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IDENTIFICATION OF ECHELON CANONICAL FORMS FOR
VECTOR LINEAR PROCESSES USING LEAST SQUARES

By D. S. PoskiTT

4
Australian National University

In this paper a method of identifying stationary and invertible vector
autoregressive moving-average time series is proposed. The models are
presumed to be represented in (reversed) echelon canonical form. Consider-
ation is given to both parameter estimation and the determination of
structural indices, the evaluations being based on the use of closed form
least squares calculations. Consistency of the technique is shown and the
operational characteristics of the procedure when employed as a means of
approximating more general processes is discussed.

1. Modelling vector time series. When modelling vector time series it
is natural to think in terms of multivariate generalisations of the class of
univariate autoregressive moving-average (ARMA) models [Box and Jenkins
(1976)] and vector ARMA models have been widely studied in the literature.
For example, estimation of such models is discussed in Tunnicliffe-Wilson
(1973), Dunsmuir and Hannan (1976), Nicholls (1977) and Kohn (1978);
diagnostic checking procedures have been examined in Hosking (1980) and
Poskitt and Tremayne (1982); and the problem of model construction is
considered in Akaike (1976), Chan and Wallis (1978), Tiao and Box (1981) and
Cooper and Wood (1982), amongst others. The structure theory relating to
such processes is also known to be far more involved than a simple, naive
extrapolation of univariate ideas would indicate [see Deistler (1985) for a
detailed review and extensive references], and it is this structure that intro-
duces an inherent complexity not found in the univariate situation. A basic
purpose of the present paper is to indicate how, despite this complexity, the
model parameters can be estimated (identified) and the internal structure of
the process determined (identified) using a simple finite algorithm.

Heretofore, much of the discussion of the identification of multivariate
models has addressed problems and techniques associated with the use of
canonical correlations due to Akaike (1976); see Box and Tiao (1977) and Tsay
and Tiao (1985), for example. Such methods often involve the solution of a
large number of eigenvalue problems. Here we shall adopt the general ap-
proach taken by Hannan and Kavalieris (1984). The latter authors consider
estimating the coefficients of an ARMA model using regression-type methods
and determining the integer structural parameters using model selection

Received May 1988; revised June 1991.

AMS 1980 subject classifications. Primary 62M10; secondary 62F12, 62J05, 93B30, 93E12.

Key words and phrases. Autoregressive moving-average, echelon canonical form, Kronecker
indices, identification, least squares regression, consistency, linear process, approximation.

195

[ ,4’2

52 D

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& %
The Annals of Statistics. MIKOIRE ®

WWWw.jstor.org



196 D. S. POSKITT

criteria, such as AIC [Akaike (1974)] and BIC [Schwarz (1978) and Rissanen
(1978)], that are evaluated in terms of the one-step-ahead prediction error
variance and a penalty adjustment for the number of coefficients fitted. The
technique adopted by Hannan and Kavalieris (1984) to identify the structural
parameters is to first select the‘overall order, or observability index, and then
optimise the model selection criterion over a range of models delineated by the
value so chosen. An alternative method of structure determination in which
the integer parameters are assessed sequentially from smallest to largest is
considered here; see Poskitt (1987b) and Potscher (1990) for discussion of a
similar approach to univariate time series. Consistency of the method is
established and the asymptotic behaviour of the procedure when it is used to
identify an ARMA model which is fitted as an approximation to a data
generating process whose transfer function is not rational is also examined.
The notion that a model set does not contain the truth but serves as a vehicle
for describing the salient features of the process under study, some approxima-
tion to reality, is becoming more prevalent in time series analysis. In this
context we hope to indicate the first few steps along a path outlined in the
survey by Hannan (1987), extending to multivariate ARMA modelling some of
the ideas introduced by Shibata (1980) and further examined in Hannan and
Kavalieris (1986).

The plan of the paper is as follows. The next section sets out notation,
defines terms and presents the basic assumptions used in subsequent develop-
ments. Section 3 analyses the asymptotic properties of the least squares
estimates when the model structure is given. This is followed in the subse-
quent section by an outline of the structure determination procedure. This
section also incorporates a proof of consistency. In Section 5 the operational
behaviour of the procedure when used as an approximation method is pre-
sented. The final section contains some closing remarks pertaining to the
practical implementation of the techniques.

2. Preliminaries. Let x(¢) = (x,(2),...,x,()), ¢t =1,...,T, denote a re-
alisation of a stationary and ergodic vector stochastic process containing v
components. To avoid excessive notation x(¢) is employed to denote both a
given process and a realised value of that process. Assume that any determinis-
tic components have been removed so that, without loss of generality, x(¢) is a
zero mean regular process. Wold’s decomposition [Rozanov (1967)] implies that

(2.1) x(t) = X k(J)e(t—j), k(O0)=1I, teZ,
j=0
where the transfer function

K(z) = ¥ k(j)z
Jj=0

is analytic and det K(z) # 0, |z| > 1, &(¢) being the innovation process. Inter-
preting z~! as the unit lag operator, that is, z~x(¢) = x(¢ — 1), (2.1) can be
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reexpressed more succinctly as x(¢) = K(2)e(#). The innovation satisfies
E[e(®)] = 0 and E[e()e(s)] = 5, ,Q, where §, , denotes Kronecker’s delta and
Q > 0. The second order properties of x(¢) are uniquely characterised by its
impulse response, the sequence of v X v matrix coefficients (I, £(1),.
k(j),...} and the innovation variartce-covariance matrix (). When modelling
x(¢) it will be necessary to capture the fundamental features of these. Using
|| - || for the Frobenius norm of a matrix argument, suppose that

Y RG)IE <
Jj=0

and strengthen the condition on the zeroes of K(z) to det K(z) # 0, |z| > 1
see Hannan and Poskitt (1988) for some justification of the latter assumption.
We shall refer to the conditions given above as assumption (Al).

The class of multivariate ARMA models are defined by a specification of the
form

p

(22) L a(D=(t=j) = L m()n(t =i, teZ

Jj=0 Jj=0

]

a particular ARMA structure being obtained by fixing a value for the integer p,
the observability index and allotting numerical values to the elements of the
coefficient matrices a(j) and m(j), j = 0,1,..., p. In this model the observed
process is expressed as a linear transformation of an unobservable disturbance
n(¢) with a proper, rational transfer function ®(2) = X, (¢(j )z =
N(z)/d(z), where the numerator matrix N(z) and denominator d(z) are
determined from the operators

p p
(2.3) A(z) = Y a(j)z” and M(z) = ¥ m(j)z7
Jj=0 Jj=0
via N(z) = adj{A(2)}M(z) and d(z) = det A(z). In relation to (2.2), the follow-
ing assumptions are made.

(A2). The disturbance process n(¢) is a stationary, ergodic martingale
difference sequence. Thus if .%, denotes the o-field generated by n(s), s <¢,
then E[n(t)%,_;] = 0. Moreover, E[n(6)n(tY|.%,_,] =3 > 0 and E[n;(#)*] <
w, j = 1’ AR ] v .

(A3). The matrices A(z) and M(z) satisfy det A(z) # 0 and det M(2) # 0,
|z > 1. The pair [A(z): M(2)] are (left) coprime and in (reversed) echelon
canonical form.

Writing A, (2) for the r, cth element of A(z), r,c =1,...,v, and similarly
M(z) = [M, (2)], the (reversed) echelon form has the following properties that
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define [A(2): M(2)]:

(242) A,(2) =1+a, (D2l + - +a,(n)z",

(24b) A, (2) =@, (n, = n, + Dzl 4 s kg, (n,)27,
(240)  M,o(2) = m, (0) + m, (D)2 + -+ +m,(n,)2",

with m,(0) = a,.(0), wherein

(2.4d) min(n, + 1,n,), r>c,r,c=1,...,0,
. n, = )
re min(n,,n,), r<e,r,c=1,...,v.
The integers n,, r = 1,...,v, are the Kronecker indices associated with ®(z2)

and completely determine the structure of [ A(2): M(2)] from (2.4). Writing
A(z) and M(z) as in (2.3), p = max,(n,), note that the row degrees of
[A(2): M(2)], §,[A(2): M(2)], equal n,, r=1,...,v. The degree of d(2),
8(d(2)), is Xn, = n and is an invariant of ®(z) called the order or McMillan
degree. Setting v = {n,,...,n,}, the number of independent parameters in
[A(2): M(2)] is given by

d(v)=n(v+1)+ ) i {min(n,,n.) + min(n, + 1,n,)}

r<c=1
(2.5)
< 2nv.

For more detailed particulars on the concepts discussed in this paragraph, we
refer again to Deistler (1985); see also Hannan and Deistler [(1988), Chap-
ter 2].

Now suppose that P is a v X v permutation matrix such that P[ A(z): M(2)]
permutes the rows of [ A(z): M(2)]. By appropriate choice of P it is clear that
an observationally equivalent ARMA representation of ®(2) can be found with
row degrees that are ordered from smallest to largest, n,;, <n,p < -+ <
N,y With 7(j) = ¢(j), j = 1,...,v, being the permutation of 1,..., v induced
by P. With a slight abuse of notation, we shall write the permuted structural
index » as Pv = {n,,, ..., n,q,). Observe that premultiplying [ A(z) : M(2)] by
P amounts to a simple reordering of the equations in (2.4) and does not change
the magnitude of the Kronecker indices. By way of contrast, however, rear-
ranging the elements of x(¢), which corresponds to a premultiplication of ®(2)
by some P, will in general alter the n,, r = 1,...,v, but still leave the n,;,
J =1,...,v, unchanged. It is this fact, that the n,. ), j = 1,...,v, constitute a

~set of invariants for ®(z), that forms the basis of the structure determination
" procedure presented below. In particular, when the indices are ordered accord-
ing to their magnitude additional structure can be determined for [ A(z) : M(2)]
which can be exploited to advantage. Thus, consider the r(u)th row of A(z),
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1 <u <v. From (2.44d),

Moty j=1,...,u-1,
oy + 1, r(u)ZC(j),n,(u)<nc(j),j=u,...,v,
n o= Y . .
el R r(uy r(u) 2 C(J)’ Rrwy = Py J = Us---5 Uy
nr(u)’ r(u)<c(j),j=u,,.,,v.
Therefore
) T ru)
(2.6a) Aein(2) = X auue(8)275  J=1,...,0,
s=s(u,j)
where
Ny~ Pey T 1, Jj=1,...,u—-1,
1, r(u) <c(j)or
(2.6b) s(u,j) = r(u) z ¢(j) and n,q,) = ng;),
0, r(u) 2c(j)and n,q) <ng;,
Jj=u,...,v.

In the r(u)th row, the maximum lag of all variables is 7., with all lags
included if the Kronecker index associated with the c(j)th variable, n;, >
N, but the smallest lags deleted if n.;, <n,q, so as to give only n,
nonzero coefficients. Also, if r(x) > ¢(j) and n,,, = n., the contemporane-
ous influence of x,;(¢) on x,,,(#) does not appear. Interchanging the roles of
row and column we find from the c(x)th column that x,,,(¢) appears in all
equations with a maximum lag determined by 7, ;,, the Kronecker index of
that equation or row, but with the leading terms of the operator truncated to
give only n,,, nonzero coefficients if n,,, <n

o o(u rG)
")
(2.7a) Aean(B) = L Grgea($)2
s=s(j,u)

where

Ry = Moy + 1 J=u,...,0,

L r(j) <c(u)or
(2.70) s(j,u) = r(j) zc(u) and n, ;) = n ),

0, r(j) zc(u) and n, ;) < 1.y,

j=1,...,u—-1.

Counting the number of freely varying parameters in the r(u)th equation, we
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obtain
u—1
dy(¥) = X ngy + (20 —ut+ Dng,,
j=1
assuming for simplicity that the N,y J=1...,0, are distinct.

By defining constraints on the rows of [A(2) : M(2)], the (reversed) echelon
form provides a reduction in the number of system parameters required to
represent ®(z). More significantly, however, equations (2.6) and (2.7) imply
that the specification of the r(u)th equation, 1 <u <v, depends on n,;),
j=1,...,u,but not on any larger index and *.d, ;(¥) when compared to (2.5)
indicates that the number of freely varying parameters is minimised for the
ordered Kronecker indices or Kronecker invariants. This suggests how the
problem of simultaneous inference implicit in medel identification might be
handled and a parsimonious model constructed by building up the Kronecker
indices in order of magnitude from smallest to largest. Before developing this
idea in detail in Section 4, we will require the following construction in the
next section.

Employing the notation and conventions of Neudecker (1969), let a =

vee(a(1): --- :a(p)) and & = vee(m(1): - -+ : m(p)), where a(j) and m(j),
j=1,...,p, are the coefficient matrices of (2.3) with [A(2): M(2)] in (re-
versed) echelon form. If {,(2) = (z7%,...,27P), then

vec A(z) = ({,(2) ® I,2)@ + vec a(0),
vec M(z) = ({,(2) ® I,2)& + vec m(0).

Now let S,,, be a selection matrix with rows equal to vp element unit
vectors of the form (0, ...,0,1,0,...,0), the ones appearing in those columns
corresponding to the nonzero elements of a found as one moves down the
vector. Put a = S,,,a. From the relation S,0ySaw = 1, it follows that a =
S,,a. Similarly, set A = Sg,)A, A = vec(a(0) — I,), where Sy, selects the

nonzero elements of a(0) below the leading diagonal appearing in A. Then

(2.8a) vec A(2) = (£,(2) ® 1,2)Syya + SpA + vec I,
Using what is now an obvious notation we also have
(2.8b) vec M(2) = ({,(2) ® 1,2) Syt + Speyr + vee I,

where u = S,,,)&, Sy being defined in a manner similar to S,,, and S,
These representations prove useful in simplifying the exposition of the estima-
tion procedure discussed in the next section. Here we note that a, A and u
contain the freely varying parameters of [A(z): M(2)] in R not restricted to
be either 0 or 1. Thus if o is a vector containing the v(v + 1)/2 distinct
elements of 3, then ARMA;(») = {(a/:X:y) X0 € RE®) x RA/Dv@+D.
®(2) = A(2)"'M(2), 3 > 0} is the set of all ARMA models in (reversed) echelon
‘form with (structural index = {Kronecker indices}) » = {n,,...,n}. The pro-
cess x(¢£) admits an ARMA representation if there exists a vo = {ny, .-, nyoks
njy<e®j=1..,1 with associated parameter values a,, A9, & and o, such
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that ®,(2) = K(2) a.e., |z| = 1 and 3, = , implying that n(¢) = &(¢) a.s. This
establishes the link between the process generating the data (2.1) and the
model (2.2). In this case, the ARMA ;(v,) model will be said to obtain or to
hold and the true autoregressive and moving-average operators will be denoted
A, and M,, respectively. As here, the indeterminant z will often be omitted
from polynomials and power series, where this causes no confusion and the
appendage of the subscript 0 will be used throughout to denote true values.
Finally, for any two processes £(¢) and v(¢), we shall write

L) = T (i)

j=-=

for the cross-covariance generating function between them. In particular,

L(2) = T %u(i)z = K(2)QK(z"Y

J=—x

and

Fo(2) = ¥ y(i)z = K(2)Q.
Jj=0

3. Estimation of ARMA ,(v) models. Suppose that the structural in-
dex v = {n,,...,n,} is a fixed a priori. In order to estimate the parameters in
(a': X : ) and, implicitly, o, the following two-stage technique, which is a
variant of the method proposed in Hannan and Kavalieris (1984), can be
employed.

StaGE 1. Regress x(¢) on x(¢ —j), j =1,..., h, to obtain residuals
h A
én(t) =x(t) — X ¥(J)x(t —J)
i=1

and set
17 . 2m?
AIC(h) = logdet — Y &,(t)é,(t) + .
T =, T
Define h by the requirement that AIC(h) > AIC(h;),0 < h,hy < Hp, Hp =
(logT)*, 1 <a <o Put é4(t) =8, (), ¢t=1,...,T.

The purpose of this stage is to provide estimates of the unobserved innova-
tion process. In the light of the results of Shibata (1980) and Hannan and
Kavalieris (1986) an autoregressive approximation is used, the order of the
approximation being chosen by reference to AIC. Now set

(3.1) nr(t) = A(2)x(2) = (M(2) — 1,)ér(?).

Using the elementary result that a column vector is its own vectorisation, the
rule vec ABC = (C’ ® A)vec B and (2.8) the right-hand side of (3.1) can be
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reexpressed as
x(t) + X,()a + B(5)A - E,(t)u,

where .
X,(¢t)a = vec[ A(2) — a(0)]x(¢)
= (x(¢t) ® I,)vec f a(j)z‘ll
j=1

= ({p(z)' ®x(t) ® Iv)St’z(u)a
defines X, (¢) and similar identities define
Fv(t) = ([x(t) —-ér(1)] ® IU)S;'(V)
and
E,(2) = (4,(2) ® 2p(t) ® 1,)S ),
This leads to:

STAGE 2. Let the parameter vector 6 = (o' : X :') and set the regressor
variables R (tY = [-X,#): —E#): E, (1)), ¢ = 1,..., T. Minimise the residual
sum of squares

T T
El Inz(2) | = L |A(2)x(2) = (M(2) = L)er (1) |

T 2
= El |x(e) — R, (2Y8]

with respect to the d(v) freely varying elements of 6 ([A; M]) to obtain the
least squares estimate 6, (A, : M;)).

In describing the procedure, the nomenclature and ideas of least squares
regression are employed since these will frequently be called upon in subse-
quent theoretical developments. For technical reasons also, presample values
will be assumed to be zero. This has an asymptotically negligible effect but
could, as is well known, be of some significance in applications. We shall return
to this issue which impinges on the question of practical implementation and
algorithm construction below.

THEOREM 3.1. Suppose that x(t) admits an ARMA representation satisfy-
ing conditions (A1)-(A3) of Section 2. Then [Ay: MT] =[A.:M]+ 0@Qr)
a.s., Qp = (loglog T/T)'/?, where [A.,: M,], which may depend on T, min-

: imises tr ¥(v)

1 =
(3.2) V(v) = EI_W(AK—M)Q(AK—M)* do.
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For ease of presentation, the argument z = ¢’® is omitted in the integrand
of expression (3.2) and an asterisk is used to denote the joint operations of
transposition and complex conjugation, a notation with which we will persist
in expressions of this kind. It is possiple to give more detail about the form and
behavior of [A,: M,] but these are not required here and are, therefore,
omitted until needed. Note immediately that if v = v, meaning n, =n,,,
r=1,...,v,then[A, : M,]=[A,: M,], giving rise to the following.

CoROLLARY 3.1. If ARMAy(v,) obtains and v = v, then 8, (Ap: M;D
provides a strongly consistent estimator of 0, (A, : M,)).

The proof of Theorem (3.1) depends on the following results.
LEMMA 3.2. Under the conditions of Theorem (3.1):

(@) uniformlyin h < (logT)* 1 <a < «,

1T
7 L (8(t) —e(ONeu(t =) — e(t =)} = O(QEh), ¥ fized,

1 T
7 L e(0){e0) - e(1)) = 0(Q}h);
t=1
(i) Ay =colog T{1 + 0(1)} @.s., ¢, > 0.
ProoF. See Hannan and Kavalieris (1984, 1986). O
Now set S, = diag(S,,; Sfu) Smay @ d(¥) X v3(2p + 1) selection matrix
and let
1 Goux Ga/\
= ["RR*dw = G
G- f_wRR dow A

ap

Ap |

Q0@

[
the upper triangle only being indicated because G’ = G,
—-{,(2) ® K(2)Q'?® I,
R(z)=8,| -1® (K(z) - 1,)0Y%*@® 1, |,
{H(2) ® Q2 1,

with Q!/2 the Cholesky lower triangular factor of Q. Also put

g, . ¢, ® vec(KQK*Y
g=|8|= _f” S,|1®vee(KQ(K ~ I)*Y |dw.
g/.l, 217 -7 *)/
{, ® vec((LK™)
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LeEMMA 3.3. Under the conditions of Theorem 3.2, the matrix
1 A
Gr= > R, (H)R,(t) =G +0(Qr) a.s.
t 4

and the vector

1

gr==Y R,(t)x(t) =g+ 0(Qr) a.s.

N |

Proor. Consider a typical element of the top right-hand subblock of GT
corresponding to G, . This is composed of an appropriate selection from terms
of the form

Pee(k—J) =T Y x(t—j)ép(t—k), Jk=1,...,p,
k,j

L%, ; indicating summation over ¢ = max(j, k) + 1,...,T. Expanding

ook — ) 88 9,.(k = J) + Pue,— (R —J), the first term is v, (k —j) + 0(Qr)
a.s. [An, Chen and Hannan (1982) and Hannan and Kavalieris (1983)] and
from the Cauchy—Schwarz inequality the second has components majorised by
factors involving the elements of . _.y: s—o(0), which by Lemma 3.2 are
O(Q% log T). Applying the same argument to the remaining subblocks of G,
establishes the first statement of the lemma and the second is shown analo-

gously. O

PrOOF OF THEOREM 3.1. By definition 6, is obtained as a solution of the
normal equations GTO = 8. We will suppose, without loss of generality, that
f, is taken as the minimum norm least squares solution, Rao and Mitra
[(1971), Chapter 3] and satisfies |67/l < . From Lemma 3.3 it is straightfor-
ward to show that G, = g + O(Q7) a.s. Thus, if G is nonsingular, 6, = G g
is unique and 8, = 6, + O(Q;) as. If G is singular, then 6, differs from a
member of the set O, ={0: G§ =g} by a term that is O(Qr) as. and
converges to ©, in the sense that any subsequence of 67 has a sub-subse-
quence converging to a point in @,. Thus we may write 6, = 6.7 + 0o(Qr) as.,
where 0, € 0,. It remains to show that a solution of the system of equations
GO = g minimises tr ¥(v). To this end, note that tr V¥(v) is a norm for
{A(2)K(2) — M(2)}Q'/? which we denote by |- II2,2 [Rosenberg (1963)] and
after a little algebra

vec{A(2)K(2) — (M(z) —1)}QY? = vec E(z) (say)
= ((K(2)QY?) ® I)vec I — R(2)'6.

Some simple analysis shows that

! " gE*a v
Ef_,, w=0+¥().
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Using the equality tr(BB*) = (vec B) vec B, where B is the complex conju-
gate of the matrix B, Parsevel’s relation and natural Hilbert space generalisa-
tions of the least squares results presented in Rao and Mitra [(1971), Chapter
3.7], we deduce that the equation system G = g generates the least squares
solution to the minimisation of ||E(2)||%2 and hence minimises tr ¥(v) as
required. O

Although the estimator [A, : M;] is consistent, it can be shown to be
asymptotically inefficient relative to the Gaussian maximum likelihood estima-
tor; see McDougall (1988) for the case v = 1. An efficient estimate can be
obtained either by use of a full maximum likelihood procedure or by imple-
menting Gauss—Newton-type recursions. Examination of the least squares
calculations is motivated partly by the need to provide consistent preliminary
estimates that can be used to initiate such iterative calculations. Moreover, it
is in general extremely unlikely that v, will be known and it seems prudent to
contemplate identifying v, before complicated, open-ended algorithms are
employed to obtain efficient estimates. We shall therefore consider identifying
v, using the closed-form least squares calculations described in Stages 1 and 2
above.

4. Determination of Kronecker indices. Since the ordered Kronecker
indices are invariants of ®, the objective of the procedure proposed here is to

identify n,q, <n,q < -** <n,, in sequence, exploiting the additional
structure that such an ordering imposes on the specification. Let &2(»),
r=1,...,v, denote the estimate of the one-step ahead prediction error vari-

ance for the rth variable. For v = {0} = {0,...,0}, 62({0}) = T~ 'L x,(¢)>. We
consider using a model selection criterion for the rth equation of the form

A, (v) = log 32(») +d,(v)C(T) /T,

where C(T) is a real-valued, nonnegative, possibly stochastic function of T. It
is convenient to think of the procedure described immediately below as taking
place sequentially. It is designed so that the smallest index will be identified in
the first pass through Steps 1 and 2 and in subsequent passages the remaining
indices will be determined in increasing order of magnitude.

Set #(1,n) ={n,...n} = v(n) for all n > 0. Commencing at u =1, n = 1,
repeat Steps 1 and 2 until all ,;), j = 1,...,v, have been evaluated.

Step 1. For r(j), j =u,...,v, regress x, () on X, (t = n + A,y — 1),
s Xy (E = 1), Epmyr = Dy 8 yp(E =), m=1,..,u—1,uz= 2 and
Xy = Dy Epmyr(E = Dy L= 1,1, PIUS %, (£) — &,y (@) if 7(m) < r(u),
m=u,...,v, and evaluate A, {¥(u,n)}, j =u,...,v.

Step 2. If

A fP(u,n)} <A, (P(u,n - 1)} forall je {u,...,v},

increment n by 1 and return to Step 1. If A, {#(u, n)} = A, fo(u,n — 1},
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Ji€f{u,..., v}, L...,s, set A, =" =4, pn=n-1 r(u)=
r(jp,.. r(u + s — 1) =r(j,). Increment u by s and let #(u,n) =P,y =
{n,(1 yowovsPApu_1y Ny...,n), where P, determines the permutatlon

{r@),...,r(u 1) r(u),...,r(w)} of {1,. v} Return to Step 1.

A feature of the identification process is that the estimates 7, iy J =

1,...,v, are characterised by the fact that A,(J){ﬁ(r(j) n)} > A,(J){ﬁ(r(j)
n+ 1) 1 <A, Aplor(), Ryl < A oG, A,y + D), =1,
Each index is the right-hand endpoint of the interval over which its assoc1ated
criterion function is strictly decreasing and is defined without reference to an
upper bound. The algorithm has also been presented in terms of the estima-
tion of individual equations by breaking down the general notation used to
describe Stage 2 into its component parts. In particular, a careful examination
of the rows of R (tY reveals that the nonzero elements in the rth row
correspond to regressor variables appropriate to the rth equation. Similarly,
each column of R, (¢) contains only one nonzero entry, a number in the rth
row corresponding to the value of a regressor for the rth equation. Thus, the
equation system GTGT &r can be rearranged into v subsystems, which we
write using an obvious notation as G,;8,;, = 8,7, r = 1,...,v, one for each
row of [A : M]. The freely varying parameters of any particular equation in the
system are determined independently of those of any other. It is this property,
in conjuction with the structure implied by (2.6) and (2.7), that ultimately
leads to the following result justifying the procedure.

THEOREM 4.1. Suppose that ARMAg(v,) obtains and assumptions
(A1)-(A3) are satisfied. Then if C(T)/log T loglog T — » such that
C(T)/T >0 a.s. as T >, then A,; =N,y J=1,...,v, with proba-
bility 1.

Proor. First we adapt an argument of Hannan and Kavalieris [(1984),

page 550] to obtain a lower bound to 62(v), r =1,...,v. For any #(u,n),
u=1,...,v, the variables being regressed upon at either Step 1 or Step 2 are

from x(¢ — ) and é,(¢ — 1),1 <l <n, together with certain other elements of

x(¢) — €7(2). From Stage 1, however, x(t) —&()and é,(t - 1), 1=1,.. .

are linear combinations of x(¢ —1), 1 <! < (n + hy). Therefore, if £(¢)

is the residual from the unrestricted autoregression of x(¢) on x(¢t — 1), [ =
o+ hy),

T

1 T A
T X Ar(t)Ar(t) = — g ()é(ty

’ﬂ

(4.1) .
; e(t)e(t) + 0(Q%1logT) as.,

'ﬂl

from Lemma (3.2).
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Now let [A_: M_.] be as in Theorem (3.1) and 6, = (o, : X, : &.,)). Then for
any permutation matrix P,

(42) Pig(t) = P{A(2)%(2) - (M(2) = D)ér(8)} + PRL(2)(6. — br).
To further analyse (4.2), we appeal to:

LEMMA 4.2. Under the conditions of Theorem 4.1:

@D Ifn.<n.r=1,...,v, then [A,: M), which is unique, is such that
ALK (z) — M(2}QY?||_, > 0.

G Ifn,y=n.G0 J=L...,u,n, ;=N <N, 0 Jj=u+1l..,01<
u < v, then
AL ML u,
P[A,:M,)=| ¥ !
A%Mé; v—u,

where [AL : ML] satisfies AL(2)K(2) — ME(2) =0 a.s., |zl = 1 and [AZ,:
MZ] minimises [{A5(2)K(2) — ME(2)}Q'?||_,, = 0, where [A%: M{] are the
last v — u rows of the permuted polynomial operator pair P[A: M],
{n,qy.. 0.} =Pv=v(u+1n)

From Lemma 4.2,
P(A(2)x(2) — (M(2) = I)ér(t))
_ [sf;(t)

sé’(t) + P(Mw Z) - I){gT(t) - 8(t)},

where
e2(t) = [1,:01Pe(t),
because AL (2)K(z) = ME(z) and
endt) = [0:1,_,1Pe(t) + {AZ(2) K(2) — M3(2)}e(2).
Using Lemma (8.2) together with Theorem (3.1), we obtain

1 T
T Z P’ﬁ'T(t)”AIT(t)’P'
t=1
1 T
(4.3) =7 g[eﬁo(t)t?io(t)](sﬁo(t)'=€él(t)')

0(Q7logT) O(Qr)
0(Qr)  0(Qr)|
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We also have, via ergodicity,

1

(442) =X ef(D)efe) = [1,:0]PQP[L,:0] +0(1) as.,
1

(44b) =X ef(D)ef(t) = [L,:01PQP[0:L,_] +o(1) as,

1
D IAOLAO)
(4.4c) =[0:1,_,JPQP[O:1,_,]

1 =
+5- ) (ALK - ML)Q(ALK - ML) do +o(1) as,

the form of (4.4b) and (4.4¢) resulting from the fact that A(2)K(z) — M(2) is
strictly proper.

Suppose that i, ;,=n,;y, j=1,...,s— 1,2 <s <v. Let Rt} be de-
fined as for R (¢), except that £,(¢) is replaced by £(¢) everywhere it occurs.
Regarding the columns of R,(t) as elements of the Hilbert space -Z,(P) of
random variables and recalling the isometry with £,(Q d w) using the conven-
tional norms as in Rosenberg (1963) and Rozanov (1967), it is easily seen that
G is the Grammian of the regressors R, (t). Write M,(v) for the _Z,(P)
closure of the linear manifold spanned by the subset of regressors appearing in
the rth row of R, (¢). The squared norm of the residual from the projection of
xps(t) on M, {v(s,n)}, the residual variance 0,2 {v(s,n)}, is given by the
r(s)th diagonal element of (4.4) with u=s—1if n#n,,, and u =s,
n =n,.yo Extending the methods employed to prove Lemma (4.2) and
using least squares theory in conjunction with an adaptation of the argu-
ments of Pétscher [(1990), page 175] indicates that o (v(s,n)} is monoto-
nically decreasing in n for n < N, See below. Thus for T > T’ < =,
log 63, {v(s, n)} > log G5, v(s,n + 1)} as. in view of the convergence of
67 v(s,n)} to 02 {v(s,n)} implied by (4.3). This means that A sfv(s,n)} >
A fv(s,n + 1)} for 0 <n <n,q, because C(T)/T — 0 and hence #,, >
N.so 8. When n =n,.,, 63 {m(s,n)} =T 'Le, () + O0(Q%logT) as.
from (4.3) and (4.1) indicates that to terms O(Q2 log T') the lower bound to
the residual sum of squares, which is independent of v, is attained. It follows
that

Aris{P (5, repo + 1)} = Ao v (5,7 00) )
> (20 -5+ 1)C(T)/T + 0(Q% log T)

is strictly positive for T sufficiently large if C(T)/log T loglog T — « and
therefore we can conclude that i, =n,,, as. A completely analogous
argument applied to A {v(n)}, r = 1,...,v, recalling that v(n) = {n,...,n},
shows that #,,, behaves as stated in the theorem and a simple induction
completes the proof.

Reverting to the proof of Lemma (4.2), suppose n, <n,, r=1,...,v, and

assume that there exists a nonnull polynomial pair [A: M] such that
I{A(2)K(2) — M(2)}Q'/?||_,, = 0. This implies A(z)K(z) = M(2) a.s., |z| = 1,
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since ) > 0, contradicting the coprimeness of [A,: M,] since §,[A(2):
M) <n,y r=1,...,v. Therefore [{A(2)K(2) — M (2)}QY?|| > 0. A similar
argument shows that G is nonsingular: For if there exists a nonzero vector
B = (c':¢ :d’), partitioned conformably with the rows and columns of G,
such that g’'G = 0, then

BGB = gfﬂ tr(CK — D)Q(CK — D)* dow,

where
vec C(2) = (£p(2) ® 1,2)S;, ¢ + Siie,
vec D(z) = (£,(2) ® 1,2)S,,,d + Sfie,

leading to the same contradiction. This establishes (i).-

To show (ii), observe from the structure indicated in (2.6) and (2.7) that the
specification of the operators in equations r(j), j = 1,..., u, are correct and
are not influenced by any possible misspecification in rows r(j), j=u +
1,...,v. Using an analogous argument to that employed immediately above we
can show that det G, ;, # 0, j = 1,..., u, so that the first u rows of P[A_: M,]
are unique. Furthermore, Theorem (3.1) tells us that [A,: M,] minimises
I{A(2)K(2) — M(2)}Q'?||_,. From the unlqueness of [AY, : M{] and
P[A,: M,] it is clear that [AL, .Mf;] = [Af, M’:)] Thus AP(2)K(z) -
M{;(z) =0 as, |2/l =1 and [AF, : ML] minimises II{AP(z)K(z) -
M7 (2)}0'?|| , > 0 as required.

It remains for us to show that o3 {v(s,n)} form a strictly decreasing
sequence in n when n <n . Set P, =[I :0]P and write [A.(2) : M(2)] for
the operator pair that minimises tr ¥(v), where Pv = v(s,n). Since n,;, =

,(J)O, j=1,...,s — 1, we can deduce from Lemma (4.2) with u = s — 1 that

a2 (5, 1) = W, + IPAALIK(2) — M(2)QV2I%,. Let [A(2): M(2)] be
any echelon canonical form with permuted structural index v(s,n + 1). Using
the generalised Bezout equality, Kailath [(1980), page 382], we can determine
from [A z): M(2)] a unimodular coordinate transformation between
[A(2): M(2)] and [ X(2):Y(2)], say, given by

—H/ leX

= [Y(2) A(2) — X(2) H(2) : Y(2) M.(2) + X(2)G,(2)].

Now assume that o2,{v(s, n)} = 0%, {v(s,n + 1)}. By definition of
o5, {v(s, n + 1)} this means that for every operator pair [ X(2):Y(2)],

| P{AL2) K (2) - M)},
(45) <|P{¥(2)[AL2)K(2) - M(2)]
~X(2)[H(2)K(2) + G(2)]}02|,,
The minimum is obviously achieved when [ X(2):Y(2)] = [0: I]. Treating the
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right-hand side of (4.5) as a functional of [ X(2): Y(2)), it is straightforward to
show that it has Frechet differential

dF{X(2):Y(2): AX(2) : AY(2))
= % tr” ReP{Y( AK - M) - X(H.K + G,))

XQ[P{AY(AK - M,) - AX(H.K + G)}]|" dw.

Because [0, I] provides an extreme point of the functional we know, via
Vainberg [(1964), Theorem 9.1], for example, that dF{0:I: AX(2):AY(2)} = 0
for arbitrary [A X(z): AY(2)]. Choosing [A X(2): AY(2)] = [0: I'], we are lead to
the conclusion that [|P{A (2)K(2) — M (2)}Q'?||_,, = 0. This implies, how-
ever, that K(z) can be expressed in terms of an echelon canonical form whose
first s Kronecker invariants are n,;, =n,;y, j=1,...,s — l,and n,, = n,
which is evidently not possible if n <n,,, Hence equality between
o2 v(s,n)} and o} {v(s,n + 1)} is excluded when n <n,,y,. Because
M, fv(s,n)} € M, {v(s,n + 1)} for all n, it now follows from standard least
squares (Hilbert space) theory [Rao and Mitra (1971); Seber (1977)] that the
residual variances satisfy 0,2,{v(s, n)} > o5 {v(s, n + 1)} whenever n < n,,,
as required. O

5. Approximation of nonrational transfer functions. When K(z2) is
not rational, that is, it is not possible to find n, < », r = 1,...,v, and a pair
[A: M] in (reversed) echelon form such that A(z)K(z) = M(2) as., |z| =1,
finite order models may be used to approximate the structure of the data-gen-
erating mechanism. If the identification procedures defined in Section 3 and 4
are employed to estimate and determine such an approximation, then in order
to analyse these methods it is necessary to alter the previous prescription
concerning the true stochastic structure. Assumption (A1) is modified to (A1Y
by including the additional condition ¥, j'/?llk(j)ll < « and (A2) is applied
directly to the innovation process, rather than indirectly via n(¢) and the
notion of a true model to give (A2). The alternations are required because the
model class being entertained no longer obtains. With these modifications to
the assumptions about x(¢), Proposition (3.2) and Lemma (3.3) still apply with
@, replaced by Q= (log T/T)/? and hy = O(T/log T)"/? [Hannan and
Kavalieris (1986), An, Chen and Hannan (1982)]. Thus, Theorem (3.1) is also
applicable with @7 exchanged for Q. Furthermore, since x(¢) does not admit
an ARMA representation, the same argument as previously employed shows
that Lemma 4.2(i) holds true for any fixed n, the ARMA g{v(n)} approximant
being uniquely identified.

Referring now to the two steps of the structure determination process, let
a{v(n)} be [as before] the residual variance from the projection of x,(¢) on to
the regressors x,(t — 1), e;(t = 1), j=1,...,v, I =1,...,n, and x,(¢) — &,(¢),

j=1,...,r— 1, in Z,(P). A repetition of the logic employed in Section 4
shows that o(v(n)} > oHw(n + 1)}, r = 1,...,v. Recall that ¢2(») is given by
the rth diagonal element of Q + ¥(v), w,, + ¢,,.(v) and put A {v(n)}=
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log(1 + ¢, {v(n)}/w,,) + @Qvn + r — DC(T)/T. From the modifications indi-
cated in the previous paragraph we find, in a manner similar to the derivation
of (4.3) and (4.4), that &Xv(n)} = o*v(n)} + o(1) as. and hence that
IAfv(n)} — log w,, — A {v(n)}l = o(]) with probability 1. For any fixed T < »
A {v(n)} attains a global minimum for n finite for ¢, {v(n)} declines monoton-
ically in n, ,, is independent of n and the correction term increases linearly
with n. Combining this argument in an obvious way with those used to
establish Theorem (4.1) shows that the A, j=1,...,v, derived from the
identiﬁcation process will converge to the ordered set of 7., r=1,...,0,

Toar <TrerS 0 < Taem respectively. Nevertheless, for any integer N >
0, A {v(n) > A {v(n + 1)} for 0 <n <N as. since, by assumption, C(T')/
T - 0 as. as T — ». Therefore the minimum of A {v(n)} occurs at 7, > N
for T sufficiently large and since N is arbitrary, this implies 72,.r — ® as
T — «. Summarising these results we have the following.

THEOREM 5.1. Suppose that x(t) does not admit an ARMA representation
but satisfies (A1) and (A2). If i, r = 1,...,v, denotes a sequence of positive
integers at each of which the minimum of A {v(n)} with respect to n is

attained, r=1,...,v, then i, p > o, r=1,...,v, a.s. This implies that
ﬁr(j)—moa.s., Jj= 1,...,v.
Because 7i,, yields the minimum of A {v(n)}, r =1,...,v, the intuitive

interpretation that the identification procedure selects the model that appears
nearest the generating mechanism of the process is still available. As an
illustration of the application of this notion, suppose that for large n,
1//,,{V(n)} p,(nX{1 + 0(1)}, which we write as ¢, {v(n)} ~p,(n), where
p,(n) is a twice continuously differentiable function satisfying dp,,(n)/dn <
0, d%, (n)/dn?> 0 and p,, > 0. Using the fact that for y small, log(1 + y) ~
y, we see that 7,, is governed by the behavior of p,.(n) + o, (2vn +
r— 1DC(T)/T. If p,(n) = conPo, By > 1, then 7. ~ (Cy (T))I/(“BO) where

Co(T) = ¢,T/20C(Tw,,; if p,(n)=coBf, 0 <P <1, then 7,z ~ (C(T)/
(—log B,)). Observe that 1 + ¢, {v(n)}/w,, represents the ratio of the one-step
ahead prediction error variance obtained from predicting x,(¢) from the model
over the innovation variance. More generally, T ¢, {v(n)} can be taken as a
measure of the goodness-of-fit of the rational approximation ®(z) =
A(2) M (z) to K(2). If these quantities are viewed as being indicative of the
relative merits or efficiencies of alternative specifications, then it appears from
the inverse relationship between 7, and C(T') that consistency and efficiency
are not compatible, a state of affairs already known to exist in the context of
autoregressive approximation [Shibata (1980) and Hannan and Kavalieris
(1986)1.

6. Some practical considerations. In order to implement the above
identification procedures, numerical algorithms for solving the least squares
problems described in Section 3 must be chosen. One such choice corresponds
to the methods outlined in Hannan and Kavalieris [(1984), Section 3.1]. These
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are based on Levison—Whittle recursions and it is well known [Makhoul
(1981), Tj6stheim and Paulsen (1983)] that the pre- and post-sample window-
ing implicit in the Toeplitz assumption underlying this method can produce
substantial small sample bias. This problem might be circumvented by use of
the class of lattice algorithms; see Friedlander (1982) for a survey and further
references. Alternatively, the required least squares calculations could be
performed directly via the QR algorithm. This procedure is numerically robust,
and for the purposes of Section 4, readily lends itself to simple recursive
calculations for the introduction and deletion of regressors [Seber (1977)].
Asymptotically, of course, these different methods are all equivalent and
ultimately the choice made by the applied worker may be governed by ques-
tions of availability and convenience. Nevertheless, the need for empirical
experience and experimental evidence on the properties of the different algo-
rithms in finite samples is indicated.

Whatever method is employed in practice it will be necessary to monitor the
calculations involved in the determination of 7, ;,, j = 1,...,v. Consider, for
example, the first pass through Steps 1 and 2 of Section 4. The submatrix of
G, corresponding to the rth equation G,;, converges to G,, where G, is
composed of the mean squares and cross-products of x;(t — 1), &;(t — 1),
l=1,...,n, j=1,...,v, and x,(t) —¢,(¢), j =1,...,r — 1. Examination of
(2.6) reveals, however, that if ARMA ;(v,) obtains, then

ray v ray
Z Z ar(l)c(j)O(s)xc(j)(t —s) = Z Z mr(l)c(j)OEj(t —-8).
J=1s=35(,j), j=1s=1

For I =n —n,qy > 0, this defines an exact linear dependence between
Xt —1) and x;(t —1—-D),...,x,¢t—n), ;¢ -1 —1),...,¢;(t—n), j=
L...,v,and x;(t =) —¢g;(t = 1), j=1,...,r(1) — 1, with weights given by
the coefficients of the r(1)th row of [A,: M,]. When n > n_,,, these variables
are a subset of those appearing in row r(1) of R, ,(¢) and the singularity of
Gr(l) and hence G follows. Lemma (3.3) therefore implies that when n =

n,ayp + 1det G,(l)T O(QT) a.s. and it is this approach to singularity that will
have to be checked as n is increased. Similar but notationally more complex
derivations indicate the presence of equivalent properties whenever n in
v(u,n) exceeds n,,y, 4 =2,...,v, and the need to scrutinize the least
squares evaluations is apparent.

The singularities discussed immediately above clearly provide additional
information on the Kronecker indices and structure of [A: M] that can be
constructively exploited. Indeed, if n,,, is known, the parameters of the
r(u)th equation can be estimated by appropriate scaling of the elements of the
eigenvector of G, corresponding to the zero eigenvalue obtained when
n=n,,yn+ 1l The index n,,, can itself be determined by developing a
method for assessing when, as n is increased, an eigenvalue of Gr(u)T first
appears to be not significantly different from zero. Such an approach is closely
related to the singular value method used in canonical correlation analysis of
Akaike (1976); see Tsay and Tiao (1985) and Tiao and Tsay (1989). Moreover,
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as suggested by a referee, examination of the singularities present could
indicate alternative constraints on [A: M] to those given in (2.4) and this is
related to the concept of redundant parameters discussed in Tiao and Tsay
(1989). In the present context of using closed form least squares calculations, a
more direct way of exploiting this information would be to equate C(T') in
A, () with (1 + tr G} log T). Some justification for this value can be obtained
from the arguments presented in Poskitt (1987a). This assignment generates a
stochastic parameter adjustment term satisfying the conditions of Theorem
(4.1) as C(T) is O(log T) when the equation is underparameterised but
O(Q7'log T) if the specification is too profligate. Other choices for C(T)
consistent with the requirements of Theorem (4.1) can be made, C(T) =
(log T')'*°7, where 87 > 0 with 8; — 0 as T — «, so that high-dimensional
models are penalised less as sample size increases, seems reasonable for
example. One possible advantage that the former suggestion has over the
latter one, however, is that it provides a straightforward data-oriented method
of deciding on the magnitude of the parameter adjustment term; see Atkinson
(1980) for a discussion of this point.

Finally, in the same vein, a value for H; = (log T')* will have to be chosen
in practice and it is clear that such a choice could be critical. If K(z) has a zero
near the unit circle, for example, @ and hence H; will need to be reasonably
large in order for £,(¢) to provide a good approximation to the unobserved
innovations. Note that [log T'] only increases from 4 to 9 between T = 100 and
T = 10,000. A common practice when fitting autoregressions is to set H, =
qT /v? 0 < g < 1, so that the total number of coefficients estimated is bounded
by a fixed proportion of the realisation length. The use of such a rule implies
that ¢ = log T'/loglog T + 0(1) and seems quite reasonable, but the need for
empirical experience and experimental evidence is once again apparent.
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