The Annals of Statistics
1993, Vol. 21, No. 1, 217-234

SMOOTHING SPLINE DENSITY ESTIMATION: THEORY

By CrHonG Gu! AND CHUNFU Qru?

Purdue University

In this article, a class of penalized likelihood probability density esti-
mators is proposed and studied. The true log density is assumed to be a
member of a reproducing kernel Hilbert space on a finite domain, not
necessarily univariate, and the estimator is defined as the unique uncon-
strained minimizer of a penalized log likelihood functional in such a space.
Under mild conditions, the existence of the estimator and the rate of
convergence of the estimator in terms of the symmetrized Kullback-Leibler
distance are established. To make the procedure applicable, a semiparamet-
ric approximation of the estimator is presented, which sits in an adaptive
finite dimensional function space and hence can be computed in principle.
The theory is developed in a generic setup and the proofs are largely
elementary. Algorithms are yet to follow.

1. Introduction. Let X;, i =1,...,n, be independent and identically
distributed (i.i.d.) samples from an unknown probability density f on a domain
Z'. The estimation of f from the samples is of lasting interest to statisticians.
When the density f is known to belong to a finite dimensional parametric
family, say P, = {f(68): 6 € 0}, where the form of f is known up to a finite
dimensional parameter 6, density estimation reduces to parameter estimation,
and the maximum likelihood (ML) method is the standard technique which.
possesses many favorable properties. Note that a parametric approach puts
rigid constraints on the estimator. When a parametric form is not available,
however, a naive ML density estimator without any nonintrinsic constraint
(see below for the intrinsic constraints) is a sum of delta function spikes at the
sample points, which apparently is not an appealing estimator when the
domain £ is continuous. The middle ground between these two extremes is
where the nonparametric/semiparametric methods come in to play. Of course
all estimators have to be bound by the intrinsic positivity constraint that
f = 0 and the unity constraint that [, f = 1.

In their pioneering article, Good and Gaskins (1971) introduced the idea of
penalized likelihood density estimation. The idea is to minimize a penalized
minus log likelihood functional

M=

log f(X;) +(A/2)J(f),

1
n;_1
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where the J(f) is a roughness penalty and the A is called the smoothing
parameter. The log likelihood dictates the estimate to adapt to the data, the
roughness penalty counteracts by demanding less variation (hence less adap-
tiveness) in f, and the smoothing parameter controls the tradeoff between the
two conflicting goals. Presumably the J( f) evaluates infinity at the delta sum,
which is then effectively ruled out by the procedure. The null space of J, say
J |, is usually of finite dimension, so as A — « the method reduces to the
standard parametric ML estimation with P, = J | .

In implementing the Good-Gaskins method, a main concern is the incorpo-
ration of the positivity and unity constraints. Leonard (1978) introduced the
logistic density transform f = eé/[ef and proposed to estimate g via mini-
mizing

M=

1
(1.1) - — L g(X,) +logfes + (A/2)J(g),

1

which is constraint free. However, note that f determines g only up to a
constant but the constant function is usually in /| , so the operating criterion
(1.1) may not have a unique solution if care is not taken. Silverman (1982)
proposed to estimate the log density g = log f which is free of the positivity
constraint, and to augment (1.1) by a functional [e# to effectively enforce the
unity constraint, ending up solving a constraint-free problem with a unique
solution. Note that when g is a log density the second term in (1.1) disappears,
so in appearance Silverman’s method replaces log [ e in (1.1) by [ e®. Silver-
man (1982) then developed a theory for his estimator, including the existence,
the asymptotic convergence rates under various function norms, and the
asymptotic Gaussian process approximation. Cox and O’Sullivan (1990) devel-
oped a general asymptotic theory for penalized likelihood estimators, which
applies also to Silverman’s method. Leonard’s (1978) and Silverman’s (1982)
treatments are mainly in a univariate context. To the authors’ knowledge, the
multivariate counterpart is largely unexplored, although the Cox-O’Sullivan
theory may well apply if one were available.

In this article, we propose to enforce a one-to-one logistic density transform
by imposing a one dimensional side condition concerning the constant on the
space of the log likelihood g. The minimizer & of (1.1) is then unique in the
restricted function space when it exists, and the minimization problem is free
of constraint. We shall formulate the problem in a general reproducing kernel
Hilbert space, and develop a general theory in parallel to that of Silverman
(1982).

The rest of the article is organized as follows. In Section 2, we formulate the
problem, discuss the basic ingredients of the method and give examples.
Section 3 illustrates the estimation of inhomogeneous Poisson intensity via
density estimation and notes that the estimator studied in this article agrees
with Silverman’s (1982) estimator. Section 4 establishes the existence of the
estimator under the condition that the ML solution exists in J, . Section 5
establishes the asymptotic convergence rate of the “ideal” estimator £ in
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terms of the symmetrized Kullback-Leibler distance between the truth
and the estimator using quadratic approximations adapted from Silverman
(1982) and Cox and O’Sullivan (1990). Section 6 describes a semiparametric
approximation 2, which is computable and shows that this estimator is
asymptotically as good as g. Computational methods for the semiparametric
approximation is further developed in Gu (1993) and portable code available.

2. The definition of the estimator and examples. A reproducing
kernel Hilbert space (RKHS) is a Hilbert space of functions in which the
evaluation functional is continuous. We will confine the log likelihood g to a
RKHS 7 of functions on &, and define the estimator as a minimizer of (1.1)
in &, where J(g) is a square seminorm in & with a finite dimensional null
space J | . A Hilbert space carries a metric and a geometry which helps us in
conducting theoretical and numerical calculations. Continuous evaluation en-
sures the continuity of the log likelihood part of (1.1) under mild conditions. A
finite dimensional o/ | , presumably of dimension less than n, prevents ‘““inter-
polation,” a conceptual equivalent of the delta function sum. The choice of J
as a quadratic form is for practicality and by convention. Following Wahba’s
(1990) general definition, the estimator, as a minimizer of a functional involv-
ing a quadratic penalty in a Hilbert space, is a smoothing spline. This justifies
the title of the article. Wahba (1990) has a thorough treatment of smoothing
splines in the regression setup.

To ensure a one-to-one logistic density transform f = ef/[e#, one needs to
eliminate from ~# all but one log likelihood which differ only by a constant
from each other. This can be done by enforcing a side condition [zgdv = 0 for
members of &#, where v is a measure on & with »(B) > 0. For example, such
a side condition could be g(x,) = 0 for a certain x, € £ In most applications
of the smoothing spline technique, # is taken as {g: J(g) < »} and J | D {1},
and the norm in % is defined via augmenting J(g) by a norm in J  , say
llgll . , which is usually a sum of norms in one-dimensional spaces span{¢,}
where ¢, span J | . When 1 is one of the ¢,, which is usually the case, a RKHS
H'={g: J(g) < «} © {1}, which is to be our requirement, can be easily ob-
tained by dropping {1} from the conventional construction. Examples follow
after a bit more general treatment.

Throughout the remaining of the article, it is assumed that 1 ¢ & and
J, ={g:g€ H#, J(g) =0} Let L(g) = —(1/n)Xr_,g(X;) + log [e’.

LemMa 2.1. L(g) is strictly convex in % . Consequently, the minimizer of
(1.1) in #, if it exists, is unique.

Proor. By Hélder’s inequality, for @, 8 > 0, a + B =1l and g, h € #,
logfe“g“gh <a logfeg +B8 logfeh,

where the equality holds only when e# « e”, which amounts to g = & in #.
O
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LEmMA 2.2. If e'®! are Riemann integrable on 2 for all g € #, then L(g)
is continuous in #. Furthermore, L(g + ah), ¥V g,h € # and a €R, is
infinitely differentiable as a function of «a.

Proor. The claims follow from the Riemann sum approximations of re-
lated integrals and the continuity of evaluation. O

Riemann integrability can be assured by a finite dimensional bounded
domain £ and the continuity of g € # on 2. Later developments only
require L(g + ah) to be twice differentiable.

Before proceeding with examples, we review a few basic properties of RKHS.
Details are to be found in Aronszajn (1950). An equivalent defining property of
a RKHS 7 is that & possesses a reproducing kernel (RK) R(-,- ), a positive
definite bivariate function on £, such that R(x,-)=R(-,x) e H#,Vx € Z,
and (R(x,-), f(-)) = f(x) (the reproducing property), V f € #, where { - ,* )
is the inner product in . As a matter of fact, starting from any positive
definite function R(-,-) on the domain £, one can construct a RKHS #=
span{R(x," ), V x € 2’} with an inner product satisfying { R(x,- ), R(y,-)) =
R(x,y), which has R(-,-) as its RK. Another useful result is that when
H=Hy® H, is a RKHS with the RK R, then &#, are RKSH’s with RK’s
R;,i = 0,1, where R, + R, = R. Note that the RK and the norm in & define
each other uniquely, though explicit formulas are not always available simulta-
neously for both. An explicit norm, or J for the purpose of this article,
provides the most direct intuition about the notion of smoothness in the
estimation procedure. An explicit RK, on the other hand, is the only thing
needed to perform numerical calculations. We mention in passing that the
quadratic penalty ¢/ is equivalent to a mean zero partially improper Gaussian
process prior for g on &, where the Gaussian process has two independent
components, one diffuses in J , and the other has covariance function R, the
RK associated with the norm J in #6 J | ; see, for example, Wahba (1978)
and Leonard (1978).

We present a few examples in the remaining of the section.

ExampLE 2.1 (Cubic spline on [0,1]). Let 2'=[0,1] and J(g) = [g2. The
null space of J without side condition is {1, x}. There are at least two different
formulations which lead to the same estimated density ef/[e4, but the two
estimated log likelihoods belong to two different RKHS’s.

The first formulation specifies (g = 0. The accompanying norm in J, =
{x — 0.5} is ligll. = (/g)? and the associated RK in #©J, is R (x,y) =
ko(x)ky(y) — k(lx — y|) where k, = B, /v! and B, is the vth Bernoulli polyno-
mial; see Craven and Wahba (1979). It can be verified that [¢R ;(x,y)dy = 0
and [J(3’R ,(x,y)/0y®é(y)dy = g(x),V g€ Ho dJ, .

The second formulation specifies g(0) = 0. The accompanying norm in
J | = {x} is ligll . = (¢(0))? and the associated RK in #eo J, is R, (x,y) =

ox —u),(y — u), du, where (-), is the positive part of (-). It is easy to
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check that
and
1 .
[ (R (x,9) /0y*)8(3) dy = 8 (=),
Vge #od ={g:g(0)=£(0) =0,J(g) <}
ExampPLE 2.2 (Thin plate splines). Thin plate splines are defined on 2= R¢
with
J(g) =Jn(g)

mg 2
(2.1) Z lf f_m(axl axgd)

a+ o +ad=m

Xdx, -+ dxg.

Technically one needs 2m > d to make the space ##= {f: J(f) < «} a RKHS.
Note that J2(f) are rotation invariant, so thin plate splines are rotation
invariant. The null space of J without side condition is J* = {g: J(g) = 0} =

{xfr e xgagat v tea=<m of dimension M = d+m -t

A convenient side condition is Ag = X, . /g(s)/ #(/ ) = 0, where .“c R?
is a collection of finite number of points called a normalizing mesh. Accord-
ingly, a basis {¢,}™, for J* can be constructed such that ¢, =1 and
Alg,p,) =35, ,uw» Where 8, is the Kronecker delta. Let llg]l* = = (A(g¢,))?
be the norm in J*% and let Pg =1TM (A(g$,)é,. It can be shown that J(f)
is a norm in {g: Ilgll* 0, J(f) < o} with the associated RK R ;(x,y) =
(I - P),(I - P),EJ(Ix — yl), where I is the identity operator and (I — P),
means (I — P) applying on what follows as a function of x, |- | is the
Euclidean norm in R¢, and E2(-) are known functions whose expressions can
be found in, for example, Wahba and Wendelberger (1980). This construction
works in setups more general than thin plate splines; see, for example, Wahba
(1978) and Gu and Wahba (1993) for more details. Dropping ¢, = 1 from J%
one gets J , complying with the side condition, and #'=J  &{g: ligl* =0,
J(f) < »} restricted to a bounded domain 2°> . is an appropriate RKHS for
the purpose of this article.

A few remarks follow. Note again that although the estimated log likelihood
g varies with the normalizing mesh .7, the estimated density e4/[e# remains
the same. The equivalence of J¢ and R ; only holds on the domain 2'= R?.
On a bounded domain 2°Cc R¢, R, as constructed above still defines a RKHS,
but the corresponding J no longer has a nice explicit expression like (2.1). The
essential element here is a positive definite function R(x,y) complying with a
side condition A, R(x,y) = 0, where A is an averaging operator. Such an R
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defines a norm J in span{R(x,- ), x € £°}. This space can be further aug-
mented by a finite dimensional Hilbert space J, , J , Nspan{R(x,- ), x € &'}
= {0}, whose members also comply with the side condition Ag = 0. Thin plate
splines belong to a class that R(x,y) = R(|x — y|) is radial and J , is invari-
ant with respect to rotation and shift of 2 in R<.

ExamPLE 2.3 (Tensor product splines). The structure of tensor product
splines depends on product RKHS’s. The constructions of ## and J for tensor
product splines in the regression setup are well understood; details can be
found in, for example, Gu and Wahba (1991a, b, 1993). With the previous two
examples in mind where the drop-constant procedure is illustrated, the con-
struction of # for log likelihood estimation should be straightforward follow-
ing the lines in the literature. Here we only observe a few simple implications
concerning their use in the current setup.

Consider a domain 2'= [0, 1]3. A tensor product spline on 2" can be
decomposed as

g(%xy, x5, %3) = C + g4(x,) + ga(x2) + g3(x3) + &1,2(%1, x5)

+81,3(%1, ¥3) + 82,3(%2, X3) + 81,2,3(%1, X, X3),
where the C is a constant, the g, are the main effects, the g, ; are the
bivariate interactions, and the g, , 5 is the trivariate interaction. Accordingly,
J(g) = L;cq,2,3J1(gr). Main effects and interactions satisfy side conditions
A;g;=A,8; ;=A,813=0, where A; are averaging operators on the axes.
For log likelihood estimation one sets C = 0. The remaining seven components
can all be included or excluded separately, resulting in 27 possible models of
different complexities. The main-effect-only model, also called an additive
model, implies the independence of the three coordinates. It is reassuring to
see that the main-effect-only model fitted via minimizing (1.1) is equivalent to
solutions of three separate problems with J = J; on each axis. Some less
trivial probability structures may also be built in via selective inclusion of the
terms in a tensor product spline. For example, the conditional independence of
x; and x, given x; may be incorporated by excluding g, , and g, 5 5 from the
model; a bit more discussion can be found in Gu [(1993), Section 7]. See, for
example, Whittaker (1990) for a general discussion.

3. Poisson intensity and Silverman’s estimator. We shall briefly
note the estimation of Poisson intensity via density estimation in this section,
and as a byproduct, show that our estimator as defined in Section 2 agrees
with Silverman’s when J(g) annihilates constant.

Observing N occurrences X;,i = 1,..., N, from a Poisson counting process
on 2 with an intensity function A(x), where A(x) is not to be confused with
the smoothing parameter A, the joint likelihood of N and X, can be shown to
be

N N
(igIlA(Xi))exp(— [ ) - (igIle(X,-))(ANe—A),
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where A = [,A(x) is the overall intensity of the process on 2" and A (x) =
A(x)/A is the occurrence density; see, for example, Snyder [(1975), Section
2.3]. N is statistically sufficient for A and has a Poisson distribution with
mean A, and X;|N are conditionally i.i.d. with a probability density A4(x). A
penalized likelihood estimator of Poisson intensity may be defined as the
minimizer of

N
(3.1) — Y logAag(X;) —Nlog A+ A+ J(log Ag(x) + log A),
i=1

for log A(x) € #> {1}, where J is a general reproducing kernel Hilbert space
and the smoothing parameter is absorbed into J to avoid confusion with the
intensity A(x). Decompose #= {1} ® #, where # carries a side condition,
and write log A(x) = C + g, where C is a constant and g € 5. Noting that
log Ay = g — log [4 €% and log A = C + log [, €4, (3.1) can be written as

N
[— Elg(x,.) +N logfggg +J(C +g)

(3.2)
+[—N(C + logfggg) + exp(C + logfgzgg)].

Naturally J should annihilate constant since smoothing should only apply to
the occurrence density, so J(C + g) = J(g). The minimization of (3.2) can
then be achieved in two steps, first to minimize the sum in the first pair of
square brackets in (3.2) with respect to g € # to estimate the occurrence
density A4(x), then to minimize the sum in the second pair of square brackets
with respect to C to estimate the overall intensity A. The former is a
smoothing spline density estimation based on data X;, i = 1,..., N, and the
latter is a Poisson density estimation based on a single sample N.

When J annihilates constant, the two-step estimation in (3.2) may be
manipulated to enforce arbitrary positive value on A by modifying the second
part accordingly. Specifically, replacing —N log A + A in (8.2) by —N log A +
NA and dividing the whole thing by N result in Silverman’s estimator, which
is our estimator multiplied by A = 1. Were a probability density defined to
integrate to two, Silverman (1982) might have used [, e£/2 instead of [, e®
to augment (1.1) to enforce the “unity’’ constraint.

4. The existence of the estimator. In this section, we shall prove the
following theorem, which guarantees the existence of the estimator. Without
loss of generality, A = 2 is assumed in this section.

THEOREM 4.1. Suppose L(g) is a continuous and strictly convex functional
in a Hilbert space H#'=J , ® H#,;, where #; has a square norm J(g) and J |
is the null space of J(g) of finite dimension. If L(g) has a minimizer in J | ,
then L(g) + J(g) has a unique minimizer in #.
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A referee suggests that the theorem is likely to be known in the optimiza-
tion literature, but we could not find it in the references we had our hands on
so a proof is provided here. The proof builds on the following two lemmas.
L(g) and J(g) below are the same as in Theorem 4.1.

LemMMA 4.1. If a continuous strictly convex functional A(g) has a mini-
mizer in J | , then it has a minimizer in the cylinder area C, = {g: g € #,
J(g) <p}, Vp € (0,).

LEmMmA 4.2.  IfL(g) + J(g) has a minimizerin C, = {g: g € #, J(g) < p},
V p € (0, »), then it has a minimizer in .

The rest of the section are the proofs.

Proor oF LEmMMA 4.1. Let || ||, be the norm in J,, and g, be the
minimizer of A(g)in J, . By Theorem 4 of Tapia and Thompson [(1978), page
162], A(g) has a minimizer in a “rectangle” R, ={g: g € #, J(g) <p,
lg — goll L < y}. Now if the lemma is not true, that is, that A(g) has no
minimizer in C, for some p, then the minimizer g, of A(g) in R, should
satisfy |lg, — goll L = v. By the convexity of A(g) and that A(g,) < A(g),

(41)  Aag, + (1 - a)go) <aA(g,) + (1 - @) A(8) <A(&)

for @ € (0,1). Now take a sequence y; — » and take a; = y; ', and write
a;8, + (1 - a)gy= g + gF where g? €J, and g} € #o J, . Itis easy to
check that llg? — g,ll .= 1 and J(g}) < a?p. Since J , is finite dimensional,
{g2} has a convergent subsequence converging to, say, g, €J , , and g, —
&oll L= 1. It is apparent that g¥ — 0. By the continuity of A(g) and (4.1),
A(g,) < A(g,), which contradicts the fact that g, is the unique minimizer of
A(g) in J, . Hence, |lg, — goll L=y cannot be true for all y € (0, ). This
completes the proof. O

ProoF OF LEMMA 4.2. Without loss of generality we assume L(0) = 0. If
the lemma is not true, then the minimizer g, of L(g) + J(g) in C, must fall
on the boundary of C, for every p, that is, J(g,) =p, ¥V p € (0,). By the
convexity of L(g),

(4.2) L(ag,) <aL(g,),
for a € (0, 1). By the definition of g,,
(4.3) L(g,) +J(8,) <L(ag,) +J(ag,).

By combining (4.2) and (4.3) and substituting J(g,) = p, one obtains
L(ag,)/a +p <L(ag,) +a’p,

which after some algebra leads to

(44) L(ag,) < —a(l + a)p.
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Now choose a = p~'/2. Since J(ag,) = 1, (4.4) leads to L(g,) < —(p'/? + 1),
which is impossible for large enough p. This proves the lemma. O

Proor orF THEOREM 4.1. Applying Lemma 4.1 on A(g) = L(g) + J(g)
leads to the condition of Lemma 4.2, and Lemma 4.2 in turn yields the
theorem. O

5. The convergence of the estimator. We shall establish the asymp-
totic convergence rates of the estimator in this section. Let g, be the true log
likelihood and let & be the minimizer of (1.1) in &#. Throughout this section,
it is assumed that J(g,) < » and that L(g) has a minimizer in J , . Denote by
J(g, h) the (semi) inner product associated with the square (semi) norm J(g),
write u (k) as the mean of hA(X) where X has a log likelihood g. We intend to
show that pe (8o — &) + uy(& — go) = 0,(n~'A7Y/7" + )), where the left-hand
side is the symmetrized Kullback- Lelbler distance between the truth and the
estimator, and the r in the right-hand side codes the smoothness implied by
J(g) (cf. Assumption A.2). First we show that

He(80—8) + ng(8—8) = AJ(8,80 — &)
5.1 1
e N '§1(§ — 80)(X;) — ng(8 — &)

and then use a quadratic approximation device of Silverman (1982) and Cox
and O’Sullivan (1990) to bound the right-hand side of (5.1).
Define A, ,(a) = L(g + ah) + (1/2)J(g + ah).

LemMa 5.1. A, ,(0) = —(1/n)E7_ h(X,) + p(h) + AJ(g, h).

The proof of the lemma is straightforward. Set g =8 and A =8 — g, in
Lemma 5.1. Note that A 1(0) = 0. Equation (5.1) follows.

Following Silverman (1982) and Cox and O’Sullivan (1990), we first intro-
duce an approximation of g, say g,, which is the minimizer of

Ly(g) + (%)J(g) = —% ilg(Xi) + 1g(8)
(5.2) - )
+(3)ve e + (5@,

where V(h) = V, (k) and V,(h) is the variance of h(X) where X has a log
likelihood g. L,(g) is basically the quadratic approximation of L(g) at g,. It
can be seen that V(h) is a norm in #. We also write V(g, k) as the inner
product associated with the norm V(g), the covariance of g(X) and h(X).

A bilinear form B is said to be completely continuous with respect to
another bilinear form A if for any ¢ > 0, there exist finite number of linear
functionals I,,...,1, such that [;(g)=0, V j=1,...,k, implies B(g) <
£ A(g); see Weinberger [(1974), Section 3.3]. Note that to avoid interpolation,
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the smoothness penalty J must restrict the solution of L(g) + AJ(g) to an
effectively finite dimensional space, and as n — o, such restriction may be
gradually relaxed by letting A — 0.

AssuMmPTION A.1l. V is completely continuous with respect to V + J.

Under A.1, by Theorem 3.1 of Weinberger [(1974), page 52], there exists a
sequence of eigenvalues A, and the associated eigenfunctions ¢, of V with
respect to V + J such that

V(d’v"/’ ) u up, and (V+J)(!/IV’¢[L) =6u,p.’
where §, , is the Kronecker delta and 1 > A, — 0. Defining ¢, = A /2y, , it

v, p

follows that
V(¢V’ ¢p,) = 61/,;1, and J(¢V’¢ ) pV v,

where 0 <p, = A, ' — 1 > . The smoothness of the functions in space -#
can be characterized by the rate of decay of A,, and the convergence rates of
the estimator depend on this rate of decay.

AssumPTION A.2. p, = c,v", where r > 1 and ¢, € (B,, By) C (0, ®).

In Example 2.1, if g, is bounded from above and below, then Assumption
A.2 is satisfied with r = 4; see Silverman [(1982), page 802].

Denote g = £,g8,¢, and g, = L, g, ¢¢,, where g, = V(g, ¢,) are the Fourier
coefficients of g with basis ¢,. Equation (5.2) becomes

- e £ 60K - s)
(5.3) ” ot
+(%) ZV‘.(gV ~ 80"+ (%) ZV‘.pygﬁ

Writing 8, = (1/n)L}_,¢,(X,) — u,(,) and minimizing (5.3) with respect to
8., it follows that

8,1=(B,+8,0)/(1L+Ap,).

Now

Bf - 2Bu/\pvgv,0 2p3gv20

V(g, — &) = ;(&;J —8,0) = ; 1+ )tp,,) s

2B )‘pvgu 0 + ApVgV 0
(1+2p,)° '

A(I(g-I - gO) = /\va(gv,l - gu,0)2 = Z/\p
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Note that E(B8,) = 0 and E(B2) = n"!, one gets

Ap, 2
E(V(g, - &)) = XV: 1+ 2p)? + )\g, mpyé’u,o,
(5.4) o
E(AJ (g, — &)) = Z (1 T ap ) + /\XV‘, ‘-—‘(1 N /\py)2pvgu,0'

Lemma 5.2. Under Assumption A.2, as A = 0,

)tp 1/r

P ATETYS
1

S —1/r)\

CACESY

Proor. We only prove the first equation. The other two are similar:

) Ap, 2=( T+ Zl/,) Ap,

v (1 + )‘pv) y<ATYr v>A" (1 + /\pv)z

=0(A"V) + o(jw —L—dx)

A=V (1 + ax”)?

© x"
=O0(A" ") + ,\-l/ro(jl mdx)
=0(r" V7). ]
THEOREM 5.1. Under Assumptions A.1 and A.2, asn -» ©and A — 0,
E(V(g1—80) =0(n"A7/" + 1),
E(AJ(& — &) =O0(n"A7Y7 + ).

Proor. Note that ¥,p,82, = J(g,) < ®. The theorem follows from (5.4)
and Lemma 5.2. O

We now turn to the approximation error § — g,. Set g=gand h =8 — g,
in Lemma 5.1, it follows that

1 n
(5.5) T gl(g ‘“g1)(Xi) +Fvg(§ -&) + )‘J(g,g _81) =0.
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Defining B, ,(a) = L{(g + ah) + (A/2)J(g + ah), similarly one gets
©.6) - %i;(é —8)(X;) + g (8 —8) + V(g1 — 80,8 —81)
+AJ(81,8 — &) =B, ;. .(0) =0.
Combining (5.5) and (5.6) yields
re(8 —81) —ng(8—8) +tAJ(& —g1)
(5.7) =V(g1 - 80,8 — &)
+ g (8 —81) —ng(8—81)

Now define C(a) = py s ag,—gy 08 — &) — Mg — &), where o= V2
(g1 — &) =0,(1). A Taylor expansion gives C(a) = a(l + o(1)V(g; — g,
8 — g,)/0, where o(1) is with respect to @ — 0. This results in

(5:8) ng(8—81) —ng(8—8)=C(0) =V(g:~ 80,8~ &)(1+0,(1)),

as A — 0 and nA"Y" — ». Now define D(@) = g 1 0z—g (& — &) It can be

shown that D(a) = Ve, +ag—g(& — &1)- By the mean value theorem,

#g(é - &1) — l‘l’gl(é - &) = D(1) — D(0)
= D(«)
= Vo rag-an(8 — 81),

where 0 < a < 1.

AssumpTIiON A.3. For g in a convex set B, around g, containing g and g,

3 ¢; € (0, =) such that ¢,V < V, uniformly.

Assumption A.3 is satisfied when the members of B, have uniform upper
and lower bounds on &'

THEOREM 5.2. Under Assumptions A.1-A.3, as A - 0 and nA/" - «,
V(8 ~ &) =o0,(n7 A7V +12),
AJ(8 —g1) =o,(n A7+ ).
Consequently,
V(8 - 8) =0,(n" A7V + ),

AJ(8 —8y) = OP(n_l)\‘l/’ +A).
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Proor. From (5.7), (5.8) and Assumption A.3,
V(€ —g1) tAJ(& —g1) < Op(V(gl - 80,8 — gl))
= Op(Vl/z(é - 31)V1/2(g1 - go))-

The theorem follows from Theorem 5.1 after trivial manipulation. O
Now we are ready to state and prove the main convergence result.

THEOREM 5.3. Under Assumptions A.1-A.3, as A - 0 and nAY/" - «,
o8B0 —8) +1g(8 = 80) = Op(n™ATV7 +1).

Proor. Since AJ(Z, gy — &) < AWJ(@NV2AJ(E — go)'/? and AJ(@) <
AJ(gy) + AJ(Z — g,), by Theorem 5.2, the first term of the right-hand side of
(5.1) is of order O,(n~'A~'/" + A). For the second term, write

1 n
; Z (g _gO)(Xz) - #’go(g _gO) = Z(gu _gV,O)BV7
i=1 v
where g, are the Fourier coefficients of §. By Cauchy-Schwarz,

69 Tie-eobl s (Tae a0 (Tes)

for some sequence «a,. Taking a2 =1+ Ap,, L1+ Ap, )8, — &, 0)° =
V+2AIXE —8y) = 0,(n"'A7Y/" + 1) by Theorem 5.2, and E(X (1 +
Ap,) 182 = O(n-2"1/7) by Lemma 5.2 and the fact that E(B2) = n~1. Sub-
stituting these in (5.9) leads to

(5.10) Y8, — 8.0)B,) = Oy (n ATV 4 =12\ 71/2r 4172y
Combining this with the bound for the first term yields the theorem. O

6. The semiparametric approximation of the estimator. The mini-
mizer & of (1.1) in # is not computable. For practical applications, one must
find an appropriate finite dimensional approximating space and calculate an
estimate in the approximating space. Let #, =J, @span{R ;(X,,-), i =
1,...,n}, where R ; is the RKin -#6 J | associated with J. We shall prove in
this section that &#, is an appropriate approximating space under the follow-
ing extra condition.

AssumPTION A.4. 3 ¢, € (0,») such that V(¢,4,) < ¢, uniformly for all »
and u.

That is, we show that if g, € &#, minimizes (1.1) then it is as good an
estimator as £ in the sense that u,(g, — 8,) + 1, (8, — &) = O,(n" A"/
+ ).
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LeEMMA 6.1. Under Assumptions A.1, A.2 and A4, as A — 0 and nA*/" >
o, V(h) = OP(AJ(h)), V heHoH,

Note that with an optimal smoothing parameter A = O(n~"/1*7), n)2/" =
O(n!~2/4+M) 5 w ag n - .

Proor. Note that A L J, and h(X;) = J(R,(X,, ), h) =0, so
Y hA(X;) = 0. Write h = L h,¢,. It follows that

V(h) <pg(h?) = L Xhh,pg($.0,)
1 n
= Z Zhvhp(#’go((bu(by,) - ; .¥1¢V(Xi)¢p,(Xi))
< (Z Y (1+2p,) (L +4p,)"

1 = 9\ 1/2
x (; L 6.(X)(X) - ugo(qsyrﬁﬂ)) )

x(z T (1 +Ap,)(1 + Ap#)h?,hi)l/z

= 0,(n" YA~V (V + AJ)(h),

where Lemma 5.2 and

n 2
E(%ig@(&)%(xi) - ug0(¢y¢#)) <epn!
are used. The lemma follows. O
Let g, be the projection of g in #,. § — g, € #© #,.
THEOREM 6.1. Under Assumptions A.1-A.4, as A > 0 and nA\*/™ - o,
V(& —8n) = Oy(n~"A7Y7),
A (& — g,) = Op(n™A717).

PrROOF. Set g=2 and h =g — g, in Lemma 5.1. Note that (& — g, XX;) =
0 and J(g,,8 — g,) = 0. It follows that
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By the continuity of u and the fact that & — g, Mé(é -8, = l‘l’go(g -8,
(1 + 0,(1)). Similar to (5.10), it can be shown that

(6.1) g8 —g,) = Op(n” VATV (VY24 (M) P)(£ - g,)-
So

AI(8 = g,) = Op(n™V2ATV2) (VY2 + (M) )(8 - 8,)-
This and Lemma 6.1 yield the theorem. O

Let &, be the minimizer of (1.1) in &%, the semiparametric approximation
we are aiming at. Note that our existence result also applies to &%, so 3,
exists.

THEOREM 6.2. Assume &, and g, also belong to the convex set B, in
Assumption A.3. Under Assumptions A.1-A.4, as A - 0 and nA%2/™ - o,

V(én - gn) = Op(n_l)‘_l/r),
A (8, —8,) =0,(n"A7V7).

Proor. Set g=g,and h =8, — g, € #, in Lemma 5.1. It follows that
1 n
(6‘2) - ; Z (gn - gn)(Xz) + #gn(én - gn) + /\J(gna gn - gn) = 0
i=1
Setting g = 8 and h = g — 8, in Lemma 5.1, one gets
1 n
i=1

Note that (¢ — g,(X;) =0 and J(Z - g,,8,) =J(@& — g,, 8,) = 0. Equation
(6.3) leads to

1 n
- ;1(& -8 )(X,) +uy(8-8,)

+AJ(8 ~8,) +AJ(8,, 8, — 8,) = 0.
Adding (6.2) and (6.4), some algebra leads to
Po(8n — 8n) ~ Bg(8n — 8n) T AI(8, — 8:) +AI(8 — &)

(6.5) R R

=1p(8n— &) +1g(8n—8n) —Hg(€n—8n)
Now by Assumption A.3,

o (8rn—8n) — 1y (8, —8,) 2cV(8, —8,)
By (6.1) and Theorem 6.1,
hel8n — 8) = g (80~ 2)(1 + 0,(1)) = O(n~A1/7)

(6.4)
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and
po(8n = 81) — Bo(8n—8,) = V(8 — 8,8, — 8,)(1 +0,(1))
(6.6) = 0,(VV%(& - 8,)V'V?(&, — &.))
— Op(n—1/2A—1/2r)V1/2(én _ gn)
Hence,
V(8. — 8,) +A(8, — &) + A (8 — &)
= 0,(n7ATT) + O,(nTIAATVINVIA(g, — g,).

The theorem follows immediately. O
We are now ready for the main result of this section.

THEOREM 6.3. Under Assumptions A.1~A.4, as A = 0 and nA*/" — o,
V(8, — &) =0,(n" A7V + 1),
AJ(8, — &) =0,(n A7V +A).
Consequently,
hel80 £2) + g (B~ 80) = O,(n" A" 1 1),

Proor. The first part of the theorem follows from Theorems 5.2, 6.1 and
6.2. To prove the second part, set g = 2 and h = g, — g, in Lemma 5.1. This
yields

S|+

h (&, — 80)(X) + N'g(én - &) + )‘J(é,gn _go) =0.
i=1
Hence,
I""go(gO - gn) + Mén(én _gO)
= Mgo(go - tén) + I""gn(gn _gO)
1 n
+= ¥ (80 - £0)(X)
i=1
- Mg(én - go) + AJ(§,g0 - gn)
=AJ(§’gO _én)
1 n
+ ; gl(gn _gO)(Xl) - #’go(én - gO)

+{ g (8n — 80) — ro(&, — 80)]-

The first two terms in the preceding expression can be shown to be of order
0,(n™*A7Y7 + 1) by the same techniques used in proving Theorem 5.3.
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Similar to (6.6), it is straightforward to show that the third term is of the same
order. This completes the proof. O

7. Discussion. We offer a few remarks before concluding this article. It is
apparent that the existence theorem of Section 4 is generally applicable to
smoothing spline estimators in many contexts, and possibly also to other
regularization problems. For the convergence results, we deviated from the
conventional mean square error and instead concentrated on the symmetrized
Kullback-Leibler, which might be a more natural criterion for the density
estimation problem. We omitted the Gaussian process approximation discussed
in Silverman [(1982), Section 9]; although the structure of the estimator is
almost identical to that of Silverman’s, we were not able to validate a version
of Silverman’s Lemma 5.5 because of the generic setup, note that derivatives
are not even defined for g(x) € &# on 2. From a practical point of view,
Theorem 6.3 is the most important result of this article, for it allows practical
application of the proposed method, especially in multivariate setups where a
general purpose basis does not exist. The semiparametric approximation is
motivated by the semiparametric expression of the exact solution in the
regression setup, which played a central role in the computation of multivari-
ate smoothing spline regression models. A dimensionless algorithm for calcu-
lating g, with a data-driven automatic A has been developed in a further work
by Gu (1993) with portable code available from chong@stat.purdue.edu. Yet
further algorithmic developments are needed to speed up the algorithm in one
dimension and to incorporate automatic multiple smoothing parameters in
multidimension for the calculation of the tensor product spline estimators of
Example 2.3.
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