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DIAMETER AND VOLUME MINIMIZING CONFIDENCE SETS
IN BAYES AND CLASSICAL PROBLEMS!

By ANIRBAN DasGupTA

Purdue University

If X~P,0€Qand 6 ~G < p, where dG/dp belongs to the convex
family I, ;= {g: L < cg < U, for some ¢ > 0}, then the sets minimizing
A(S) subject to infg ey, ,, Po(SIX) > p are derived, where P5(S|X) is the
posterior probability of S under the prior G, and A is any nonnegative
measure on () such that u << A < u. Applications are shown to several
multiparameter problems and connectedness (or disconnectedness) of these
sets is considered. The problem of minimizing the diameter is also consid-
ered in a general probabilistic framework. It is proved-that if 2" is any
finite-dimensional Banach space with a convex norm, and {P,} is a tight
family of probability measures on the Borel o-algebra of &, then there
always exists a closed connected set minimizing the diameter under the
restriction inf, P,(S) > p. It is also proved that if P is a spherical uni-
modal measure on R™, then volume (Lebesgue measure) and diameter
minimizing sets are the same. A result of Borell is then used to conclude
that diameter minimizing sets are spheres whenever the underlying distri-
bution P is symmetric absolutely continuous and the density f is such that
f~1/™ is convex. All standard symmetric multivariate densities satisfy this
condition. Applications are made to several Bayes and classical problems
and admissibility implications of these results are discussed.

1. Introduction. One of the most widely studied problems in statistical
theory is the construction of a good confidence set for a (vector) parameter 6.
In the classical framework where one has X distributed as P,, an often
adopted criterion is to minimize the probability of covering false values subject
to having a large enough probability of covering the true value. Formally, one
wants to find a family of sets {S(x)} minimizing Py(S(X) > ¢') for 6 # ¢
subject to a restriction that P,(S(X) = 6) > p for every 6. Such sets have
been called uniformly most accurate (UMA) confidence sets in the literature. It
is well known, however, that even in problems with some kind of invariance, a
UMA confidence set often does not exist even in the class of invariant
confidence sets. See Lehmann (1986) for examples. Instead, one often consid-
ers the problem of finding the smallest set subject to a restriction of the form
P,(S(X)>6) >p for every 6. Typically, the size of a confidence set S is
measured by considering A(S), where A is a nonnegative measure on the
parameter space; in problems with a continuous parameter 6, A is usually
taken as the Lebesgue measure while in the case of a discrete parameter, A
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may be taken as the counting measure. For specific results and general
exposition, see Hotelling (1939), Brown (1966), Cohen and Strawderman (1973),
Hwang and Casella (1982), Joshi (1967), Naiman (1986), Wijsman (1979),
Wynn (1984) and Lehmann (1986). Analogous problems are of interest in the
Bayesian domain also. Thus if X ~ P, and 6 has a prior G belonging to a
family T, one may consider the problem of minimizing A(S) among all S such
that inf; Pgy(6 € S|X) > p, where Py(6 € S|X) denotes the posterior probabil-
ity of the set S when the prior is G. Note that in the case of single prior, T is a
singleton set. Various authors have considered Bayesian set estimation prob-
lems: see Berger (1985), Box and Tiao (1973), Lehmann (1986), Diaconis and
Freedman (1986), Pratt (1961), etc. In this article we mostly focus attention on
this latter robust Bayes problem when the priors G are assumed to be
absolutely continuous with respect to some measure p on ) € R™ and the
density g = dG/du belongs to the convex family

(1.1) I, y = {g: for some ¢ > 0, L(0) <cg(0) < U(0),V 6},

where L and U are fixed nonnegative functions. The density g(6)(/gdu = 1)
is thus chosen such that it is proportional to some function between L(8) and
U(0). The family (1.1) was first considered in DeRobertis (1978). In the case
when U = kL for some k > 1, I'; ;; becomes a metric neighborhood of L; in
this case one may interpret I'; ,; as a neighborhood of a subjectively elicited
(proper or improper) prior density L. For a comprehensive discussion of
I and a variety of results, also see Berger (1987), DasGupta and Studden
(1988a, b), DeRobertis and Hartigan (1981), etc. We will merely mention here
that the family I3 ;, has many attractive properties and is one of the few
mathematically tractable classes of priors considered in the literature.

The approach of minimizing the measure of a set subject to restriction on
its probability content can in general lead to disconnected sets. Indeed we will
see a very natural example in the scenario of the above-mentioned robust
Bayes problem where the Lebesgue measure minimizing confidence set is
disconnected. While we are not suggesting that a disconnected confidence set is
necessarily undesirable, we believe that a connected set is more attractive from
the viewpoint of effectively communicating where the unknown parameter lies.
See Example 8 in Section 3 and also Section 4 for further discussion on this
issue. An alternative possibility, apparently not studied in the statistical
literature, is instead to minimize the diameter of the confidence set in a
suitable metric subject to a restriction on the set’s probability content. Since
the Lebesgue measure of an arbitrary Borel set in R™ with diameter d cannot
exceed that of a sphere with the same diameter (see Section 3), controlling the
diameter should keep the Lebesgue measure in control although the converse
assertion is badly false. In addition, it will be seen that the potential discon-
nectedness problem disappears if one minimizes the diameter as opposed to
some nonnegative measure.

"In Section 2, we state and prove a general theorem on the existence and the
form of the set S that minimizes A(S) subject to infg.r,  Po(SIX) > p,

where A is a nonnegative measure and I ;, is defined in (1.1). Several
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applications of this theorem are then made to standard multiparameter esti-
mation problems and also to a problem on construction of smallest width
(average or maximum) linear Bayesian bands for the true regression line in the
case of simple linear regression. The.important practical issue of the convexity
(or connectedness) of these sets is considered and in important specific exam-
ples we point out under what conditions these sets are connected. Posterior
confidence sets for a normal mean 6 when 6 has a ¢ prior are considered in
detail.

In Section 3, we address the problem of minimizing the diameter. Without
explicitly differentiating between Bayesian and non-Bayesian problems, we
consider the diameter minimization problem in a general probabilistic frame-
work and then show that our results apply to Bayes as well as classical
problems. It is proved that if £ is a finite-dimensional Banach space with a
convex norm | - || and if {P,, @ € I} is a tight family of probability measures,
then there always exists a closed convex set S minimizing the diameter
subject to the restriction inf,_; P,(S) > p. We next address the question
whether the two approaches of minimizing a measure and minimizing the
diameter ever lead to a common answer. We prove in Section 3 that if {P,}
consists of a single spherically symmetric unimodal measure P on R™, then
the volume and diameter minimizing sets are both spheres. This result,
although intuitive, is not immediate because an arbitrary bounded set A in R™
cannot be enclosed in a sphere of the same diameter as that of A. Indeed one
has to use the Steiner symmetrizations of Borel sets to achieve this result for a
spherical P. We give applications of these results to the robust Bayes problem
of Section 2 and also point out some applications to classical set estimation
problems. We also give a one-dimensional example where the two approaches
do not lead to the same answer; the optimal sets for both approaches are
derived and some general comparison is made.

Intuitively, one would expect diameter minimizing sets to be spherical
under more general conditions. For example, it is natural to ask what would be
the shape of diameter minimizing confidence sets when the underlying distri-
butions are elliptical normal. We have a general theorem geared to handling
location problems. We have shown that if P is an absolutely continuous
probability measure on R™ and if the density f is symmetric about some
vector p and if moreover f~1/™ is convex, then sets minimizing the diameter
subject to a restriction on the probability content are spheres. Some results of
Borell (1975) and Prekopa (1971) are useful in proving this theorem. This
result, for example, implies that for all standard location problems (including
elliptical normal, ¢ and the double exponential), spheres are diameter minimiz-
ing among equivariant sets. Similarly, if X has a density f,(x) satisfying the
above properties and 6 has a prior G belonging to I'; ,; where L is uniform,
then diameter minimizing robust Bayesian sets are also spheres. Finally, in
Section 4, we briefly discuss the admissibility implications of the results of
Section 3 in classical set estimation problems. We hope that the results of our
present article will find applications to other Bayesian as well as classical
problems.
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2. Smallest measure robust Bayes sets. In this section we consider
the problem of finding size minimizing robust Bayes confidence sets when size
is measured in terms of a nonnegative measure A and the family of priors
considered is I}, ;; defined in (1.]). To our knowledge this problem has not
been explicitly treated for any other classes of priors in the literature although
related point estimation results have been obtained by many authors.

THEOREM 2.1. Let X ~ Py < v for some o-finite measure v on a sample
space Z. Let fy(x) = dP,/dv. Assume 6 € Q has a prior G < pu, where
dG/du belongs to Ty, ;. Let My = My(x) = [, fUdu and assume M, < . Let
A be any nonnegative measure on () such that A and u are mutually absolutely
continuous. Define a measure @ on Q as d@ = {(1 — p) fL + pfU}du, where
0<p<1isa fixed number. Let S = {6 € Q: dQ/dA > c}, where c is such
that Q(S) = pM, (we assume such a c exists). Then S minimizes A(A) among
all A such that infg .y,  Po(Alx) = p.

Proor. It is easy to prove that for any A,
JafLdu

inf P,(Alx) = : .
o L AR = e Y e fUdR
Therefore,
inf P,(A
g c(Alx) > p
(2.1) - [ {(1 = p)fL + pfU} du = pM,
A

= Q(A) > pM,.

The theorem now follows from the Neyman—-Pearson lemma on noting that
@ < p < A and hence d@/dA exists. O

REMARK. A case of special interest is when U = kL for some % > 1. In this
case, it follows from Theorem 2.1 that the set S minimizing A(A) (where A
denotes Lebesgue measure) among A such that Py(Alx) > p forall G € I,
satisfies p* = P;(Slx) = kp/[kp + (1 — p)] > p. Roughly speaking, this means
that if one starts with a subjectively elicited L and considers a neighborhood
I, &1, then to find the smallest volume posterior set with a minimum posterior
probability of p for all priors in I} ,;, one merely has to find the smallest
volume set S with respect to L, but under L this S must have a posterior
probability somewhat larger than p. We find this connection between robust
Bayes sets and sets optimal with respect to the initial prior L quite surprising.
The value of p* for various p and k are given in Table 1. Note that p* does
not depend on L. Thus, for example, to construct a robust 90% set with % = 4,
one has to construct a 97% set with respect to L. Note the marginal diminish-
ing effect of increasing k.
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TaBLE 1
k
p 2 3 4 5 6 8 10
0.5 0.67 0.75 0.8 0.83 0.86 0.89 091
0.75 0.86 0.9 0.92 0.94 0.95 0.96 0.97
0.9 0.95 0.96 0.97 0.98 0.98 0.99 0.99

0.95 0.97 0.98 0.99 0.99 0.99 0.99 0.99

We now give several applications of Theorem 2.1 to illustrate how it works
in practice and also to make the point that the result will apply to a wide
variety of situations. ’

ExampLE 1. Consider the canonical linear model where Y ~ N(X0, I) and
0 has a prior in I}, ,; where L is the density of a N, (n, ) distribution where
r, 2 are assumed known. Notice that with such a choice of L, I}, ,; does not
include other multivariate normal priors. The results of this example, there-
fore, will not apply to situations where simultaneous inclusion of many normal
priors is considered desirable. Suppose we want to find the set with the
smallest Lebesgue measure such that for all priors in I} ,;, the posterior
probability exceeds p. Then from Theorem 2.1 we at once have that S is the
ellipsoid

S = {0: (8- 8YDY(0 - §) <x2(m)},

where 8 = (X’X +3 D" X'y +3 ), D=(XX+3Y p*=kp/
[kp + (1 — p)]and Xﬁ(m) is the pth percentile of a central chi-square distribu-
tion with m degrees of freedom. Thus, in this case, the volume minimizing
sets are convex and hence connected. The volume of S equals c,,( Xﬁ*(m))"‘/ 2,
where c,, = 7™/2/T(1 + m/2)|D|'/?. Table 2 gives the values of y2.(m) when
m = 2 for various combinations of p and k. Again note the marginal diminish-
ing effect of increasing k. For example, there is virtually no increase in the
volume of S if one increases £ from 8 to 10 and p = 0.9.

TABLE 2
k
P 1 2 3 4 5 6 8 10
Ll
0.5 1.39 2.22 2.77 3.22 3.54 3.93 441 4.82
0.75 2.77 3.93 4.61 5.05 5.63 5.99 6.44 7.01
0.9 4.61 5.99 6.44 7.01 7.82 7.82 9.21 9.21

0.95 6.44 7.82 9.21 9.21 9.21 9.21 9.21 9.21
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ExaMPLE 2. Suppose X; ot gamma(a;, 0;), where {a,} are the known shape
parameters and {0,} are the scale parameters, 1 <i <m. Let 6 = (9,,...,0,,)
have a prior belonging to I}, ,;, where L is a product gamma prior (i.e., 0 are
independent with dens1ty e " %:qf: under L). Using an easy concavity argu-
ment, it follows that S is convex in this case if a; + B; > 1. Since {6} are scale
parameters, one may also take A as the measure with density (with respect to
Lebesgue) p(v) = 1/T1 ,v;. The general shape of the required set S remains
unchanged and it is convex for all values of «; and B; > 0.

ExamPLE 3. We now give an application of Theorem 2.1 to the construction
of linear confidence bands for the true regression line in simple linear regres-
sion. Suppose y ~ N(8, + 6,x, I), where x is within the bounds a < x < b;
without loss of generality, one may assume a = 0 and b = 1. As usual, we
assume there are n pairs of observations (x;,y;), 1 <i <n, and suppose
6 = (6,, 0,)" has a prior belonging to I}, ,,, where L is a N(u,3) density. We
want to find linear bands f(x) =a, + b,x and g(x) = ay + byx such that
Polf(x) <65+ 6,x<g(x), Vxe€[0,1llyl>p for all G in I, ,, and the
width of the band is minimized in some sense; for example, one may minimize
either the average width = [{g(x) — f(x)} dW(x) for some measure W or the
maximum width max, _, _{g(x) — f(x)}.

Observe now that by the remark following Theorem 2.1,

Psl N {f(x)seo+01xsg(x)}‘y >p forall G,
0<x<1
(2.2) o Pla; <8,<ay,a, +b, <0y+ 0, <a,+ byy]
* _ kp
2P T wmr(1-p)

Now under L, Z = (Z,, Z,), where Z, = 6, and Z, = 6, + 6, has a N(v, R)
distribution where
v=A(X'X+3) (X'y +37p)
and
R=AXX+3 174,

where A = (i ‘1))
Furthermore,

(2.3) J{g(x) = £(x)} dW(x) = (az — a;) + A(by — by),

where A = [xdW(x) and W is a probability measure. From (2.2) and (2.3) it is
then clear that we want to find a rectangle S = [¢;, ¢;] X [d{, d;] such that
under the N(v, R) distribution this rectangle has a probability p* and such
that among all rectangles with this property it has the smallest weighted
perimeter (1 — AXcy — ¢;) + M(d, — d;). From Anderson’s theorem [see
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k=1,7
k=2.5

2.51 k=3.25

Fic. 1. Smallest average width bands.

Anderson (1955)] it follows that S must be centered at v, that is, if v = (v, v,),
then |e; — v4| = ley — vl and |d; — v, = |dy — v,|. Once this simplification is
made, minimizing the weighted perimeter subject to a restriction on its
probability becomes a routine calculus problem. See DasGupta (1988) for these
details. Figure 1 gives a plot of the optimal 60% band for k = 1.7, 2.5 and 3.25
when W is the uniform distribution, n = 9, three observations are taken at

eachof x =0,0.5and 1, p = ( ) 3= ( = 4) and the least squares estimate

equals (0.5, 1.5)". Note that the same bands would have been obtained for any
other probability measure W with a mean of ;. For the case of minimizing the
maximum width, there is the additional simpliﬁcation that S must be a
square. Figure 2 gives a plot of the optimal band in this case. Note that the
bands minimizing the maximum width will always be parallel. Before closing
this example, .we would like to point out that our techniques given here will
not apply to the problem of finding more general nonlinear bands with small
widths.

ExamMpLE 4. We now give a common example where the volume minimizing
set is not necessarily connected. Suppose X ~ N(0,02) and 6 has a prior
belonging to I}, ,;, where L is the density of a central ¢ distribution with m
degrees of freedom, median u and scale parameter 72. From Theorem 2.1 it
follows that for each & and p, the required volume (i.e., Lebesgue measure)
minimizing sets are of the form S = {8: = (0lx) > ¢}, where (0]x) denotes
the posterior density of 6 under L.
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Fi1G. 2. Smallest maximum width bands.

From definition, we have

, e—(1/2az)(6—x)2
(2.4) m(0]x) = constant

(1 + 02/m72)(m+1)/2 :

We will prove that for suitable x, 7;(6|x) is bimodal and hence the Lebesgue
measure minimizing set would obviously be disconnected for appropriate
choices of p and k. It is easy to see that as § — +=, 7;(0lx) goes to 0 in a
monotone way. Thus 7;(6lx) will be bimodal if and only if its derivative [or
equivalently the derivative of —log 7;(8l|x)] has three real zeros. Now

g(0) = —log m;(6]x)
= constant + ——1—2(0 —x)? + mrl log(l + 022 )
20 2 mr
Therefore,
0—x (m+1)6
g'(0) = -z T m=2(1 + 62/m7?) =0

(2.5)

o w-202+ (a+c)o—cz=0,

where w = 0/0, 2z =x/0,c =m72/0%? and a = m + 1.
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Defining

22— 3(a +¢) —223+ 9(a + c)z — 27cz

Q-——3 — and R- 5

it is well known that (2.5) has three real roots if and only id @ — R% > 0,
which on algebra reduces to

(2.6) 4czt — [a2 + 20ac — 8c2]22 + 4(c + @)’ < 0.

We want to know if there exists z such that the inequality in (2.6) holds. It is
easy to see that there do not exist any z giving the required inequality in (2.6)
if )

(2.7) (a? + 20ac — 8¢?)” < 64c(c + a)®,

which is equivalent to a < 8¢ & m72/a? > (m + 1)/8. We have thus proved

Fic. 3. Posterior for normal means with Cauchy prior, || X| = 4.2.
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F1c. 4. Posterior for normal means with Cauchy prior, || X|| = 4.5.

that 7;(8|x) is unimodal for all x and hence the Lebesgue measure minimiz-
ing sets are connected for all x if mr2/02 > (m + 1)/8. This, for example,
implies that if X ~ N(6,1) and 6 has a standard Cauchy prior, then the
posterior is in fact unimodal for every x. If, however, mr2/a2 < (m + 1)/8,
then the required inequality in (2.6) holds for all values of 22 in the range

a? + 20ac — 8¢2 — Ya(a — 8¢)®

8c

) a? + 20ac — 8¢% + Ya(a - 8¢c)®

<
8c

(2.8)

<z

Hence, for |x| in an interval, the Lebesgue measure minimizing sets will be
disconnected for suitable # and p. We mention here without proof that
analogous characterizations for the estimation of a multivariate normal mean
with general spherically symmetric priors have recently been obtained in
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Fic. 5. Posterior for normal means with Cauchy prior, || X|| = 4.6.

DasGupta, Ghosh and Zen (1990). Figures 3 through 6 give plots of the
posterior density of 0,,; in some cases where the posterior has more than one
peak. Clearly, volume minimizing sets are not necessarily connected in such
cases.

3. Diameter minimizing sets. In this section we focus attention on the
problem of minimizing the diameter subject to a restriction on the probability
content of the set. It will be seen that the problem of disconnectedness
disappears in very general setups by minimizing the diameter. Without con-
straining ourselves to specific statistical problems, we first prove an existence
theorem in a general probabilistic framework that will apply simultaneously to
many Bayesian as well as classical problems of interest.

THEOREM 3.1. Let (2, #) be a finite-dimensional Banach space with a
corivex norm || - |, where & is the usual Borel o-field on 2. For A C &, let
d(A) = sup, ,c 4llx — yll. Let {P,, a €I} be a tight family of probability
measures on &. Let $={A € & inf,_; P(A) > p}, where 0 <p<1lisa
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FiG. 6. Posterior for normal means with Cauchy prior, || X| = 5.

fixed number. Then there exists a closed convex set S € & such that d(S) =
inf, . & d(A).

Proor. Observe that we only need consider closed sets A such that
inf,.; P,(A) > p. We claim that we can moreover assume without loss of
generality that there is a common compact set K; such that A c K,. Toward
this end, by using the tightness of {P,} first find a compact set F such that
inf P (F) > p; let d denote the diameter of F. Next let x, be any point in Z".
Let K, = S(x,, r) be a closed sphere with center at x, and radius r such that
inf, P(K,) > 1 — p. Also let K, denote the closed sphere S (x,, r + 2d) with
center at x, and radius r + 2d. We claim that if A is any set such that
inf P .(A) > p and d(A) < d, then A must be contained in K,. For if A N K§
is not empty, then because of the fact that d(A) < d, we must have A N K, =
&, implying that P (A) < P (K§) < p for every a. This is a contradiction to
the hypothesis that inf P (A) > p.

Define now %, = {A: A is closed, A C K,}. Since &  is a finite-dimensional
Banach space, the open mapping theorem implies that the closed sphere K is



DIAMETER AND VOLUME MINIMIZING CONFIDENCE SETS 1237

compact. The proof of the theorem will now consist of exhibiting a topology on
Z, such that d(A) is continuous and

Fi-{ae 7 inf P,( 4) > p}

is compact with respect to this topology. For this purpose, we metrize &, by
the Hausdorff metric

p(A, B) = max{ supd(x,B), supd(y, A)}, where d(x, B) = inf |lx — yl|.
x€A y€EB yEB

Notice that p(A, B) < ¢ implies that for each x in A, there exists y € B such
that |lx — yll < £ and for each y in B there exists x € A such that [lx — yll <e.
It is clear therefore that d(A) is continuous with respect to the metric p.

It remains to show &%, is compact. Define Q(A) =-inf, P ,(A). Let A € &,
be such that P,(A) < p,, where a € I is fixed. If now p(A, B) <, then B is
contained in Af = {x € Z:inf, . 4 llx — yll < ¢}. Hence P,(B) <P, » (A®). Since
P (A) < p,, there exists 6 > 0 such that P (A) < py — 8. Choose now an
¢ > 0 suitably so that P (A°) < P (A) + 6. Then

p(A,B) <e=P,(B) <P, (A°) <py.
This proves that P,(A) is upper semicontinuous with respect to the metric p
for each a and hence Q(A) = inf, P,(A) must also be upper semicontinuous
with respect to p. It follows that & is closed. Also, %, is compact with
respect to p because K, is compact in 2" with respect to the norm || - || [see
Dieudonné (1960), page 58]. Hence %, must also be compact. Finally, since
the norm on £ is convex, the convex hull of a bounded set A has the same

diameter as A. O

We now give a simple illustration of this theorem.

ExampLE 5. Let X ~ N,(0,3), where 6 € R™ is unknown and 2 is as-
sumed to be known. The usual Hotelling confidence set S(x) = {6: (6 —
x)'3, %0 — x) < c?} has the property that it minimizes the Lebesgue measure
among all equivariant sets. Now equivariant sets here are of the form S =
S, + x, where S, is any fixed set in R™. The restriction that Py(S = 0) > p, V
0, amounts to the restriction that P,_q(S,) > p. It follows from Theorem 3.1
that there is a closed bounded convex diameter minimizing set among the
equivariant sets. Notice, however, the Hotelling ellipsoid is not a diameter
minimizing set here because the smallest sphere containing it has the same
diameter and a strictly larger probability [under N(O, 3)]. Consequently, one
can find a smaller diameter sphere C such that P,_,(C) is still as large as p. It
will shortly be seen that diameter minimizing sets are spheres again in this
situation and therefore volume and diameter minimizing sets are not the
same.

The example given above naturally leads to the following question: Do
volume minimizing sets ever have the diameter mmlmlzatlon property as well?
This is the content of the following theorem.
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THEOREM 3.2. On R™, let P be an absolutely continuous (with respect to
Lebesgue) spherically symmetric probability measure with Radon-Nikodym
derivative f. Assume f(x) is of the form g((x — pY(x — ) for some fixed p
and suppose g(-) is decreasing., Let C be a sphere centered at w such that
P(C) = p. Then C solves each of the following problems:

Problem 1: Minimize A(A) subject to P(A) > p, where A(-) denotes Lebesgue
measure and 0 < p < 1is a fixed number.

Problem 2: Minimize d(A) subject to P(A) > p, where d(-) denotes diame-
ter in L, norm.

Before giving a proof of this theorem, we will give an example to show that
diameter minimizing sets (subject to a restriction gn the probability content)
are in general not necessarily spheres if the measure P is not spherical.

ExampLE 6. In R? consider a bounded equilateral triangle T and let P be
a probability measure with support 7'. The smallest radius circle containing T
has its center at the centroid of T'; since it has a larger diameter than that of
T, circles cannot in general be diameter minimizing sets with respect to this
measure P. Indeed, the reason diameter minimization is in general not trivial
is that arbitrary Borel sets cannot be enclosed in spheres of the same diameter
[although an arbitrary bounded set in R™ with diameter d can be enclosed in a
sphere with diameter not exceeding y/2m/(m + 1) - d; see Federer (1969)].
Of course, if one restricts attention to only symmetric convex sets (a set S is
symmetric about 0 if x € § = —x € §;if S is symmetric about 0, then S + p
is symmetric about p), then spheres will be diameter minimizing sets. In the
example above, the triangle T is not symmetric about any w.

In order to prove Theorem 3.2, we need the following result.

LEMMA 3.3 (Isodiametric inequality). Let A be any bounded Borel set in R™
with diameter d. Then the Lebesgue measure A(A) of A satisfies the inequality
MA) < a(m)2~™d™, where a(m) = 7™/2/T(1 + m/2).

Proor. A detailed proof can be found in Federer (1969). We will sketch the
idea of the proof for the sake of completeness. Given a bounded Borel set A in
R™, it is possible to find a Borel set B such that B is symmetric about 0, has
the same Lebesgue measure as A, and such that d(B) < d(A) = d, where
d(-) denotes diameter of a set in L, norm [the set B is called the central
Steiner symmetrization of A; for a proof of the existence of B, see Federer
(1969)]. Since B is symmetric (i.e., x € B = —x € B) and since d(B) < d, it
follows that B < S(0,d), where S(0,d) is the closed sphere of diameter d
with center at 0. Lemma 3.3 now follows immediately because a(m)2-"d™
equals the Lebesgue measure of S(0,d). O
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LemMMA 3.4. Among all Borel sets in R™ with Lebesgue measure greater
than or equal to ¢ (¢ > 0 fixed), the spheres with Lebesgue measure ¢ have the
smallest diameter.

Proor. The proof is immediate from Lemma 3.3 if one considers the dual
problem of maximizing the Lebesgue measure subject to an upper bound on
the diameter. O

Proor oF THEOREM 3.2. Define %, = {A: A Borel, P(A) > p}. Since P is
spherically symmetric unimodal, it follows from the Neyman-Pearson lemma
that there exists a sphere C (with center at p) such that C minimizes the
Lebesgue measure among sets in %,. Let ¢ denote A(C), the Lebesgue
measure of C. Now define %, = {A: A Borel, A(A) > c}. Evidently, &%, ¢ #,.
By Lemma 8.4, C minimizes the diameter among sets in #; and hence also
minimizes the diameter among sets in %;because C € &%,. O

It immediately follows from the above theorem that, for example, if X ~
N,(0,I) then the usual Hotelling confidence set minimizes the diameter
among all equivariant sets with a coverage probability at least p. In fact, an
analogous result is true for all spherically symmetric unimodal distributions.

We now briefly indicate applications of these results to the robust Bayes
framework of Section 2.

ExampLE 7. Consider the framework of Theorem 2.1. If the likelihood
function f and the envelopes L and U are such that the measure @ is
spherically symmetric unimodal, then it follows from Theorem 3.2 that the
volume minimizing set S of Theorem 2.1 (which is a sphere) also minimizes
the diameter among all sets with the property infg . - Py(S|x) > p. Exam-
ples of problems where @ is spherically symmetric unimodal are when f is a
spherically symmetric normal, so is L, and U = kL, or when f is any
spherically symmetric unimodal distribution and one takes a neighborhood of
the uniform prior by letting L = 1 and U = k. Note that even though situa-
tions where @ is exactly spherical for all sample sizes are relatively rare, as the
sample size becomes large @ will be nearly spherical for practically any L and
U as long as :f is spherical [see page 224 in Berger (1985)]. Also notice that
even if the original class of priors I' (not necessarily I}, ;) is not tight, the re-
striction infg . Pz(S|x) > p may be reducible to a restriction inf, . ; P,(S) >
p, where {P,} are tight, thereby making Theorem 3.2 applicable.

Although volume and diameter minimizing sets may not be the same for
nonspherical distributions, diameter minimizing sets continue to be spheres in
more general situations. The result proved below does not apply to common
scale parameter problems but resolves the location problem in very satisfac-
tory generality. We need the following definitions; see Borell (1975) and
Prekopa (1971) for details.
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DeFINITION. Let P be a probability measure on R™. For —» < s < o, we
say that P € m (R™) if

A+B\ .[P*(A) P(B)]
P( 2 ) > [ 2 + 2
for all nonempty Borel sets A and B, where (A + B)/2 denotes the Minkowski
sum {2: 2 = 3x + 1y, x € A, y € B}. In the above, the cases s = 0 and s = —
are interpreted by continuity; for example, we say that P € m_(R™) if
P((A + B)/2) > min{P(A), P(B)} and P € m,R™) if P(A + B)/2) >
VP(A)P(B).

It is well known that m (R™) is empty for s > 1/m and that s, <s,
implies m ,(R™) c m (R™). Thus the family m _(R™) contains the maximum
number of probability measures. Prekopa (1971) shows that P € m,R™) if P
is absolutely continuous with respect to the Lebesgue measure A and if
f=dP/dA is log concave (i.e., m is the class of strongly unimodal absolutely
continuous distributions). Thus the measures corresponding to the multivari-
ate normal distributions are in m, but those corresponding to the multivariate
¢t are not. However, the multivariate ¢ measures are in m, for s = —1/a,
where a is the number of degrees of freedom. In particular, the multivariate ¢
measures are in m__. We refer the reader to the excellent article of Borell
(1975) for a comprehensive introduction to the families m .

THEOREM 3.5. On R™, let P be an absolutely continuous probability mea-
sure with density f. Suppose f is symmetric about some point w and f~1/™ is
convex. Then sets minimizing d(A) among A such that P(A) > p,0<p <1,
are spheres.

Proor. Without loss, the point p may be assumed to be 0. Let A be any
bounded (Borel) set. Define S as the Minkowski sum S = (A + A_)/2, where
A_={—x: x € A}. Thus P(A_) = P(A). Since P is absolutely continuous and
the density f is such that f~/™ is convex, it follows from Theorem 3.2 in
Borell (1975) that P € m__. Therefore, P(S) > P(A). Notice now that S is
symmetric about 0 and d(S) < d(A). Hence S is contained in the closed
sphere C = S(0,d(A)), implying that for any bounded set A with diameter
d(A), there exists a sphere C of the same diameter such that P(C) > P(A).
This proves the theorem. O

CoroLLARY 3.6. Let X ~ f(x — 0), where f(x) is symmetric and strongly
unimodal. Then among all equivariant sets A with inf, P(A > 0) > p, the
sphere C = Cy + X where P,_o(C,) = p has the smallest diameter.

Proor. Use the fact that mqoCcm_,. O
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Corollary 3.6 applies in particular to the important case when X ~ N(90, 3),
3 known. For other symmetric unimodal distributions (which are not strongly
unimodal) such as the elliptical ¢, the assertion of Corollary 3.6 will still hold
as long as f~ /™ is convex.

CoroLLARY 3.7. Consider the setup of Theorem 2.1. Assume P, is abso-
lutely continuous with respect to the Lebesgue measure A (on R™) for every 6.
Let f(x — 6) = dP,/dA and suppose f(-) satisfies the two assumptions of
Theorem 3.5. Let L = 1, U = k. Then sets minimizing d(A) among A such
that inf; Py(Alx) > p are spheres.

Proor. Use the fact that the posterior under L must also satisfy the two
assumptions of Theorem 3.5. O

Again, Corollary 3.7 will apply to all common location parameter problems if
one takes a neighborhood of the uniform prior as formulated via (1.1) with
L=1U=k.

Finally, in order to make things complete, we give a simple one-dimensional
example where diameter and Lebesgue measure minimizing sets are different
and we explicitly show what these sets are.

ExampLE 8. Consider a random variable X ~ g(x — ) with g given by the
following linear spline:

x ifo<x<i

- ifr<x<?i

(8.1) L,y )2 1=%=3
168 (%) 10(x — 3) ifi<x<?

10(1 — x) if2<x<1.

Direct algebra gives that under g(x) the set S, with smallest Lebesgue
measure among sets with probability at least i is S, = [0.2384, 0.2616] U
[0.5238, 0.9762] with a Lebesgue measure of 0.4756 and a diameter of 0.7378.
On the other hand, the set S; with the smallest diameter with the same
probability is the interval [0.5, 1], which has a slightly larger Lebesgue mea-
sure but a substantially smaller diameter. Thus the smallest Lebesgue mea-
sure equivariant set is [X — 0.2616, X — 0.2384] U [X — 0.9762, X — 0.5238]
while the smallest diameter equivariant set is [X — 1, X — 0.5]. Of course, this
example should be taken just as an artifact; the point here is that if the
underlying distribution is bimodal (or multimodal) but one of the peaks is
considerably higher than the other (s), it may be more desirable to use the
smallest diameter connected set rather than a disconnected set simply to gain
a small amount in Lebesgue measure. Examples of exactly this kind can also
be easily found in common inference problems.
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4. Final remarks. In the final analysis, it is true that diameter minimiz-
ing sets will in general be much harder to find than volume minimizing ones.
It is reassuring that in spherical problems both approaches lead to the same
answer and that we know the form of these sets for most location problems.
We are not suggesting that the criterion of minimum volume should be
abandoned in favor of minimum diameter. We simply want to make the point
that in some problems it may be preferable to do so, especially if connectedness
is considered desirable. In the problems where volume and diameter minimiz-
ing sets are different, further study and comparison of their frequentist
properties are needed before the diameter minimizing sets can be seriously
recommended for practice. A possible criterion for assessing confidence sets in
a framework of decision theory is to consider the loss L6, C) =
(1 = &)P,(C ? 6) + ed(C); clearly all symmetric convex sets other than spheres
will be inadmissible with respect to L;. A second possibility is to consider a
loss Ly(8,C) = £, Py(C ? 0) + £,d(C) + £3A(C). In the problem of estimating
the mean of a N(0, I) distribution, Hwang and Casella (1982) showed that the
Hotelling confidence sets can be improved in terms of coverage probability by
recentering them at a positive-part James—Stein estimator. We have been able
to show that the improved sets of Hwang and Casella (1982) are inadmissible
under L, if &,/¢; > ¢,, where ¢, is a fixed positive number. Whether this
holds for arbitrary ¢, may be of some interest.
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