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RENORMALIZATION EXPONENTS AND OPTIMAL
POINTWISE RATES OF CONVERGENCE

By Davip L. pONOHO AND MARK G. Low

University of California, Berkeley

Simple renormalization arguments can often be used to calculate
optimal rates of convergence for estimating linear functionals from indirect
measurements contaminated with white noise. This allows one to quickly
identify optimal rates for certain problems of density estimation, nonpara-
metric regression, signal recovery and tomography. Optimal kernels may
also be derived from renormalization; we give examples for deconvolution
and tomography.

1. Introduction. Let f=f(¢), t € R? be an unknown object (signal,
intensity, density,...), a real valued function on R, and suppose we are
interested in recovering the linear functional T'(f), for example f(0) or
f®(0), & > 0. We know a priori that f € %, a certain convex class of func-
tions (e.g., a class of smooth functions). Depending on the type of measure-
ments we are able to make, problems of this form arise in statistical settings,
such as nonparametric density estimation and nonparametric regression esti-
mation; but they also arise in signal recovery and remote sensing.

In such problems it has been observed that there exists an optimal rate of
convergence at which the mean squared error in estimation of T from n data
can go to zero as n increases. For example, suppose we are in the density
estimation problem, where we observe data X,,..., X, which are random
samples from an unknown density f on R!, and we wish to estimate T'(f) =
f(0). We know a priori only that f€ %, ., = {f: | f’ll. < 1, Il fll. < M}. Define
the minimax mean squared error

R(n) = inf sup B(T(X,,..., X,) - T(f))".
r o

Rosenblatt (1956) showed essentially that R(n) < Cn~%/5; and Farrell (1972)
proved that R(n) > cn~*/5; thus n=%/% is the optimal rate at which the mean
squared error of an estimate can go to“zero with increasing n; see Wahba
(1975), Meyer (1977), Ibragimov and Hasminskii (1981), Stone (1980) and Hall
(1989) for optimal rate calculations in related density estimation problems
with various choices of T and %. In nonparametric regression estimation, we
gather n observations y; = f(¢;,) + z;, with (¢,) and (z;) i.i.d. sequences; opti-
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mal rates of convergence n "7 ) for estimation of functionals T'(f) under
various smoothness classes % have been established by Stone (1980), Brown
and Low (1991), among others. In tomography and problems of remote sens-
ing, one observes a finite number 7 of noisy, indirect observations; these also
give rise to optimal rates n "7 for the minimax mean squared error.
Finally, Hall (1990) considers a signal recovery problem—removal of out-of-
focus blur in images—and, modelling it with a sequence of approximating
problems, indexed by n, finds again that the minimax mean squared error goes
to zero at a definite rate n~"">%), depending on the function class to which
the unknown object belongs and on the extent of out-of-focus blurring.
The rates phenomenon raises two immediate questions:

1. What determines the value of r(T, &)?
2. How can one efficiently calculate it?

In this paper, we show that the notion of renormalization provides a
convenient answer to both questions. For a certain class of linear problems, we
identify the existence of rates of convergence with easily measured scaling
properties of the function class %, the functional T' and the observation
scheme. In Section 3, we describe a simple procedure which for many problems
allows one to calculate optimal rates easily and quickly. The procedure is to
identify the renormalization exponents s in relations of the form

J(af (b)) = ab*J(f(+))

for three key homogeneous functionals J associated with the estimation
problem. The rate functional is then a simple combination of the three
exponents. Section 4 below shows how such arguments can be used for
determining optimal rates in problems of density estimation and tomography.

A second use for renormalization is in the derivation of optimal kernels,
that is, of minimax mean square linear estimators. In essence, the optimal
kernel is identified as the solution of a certain extremal problem and the
optimal bandwidth as the renormalization constant which obtains this ex-
tremal problem from the same extremal problem in normal form. In Section 8
we derive optimal kernels for some problems of tomography and deconvolu-
tion.

Here we develop both aspects of renormalization—determining rates and
determining optimal kernels—into a smoothly functioning tool. The generality
of this tool is considerably helped by the fact, shown in Sections 5 and 6, that
many problems which do not renormalize exactly do renormalize in an asymp-
totic sense, and the simple rate derivation continues to apply in such cases.
Section 7 below describes a four-step renormalization heuristic which can
allow one to efficiently derive the optimal rates of convergence in a variety of
problems which do not renormalize exactly, for example, in signal recovery and
in partial deconvolution.

 The first explicit use of renormalization in identifying optimal rates occurs
in Low (1992). The first mention of renormalization for obtaining optimal
kernels appears in Donoho and Liu (1991).
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A limitation of the renormalization arguments given here is the fact that
they refer to the estimation of single linear functionals T'( f). For estimating
the whole object E/||f — f I3, rates of convergence arguments, such as those of
Birgé (1983), Bretagnolle and Huber (1979), Boyd and Steele (1978),
Efroimovich and Pinsker (1982), Ibragimov and Hasminskii (1981), have a
different character than the arguments in the case of a single functional.
Donoho (1990), Donoho and Johnstone (1991) and Low (1991) give examples
where rates in estimating the whole object can also be derived by renormaliza-
tion ideas. In another direction, Donoho and Kooperberg (1990) describe the
possibilities and limitations of renormalization ideas for estimating nonlinear
functionals T'(f).

2. The optimization problem. We first turn to an apparently special

observation scheme. Suppose that K is a linear operator taking functions f(x)
into functions g(¢), both functions with arguments in R¢ and suppose that W
is a Brownian sheet, that is, the integral of a standard white noise. We observe
a process Y characterized by
(1) Y(dt) = (Kf)(t)dt + eW(dt), t € R?.
Roughly speaking, Y consists of measurements of Kf with added white noise.
We suppose that we wish to estimate T'(f) and we have knowledge that
f€ &, a convex class of functions. The above setup we term the Gaussian
experiment (T, K, &, W).

Below, we will relate this white noise model to a variety of problems in
statistics and other fields: density estimation (Sections 4 and 5); nonparamet-
ric regression (Section 6); tomography (Section 4); signal recovery (Section 7).
In all these cases, the problems reduce asymptotically to a Gaussian experi-
ment of the above form, with K and ¢ chosen appropriately. The literature on
this convergence to Gaussian experiments is vast and we just mention a few
articles that make use of it in some way; see Brown and Low (1990), Donoho
and Liu (1991), Donoho and Low (1990), Efroimovich and Pinsker (1981,
1982), Low (1992) and Nussbaum (1985).

We are specifically interested in explicit relations between the minimax risk
R(n) for estimation of T' based on n observations in a model such as density
estimation or regression and the minimax risk R*(¢) for estimating T from
the observations (1). Such relations have been developed in Donoho and Liu
(1991) and Donoho and Low (1990), who show that in certain cases we have

R(n) ~R*(s,), n -,
provided ¢, is calibrated appropriately, generally as ¢, = ¢/ Vn ; in other cases
their arguments show that at least

R*(ce,) < R(n) < R*(Cs,).
Such relations immediately reduce rate calculations for R(n) to rate calcula-
‘tions for R*(¢). [See also Sections 4 and 6 below.]

‘Rate calculations for R*(¢) are made easy by the considerable body of
results on the white noise model, beginning with Ibragimov and Hasminskii
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(1984) and Donoho and Liu (1991), both in the case K = I, the identity
operator. Donoho (1989) studies Gaussian experiments of the above type, and
shows that if we define the modulus of continuity of T over & by

w(e) = sup{|T(f,) — T¢fo)|: | Kf1 — Kfolz < e, f; € F},
where || - [l = || - | Ly r%), then
10%(¢) < R*(e) < w*(e),

so that the rate in turn reduces to calculation of the modulus of continuity of
T over %. Moreover, the exact minimax risk, among affine procedures, of
estimating T from data (1) over the class & is

w?(8)e®
4g2 + 827
[In the special case where K = I, the identity, and % is centrosymmetric, so
that f€ % implies —f € %, there is a formula for the linear minimax risk
due to Ibragimov and Hasminskii (1984), which, although it does not mention
the modulus of continuity, may be seen to be a special case of this formula.
Again in the case K = I, but without assuming symmetry, the formula given
above is established in Donoho and Liu (1991).]

Now if # is a centrosymmetric class of functions, a further reduction is
possible and we get

w(e) =2supT(f) subjectto |Kf|;<e/2 and f€ &.

Let us now suppose that membership f € % is determined by a functional
J5( ), which, roughly, measures the size of a certain derivative of f:

F={f:Jo(f) <C}.
Then the optimization problem posed above can be written as
w(e) = 2"3-1( £/2, c)s
where val(Z ) is the value of the optimization problem
(Z.c): supdy(f) subjectto Jy(f) <e and Jy(f) <C,

with Jo(f) = T(f) and J(f) = | Kf|lz. Thus, in a certain sense issues of
optimal rates of convergence reduce to the properties of certain constrained
optimization problems.

(2) A(¢) = sup
)

3. Renormalization. While for general J,, J; and J,, one cannot expect
the value of &  to be easily available, in the cases of interest to us, a certain
homogeneity of these functionals with respect to dilation makes the problem
solvable.

DeFINITION 1. Let @ >0 and b > 0; 2, » denotes the renormalization
operator that takes the function f= f(t) w1th domain R into the function
%, [ = af (bt).



948 D. L. DONOHO AND M. G. LOW

We note that %, , is a bijection of the common function spaces L p(Rd)
W™ P(R?), C(°,°(Rd) In fact, (%, )" = %,-1,-1 so that (%, ,: a > 0, b > 0)
is a group of transformations of the measurable functions w1th domain R©.

DEFINITION 2. The functional o is homogeneous with dilation exponent s
if, for every f € Dom(J),

I (%) = ab*J( f).

Homogeneous functionals occur naturally in analysis; we record a few
examples here. The most basic is differentiation at 0. Let i = (iy,...,i,)
denote a multiindex, let |il =i, + -+ +i, denote its order and set (D'f) =
@/t --- ot} f. Then

(D'%,,, £)(0) = ab( D'f)(0)

and so for the functional J(f) = (Df X0) we have exponent s = [i|. For the
L, norm, we have

(3) 1%a,s fllo = ab™/?| f o

and so the exponent is s = —d /p.
Homogeneous operators also occur naturally.

DEFINITION 8. A linear operator L which takes measurable functions with
domain R? into measurable functions on R¢ is said to be homogeneous, with
dilation exponents d and e, if

L%a,b = %abd, beL.
Of course, differentiation is homogeneous:
Di%a,bf= %ab"',b D'f;
this implies that every Sobolev functional
. b 1/p
Noo(£) = £ wlrl)
lil =m

(here the weights w; > 0) is homogeneous, with dilation exponent s = m —
d/p. One also sees that the Lipschitz-a seminorm

|Df(¢) - Dif(w)

[z — ul®

Lm,a( f) = max sup
|i|=m u,t

is homogeneous, with exponent s = m + a.
The Fourier transform f(A) = fe~**®f(¢) dt is also homogeneous:

( bf) ab-db lf,
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this implies that the functional

Ma (1) = ([ S P02 0]

is homogeneous, with exponent s —m-d+d /D.
We now turn to more specific cases. The first is the Riesz transform [see
Stein (1971) and Ziemer (1990)]:

1 f(u)
R t) = du.
( af)( ) F(a)flt_uld—a u
From the Fourier transform of its kernel, we get
(R.F)"(2) =F(n)IAl™.
It follows that the Riesz transform is homogeneous:
(4) Ra%a,b = %ab“',bRa

and in particular that the functional ||R, f|l; has exponent s = —a — d/2.
Finally, we consider the Radon transform for functions on RZ; let

(P, f)(u) = f_°° f(u cos(6) — s sin(6), u sin(6) + s cos(6)) ds.
Define the functional P by
P(f) = [ [ (Paf)’(w) duds.

The one-dimensional Fourier transform of (P,f)(:) is related to the two-
dimensional Fourier transform of f by the so-called Projection-slice theorem
(Deans, 1983) which says that

(5) (P, f)" (v) = F((vcos(8),vsin(6))).

Using this we have

1
PAf) =5 [0 =70 an,

and so P is homogeneous with exponent s = —3/2.

Table 1 presents a list of functionals, classified as candidates for Jy, J; and
J,, and their homogeneity indices.

We now justify our interest in homogeneity. Let &  denote the set of
functions feasible for program (& ). Let (£, ,) be the program defined above,
with parameters C = 1, ¢ = 1. Define a(e, C) and b(e, C) as the solutions to
the system of equations

ab®1 =g,
. ab®2 = C.
Then, because of the homogeneity of J; and J,, we have

(6) UasF11 = Firc
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TABLE 1
Homogeneous functionals and their exponents
J Name Exponents
Jo fo" $6=0
(D) so = lil
gy Iz, ;= —d/2
IR, fll2 s;=—a—d/2
P(f) s;=—-3/2
Jy N, () so=m—d/p
M, () so=m-—d+d/p
L,,.(f) sg=m+a
and
(7) Vs s1F 0 = Five

In short, this particular %, , is one-to-one and onto between % o and & ;.
Now the value of (£ () may be written:

sup{Jo( £): € F ¢} = sup{Jo(Ze,5(%0,s) ' f): f € F

= SUP{JO(%a,bg)3 g = (@/a,b)_lf’ fe Zc}
= sup{ab®0Jo(g): g € F,4}-
Hence
val( 2, ¢) = ab* val( P, ,).
Taking into account the definition of a and b,
a=Cb"2, b= (g/C)"/ 72,
we have proved:

LEmmA 1. Let J,,, J, and J, be homogeneous of degrees s,, s; and s,,
respectively. Then

(8) val(Z, o) = C*~"¢" val( 2, ,),
where

So — 82
(9) r= 55,

Even if we do not know the constant val(&, ,), equation (8) gives us the
complete qualitative behavior of val(# o). Of course, if val(#, ) = +o, it
tells us merely that val(# ;) = « also. From the monotonicity of val(& () in
both ¢ and C, r < 0 is possible only if val(#, ;) = . Also, as the problem
arises from calculating the modulus of continuity of a linear functional, if the
feasible class % . contains at least two elements, r < 1.
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Combining the results of the last two sections and noting (2), we have the
following.

THEOREM 1. Let Jo(f) = T(f), J(f) = IKfllz and F={f: J(f) <C}.
Suppose the J; have dilation exponents s; and that

So — S2

r=
§1 — S

takes a value in [0, 1]. Then
o(e) = val(Z, 1)(2C) "e".

The minimax risk, among affine estimates, of estimating T from observations
(1), is

R%(e) = 227217 (1 — r) T w?(e)

and the minimax risk among all estimates is at least 4/5 of this quantity.

In particular, the existence of uniformly consistent estimates of T' from the
observations Y is completely equlva.lent to the assertion that both r > 0
and val(9”1 ) < »; and if the minimax risk goes to zero at all, it must go at
rate &2

4. Applications. The results above immediately identify the rates of
convergence for estimating point functionals in the white noise model. Sup-
pose we observe data according to (1) and we know that N,, ,(f) <1, and we
are interested in T'(f) = (DfX0), with & = |i| < m. Then Jo( f)= (D‘f)(O)
so sg=~k, J(f)=IIfllz, so s; = —d/2 and Jy(f) =N, ,(f) so s, =m —
d/p. Hence the optimal rate is r = (m — k — d/p)/(m + d/2 d/p). On the
other hand, if we varied the smoothness assumption to L, ,(f) < 1, the rate
would be r=(m +a — k)/(m + a + d/2). Finally, with the frequency
domain constraint M, ,(f) <1, we would get r=(m -d -k + d/p)/
(m—-d+d/p+d/2).

The same pattern of argument can treat much more involved problems with
essentially the same ease. Suppose we observe the Radon transform of an
unknown function f,

(10) Y(do,du) = (P,f)(u) du + sW(d6,du)

for 6 €[0, 7] and u € R. We wish to estimate T'(f) = f(¢,) and we assume
that & is the class of f on R2 which are absolutely continuous and have
absolutely continuous partial derivatives of all degrees through m — 1 and for
which (say) N,, (f) < C.

First consider the case where to = 0. Then Jo(f) = f(0),s0 5o = 0; J|(f) =
P(f), so s; = —3/2 and, finally, J,(f) =N, (f), so s,=m —2/p. We
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conclude that
m-—2/p
m—2/p+3/2°

For the more general case where ty # 0 the functional T'(f) = f(¢,) is not
homogeneous with respect to dilation, but the modulus of continuity is the
same as when ¢, = 0. To see why, let 7, denote the translation operator
70 f(*) = f(- + t,). Note that J; and J, are translation invariant. Still letting
Jo(f) = f(0) and letting & . denote the feasible f for problem (& ) we
note that the modulus of T(f ) = f(t,) is exactly twice the supremum of
Jo(7o f) over Z . But

sup{Jo(7of): f € Z ¢}

(11) r=

sup{Jo(7of): f € 10F ¢}
sup{Jy(g): & € ‘Z,C}’

where we used 7,7, o = % . twice. The final quantity is just the case where
to = 0, where renormalization holds exactly.

These results have concrete applications to problems in statistical estima-
tion, via the following:

LEmMMa 2. Let T(f) = f(0) or T(f) = (DfX0) and let F be a class of
smooth functions defined by one of the conditions N,, (f) <CorL,, (f)<C
orM,, (f) <C. Let R}(¢; T, K, &) denote the minimax risk for recovery of T
from observations (1). Let & be the (convex) class of all densities g = Kf, with
K a bounded linear operator of L,, f€ & and |gll. < M. Suppose we have
observations X,,..., X, i.i.d. g, where g € 4. For the minimax risk
R(n,T,#) for estimating T(f) from these observations

1
—;T,K,%].
i)

This is proved in Donoho and Low (1990).

We first apply this to density estimation. Let 2 be the class of all densities
f satisfying || fll. <M and fe &, where & is one of the three types of
smoothness classes mentioned earlier. We are interested in estimating T'(f) =
{D'fX0) from data X,,..., X, iid. f. The above lemma applies with K = I,
the identity operator and g = f . We therefore have that the optimal rates for
the Gaussian experiments calculated in the first paragraph of this section are
also optimal rates for the density estimation problem.

In this way we may recapture optimal rate results of, for example, Stone
(1980), who studied density estimation at a point over the class defined by
L, (f) < C. We also get previously unpublished results, by considering other
classes, such as N, ,(f) < 1.

. We turn now to an application to an (idealized) form of positron emission
tomography [compare Johnstone and Silverman (1990)]. In PET we (ideally)
observe (6;,u;), i = 1,...,n, iid. from a probability density g(6, ) which is
the Radon transform of a density f(¢). We wish to estimate T'(f) = f(¢,). Our

R(n,T, %) ij;(
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a priori class 2 is the set of densities supported on all of R satisfying
N, ,(f) <C and llglle < M < ». Applying the above lemma with K = P, we
see that the optimal rate of convergence of the minimax risk to zero is simply
n~", where r is the rate exponent calculated for the corresponding Gaussian
experiment. (The same rate holds if we consider only functions and densities
supported in the unit disk.) This result on optimal rates at a point from Radon
density data appears to be new.

5. Inhomogeneous K. The homogeneity of the Radon transform is
rather special. For most operators K, the functional J,(f) = || Kf ||z will not be
exactly homogeneous. This is an apparent obstacle to our approach. Actually,
however, many such functionals are asymptotically homogeneous; and if we
analyze the problem which arises by replacing the original operator K by its
homogeneous approximation K*, we get the right answer.

We describe the idea in the deconvolution problem. Suppose that our
observations operator has the form

(Kf)(2) = [R(t — u) f(u) du,
where the kernel & has Fourier transform £()). Suppose, in addition, that
[E()| ~ A7, A - o
Thus, at high frequencies, |(1)| behaves like a power law. Equivalently,

|20
(12) .00

The operator K* = AR, is therefore asymptotically equivalent to K and it
renormalizes exactly. Let us suppose A = 1.
If, instead of Y we had observed the process Y* characterized by

Y*(dt) = (R,f)(t)dt + eW(dt), teR?
we would be in an exactly renormalizing situation. ||R, fllz is homogeneous
with exponent —a — d /2. Hence if our goal were to estimate 7'( f) = f(0) and
our a priori information were N,, ,(f) < C, we would have the J; all homoge-
neous, with exponents s, =0, s; = —a —d/2 and s, = m — d/p. The opti-
mal rate of convergence for this problem would be
m—d/p
m-d/p+a+d/2°
It turns out that under sufficient regularity of K, r* = r; hence this rate

calculation, made assuming that K*, rather than K, generated our observa-
tions, nevertheless applies to the inhomogeneous experiment using K.

— A as|A| > o,

*=

THEOREM 2. Suppose that k is asymptotically equivalent to the Riesz
kernel, so that (12) holds. Let w(e) denote the modulus of continuity of T over



954 D. L. DONOHO AND M. G. LOW

F={N,, ,(f) < C} with respect to the distance |Kf, — Kfll2 and let w*(¢)
denote the modulus with respect to |R,f; — R, foll2-

Define
M(A)<=%sup{—|m: Al < A}.
[ R
If M(A) < » for each positive A, then
(13) w(e) > w*(e)(1 +0(1)) ase—0.
Define

m(A) = inf{|E(1)|: M| < A}/| R (A)].
If m(A) > 1as A - x, then :
(14) 0*(g) 2 w(e)(1 +0(1)) ase— 0.

The proof is given in Section 9.

For an elementary example, let d = 1, and we observe X;,..., X, iid. g.
Suppose the density g is known to be the convolution of a density f, the object
of interest, with a mean-1 exponential waiting time density. We suppose that
f € &, where % is one of our three types of smoothness class, and that
llglle < M for some positive finite constant M. We are interested in recovering
T(f) = f(t,). We may apply Lemma 2 to this situation, and reduce the
problem to calculations in the white noise model. As the Fourier transform of
the standard exponential density is (1 + iA)/(1 + A2), we easily see that the
modulus is equivalent to R,. Hence for the associated renormalizable Gauss-
ian experiment, we get the exponent r =s,/(s, — 3/2), where s, is the
exponent of the smoothness functional we have chosen. By Lemma 2, the rate
in the density deconvolution problem is therefore n=".

6. Inhomogeneous domains. In a number of practical cases we are
interested in functions f defined not for all # € R¢, but only for ¢ in a certain
domain D. If D is a standard half-space {¢; > 0} or orthant N 7. 1{tij > 0}, then
%,,» is a one-to-one mapping of measurable functions on D onto itself. In
that case, renormalization continues to work smoothly. But if D is some
bounded region of R?, %,,, is not domain-preserving. However, renormaliza-
tion may continue to apply in an asymptotic sense.

For a concrete example, suppose that d =1 and that D =[—a, a] with

0 < @ < ». We observe a process Y characterized by
Y(dt) = f(t)dt + eW(dt), teD,

where W(dt) is a white noise. Suppose we know that [,|f ™ (I’ dt < C? and
we wish to estimate T'(f) = f(0). This leads immediately to the optimization
problem

(Z.c.p): sup f(0) subject to [Df2 <& and fD lFm " < cp.
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Let (£ () denote the value of the corresponding problem with D replaced by
(- oo) throughout. While for finite £ > 0, we must expect that val(&Z . ;) #
val(Sa _¢), there is still asymptotic agreement.

THEOREM 3. Let a € (0,») and C € (0, x).

val(Z, ¢, p)

val(%,c) -1 ase—0.

The proof is in the Appendix.

It follows that if w denotes the modulus of continuity of T in the problem
with domain D and if »* the modulus in the problem with homogeneous
domain (—, ), then

w(e) ~w*(e) ase— 0.

This fact has been stated, but no proof given, in Donoho and Liu [(1991),
Lemma 11].

For an application, consider the problem of random design nonparametric
regression. We wish to recover T'(f) = f(0) from observations y; = f(u,) + z;,
with u; ii.d. uniform on (—1/2,1/2) and z2; i.i.d. N(0,o?) independently of
the (u, ) We suppose that N,, ,(f) < C and that I flle <M.

The problem of determlmng the optimal rate of convergence reduces to
determining that in a Gaussian experiment, by the following result of Donoho
and Low (1990).

LEmMMA 3. Let T be linear, & convex and || fll. < M < o for every f € &.
Then the minimax risk R, (n) for estimating T from n observations in the
random design nonparametric regression problem is related to the minimax
risk R%(e) for estimating T from observations Y(dt) = f(¢) dt + eW(dt), t €

[-1/2,1/2] by
RA(O'/\/_)<RA(n)<R (‘r/\/—)

with 72 = o? + M2 If the optimal rate of convergence in the white noise
problem is €27, then the optimal rate in the nonparametric regression problem
isn~".

This reduces us to rate calculation in a white noise problem with inhomoge-
neous domain [—1/2,1/2]. Applying Theorem 3 above reduces us to a cal-
culation in a white noise problem with homogeneous domain. Applying
' renormalization, we get the rate in the white noise problem and hence the
optimal rate for nonparametric regression with random design. For the
smoothness class L, ,(f) <C, the rate is r=(m +a)/(m +a + 1/2).
This recovers results of Stone (1980). Other results are also easily available.
For smoothness constraint N,, (f) < C, we get the rate r = (m — 1/p)/
(m—-1/p +1/2).
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7. The renormalization heuristic. From the authors’ point of view,
the most significant contribution of the renormalization idea is to quickly and
easily identify a candidate for the optimal rate of convergence in a wide variety
of problems. The steps involved in this process are:

1. Replace the model under study by the asymptotically equivalent white noise
model.

2. Replace that white noise model by an asymptotically equivalent white noise
model which renormalizes exactly.

3. Calculate the optimal rate for the renormalizable model via Theorem 1.

4. Justify the approximations in steps 1 and 2, and prove that the value of
(£, ) is finite.

In many problems of which we are aware, identifying the correspondences
in steps 1 and 2 take only a few minutes. One of us (Donoho) has successfully
taught steps [1]-[3] from a draft of the present manuscript in a graduate
course at Berkeley. Step 4 takes more time and effort; see the proofs of
Theorems 2 and 3 in this paper and also the paper Donoho and Low (1990).

In our opinion, the four-step process described above can be used to clarify
and simplify the literature on optimal rates of convergence. Many papers on
this subject have the flavor of involving lengthy and arcane calculations and
the rate emerges only after the dust settles. The reader is left with no way to
derive the rate for himself, or study the effect of variations in the assumptions.
In contrast, renormalization allows one to validate, in a few moments, the
plausibility of such rate results. It also allows the reader to consider variations
on the choice of % and T and see how these affect the optimal rate.

In this section we present a few examples to give the flavor of renormaliza-
tion-based reasoning in action.

7.1. Hall’s signal recovery model. Hall (1990) considers a model for recov-
ery of an image from out-of-focus, noisy data. The model is rather involved to
state in its original form; but step 1 of our heuristic reduces it to the following
problem. Suppose we observe

(15) Y(dt) = (k* f)(t) dt + eW(dt), teR?,

where W is the integral of a standard white noise on R? and % * f is the
convolution product [k(-— u)f(u)du. About the out-of-focus filter 2 we
know that in the frequency domain,

d
B = T[] ——
(4) ,=l_ll 1+ c|A;
and about the function f we know that
| M, .(f) <1

We are interested in recovering T'(f) = f(0).
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Now | Kf |l is not exactly renormalizable, but £ is visibly asymptotic to

) 14 1
et Al
as [A| > «. Now ||k* * f||, is renormalizable, with exponent s, = —dv — d/2.

It follows that for recovering T(f) = f(0) from observations Y(dt) =
(k* = fXt)dt + eW(dt), the optimal rate will be

m—d
T m-—-d/2+dv’

Although k* is not Riesz, we may expect that a result parallel to Theorem 2
applies in this case and so for recovering T(f) = f(0) from data (15), the
optimal rate r = r*. Translating back to Hall’s original model requires the
calibration &2 = (¢2/n). Under this calibration, we get the prediction that
the minimax mean squared error goes to zero at a rate n~"". This agrees with
the result established by Hall from lengthy calculations. The heuristic allows
us to see easily that this ought to be the correct rate; and it allows us to
calculate rate heuristics under, for example, variation of the smoothness class
easily and naturally.

7.2. Partial deconvolution. There has been considerable interest in decon-
volution problems and associated optimal rates recently [Rice and Rosenblatt
(1983), Ritov (1986), Stefanski and Carroll (1990), Carroll and Hall (1988), Fan
(1989)]. In general, deconvolution is quite difficult, in the sense that the rate r
is typically close to 0. Renormalization ideas allow one to easily explore related
problems which are much better behaved. The first author’s (Donoho) atten-
tion to the general idea of partial deconvolution was stimulated by a Berkeley
seminar of Ritov, who first suggested and obtained results for the problem of
partial Gaussian deconvolution.

Suppose we are given convolution data as in (15) and we know that f € %.
For the problem of recovering f(0), these data are less useful than we might
desire, for the reason that sharp deltalike features in f are blurred out in the
observations %k * f and so a loss of resolution occurs.

As an alternative to total deconvolution, consider the idea of partial decon-
volution. Let k,(t) = k(¢/h)/h? be the rescaled kernel—we think here of
positive h, h < 1. Consider recovering T,(f) = (k, * £)(0). This is a local
average of f in the neighborhood of 0 and it is an attempt to estimate the data
we would have recovered with an improved instrument, which had a narrower

pulse width.
According to the heuristic, suppose that & is actually the Riesz kernel R,
for some a. Then for J, = T}, we get s, = —a; for J; = ||k * fll2, we have

s, = —a — d/2; and for ¥ defined by the constraint N,, ,(f) <1, we have
s, = m — d/p. It follows that the rate for partial deconvolution is

. m+a—d/p
Tpartial = m+a—-d/p+d/2°
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In contrast the rate for total deconvolution would be
o m —d/p
ot =y va—d/p+d/2°

If the problem is highly ill-posed, so that « is large, then the rate of conver-
gence for partial deconvolution can be considerably better than the rate for
total deconvolution. Thus a reasonable response to the ill-posedness of decon-
volution would be to demand compression, rather than removal, of the convo-
lution filter.

7.3. Nonrenormalization. Of course, not every problem admits of renor-
malization or even approximate renormalization. The canonical example is
Gaussian deconvolution. Suppose we observe

Y(dt) = (d* f)(t)dt + eW(dt), t €RY,
where ¢ denotes the Gaussian density (1/ V27 )e~**/2. Because ¢(A) = e **/2,
¢ is inequivalent to any Riesz kernel or other renormalizing kernel. It turns
out that no algebraic rate £2” typically holds for this problem; instead, a
logarithmic rate log2?(1/¢) obtains [Ritov (1986), Carroll and Hall (1988)].
Other examples where renormalization fails can be constructed by modifying
this basic example.

8. Optimal kernels. Renormalization may also be used to derive optimal
kernels, that is, kernels of linear estimators which are minimax for mean
squared error among linear estimates. Several notions of optimality of kernels
have been considered—compare, for example, Gasser and Miiller (1979), Miiller
(1984). An explicit statement of the notion of minimax mean-squared error
optimality which we consider here is due originally to Sacks and Ylvisaker
(1981).

In the general, not necessarily renormalizing case, Donoho (1989) shows
that if we put

w?(8)
4g2 + 6%’
and if & is centrosymmetric, with f, solving the problem
supT(f) subjectto |Kf| <é&y/2andf e &,

gy = arg maax

then

2w(eq) (

2
0

l/’.s(t) = c0 Kfeo)(t)’

is an optimal kernel, where
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this kernel is optimal in the sense that
T(Y) = [w.(£)Y(de)

is minimax linear for T at noise level &.
Using the scaling relations of this paper, if f, denotes a solution to (Z,1),
then f, = %, for appropriate a, b; moreover,

r

(16) so=21/ 7

£, Co=T,

and so

17 () =2r val(%,l)cw(\/ — ) (%, s (1)

In short, the optimal kernel at any given noise level derives from the solution
to the single optimization problem (& ;) and rescaling.

In the special case where K = I, the identity operator, this fact has been
noticed before. Donoho and Liu [(1991), Section 4.3] show that the optimal
kernels in a family of estimation problems derive from scaling and dilation of
the extremal functions for the Kolmogorov—Sobolev-Landau-Hardy inequali-
ties between functions and their derivatives. Those extremal functions derive
from a problem of the form (& ;) with certain homogeneous functionals.

8.1. Kernel for deconvolution. We give specifics for d = 1 only. Suppose
we observe a process Y characterized by

(18) Y(dt) = (R, f)(¢) dt + eW(dt), te€R,

and that M,, ,(f) < C. We wish to recover T(f) = f(0). The corresponding
functionals renormalize exactly. The exponents of these functionals have been
derived in Section 3 and are recorded in Table 1. The problem (&, ) becomes

1 A
sup o= [F(1) A subjectto a1 7 F(A)da < 2w

and [P f (1) dA < 2.

The three functionals are invariant under the reflection f(#) — f(—t); by
convexity, a solution f; may be taken to be even; hence its Fourier transform

A

f will be even and real. A standard variational argument says that a solution
must satisfy

Jh(vydr=<o
whenever

ST, (A)A(A) dr <0 and JAPmA()A(A) dr <0
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for every real, even A € Cg. We conclude that for some nonnegative a,, b,, we
must have

F(X) = (aAl7% + by AlP™)

By a rescaling argument, the extremal function must attain both constraints
S A Fny da = 2,
Jem| 7 F(ry da = 2ar.
Using the tabled definite integrals

(19) R L
0o (a+ bx)2 sin(p)
valid for p € (0,1) and
o x%dx
(20) ‘/(-) m = a‘“"b“"“’I‘(q + 1)I‘(1 - q)

valid for ¢ € (—1,0), we get the following conditions:
(2m + 2a)sin(pw)
p )
aptrapGD 2m + 2a)m ,
I'(g+1I(1 ~-q)

where p = (2a + 1)/(2m + 2a) and ¢ = (-2m + 1)/(2m + 2a). The value
of the problem is then

a1—1+Pb1—(P+1) =

al( & 1 Ff(A)dA = L dA
vel( Py = g A dr = [ e

1 1

= l—(q+l)a<{_.__..
2m + 2a sin(lglm)

To complete the analysis, we derive the optimal kernel. Define
; 1l o . AT%dA
bam(t) = [ 008(81) gy

From the homogeneity (4) of the Riesz transform, we have that the term
R %, ,f, demanded by (17) is the same as %,;-«,®,, ,- With additional
calculations we arrive at:

THEOREM 4. The optimal kernel for recovery of f(t,) from Riesz data (18)
for objects known to have m L, derivatives is

‘lls(t) = (%‘)’.8¢a,m)(t)
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In Figure 1, we display the kernel ¢, ,, for three combinations of « and m.

8.2. Kernel for tomography. We now assume that f is a function on R?
and we observe Radon data (10). We wish to estimate T'(f) = f(¢,) and assume
that f belongs to the class & of functions on R? which are absolutely
continuous and have absolutely continuous partial derivatives of all de-
grees through m — 1 and for which N,, , < C, where the weights w; = m!/
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(i;!(m — i;))). The corresponding problem (&, ,) is then

sup(27r)_2fei<"»‘0>f()¢) dA subject to fl)tl_1| f |2(A) dA <27,

Jem| 7Py da < (2my?.

Letting f¥ = e »*%f, we get that f} does not depend on the choice of to
and, by a variational argument, must satisfy

A _ m -1
fir(a) = (alm T+ blmz ) ,

where @, and b, are nonnegative constants which satisfy

JW 2 F(a)y da = 2,

A |2
JaEr £y da = (@),
or equivalently,

fm(alr‘1 + blrz’")_2 dr =1,
0

© -2
f r2m* Y a ! + b,r®™) Cdr = 2m.
0

The tabled integrals (19)-(20) allow us to reduce this to the system
(4m + 2)sin( pm)
» )
(2m + 1)
I'(¢g+1Dr(1-gq)’

where p = 3/(2m + 1) and g = (—=2m + 2)/(2m + 1). The value of the prob-
lem is then

al_1+pb1_(P+l) =

al—l'HIbl—(Q"'l) =

1 dr

al(P, 1) = —— [F¥(A) da =
val( 1,1)_(277)2/1() __2_7,-[0 a,r~!+b,r’m

1
= br@+tbgg
2m +1*' a12sin(|q|1-r)

To get the optimal kernel, we use the projection-slice theorem (5) to simplify
computation of P,%, , f;.
LEmMMA 4. Let f(A) = p(IA])e~ 4%, Then
(Po%a,b f)(u) = (%ab'l,b‘,p)(u —%o,1 cos(8) — o2 sin(0)),
where

1
o(u) = ;T_[o p(v)cos(vu) dv.
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F16. 2. Optimal kernel ¢,, for tomography.

We omit the proof. Applylng this lemma, we define the auxiliary 1-dimen-
sional function

1 .«  cos(uv)
[
0

u)=—
‘Pm( ) T alv—l +blv2m

THEOREM 5. The optimal kernel for recovery of f(¢,) from Radon data (10)
is
ll’e(o’ u) = (%7,8¢m)(u - tO,l COS(B) - t0,2 Sln(a))

5 g | Y mt1/D
’Y=2"V31('Ql,1)(v g(m—l) _C_) )
‘/7_ g\ " Vmr1/D
o= g(m - 1) E .

The theorem shows that for each fixed 6, the optimal kernel has the form of
a rescaled, dilated version of ¢,,, which is translated by the value ¢, , cos(9) +
¢y 2 sin(#). In tomographic terms, this is an instance of filtered backprOJectlon
and we have derived the optimal filter kernel ¢,,. See Figures 2 and 3.

for
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Fic. 3. Optimal kernel , for tomography. t, = (1,0), ¢ = 0.001, m = 3.

8.3. Boundary kernels. Heuristic reasoning based on renormalization ap-
plies in finding kernels as well. Suppose that D is a convex subset of R and
we observe

Y(dt) = f(¢) dt + eW(dt), teD.

We know that N, , ,(f) <1, say, and we are interested in recovering
T(f) = f(t,y), where to € dD. This is a model for recovering a function at the
boundary; such boundary problems have attracted considerable interest re-
cently [Gasser and Miiller (1979), Rice (1984), Shiau, Wahba and Johnson
(1985), Utreras (1986), Eubank and Speckman (1989)].

Without loss of generality, choose coordinates so that ¢, = 0. If D is a cone,
so that aD c D for every a > 0, then the problem renormalizes exactly, and
one derives rates from Theorem 1, and optimal boundary kernels from solu-
tions to

(P1.1,p): sup f(0) subjectto N, , p(f) <1 and [szsl.

If, however, D is not a cone, the problem does not renormalize exactly.
Renormalization ideas suggest the following conjecture. Suppose that D* is
the tangent cone to D, that is, the set of all ¢ € D such that at € D for all
sufficiently small a > 0. Then the optimal rate for D ought to be equivalent to
the optimal rate for D* and the optimal kernel for D asymptotically equiva-
lent to the optimal kernel for D*.

The reader may find it amusing to work out optimal kernels for some
particular cones D*. The computations are often straightforward for N,, , ,(f)
with D a half-line, a half-space and an orthant.
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We sketch an example for the half-line. We are interested in the problem
(%,,1,p): sup f(0) subject to fw( f)?<1 and fwfz <1.
0 0

For an appropriate Lagrange mﬁl{iplier u, the solution to this problem is also
a solution to

inf [0 “F2(8) + u(f(¢))2dt subject to £(0) = 1

after a rescaling. By a variational argument and integration by parts, f is
extremal for the latter problem if for all 2 € C*{0, ») vanishing at 0 and o, we
have

[:( f(£) + wFO(t))h(t) dt = 0,

f"RI5 = 0.

An [ satisfying these conditions is the solution of the differential equation
@) + n () = 0 on the positive half-line, with boundary conditions f”"(0) =
0, f(0) =1, f(x) = 0. From the theory of linear, constant coefficient ordinary
differential equations, we are led to the closed form

fu(t) = cos(wt)e™ !

with @ = (4u)~'/%. One sees that [5(f(t)?dt = ©®/2 and [5f?2 = 3/(8w);
hence picking u = 1/3 we have that 2'/2(3/4)7%/%f, ,; is the solution of the
original problem (&, ; p).

8.4. Nonrenormalizable kernels. Of course, the lack of renormalization
does not prevent one from solving for the minimax kernel. Return to the
Gaussian deconvolution example of Section 7.3. Suppose that N, ,(f) < 1;
then the solution f; to the relevant optimization problem obeys, in the
frequency domain,

A -1
fi(A) = (a22™ + be=**/2)
for certain constants a, b; and
N -1
F(1) = ce™¥/2(ar2™ + be~¥/?)
for a certain constant c¢. Renormalization is a convenience, but not a necessity.
9. Proofs.

9.1. Proof of Theorem 2. We divide the proof into two parts.

9.1.1 ProoF oF (14). Let (%) denote the problem based on the functional
IR, fllz rather than [Kf|l;. Because (£*;) is exactly renormalizable, there
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exist a = a(e,C) and b = b(e, C) so that %, , maps the solution to (£*.)
onto the solution of (#7,) and vice versa. Using the same transformation and
defining K,(A) = b°K (b)), we map a solution of (£, ¢) into a solution of

(Pr1): supdo(f) subectto [|R,M)[]F(M)Fdr <1

and N, ,(f)<1.
As
w(e) = (2C)" e val( 2y 1,.)
and
w*(e) = (2C)' "¢ val( P ),
the desired relation (14) follows from
(21) lim sup val( &, ; .) < val(Z5 ).

e—0

To prove (21), note that our hypotheses imply that for each § > 0, there is
A(8) for which

m(A) > (1-9), Al > A,
and also
|R(0)| = AI*(1 = 8), Al > A.
Define
ps(A) = min(|8| "*(1 — 8), [A|7*(1 - 8)).
Now b - » as € - 0, so for ¢ < ¢, we have b5 > A and so
|R,(A)] = ps(A) forall A

as soon as ¢ < g4(8). It follows that for ¢ < £,(3), then
2 A 12 A 12
(22) JIEWTF) da = [o20)] F(0)] da.
Now define the optimization problem
(2;): sup Jo( f) subject to fpg()t)| f()t)|2 dr<1

and N, ,(f) <1.

As (22) implies that every function feasible for (&, , ,) is also feasible for (2;),
we have val(#, | ) < val(%;), ¢ < &,

The lemma to follow shows that val(Z;) — val(#}",) as 6 — 0. The desired
relation (21) follows.

LemMma 5. val(2;) is an increasing function of 8, hence lim;_, , val(2;)
exists; it equals val(#f ).
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Proor. Let J; ,(f)? = fp,‘;()t)lf()‘)l2 dA. Note that J, ;(f) is decreasing in
b for each f. Also, note that given J, ;(f) <1 and N, (f ) < 1, there exists
an absolute constant B such that ||flls < B. This 1s most eas11y seen for

().
m,2
Let fs be a solution to problem (2;) and let %; be the feasible set. Then

%, is a norm-closed, norm-bounded and convex subset of L,. Let (f1,,),58
be a sequence of solutions of 2, ,,. As &, 4 is thus weakly compact we can
extract along a subsequence n, a weak limit f,. As J, ; is decreasing in §,
fo€ N 9’1/”, from which it follows that «J, , ,, (fo) < 1 ‘for all k. As ps = R,
a.e., Fatou’s lemma gives J,(f,) < liminf, J1 1/n{fo) < 1. In other words
fo is feasible for & ;.

Notice that on the set F1, Jy is a uniformly continuous functional with
respect to L, distance. Hence, by Lemma 5 of Donoho (1989),

lim 7(f,,) = T(fy).

Asval(2,,,,) = T(f,,), we get
val(Z;) = Jo(f)
as 6 — 0. But then
val(£7) 2 Jo( fo) = ;i_{‘}) val(.Z;)

and so
val(#y,) = girr‘l) val( Z;). i

9.1.2 ProoF oF (13). It is enough to show that for each 6 > 0, then for all
€ < £4(8), we have

val(2% ) < val(Z, (),

where ¢ = ¢/ V1 + 25. So, let f* be a solution to &* . Pick A so large that
IKWI/IR, M) <@ + )2 for A| > A.

Ax _ A Ax —-A ®) A 2 Ax 2
SIEWFFFar= [* R FFan+ [+ IR+ aa
s M) [* |R 017+ lar

+@+ o) [ + (R [ an.

By renormalization, we may write this as
(¢) (M(A) [

+@+a) [0+ 7 IR

Ao Iéao)ﬁ AL

(23)
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with f; = %, , f* a solution to (&, (). Now JIAI 72 * 12 dA < oo, s0
L =l far -0
-5

as & — 0. The term in brackets'in (23) is smaller than (1 + § + M(A)o(1)). For
small enough ¢,

(£)%(1 + 6 + M(A)o(1)) < &2
This implies that f* is feasible for &  and so val(#';) = J(f*) <
val(Z, ¢).

9.2. Proof of Theorem 3. Every function feasible for (& ) is also feasible
for (£ ¢ p); hence

(24) val( 2 ¢ p) = val( 2, ¢).
We will show in a moment that

(25) va(Z, o) 2 val(Z ¢, p),
where

(26) C'(e) =C(1+0(1)) ase—0.

The result follows from this pair of inequalities and the explicit dependence of
val(Z ) on C stated in Lemma 1.
To establish (25), let ¢ be a C> window function satisfying

y=1 on[-a/4,a/4],
y=0 off[~a/2,a/2],
¢]-=1.
Without loss of generality, suppose that a solution to (£ . p) exists. Let f,

be a solution to (& . p); and let ¢ f, denote the function equal to ¢(¢) f.(¢) for
|t| < a and equal to zero elsewhere.

T(yf) =T(f) and |[¢f; <[,

where here and throughout the proof, the norms || - ||, refer to L,[—a, a] or to
L (-, ») according to the domain of the argument. It follows that ¢f, is
feasible for P, .., where

c =|wr)™|,.

Hence
val(&, o) = T(¥f.) = T(f.) = va(Z ¢, p)-
Now we bound C':
A )<m) yfm + e, 'fs('"_l) + Cm,zl/l(z)fs('”_z) + oo Y ™f,
with ¢, ; = m!/(l/(m — D)}); hence
el <1l £l + e, a9l £l + o+ Tl £l
As |l¢ll. = 1 and || £, < C, we get

m
C'<C+ ¥ c,l
=1
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Now we apply the lemma following to conclude
I £=Pl, 0 ase—o0

forl=1,...,m, and so
C"'<C(1+o(1)).
This completes the proof of (25)-(26).

LEmMMA 6. Suppose that (f,) is a sequence of C*[—a,al functions with
I fllz = 0 and |If{™ll, <C, with 1 <p <o then |f™ P, >0 for 1=
1,...,m.

The lemma may be obtained by combining compact embedding results in
Sobolev space theory with standard inequalities; compare, for example, Adams
(1975), Ziemer (1990).
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