°.

It follows again by Proposition 2.9 that PAU(QLP™)° = (Fy)Prf(p(y),"L™). But,
as we have seen, QL% F (3x)x : L — L and thus the arithmetic interpretation
of this formula—that is, (3y)Prf(p(y)," L") — L—isin (QLSP™)°. Putting these
two facts together, we have PA U (QL5P)° F L. O

A similar argument can now be mounted to show that @ £ is not conservative over
QL P, for sentences lacking the universal verifier symbol. In fact, we may show
that no instance of Uy is derivable in @£ for atomic F'.

Proposition 2.12 For all propositional letters P and axiomatically appropriate
primitive term specifications P, QL P o(B) t (Ixo)xo : ((3x1)x1 : P — P).

Proof  Suppose foracontradictionthat @ £P o (B) F (Ixg)xo : ((Fx1)x1: P — P).
By Theorem 2., it follows that

(26) N E (3xo)xo : ((Ax1)x1 : P — P))°

for all P-arithmetically sound interpretations (-)°. By the diagonal lemma for PA,
there exists a closed arithmetical sentence § such that

PAEF§ < ﬂ(EIyz)Prf(p(yz), r87).
Hence by E?-completeness,

PAF @yn)Prf(p(y1).78 < =(3Fy2)Prf(p(y2).767)7).
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If we let (-)° be such that P° = §, we may now reach a contradiction by reasoning in
the standard model in the same manner as the derivation . In particular, since all
of the axioms and rules of @£ are arithmetically sound, we reach the conclusion
that N = —=3y,Prf(p(y2),"67") as at line (! 3.iii). However, as the foregoing reason-
ing can be formalized in PA, if we also assume via the existence of a natural
number n = (x¢)° such that N = Prf(r,"3y,Prf(y,,767") — 67), we may then also
conclude that N = Jy,Prf(p(y2), 67 in parallel to line (13.v"). O

By a similar method, it is also possible to show that @ £ P is consistent with the
existence of self-referential statements such as (12.a,b).

Proposition 2.13 Let B be an axiomatically appropriate primitive term specifica-
tion, and assume that PA is sound. Then

QLP(P) U {(Elxo)xo : (P < =(Ixy)xg : P) | P a propositional letter}
is consistent.

Proof  Suppose for a contradiction that
@ifpo(%) H —'(H)C())X() : (P <~ —-(Elxl)xl : P)

It follows by Theorem that N | (—(3xg)xo : (P <> —=(Ix1)x1 : P))°. From
this it follows that

@7 N E—~@yo)Prf(p(yo)." P° < =Fy)Prf(p(y1)." P*).
But again by the diagonal lemma and £¢-completeness,
PA = (3yo)Pri(p(yo)."8 < =~@y)Prf(p(y1).767)7)

for some §. But now letting P° = &, we have
N = 3yo)Prf(p(y0).” P° < =(3y1)Prf(p(y1)."P°7)7)

in contradiction to . O

3 Discussion

The case I presented in Section | can be summarized as follows: (1) the distinctive
feature of Montague’s paradox is its reliance on the internalization principle NEc;
(2) this rule can be most readily justified if we understand P(x) as expressing some
form of provability; (3) but since to say that ¢ is provable is to say that there exists
a proof of ¢, a yet better interpretation of P("¢™) is as expressing implicit quantifi-
cation over proofs; (4) this feature of NEc may be made explicit by formulating the
derivation of the paradox in a system like @ £5 which treats proofs as objects; and
(5) in such a setting, the validity of NEc is decomposed into a number of axioms
and rules which are individually required to sustain internalization in the sense of
Theorem

Having redeveloped the proof of Proposition in QLP, we are now in a po-
sition to examine these principles in more detail. For note that the only place that
NEc is applied in this result is to derive P("§7) at step v. If we interpret P("¢™)
as expressing that there exists a proof of ¢, I argued above that the justification for
this conclusion rests on the fact that we ought to be able to internalize the reasoning
embodied by steps i—iv leading to the conclusion § under the scope of P(x). In the
reconstructed derivation, however, we realize that in order to do this, we must not
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only prove an instance of Ty, but also that this proof must itself be internalized to
yield an instance of U,. The resulting sub-derivations and can be seen to
rely on the axioms LP2, LP3, QLP4 and the rules AxNEec, UPG, and JUG of @£ P.

The central claim for which I will argue in this section is that on each of the
provability interpretations considered in Section |—that is, formal, informal, and
constructive—plausible arguments can be adduced in favor of the correctness of all
of these principles with the exception of JUG. However, the situation which we face in
assessing such claims is complicated by the fact that it is not entirely clear what status
should be assigned to the existence of self-referential statements about provability
on the constructive and informal interpretations, as illustrated, for example, by the
refutability of (12.b) in Q£S5 . The more refined thesis for which I will argue is thus
as follows: to the extent to which Montague’s paradox can be seen as threatening
the consistency of our intuitions about the notion of provability (conceived either
formally, informally, or constructively), consistency can be maintained even in the
face of self-reference if we are willing to reject principles like JUG which allow
for the internalization of certain forms of reasoning by universal generalization over
proofs.

These claims may be evaluated with relative ease in the case of formal provabil-
ity. For as long as we are willing to accept that the arithmetical proof predicate
Prf(x, y) employed in Section adequately expresses the relation which a formal
proof bears to the sentences which it demonstrates, then the arithmetical soundness
of LP2, LP3, QLP4, AxNEec, and UPG suggests that these principles ought to be
accepted as uncontroversial features of the relation borne by such proofs to their con-
clusions. This should not be surprising in the case of LP2 and AxNEc, which can be
respectively understood as explicit versions of special cases of the first and second
Hilbert—Bernays derivability conditions. Additionally, the soundness of QLP4 can be
taken to follow from the fact that the axioms of first-order logic are valid for arbitrary
domains, including the case where we regard their quantifiers as ranging over formal
proofs. And finally, although the images under (-)° of all instances ¢t : F — F of
LP3 are not always derivable in PA (e.g., when? = x and F = 1), they will all be
true in the standard model.

The status of JUG with respect to the formal provability interpretation is illu-
minated by the results of Section 2.3. In particular, we observed there that spe-
cific instances of this rule are not arithmetically sound. For instance, if we take
the formula F(x) to be the instance x : L — 1 of LP3 and the proof term ¢(x)
to be r(x) (where we assume that (x : L — 1) € P(r(x))), then we have
QLPFr(x):(x:L— 1)andalso N E (r(x) : (x : L — 1))° for all interpre-
tations (-)°. But although it then follows via JUG that Q£ P F (r(x)Vx):(Vx)(x :
1 — 1), for no such interpretations can it be the case that N = ((r(x)Vx):(Vx)(x :
1 — 1))°. As noted above, this fact depends in its details on the precise means
by which we go about interpreting the uniform verifier symbol (-V-) into the lan-
guage of arithmetic. But as was observed in Proposition , we also have that
QLP F (Fxy)x1:(Vxg)(xg : L — 1) via existential generalization. The image of
this statement under (-)° is equivalent to (Iy,)Prf(p(y1),"Vyo—Prf(p(y9), " L)™M).
As this statement formalizes the fact that PA proves its own consistency, it must
hence be false in the standard model in virtue of the second incompleteness theorem
(presuming that PA is consistent).
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On the formal proof interpretation, JUG can thus be understood to be objection-
able in virtue of implying the existence of proofs whose nonexistence we take to be a
matter of mathematical necessity. ~ One might, however, think that we possess some
form of justification for believing that PA is consistent—for example, our belief that
its axioms are true and that its rules preserve truth. One might even take such obser-
vations to constitute an informal proof of the consistency of PA. As such, it might
be thought that the arithmetical invalidity of JUG is a consequence of the manner in
which the formal proof interpretation requires us to identify proofs with natural num-
bers. The question thus arises whether JUG ought to be retained as a valid principle
about informal or constructive proof.

I will presently argue that JUG also ought to be rejected on both of these inter-
pretations, albeit for reasons quite different than the ones just considered. But before
engaging with this issue directly, something more substantive must finally be said
about the nature of constructive and informal proof. A thorough discussion of either
these notions is beyond the scope of the current paper. The following remarks are
thus not intended to resemble a satisfactory analysis of either notion, but merely to
highlight what is at stake when we assert or deny that principles expressible in the
language of explicit modal logic reflect properties of such proofs.

In elementary expositions of intuitionism (e.g., [/2], [57]), the notion of con-
structive proof is often introduced in contradistinction to that of classical proof. This
suggests that one route to identifying what is meant by such a proof is to start from
our conventional idea of a “classical” proof and then exclude proofs employing var-
ious modes of reasoning which are rejected within intuitionism. At least to a first
approximation, we might thus take a constructive proof to be a sequence of mathe-
matical propositions which are axioms of intuitionistic mathematics or which follow
constructively from such statements. Similarly, the relevant notion of constructivity
is often first illustrated by explaining the sense in which certain classical proofs are
nonconstructive—for example, that they demonstrate existential statements without
providing a witness. This in turn is used to argue that logical principles such as the
law of the excluded middle have a nonconstructive character. On this basis, it might
be conjectured that constructive proofs simply are derivations from mathematical
axioms in an intuitionistic formal system such as 4 @ € which omits such principles.

The foregoing proposal is useful as a benchmark as it suggests that inasmuch as
constructive proofs can be understood as resembling classical proofs in form, there is
no prima facie difficulty in regarding them as abstract objects which stand in a certain
structural relation to the propositions which they demonstrate. In particular, it seems
reasonable to regard the assertion that a constructive proof demonstrates a statement
as itself corresponding to a proposition. Such a view is enshrined in explicit modal
logics by the decision to treat 7: F' as a formula expressing this relation. Once this is
realized, a heuristic case in favor of the axioms of LP2 and LP3 on the constructive
proof interpretation can now be provided.

The case for LP2 is almost immediate due to its similarity in form to the clause
BHK_,. In the case of LP3, note that, although intuitionistically we might be tempted
to conflate the assertion of F with that of #:F (or (3x)x : F), classically these
statements differ in meaning. However, it seems implicit in traditional discussions
of constructive proof that mathematical propositions are seen to be true (or become
assertable) in virtue of being proven. It hence seems entirely appropriate to adopt



Montague’s Paradox and Explicit Modal Logic 181

t : F — F as abasic axiom of a system like @£ which we seek to use to provide
a classical interpretation of intuitionistic logic.

Before we can attempt to account for the status of QLP4, UPG, and JUG, some-
thing more must be said about what it means to quantify over constructive proofs.
We may begin by noting that it is already evident from the BHK interpretation that
constructive proofs should be regarded as having compositional structure. However,
it is also standardly remarked that the proof interpretation itself cannot be taken as
providing an inductive specification of the proof conditions of a formula in terms of
those of its constituents. The underlying problem is exemplified by the impredicativ-
ity implicit in BHK_,—that is, since the proof condition of F' — G is understood to
be a construction transforming an arbitrary proof of F into a proof of G, the state-
ment of this condition requires quantification over all constructive proofs, not just
those which may appear in the proof conditions of F and G.

Both Godel and Kreisel were acutely aware of this problem. In Goédel’s case, this
came to the fore in the course of his discussion of the potential use of intuitionistic
logic for establishing consistency results in light of the incompleteness theorems—
for example, by invoking his embedding of PA into HA (see [2”]). One of the
earliest places he discusses this is in the 1933 lecture [2“], in which he stresses the
fact that for a consistency proof to carry conviction, it must be conducted in a system
A which embodies only “perfectly unobjectionable, constructive methods.”

He then went on to write:

Heyting’s axioms differ from those of the system A only by the fact that the
substrate on which the constructions are carried out are proofs instead of numbers
or other enumerable sets of mathematical objects. But by this very fact they do
violate the principle which I stated before, that the word “any” can be applied
only to those totalities for which we have a finite procedure for generating all their
elements. . . . For the totality of all possible proofs certainly does not possess this
character, and nevertheless the word “any” is applied to this totality in Heyting’s
axioms as [can be seen from] “Given any proof for a proposition p, you can
construct a reductio ad absurdum from the proposition —p.” Totalities whose
elements cannot be generated by a well-defined procedure are in some sense
vague and indefinite as to their borders. And this objection applies particularly
to the totality of intuitionistic proofs because of the vagueness of the notion of
constructivity. [24, p. 53]

In this passage, Godel makes three points relevant to the current discussion: (i) in
the context of foundational uses of intuitionistic logic, constructive proofs should be
understood as serving the same role which natural numbers play in classical meta-
mathematics via arithmetization; (ii) but unlike the natural numbers, we should not
think of the totality of constructive proofs as being inductively generated; (iii) this is
true both in virtue of the impredicativity of the BHK interpretation and also because
of the “vagueness” which he takes to be inherent in the notion of constructivity itself.

Taking points ii and iii together with the condition which he places on the use of
the word “any,” it would seem to follow that Godel ought to deny that we are ever
justified in asserting a universally quantified statement about constructive proofs.
The question thus arises as to the status which should be assigned on the construc-
tive proof interpretation not only to the @ £5 rule UPG, but also to principles like
QLP4 which contain universal proof quantifiers. A literal reading of Godel’s recom-
mendation would appear to suggest that we should simply exclude quantifiers from
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the object language of any system introduced for purposes of formalizing reason-
ing about constructive proofs. To some extent, this reflects the original strategy of
Artemov [3] and would leave us with a quantifier-free system resembling £ 5.

Were we to revert to a system of this sort, however, we would not only lose the
ability to express the constructive provability of statements in the object language,
but we would also lose the ability to express statements equivalent to their own un-
provability as appear in the proof of Montague’s paradox. It is notable, however, that
the basis of Godel’s concern about quantification over constructive proofs does not
seem to reside in any potentially paradoxical feature of the BHK interpretation, but
rather in the general manner in which the class of constructive proofs is character-
ized.

A somewhat less radical reaction to Godel’s concerns would thus be to allow ob-
ject language quantification over constructive proofs to the extent permitted by other
constraints. For note that our acceptance of axioms like LP2 and LP3 as valid prin-
ciples of constructive proof seems largely schematic—that is, we accept the axiom
t:(F—>G)—(s: F—t-s:G)notin virtue of any particular understanding
of what 7, s, or - denote, but in virtue of the functional relationship between proofs
which we understand to be expressed by this statement. But if this is the case, then
it seems that we have little basis to demur from accepting quantified statements like
Vx)(Vy)@z)(x : (F - G) = (y : F — z : G)) which can be derived in QL P
from £ axioms by the use of UPG and QLP1-QLP4.

In a later lecture, Godel [25] himself proposed a system containing proof quan-
tifiers which is similar in form to @£ in which such principles are derivable.
On the other hand, Gddel’s concerns about the characterization of the totality of
all constructive proofs seem more serious when we attempt to justify JUG on the
constructive proof interpretation. For not only does the BHK interpretation fail to
provide an inductive characterization of this class, but it is also a commonplace of
intuitionistic mathematics to resist identifying the extent of constructive reasoning
with any particular axiomatic system.

This is evident, for instance, in virtue of the fact that there are long-standing de-
bates within intuitionism as to the constructive bona fides of nonclassical principles
like Markov’s principle, Church’s thesis, and bar induction which, while arguably
constructive in character, lie somewhere outside the core of traditional intuitionistic
mathematics.” While this may not itself justify Godel’s use of the term “vagueness”
to describe the notion of constructivity, it at least suggests that a degree of caution
is warranted when making assertions about properties which are claimed to hold
universally of constructive proofs.

One way of codifying this observation in a formal system is precisely to abandon
principles like JUG which allow for the internalization of certain forms of quantified
reasoning about proofs. For suppose that we have derived F(x) in QL8 (i.e., with-
out the use of JUG). Then it may be shown directly on the basis of Proposition
that we will be able to construct a term #(x) such that @£ Py F ¢(x) : F(x). Since
in this case x can be understood as denoting an arbitrary constructive proof, it might
then be thought that we are justified in concluding that (Vx)z(x) : F(x) on analogy
with our schematic acceptance of the axioms of £J°. But the question which we
must now consider is whether our recognition of these facts also puts us in a position
where we can justifiably conclude that s : (Vx) F(x) for any proof term s (as we can
derive via JUG by taking s = (tVx)).



Montague’s Paradox and Explicit Modal Logic 183

According to the interpretation we are currently considering, such a statement
would express that s is a constructive proof of the universal statement (Vx)F(x),
which in turn expresses that F(x) is true of all items falling under the relevant con-
cept of constructive proof. As we have just seen, however, it is standardly acknowl-
edged that the concept of constructive proof is ineffable at least in the sense of being
compatible with expansions in our conception of constructivity which we may not be
able to currently foresee.”' And thus one might reasonably doubt that it is within our
power to ever rigorously prove that any property holds of all constructive proofs.

Such doubts may be further substantiated by recalling the BHK clause for the
universal quantifier as formulated by Troelstra and van Dalen [55]:

(BHKYy) a construction which transforms a proof of d € O (where D is the
intended range of the variable x) into a proof of ¢(d).

On a strict reading of this clause, we cannot accept that the proof term (¢ Vx) denotes
a proof of (Vx) F(x) for it fails to contain x free and thus cannot denote a construc-
tion of the correct type. This problem aside, however, BHKy can also be understood
as stipulating that before we can characterize the conditions under which such a term
ought to be regarded as denoting a proof of a universally quantified statement about
constructive proofs, we must be able to provide a suitable mathematical characteri-
zation of the domain D of all such proofs. And it is, of course, our apparent inability
to provide such an account which is presently at issue.

If we accept that the foregoing considerations represent a compelling reason to
reject JUG on the constructive proof interpretation, then the results of Section
can now be invoked to give a principled explanation of why Montague’s paradox does
not arise when we interpret P("¢ ™) as expressing that ¢ is constructively provable.
For on the one hand, we have seen that the construction of 7(y) at step v of is
blocked if we do not assume JUG (as the corresponding instance of U, cannot be
derived as a consequence of Proposition ). And on the other, not only is the base
system QL P consistent (as a consequence of Theorem 2 %), but it also remains so
when self-referential statements of the form (! ”.b) are adjoined (as a consequence of
Proposition ).

The final question to which we must attend is to what extent these conclusions
carry over to the informal proof interpretation of @£5. Note first that whereas
we have seen that constructive proofs are often characterized in contradistinction to
classical ones, informal proofs are customarily characterized in contradistinction to
formal proofs—that is, derivations in particular axiom systems such as PA or ZF.
The primary characteristic which most authors take to distinguish informal proofs
from formal ones is thus that while the former may rely on any evidently “correct”
mathematical principles and modes of inference, the latter may only rely on axioms
and rules from a fixed axiom system.

For instance, Myhill [44] suggests that we may correctly infer the formalized con-
sistency statement for PA (i.e., Con(PA)) from our understanding of its axioms,
despite the fact that this inference cannot be formalized in PA itself. Rav [40] goes
one step beyond this by suggesting that many branches of contemporary mathemat-
ics possess stable and rigorous standards of proof but have developed without any
clear delineation of which principles are to be understood as axioms. Leitgeb [39]
goes even further in suggesting that informal proofs may have significant nonpropo-
sitional constituents—for example, imperative components calling for a particular
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construction to be performed, or “intuitive” components calling for nonconceptual
representations of mathematical objects to be entertained.

The consensus thus seems to be that inasmuch as we can coherently talk about
a unified conception of informal proof, such proofs will lack at least some of the
structural properties normally associated with formal proofs. For not only may we
be unable to identify a recursive set of axioms and rules on which a given informal
proof is based, but it may even be that it is misleading to think of all informal proofs
as having the general form of conventional deductive proofs—that is, a sequence
or tree of sentences in a fixed mathematical language. The prospect for providing a
structural or combinatorial analysis of informal provability thus seems yet again more
daunting than in the case of constructive provability. And it is for this reason that
Myhill proposed that the best (and perhaps only) way to study informal provability
is by axiomatizing its propositional properties.

Myhill suggests that this can be carried out in one of two ways: (1) by treating
informal provability as a propositional operator [J; or (2) by treating it as a predicate
P(x) of sentences. In the first case, Myhill approvingly cites Godel’s proposal that
the §4 axioms reflect valid principles of informal provability. But although this
system allows consistency to be demonstrated in the form -1, Myhill rejects
modal systems as an adequate medium for reasoning about informal provability in
mathematics as the operator [ is applicable to propositions and not sentences (which
he takes to be the objects of mathematical proofs). In the course of developing the
second option, Myhill at first proposes that principles like T, K, and Nec—analogous
to T, K, and Nec of §4—be added to PA, yielding a theory 7, extending that of
Proposition |.|. As mentioned in Section |, however, he then anticipates Montague’s
paradox by demonstrating that 7} is inconsistent.

What is of more interest, however, is Myhill’s proposal that the inconsistency
should be resolved by restricting T, K, and NEc to purely arithmetical substitution
instances—that is, sentences in which the predicate P (x) does not itself appear. This
resolves Montague’s paradox in a technical sense because the sentence § obtained in
the conventional manner from the diagonal lemma in Proposition will contain
P(x) as a subformula, which in turn means that the inference from iv to v via Nec
in the derivation of Proposition | .| will be blocked in the relevant system.

But in a conceptual sense, Myhill suggests that this restriction is necessary if
our intention is to view P(x) as expressing informal provability in mathematics.
For while our intuitions about informal provability may be sufficient to motivate
the adoption of principles like T or K, such intuitions presumably do not extend
to statements involving the notion of informal provability itself, as it is not evident
that this is a mathematical notion.”" Myhill thus argues that it would be improper to
adopt a theory for reasoning about this notion which allowed for iterated applications
of P(x).

We may finally observe that the motivation for adopting either of these resolutions
to Montague’s paradox is in both conceptual and technical accord with the rationale I
have presented for rejecting JUG as a valid principle about constructive proof. For as
we concluded above, we face an in-principle problem about constructively justifying
any principle which asserts that all constructive proofs have a given property. If we
abandon JUG on this basis, then we move from the theory @£ #, which satisfies full
internalization (i.e., Theorem 2 <) but which is incompatible with self-reference (i.e.,
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Proposition ), to the theory @£ 5, which lacks full internalization but which is
compatible with self-reference (i.e., Proposition ).

As we have seen, however, unlike the arithmetical rule Nec and the traditional
modal rule Nec, internalization for explicit modal logic comes in degrees. For in-
stance, if we abandon JUG we can no longer internalize the derivation of T, to
yield Ug, which is required for the reconstruction of Montague’s paradox in @ £5.
However, by reasoning in @£ 5y we will still be able to internalize reasoning about
proofs which do not involve universal generalization. And we will thus also be able
to record our schematic acceptance of various general principles about proofs such
as LP2-LP4.

Both abilities represent features intrinsic to our intuitive notion of constructive
or informal proof which we would be unable to account for if we either banished
proof quantifiers altogether or abandoned principles which allow us to internalize
theorems of @£ Py whose derivation does not require UPG. The adoption of such
a system for reasoning about provability can thus be taken to provide a means of
resolving Montague’s paradox which is at once compatible with the observation that
the derivation of the contradiction in Proposition | .| originates with the unrestricted
application of the rule Nec and also the goal of retaining as many of the desirable
aspects of internalization as possible.

Notes

1. Montague’s criticism also appears to be grounded in the traditional axiomatic approach
to modal logic. In this context, principles like T or NEc might be taken to be essential
to our understanding of a notion such as logical or metaphysical necessity. But such an
understanding has now largely given way to the model theoretic approach to modal logic
heralded by Kripke’s “Semantical considerations on modal logic” [36] (which originally
appeared in the same volume of Acta Philosophica Fennica as Montague’s paper). In this
context, a wide range of systems are studied, not all of which include axioms analogous
toT.

2. Montague does not specify a particular axiomatization of first-order logic, but stipulates
that the class of logical axioms be recursive, complete for first-order validity, syntacti-
cally closed (i.e., containing no free variables), and closed under modus ponens.

3. More precisely, K can be understood as formalizing the fact that the property expressed
by P(x) is preserved under implication, thus allowing for the internalization of condi-
tional reasoning within 7". Similarly, 4—which will be recognized as a first-order ana-
logue of the familiar “KK” (or “positive introspection”) principle of epistemic logic—
can be understood as an axiomatic characterization of the fact that the background system
is sufficiently strong to internally develop the argument (3) discussed below.

4. Leitgeb [7%] also suggests that Propositions and are part of a larger family of
inconsistency results which arise from dropping the right-to-left direction of TS. He
proposes that this family further subdivides into those results requiring T and those not
requiring T. It is notable, however, that all of the results in the larger class either require
NEec or assume principles like U which subsume its applicability to particular axioms.
Although I will concentrate on the role of NEc itself in this paper, many of the conclu-
sions I will draw will apply equally to other principles like U or K which may be used to
achieve a similar effect (see, e.g., note 2% below).
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If S is an arithmetical theory with a recursive set of primitive symbols, we may take
“@” to correspond to the Godel number of ¢. The explicit modal systems which we will
consider below circumvent the need for such a device by introducing terms intended to
denote proofs in their object language and treating the relation between a proof and the

proposition it is taken to demonstrate as primitive.

. Logical demonstrability thus implies (but is not necessarily implied by) both mathemat-

ical demonstrability (i.e., provability from true mathematical axioms by mathematically
valid means) and also logical necessity (i.e., truth in virtue of logical form in the sense
presumably intended by Quine and Montague). See Burgess [¢] for additional discussion
of the difference between these notions and the logical principles we should expect them
to satisfy.

Proposition is sometimes presented as a simplified form of the so-called Knower
paradox, in which case P (x) is interpreted as expressing some form of idealized knowl-
edge. However, the original derivation given by Kaplan and Montague [3”] is based on
principles which are somewhat different than those assumed in Proposition |.|—in par-
ticular, rather than Nec, U and an epistemic closure principle (conventionally labeled I)
are assumed. But although U is not traditionally taken as a basic modal axiom concerning
provability, it is this principle which is most often rejected in the context of the Knower
(the locus classicus being Anderson [1]). Although the considerations which constrain
the interpretation of P(x) are somewhat different if we understand this predicate to ex-
press knowledge instead of provability, most of what I say below will be consistent with
adopting this resolution.

This highlights the sense in which the assumption of Nec imposes only relatively weak
requirements on the possible interpretations of P (x). To adopt Montague’s terminology,
for instance, NEc merely requires that P(x) supernumerates provability in S—that is,
S F P("¢™) whenever ¢ € { | S F }—not that, for example, it semantically rep-
resents derivability relative to the standard model of arithmetic. This condition is, of
course, compatible with S also entailing that P("¢™) in cases where ¢ is not derivable
in S—for example, in cases where we might think that ¢ was still knowable or valid for
reasons which cannot be formalized in S (or even potentially in any other recursively
axiomatizable theory).

This observation also highlights the deductive role which is played by Nec in Proposi-
tion |. 1. This result can be taken to show that an inconsistency can still be obtained if the
right-to-left direction of TS—that is, “if ¢, then ¢ is true”—is replaced with the weaker
principle “if ¢ is provable, then it is true.” It is for this reason that Friedman and Sheard
dub NEc a “partial approximation” to ¢ — T ("¢ ™).

This is clear, for instance, from his observations (see [*2, pp. 292, 295]) that results
like Proposition can be understood as generalizing Godel’s observation in [20] that
if P(x) is taken to coincide with the extension of Provg (x) for some sufficiently strong
theory S extending Q (e.g., S = PA), then the principle U will be false for ¢ = (0 = 1).
For in this case, the corresponding instance of this schema can be seen to express the fact
that the formal consistency of S is provable in S itself, in violation of the second incom-
pleteness theorem. However, it is now known that the generality of this result depends
at least to some extent on the strength of S and the precise definition of Provg(x). In
particular, we must assume that Provg (x) is not defined in a “nonstandard” manner as
discussed by Feferman [15]. We must also assume that S is strong enough to satisfy
the other Hilbert-Bernays derivability conditions on Provg(x) needed for the proof of
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the second incompleteness theorem. These include not only the E(l)-completeness of S,
but also the derivability in S of Provg("¢") — Provg("Provg("¢™)™) (which can be
understood as a special case of the fact that S proves is own Z(l)—completeness). The
latter feature is known to hold for theories S extending IAg + exp. However, in light of
Bezboruah and Sheperdson [6], Pudldk [45], and Berarducci and Verbrugge [5] (see also
Franks [ ]), the situation for Q and for “weak” theories like IAg + €27 is more com-
plex. It is notable, however, that the sorts of issues raised in the literature on Montague’s
paradox (or more generally on the Knower paradox or axiomatic theories of truth) do not
appear to turn on the amount of induction which § is assumed to satisfy. For this reason,
I will follow convention and assume that S can be taken to correspond to PA for the rest
of this paper.

Godel claimed the left-to-right direction and conjectured that the converse held as well
(which was later confirmed by McKinsey and Tarski [+”]). The result is quite robust
in the sense that several different embeddings are known—the simplest being simply
“append a O to every subformula of F.” &84 is also by no means the unique modal
logic into which J AT can be embedded. For instance, the embedding just described
is also an embedding into §4 + §RZ (i.e., the closure under Nec of 84 together with
the Grzegorczyk axiom). And the embedding “replace every subformula G of F with
G A OG” is an embedding of J N T into § L (see [V]), which notably lacks the modal
reflection axiom T.

Proposition is historically significant, however, in that it represents one of the first
results which demonstrate that it is possible to provide a classical account of intuition-
istic validity. In understanding Proposition it should thus be taken into account that
although &4 proves statements such as P v =P or (P — Q) vV (Q — P) which
are not theorems of 4 N 7, such statements are not in the range of (-)8. Although this
is also true of OP Vv —[P, statements such as this can be understood as expressing
the decidability of the relation which holds between a constructive proof and a statement
which it is claimed to demonstrate.

For simplified expositions of € see [52] and [50].

€ was originally formulated to contain a ternary function symbol 7 (¢, u, v) such that
w(t,u,v) = 0 is intended to express that ¢ is a constructive proof that terms u and v
(which may, in the general case, denote functions of higher type on constructive proofs)
are extensionally identical. Kreisel proposed that this latter notion be taken as basic
and suggested a means by which statements of the form I1(z; F) can be analyzed in
terms of 7 (¢, u,v) and other operations on proof terms—for example, if F = P;(a)
is atomic, then II(z, F) is defined as s;(t) (where s;(f) = O is intended to express
that 7 is a primitive proof of the proposition P;(a)), it F = G A H, then II(¢; F)
is defined as II(¢1;G) U II(¢1; H) (where t1 and tp respectively denote the projec-
tion of ¢ onto its first and second components and where U is a functional expression
denoting classical conjunction), and if ¥ = G — H, then I1(z, F) is defined to be
w(ty, Ax.Il(x; G) D TI(t2(x); H), Ax.0) (where D is a functional expression denoting
classical implication). Kreisel argued that the use of the classical connectives in for-
mulating these clauses was justified by the fact that the relation I1(z; F) ought to be
regarded as decidable, meaning that it is intuitionistically justifiable to apply classical
logic to statements of the form IT(z; F) = 0. This motivates his proposed definition of
I1(¢; G — H), which can be understood to strengthen the clause BHK_, by requiring
not only that # embody a construction (#;) for transforming proofs of G into proofs of H,
but that it also embody a proof (¢1) that this other component operates in this manner.
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Without this added requirement, the implicit universal quantification over constructive
proofs in BHK_, might be thought to correspond to an undecidable proof condition.
I will return to the basis for this concern in Section 5 below.

A caveat is necessary here because Kreisel [3+] observes that the converse of Proposi-
tion |.5 does not hold—that is, there are formulas F' of JQ€ such that € - I1(z; F) =0
for some ¢ but Q€ I/ F. But the equation of intuitionistic validity with derivability
in Q€ can also be challenged. For instance, Kreisel [35] demonstrated that the set
of intuitionistically valid formulas in the language 4 @€ is not recursively enumerable.
McCarty [+0] showed that this result can be strengthened to show that this set is not
even arithmetically definable if weak forms of Church’s thesis and Markov’s principle
are assumed.

Goodman attributes the discovery of the paradox independently to Kreisel. And in fact
Kreisel [33] gives several indications that he was aware of the danger that € would be-
come inconsistent were the explicit reflection principle to be included among its axioms.

Such a similarity was first observed by Weinstein [57] who explicitly likens the Kreisel—
Goodman paradox to a paradox of absolute provability akin to Myhill’s.

Or more accurately, a term d which may be proved in €* to be equal to 0 just in case
there exists no proof term ¢ such that 7 (¢, d,0) = 0 is provable.

In a technical sense, Goodman’s preferred resolution to the paradox can thus be com-
pared to typed resolutions of the Knower or liar paradoxes which employ a hierarchy of
knowledge or truth predicates (see, e.g., [1] or [52]). However, the general conclusions
he draws about the status of quantification over constructive proofs are broadly in line
with those for which I will advocate below.

The use of explicit modal logic for reasoning about informal provability is thus presum-
ably compatible with Leitgeb’s proposal (see [3]) that we need not begin a study of this
notion by presenting a conceptual or mathematical analysis of what we take informal
proofs to be. Rather, we may begin by surveying our practices and intuitions concerning
informal provability and then attempting to formulate an axiomatic theory which recon-
structs as large a fragment of these as possible. Leitgeb argues that one of the reasons
why we must distinguish between formal and informal proofs is that the latter may con-
tain steps which are not propositional in character (e.g., commands or various sorts of
“intuitive” or “nonconceptual” representations) which we would not conventionally con-
sider to be legitimate components of a formal proof. These differences aside, he stresses
(e.g., [29, p. 266]) that our practices and intuitions largely bear out the view that informal
proofs are properly regarded as abstract objects. Once this is acknowledged, there seems
to be no conceptual obstacle to refining our axiomatic treatment of informal provability
to include a device for expressing quantification over informal proofs. One of my sub-
sidiary goals in this paper is to illustrate not only the extent to which this approach can
be substantiated by using explicit modal logic, but also how Montague’s paradox can be
understood as enforcing a natural constraint on how quantification over informal proofs
must be understood.

For instance, axiom LP2 codifies the fact that a proof ¢ of a conditional /' — G should
be such that if s is any proof of F, then the result of applying ¢ to s (denoted by the
proof term ¢ - 5) is a proof of G. Axiom LP4 reflects the fact that we regard the relation
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expressed by “:” to be internally verifiable—that is, if # is a proof of F, then we should
be able to construct another object (denoted by !7) to serve as a proof of this fact. Axiom
LP5 reflects the fact that we regard this relation as monotonic in both of its arguments—
for example, that if ¢ is a proof of F, then the result of adjoining a proof s to 7 is still
a proof of F. Although these axioms will not play a direct role in the reconstruction of
Montague’s paradox in @ £, they are needed for Theorems 2.4 and 2.0 below.

It is easy to see that we may take t = b(x) - la(x), where b(x) is a primitive proof term
justifying the instance of LP2 corresponding to step iii.

In particular, not only is the inclusion of this rule required for the constructive necessita-
tion theorem to extend to @£ P, but it is also required if we wish the resulting system to
be complete with respect to the Kripke semantics described by Fitting [ 7]. (Note that
in this paper, the name JUG is used for a version of this rule which does not allow for
hypotheses. See [ |] for discussion of the relation between the two formulations.)

It is also instructive to compare JUG to the w-rule of first-order arithmetic and the Barcan
formula of quantified modal logic. (See respectively notes 25 and <0 below.)

Upon so doing we obtain g ¢ (b(x)-la(x)Vy): (Vy)y : ((x : F AG) = a(x)-y : G).

In fact (10.b) is already a theorem of the modal logic 7, which differs from §4 in lacking
the axiom 4 (i.e., OF — OOF). But although both T and §4 satisfy the basic modal
necessitation rule Nec, S4Nec is not an admissible rule of 7. This suggests that although
the sentential principles on which Proposition is based correspond most closely to
those of 7, the first-order derivation given above is most readily compared with a modal
derivation in §4. The statement (10.b) is refutable by a similar argument in the modal
logic K D4, which is the modal analogue of the theory of T3 of Proposition

Another distinction between the derivations is highlighted by the role played by the outer
occurrence of (I which distinguishes (1 0.b) from (1 0.a). If this operator were not present,
then the application of S4Nec at step v would not be licensed (as otherwise we would
generally validate inferences of the form F = OF). On the provability interpretation of
O, this can be taken to reflect the fact that we should only expect a statement F to be
mathematically provable if the premises from which it follows are themselves provable.
At the same time, however, the distinction between the material truth of a premise and
its provability is difficult to capture in arithmetical theories such as 77, especially in the
case of self-referential statements like (! ) which are derivable in Q (and may hence be
internalized via NEc). But at least at the conceptual level, it seems possible to imagine
the existence of self-referential statements which only are contingently true and thus not
provable mathematically. (In fact both the self-referential statements employed in the
two paradoxes discussed by Kaplan and Montague in [3”]—that is, those of the surprise
exam and the Knower—are of this character as are the examples of “accidental” self-
reference discussed by Kripke [37].) This suggests that propositional modal logic is in
fact a reasonable tool for reconstructing the reasoning of paradoxes which require inter-
nalization principles like NEc precisely because it allows us to distinguish the provability
of self-referential statements from their truth.

It should be noted, however, that such self-referential statements are derivable in prov-
ability logics such as § £ in virtue of the de Jongh—Sambin fixed point theorem (see [7/,
Chapter 8]).
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Similar observations apply to the explicit reconstruction of the derivation of =CJ(D <«
—=0OD) in K D4 mentioned in note 26 above. In particular, although it is possible
to derive (13.ix) in the variant of @£ in which the axiom LP3 is replaced with
x :—F — =y : F, doing so requires that we derive (Ix)x : =F — —(3y)y : F by two
applications of UPG. These must then be internalized using JUG in the same manner as

Respectively: a; : (A < =B) - (B — —A),a3 : (A < —-B) - (A — —B) and
b:(B— A) — ((B— —A) - —B).

The reasoning of can also be reconstructed in theories like Goodman’s €*. In
particular, the construction of a term playing a role analogous to #(y) is also required in
the proof of the Kreisel-Goodman paradox. Although Goodman [25, p. 108] observes
this, he neither constructs the relevant term explicitly nor does he note its dependence on
the internalization of quantified reasoning about proofs.

Condition (!6.c) codifies the fact that if we ultimately want to interpret sentences of
the form ¢: F as Prf(¢,” F°7), then Prf(x, y) must be a multiconclusion proof predicate.
This is required because there are formulas F', G such that ¢: F and ¢:G (e.g., if ' and
G are axioms such that Q£ + ¢:F and QLP F s5:G, then QLP also proves by
(t +s) : F and (t + s) : G by axiom LP5). Conditions b and c respectively require that
Prf(x, y) is defined in a manner such that (the Godel numbers of) arithmetical proofs
are conjoinable but that a given (Godel number of an) arithmetical proof only serves to
demonstrate finitely many formulas.

Note that unlike the other functions used to interpret proof terms, g is defined so that it
applies not to the result of interpreting its arguments relative to (-)°, but rather to their
Godel numbers. This reflects the fact that occurrences of x in the uniform verifier symbol
(tVx) are treated as bound. This manner of treating (-V-) is in some sense arbitrary, as
we will see below that it does not lead to an arithmetically sound interpretation of JUG.
However, we will also see that this is inevitable because JUG can be used to mediate an
arithmetically unsound inference between statements not involving the universal verifier
symbol.

It can also be shown that the full system @£ is consistent by showing how the Kripke
semantics for £ originally proposed by Fitting can be extended to @£ 5 (see [ 7],
[11]). These semantics also provide a means of interpreting proof quantifiers as ranging
over a domain of objects which may be understood as distinct from proof terms them-
selves. It follows from results like Proposition below, however, that this form of
semantics is not compatible with viewing these objects as proofs in a formal system such
as PA. Theorem can, however, be compared with Kreisel’s result (sketched in [33,
Section 7]) that € is consistent in virtue of the existence of a formal provability inter-
pretation of statements of the form I1(¢; F'), which is similar in form to the definition of
t:F° given here.

It is this observation which most sharply distinguishes JUG from the most familiar form
of the arithmetical w-rule—that is, from - ¢(0), - ¢(1), ... conclude - ¥y ¢(y) for all
arithmetical predicates ¢(x). Although the w-rule is not admissible with respect to PA
(as otherwise we would be able to infer from PA - —Prf(0,” L™), PA F —Prf(1,7L7),

.to PA F Vx=Prf(x,"L7)), it is arithmetically sound in the sense that all of its
consequences are true in the standard model N (in fact, together with PA the form of the
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rule just cited allows for the derivation of all sentences true in the standard model; see
[31]). Since the language of @ £S5 does not contain expressions which serve the same
role as numerals, it is not possible to formulate a precise analogue of this principle for
QXL P . However, the rule UPG can be understood to approximate the role of the w-rule
in the sense that provability of F(x) in @ £P implies the uniform provability of F(z)
for any proof term ¢ (whose arithmetical interpretation will be a numeral). While the
images under (-)° of @£ ¢-theorems derived via UPG need not always be provable
in PA, they will again be true in N. But as we have seen, JUG allows us to derive
(rvx) : (Vx)—x : L) from r(x) : (—x : L). An arithmetical analogue of this would
be an inference from - Prf(r (0), "—Prf(0," L)), F Prf(r (1), "—=Prf(1,"L™)7),... to
F Prf(r™, "Vx—Prf(x,” L™)7), where r* is some closed term which we might imagine
is effectively constructed from r(x). But the conclusion of such an inference will not
only be false in NV but also refutable in PA (this time in virtue of the internal provability
of the second incompleteness theorem) for any potential denotation of r*.

It is more complicated to provide constructive justification for the status of the rule
AxNEec in Q£P. As we have seen, the role of this rule in explicit modal logic is to
provide a means of introducing atomic symbols which can be understood as names for
proofs of axioms of the system. Note, however, that since @ £.5 is based on classical
logic, it is possible to derive a : (F Vv —F) via axiom necessitation for an arbitrary F'.
Such statements will not, however, appear in the image of 4 &7 under the embedding
provided by Theorem

This system is described in [23, pp. 101-3] and contains atomic formulas of the form
zBp, g with the intended interpretation “z is a derivation of ¢ from p.” Using this nota-
tion, Godel formulates axioms analogous to LP2, LP3, and LP4 and a single internaliza-
tion rule (“if ¢ has been proved and a is the proof, [then] ‘@Bgq’ ”). He then notes that a
formula analogous in form to can be derived (in his notation: a B(Vu)—uB(0 = 1))
and observes that this expresses the consistency of his system. (He does not, however,
present quantifier axioms for proof variables or explain how an explicit modality can be
permuted across a proof quantifier in the manner of JUG.)

For example, Heyting observed: “Of course, one is never sure that the formal system
represents fully any domain of mathematical thought; at any moment the discovering of
new methods of reasoning may force us to extend the formal system” [29, p. 5].

The adoption or denial of such principles is often taken to characterize distinct notions
of constructivity which are studied separately within different branches of intuitionistic
mathematics. Thus in seeking to characterize an overall domain of constructive proofs,
one cannot simply adopt a “maximalist” strategy by seeking to include all of the non-
classical principles which have been considered. This may be borne out technically by
observing that certain pairs of these principles—Church’s thesis and bar induction—are
formally inconsistent (see [55]).

One way to make the relationship between JUG and the potential for extending our con-
ception of proof precise is to note a relationship between an axiomatic form of this
principle—that is, (Vx)¢(x) : F(x) — (t(x)Vx) : (Vx)F(x)—and the traditional
Barcan formula (BF) of first-order modal logic—that is, (Vx)OF (x) — O(Vx)F(x).
In [16], Fitting referred to the former principle as the uniform Barcan formula (UBF)
and showed that it is valid in all constant-domain Kripke models for Q £ (this is in
accord with the validity of BF in antimonotonic models). Such models can be thought
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of as ones in which new proof-objects do not come into existence when we move from
world to world. If we were to attempt to interpret @ £ using an arithmetical form of
the relational semantics (i.e., one in which worlds are taken to be models of PA), then
the arithmetical interpretation of UBF would be invalid for a similar reason—that is, it
would incorrectly predict that nonstandard elements satisfying the arithmetical formula
formalizing “x is a Godel number of a proof” cannot come into existence when we move
from a world based on the standard model to a world based on a nonstandard one. (This
situation can in turn be compared to that which we face with respect to BF in classi-
cal quantified provability logic (cf. [7, p. 225].) See [!!] for additional results and
discussion about constant versus varying domain Kripke semantics for @ £ 5.

Recall, for instance, that the property which we must show holds of all constructive
proofs x in the course of reconstructing is that x satisfies the explicit reflection
principle x : F — F. I suggested above that the validity of such a principle is evident
in cases where we have already acknowledged that a constructive proof ¢ is a proof of F'.
Note, however, that before we can assert with warrant that this property holds universally,
it seems that we must not only agree which objects we will ultimately acknowledge
as legitimate constructive proofs, but also whether we are willing to accept them as
sufficient evidence for various nonclassical principles. As we may not have made up our
mind about a given principle F, it seems that we are not in a position to accept certain
items (as we might take to be denoted by terms of the form (r(x)Vx)) as a proof of its
constructive legitimacy.

In light of results like Theorem 2.5, we might initially take the inductive definition of
the class of @£ P proof terms to provide a specification of D. It is unclear, however,
whether definitions of this sort which are specified using classical mathematics are ac-
ceptable intuitionistically. On this basis Kreisel [33] refers to such characterizations as
“nonstandard” interpretations of the domain of constructive proofs and proposes instead
that a “standard” interpretation would have to be a proper extension of such an induc-
tively defined class. Although he provides little indication of what such an interpretation
might look like, it seems clear that it would violate Godel’s condition on finite genera-
bility.

It is also easy to see using the Kripke semantics of [! 7] that no statement of this form
is derivable in the system. @£ can hence be taken to be neutral on the issue of
self-reference. On the assumption that the other principles embodying @ £ ¢ which we
have not discussed here (e.g., LP4, LP5) themselves correspond to valid principles about
constructive proof, the question remains as to what theory expressible in the language
of QX2 best represents a maximally consistent set of principles about this notion. It
seems appropriate to leave this question open here not only in virtue of the foregoing
observations about the potential open-endedness of constructive provability, but also be-
cause of the expressive weakness of the language of @ £ itself. A more thoroughgoing
analysis of constructive provability could presumably be conducted by adding the appa-
ratus of explicit modal logic to a first-order arithmetical system such as PA or HA. This
would result in an explicit analogue of Shapiro’s epistemic arithmetic (see [+ £]), wherein
conventional metamathematical techniques could be used to provide an arithmetization
of syntax, thereby guaranteeing the existence of self-referential statements about formal
provability predicates in the traditional manner.

The evidence that Myhill cites for this is largely drawn from episodes in the history of
mathematics where we have, over the course of time, come to accept a principle which we
originally regarded with suspicion—for example, the existence of infinite sets, the axiom
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of choice, large cardinal axioms. While Myhill observes that the basis for our acceptance
of such principles originates from inside mathematics, he also concedes that there may
be no means of distinguishing between principles we ultimately adopt for conventional
(or even “sociological” or “aesthetic”) reasons and those which are somehow forced on
us by more intrinsic concerns: “[T]here is no easy answer to the question of what is
conventional and what requires proof in mathematics: it does not seem possible sharply
to classify proposed new hypotheses into the ‘antiseptic’ kind, where we may make
whatever conventions we see fit with a clear conscience, and the ‘real’ kind, where what
is called for is the discovery of new, hitherto unformalized methods of correct inference”
([, p. 466]).

This proposal also receives technical support from Solovay’s well-known result that if
we interpret O F as Prov p4 (" F7), then the set of modal principles which are true in the
standard model for all arithmetical realizations (-)* coincides with the modal logic § £ 8.
§&£38 is derived from the more familiar provability logic ¥ £ (whose axioms are K and
the Lob axiom O(OF — F) — OF, and is thus capable of deriving self-referential
sentences such as (1 (.b) by the de Jongh—Sambin fixed-point theorem as noted above) by
adding all instances of the reflection axiom T and closing under modus ponens but not
the modal necessitation rule Nec. Egré [14] has proposed that when P (x) is understood
as expressing knowledge (i.e., in the sense of the knower paradox), Montague’s paradox
can be avoided by taking the properties satisfied by P(x) to coincide with the modal
principles of § £ 8.
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