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ON PERMUTATION TESTS FOR HIDDEN BIASES
IN OBSERVATIONAL STUDIES: AN APPLICATION OF
HOLLEY’S INEQUALITY TO THE SAVAGE LATTICE!

By PauL R. ROSENBAUM
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Randomized experiments and observational studies both attempt to
estimate the effects produced by a treatment, but in observational studies,
subjects are not randomly assigned to treatment or control. A theory of
observational studies would closely resemble the theory for randomized
experiments in all but one critical respect: In observational studies, the
distribution of treatment assignments is not known. The problems that are
special to observational studies revolve around our uncertainty about how
treatments were assigned. In this connection, tools are needed for describing
distributions of treatment assignments that do not assign equal probabilities
to all assignments. Two such tools are a lattice of treatment assignments first
studied by Savage and an inequality due to Holley for probability distribu-
tions on a lattice. Using these tools, it is shown that certain permutation tests
are unbiased as tests of the null hypothesis that the distribution of treatment
assignments resembles a randomization distribution against the alternative
hypothesis that subjects with higher responses are more likely to receive the
treatment. In particular, these tests are unbiased against alternatives formu-
lated in terms of a model previously used in connection with sensitivity
analyses.

1. Introduction: Detecting hidden biases in observational studies. To
say with Fisher (1935) that randomization forms the “reasoned basis for infer-
ence” in randomized experiments is to say that inferences are based entirely on
the known distribution of treatment assignments created by the physical act of
randomization. In this formulation, the only stochastic element is the known
random assignment of subjects to treatments; there is no fictitious sampling
from an imagined infinite population of experimental subjects. Inferences are
from the observed responses of the subjects in the experiment to the responses
these same subjects would have exhibited had they received the alternative
treatment, an idea given formal expression by Welch (1937), Section 2.

In contrast, Cochran (1965) defined an observational study as an empirical
investigation in which: “... the objective is to elucidate cause and effect
relationships. .. [in which it] is not feasible to use controlled experimentation, in
the sense of being able to impose the procedures or treatments whose effects it is
desired to discover or to assign subjects at random to different procedures.” A
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closely argued theory of observational studies would resemble the theory for
randomized experiments in all respects but one: In observational studies, the
mechanism that assigned subjects to treatments is not known. The problems
that arise in observational studies but not in experiments concern this unknown
distribution of treatment assignments.

Three broad categories of devices are used in observational studies to address
uncertainty about the distribution of treatment assignments. First, we may find
that treated and control subjects differed prior to treatment with respect to
covariates whose values have been recorded, leading us to adjust for these
observed pretreatment differences. Often this entails grouping subjects with the
same value of these observed covariates into subclasses or matched pairs.
Conventional permutation tests and interval estimates used in observational
studies may be derived from the assumption that within these ostensibly
homogeneous subclasses or pairs, treatments are assigned essentially at random.
For instance, this is true of the Mantel-Haenszel (1959) statistic for subclassified
binary data, the Wilcoxon (1945) signed rank statistic for matched pairs and
other methods that involve more extensive adjustments [Rosenbaum (1984a,
1988a)]. Of course, this assumption, called adjustable treatment assignment, is
quite tenuous: Subjects who appear similar on the basis of observed covariates
may differ in ways that have not been observed. The second category of devices
used in observational studies entails the collection of information that holds a
reasonable prospect of indicating or detecting such unobserved pretreatment-
differences, thereby providing tests of the assumption of adjustable assignment.
Two devices in this category are the use of two control groups [Rosenbaum
(1987a)] and the use of outcomes known to be unaffected by the treatment
[Rosenbaum (1984a), Section 3.2]. The third category assumes that a relevant
unobserved covariate does exist, and investigates the sensitivity of conclusions
about treatment effects to a range of assumptions about the unobserved covari-
ate [e.g., Rosenbaum and Rubin (1983) and Rosenbaum (1987b, 1988b)]. The
current article contains a fairly general result concerning the performance of
devices in the second category, and it relates that result to a model used in the
third category.

Specifically, it is assumed that there are two groups of subjects and an
outcome which is not affected by the treatment that was given to one group and
withheld from the other. This situation described here is typically one part of a
larger observational study that includes either other outcomes or other groups
for which effects are possible. The two groups may be two control groups with
any outcome, or they may be the treated and control groups together with an
unaffected outcome that was included in the study in an effort to detect hidden
biases; for motivation and examples, see Rosenbaum (1984a, 1987a). As devel-
oped here, the formal considerations for the two cases—that is, multiple control
groups and unaffected responses—are similar, and they are not distinguished in
later sections. The null hypothesis states that the distribution of treatment
assignment is adjustable given the subclasses, so conventional methods of adjust-
ment yield appropriate corrections. The alternative hypothesis states that treat-
ment assignment is not adjustable given the subclasses because of imbalances in
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a relevant unobserved covariate. The unaffected response is the basis for the test,
and the question is under what circumstances does such an unaffected response
provide useful information about hidden biases.

Previous discussions of the performance of tests for unobserved differences
have postulated infinite populations and random samples, neither of which
actually exist in a typical observational study. In contrast, in the discussion that
follows, the only stochastic element is the distribution of treatment assignments.
To describe distributions that do not assign equal probability to all treatment
assignments, two tools are used: a lattice of treatment assignments introduced
by Savage (1964) and an inequality due to Holley (1974) for probability distribu-
tions on a lattice.

2. Notation and definitions. A total of N subjects have been divided into
S subclasses on the basis of observed pretreatment characteristics or covariates,
with n, subjects in subclass s, for s = 1,..., S. If the ith subject in subclass s
receives the treatment then Z; = 1, else if he receives the control Z,; = 0. Also,
this subject exhibits a response, r,;. Write Z and r for the N-dimensional vectors
containing, respectively, the Z,’s and r,;’s in the lexical order, for example,
Z=(2y,2,,...,2,) Wrte a, = L= ,Z_ for the number of treated subjects
in subclass s. When each n, = 2 and each a, = 1, we have S matched pairs.
When n, > 2 and a, = 1 for each s, we have matching with multiple controls.

As noted in Section 1, it is assumed that the treatment does not affect this
particular response, though it may affect others, so that each subject (s, i) would
exhibit response r,; whether assigned to treatment or control. Since the response
r is fixed, the only stochastic element being the treatment assignment Z, it is
convenient for notation, especially in connection with Section 4, to assume that
within each subclass, subjects have been numbered in decreasing order of their
responses, so that r; >r,; if i <j. This notational convenience is without
substantive consequences, as all features of the problem will be invariant with
respect to permutations within subclasses, that is, with respect to renumbering
the n, subjects in subclass s. It is also convenient at first to assume that there
are no ties in the responses within subclasses, so r,; > r,; if i < j; the case of tied
responses will be discussed separately in Section 8.

A test statistic T = #Z,r) has been selected to test for higher responses
among treated subjects than among controls in the same subclass. Since the
treatment does not affect r, systematically higher responses among treated
subjects would indicate some way in which treated and control subjects in the
same subclass are not comparable. The statistic #(Z, r) is assumed to be decreas-
ing in transposition within subclasses in a sense closely paralleling the discussion
by Hollander, Proschan and Sethuraman (1977). Informally, this means that
t(Z,r) increases in value as the ordering of Z and r becomes more similar.
Formally, let z,, ;) denote the vector obtained from z by interchanging coordi-
nates (s, i) and (s, j), that is, interchanging the ith and jth subject in subclass
s. Define r g, ;, similarly. A function #(-, -) is decreasing in transposition within
subclasses or DTS if it is invariant with respect to permutations within sub-
classes, so that #(z,r) = HZ(sijy X(sijy) Tor all (s, 2, j), and in addition, #(z,r) >
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H{Z ;) ¥} whenever {z,; — 2,;} - {r;; — r,;} > 0. When z is a vector of binary
indicators of treatment assignment, #(z,r) is DTS if exchanging a treated subject
with a higher response for a control in the same subclass with a lower response
would not increase #(z,r). The following familiar statistics are all DTS: (i) the
Wilcoxon (1945) rank sum statistic; (ii) the treated-minus-control difference in
means, midmeans or medians; (iii) in the case of matched pairs—that is, n, = 2,
a, =1 for each s—the Wilcoxon signed rank statistic; (iv) in the case of
matching with multiple controls—that is, a, = 1 for each s—most sign/score
statistics as defined in Rosenbaum (1988b). Also, many familiar statistics for
discrete data are DTS; see Section 8.

The definition of DTS functions, given above, is actually more general than
the examples just cited, and other DTS functions will be relevant shortly. In
particular, there is no need for one of the arguments of a DTS function to be a
vector z with binary coordinates. In general, the DTS condition given above
requires that the function increase monotonically as the coordinates of its two
vector arguments are permuted into the same order within each subclass.
For instance, if for s =1,...,S, the nonnegative functions f: R? > R are
totally positive of order 2 or TP, in the sense that f(x, y) - f(x’, y) —
f(x’, ¥) - f(x, ) = 0 whenever x > x’ and y > y’, then A(x,y) =
T1S_I1%, f(x4i, ¥:) is DTS; cf. Hollander, Proschan and Sethuraman (1977,
Section 2.7). In particular, f(x, y) is TP, if f, is the conditional density of y
given x under a normal linear regression model, or if f, is the probability
distribution of a binary y given a covariate x under a linear logit model with a
nonnegative coefficient for x. When there is only one subclass, so S = 1, the DTS
functions are the functions “decreasing in transposition” in the sense of Hollan-
der, Proschan and Sethuraman (1977) or the “arrangement increasing” functions
of Marshall and Olkin (1979), Section 6.F. For S > 1, the class of DTS functions
is the same as the class of decreasing reflection functions with respect to one
particular reflection group, namely the group of permutations within subclasses;
see Eaton (1982) for discussion of decreasing reflection functions in general and
for related references.

Let & be the collection of all

S in
L= )

1la
vectors z with binary coordinates such that £7:,z,; = a, for each s. Generally,
write |A| for the cardinality of the set A, so that || = L. In a randomized
experiment in which a, of the n, subjects in subclass s are randomly assigned to
the treatment, with independent assignments in different subclasses, the set & is
the collection of possible treatment assignments, and each z € & has the same
probability, namely pr(Z = z;r) = 1/L. These treatment assignment probabili-
ties condition not only on the unaffected response r but also on the subclass
information; however, it is convenient to suppress this in the notation. The
conventional randomization significance level is the proportion of treatment

assignments z € § that yield larger values of the test statistic than that
observed, namely |{z € §: «(z,r) > Z,r)}|/L.
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The distribution pr(Z = z; r) = 1/L will be called the uniform distribution on
&. Later sections consider the behavior of #Z,r) under alternative distributions
for Z over ¥. If Z does not have the uniform distribution, then treatment
assignment is not adjustable given the subclasses or pairs, and conventional
adjustments do not suffice. The goal is to use the unaffected outcome r to detect
such a departure from adjustable assignment.

3. DTS statistics yield unbiased tests against DTS alternatives. Recall
that a statistical test is unbiased against a class of alternative hypotheses if the
power of the test against each alternative in the class exceeds or equals the level
of the test. The following theorem says that DTS statistics yield unbiased tests
against alternatives in which pr(Z = z;r) is DTS.

THEOREM 1. Let t(-,:) be a DTS statistic, and consider a test of the
uniform distribution on & which rejects when t(Z,r) > c. This test is unbiased
against all alternatives in which pr(Z = z;r) is DTS.

In practical terms, this says the following. In observational studies, we may
test for hidden biases by applying conventional statistics, such as the subclassi-
fied rank sum statistic, to an unaffected response r. Theorem 1 says these tests
have a prospect of detecting departures from the randomization distribution in
which subjects with higher unaffected responses are more likely to receive the
treatment. Typically, we select an observed unaffected response r to be a proxy
or surrogate for an unobserved covariate u which would have been controlled by
subclassification or matching had u been observed. Sections 6 and 7 discuss the
relationship between such a u and the DTS alternatives in Theorem 1.

The proof of Theorem 1 is given in Section 5 and is based on the ideas
reviewed in Section 4.

4. The Savage lattice, Holley’s inequality and the composition theorem.
Savage (1964) showed that  is a finite distributive lattice. It is this fact that
permits the application of Holley’s inequality to probability distributions on &.
Recall that a set § becomes a lattice when it is endowed with a partial order
< , such that any two elements, z and z* of § have a unique least upper bound,
denoted by:z V z*, and a unique greatest lower bound, denoted by z A z*. In
other words, for z,z* € g, the least upper bound vector z V z’ € § is larger
than both z and z*—that is, z < z V z* and z* < z V z*—and if z** is any
other vector in & larger than both z and z*, then z** is larger than z V z*. The
greatest lower bound is defined analogously. A lattice is distributive if the cap A
and cup V operations are distributive, in the sense that for all z,z*,z** € {, the
distributive law holds, namely z A (z* V z**) = (z A 2*) V (z A 2z**). [Actually,
Savage showed that § is a distributive lattice when there is just one subclass,
S = 1. However, { is still a distributive lattice when S > 1 since in this case it is
the direct product of S distributive lattices, and is therefore a distributive
lattice; see, e.g., Aigner (1979), page 32.]
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The partial order in the Savage lattice is defined as follows. In {, the vector
z* covers z, written z <z* if, for some (s, i), 2;=0 and 2,,,,=1, and
z* =z, ;.1 that is, if z* is obtained by interchanging adjacent coordinates of z
in the same subclass in such a way as to move a 1 to the left and a 0 to the right.
In other words, the treatment assignment z* covers or is immediately above z if
z* is obtained from z by interchanging one treated subject for one control
subject from the same subclass such that the control subject had a response
whose rank within the subclass was 1 higher than the rank of response of the
treated subject. Then z is less than or equal to z* in the partial order, written
z < z* if either z = z* or for some J > 1, there exists a sequence of z /S EF
such that z = z, sz, < --- <2z, = 2%

The cap A and cup V operations are most easily defined and studied by
converting the z’s into rank vectors. Specifically, one considers the function p(z)
which carries the N-dimensional vector z into a vector of dimension Ta,
containing the ranks of the treated subjects in each subclass, arranged from
largest to smallest within subclasses. The reader is referred to Savage for
specifics as the form of A and V are not needed here.

The Savage lattice is intimately connected with the class of DTS functions.
Keeping in mind the restriction that r,; > r,; for i < j, a permutation invariant
function #(z,r) is DTS if and only if it is isotonic or order preserving in the
Savage lattice; that is, if z < z*, then #(z,r) < #(z*,r).

Holley’s (1974) inequality compares two probability distributions, say pu(-)
and p,(-), on a finite distributive lattice, say &. The inequality is a sufficient
condition for p,(-) to be stochastically larger than u,(-) in the sense that all
functions isotonic in the lattice order have higher expectations under u,(-); that
is, all real-valued functions g(-) on & such that z < z* implies g(z) < g(z*).
Specifically, Holley’s inequality states that if

po(z V 2*) - py(z A 2*) 2 py(2) - py(z*) forallz,z* € g,
then

T 8() no() > T g(z) () forallisotonic g().
ZEYF ZEY
Holley’s (1974) proof of the inequality has been shortened and simplified with
the aid of the “four-functions theorem” of Ahlswede and Daykin (1978), though
the original proof contains some intermediate results of independent interest. An
attractive presentation of the four-functions theorem and Holley’s inequality is
given by Bollobas (1986), Section 19, especially exercise 8, page 153.

The composition theorem for DTS functions concerns two DTS functions
with one common vector argument, say h,(w,x) and hy(x,y). Let #°, & and %
be Borel subsets of RN that are invariant with respect to permutations of
coordinates within subclasses; for example, all of RN and & are two such
subsets. Let A be a o-finite measure on the Borel subsets of RN which is
invariant with respect to permutations within subclasses; for example, Lebesgue
measure on RN and counting measure on § are two such measures. The
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composition of h(w,x) and hy(x,y) is

hy(w,y) = /g hy(W, %) hy(x, y)A(dX).

The composition theorem says that if hy(w,y) is well defined and finite for all
weE W andy € ¥, then hy(w,y) is DTS on # X #. For S = 1, the composition
theorem is Theorem 3.3 in Hollander, Proschan and Sethuraman (1977), while for
S > 1, it is a special case of Theorem 4.3 in Eaton (1982), which Eaton says is
due to Conlon, Leon, Proschan and Sethuraman in an unpublished work.

5. Proof of Theorem 1: An application of Holley’s inequality to the
Savage lattice. The following proof of Theorem 1 involves little more than
applying Holley’s inequality to the Savage lattice.

PRrOOF OF THEOREM 1. Write pr(-; r) for probabilities computed under the
uniform distribution on & and write pr(-; r) for the actual probability distribu-
tion. To prove unbiasedness, we need to show that pr{#Z,r) > c;r} > a, when-
ever pr(Z = z;r) is DTS, where a, = pr{#Z,r) > c;r}. The probability that
#(Z,r) > c is the expectation of the indicator function [#(Z,r) > c] which equals
1if #(Z,r) > c and equals 0 and otherwise. Now, [#(Z,r) > c¢] is DTS because
t(Z,r) is DTS, so to prove the result is to show that a particular DTS function,
namely [#Z,r) > c], has a higher expectation under pr(-;r) than under pr(-;r).
By Holley’s inequality, it suffices to show that for all z,z* € §,

pr(Z =z V z*;r) - pr(Z = z A z*;r) > pr(Z = z;r) - pr(Z = z*;r).

But pr(Z = z A z*;r) = pr(Z = z*;r), as this distribution is uniform, so it
suffices to show that pr(Z =z V z*;r) > pr(Z = z;r). If z VvV z* = z,
then pr(Z = z V z*;r) = pr(Z = z;r), and we are done. On the other hand, if
zV z* #z,thenz <zV z* and thereisasequencez =z, sz, <5 --- Sz;=
z V z*, and since pr(Z = z;r) is DTS, its values are monotone increasing over
this sequence, proving the result. O

6. How do DTS alternatives arise? Distributions pr(Z = z;r) on & that
are DTS arise naturally when, in addition to the observed covariates used to
define the subclasses, there is an unobserved pretreatment covariate U which is
positively related to both Z and r. Informally, if there are systematic differences
between treated and control subjects in the same subclass with respect to a
relevant unobserved covariate U, then the groups were not comparable prior to
treatment, and adjustments for the subclasses are insufficient to make them
comparable.

Suppose, for instance, that

exp(yu'z)
T, e exp(yuTz¥)’

(6.1) pr(Z =z|U=u,r) =
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where y > 0. This is the model for pr(Z = z|U = u,r) that arises in sensitivity
analyses for permutation inferences, as described in Rosenbaum (1987b, 1988b)
and Rosenbaum and Krieger (1988). If ¥ = 0, then (6.1) reduces to the uniform
distribution on &. If y > 0, a subject (s, i) with a higher value of u,; is more
likely to receive the treatment than another subject (s, j) in the same subclass
with a lower value of u,;. In (6.1), the treatment assignment is unrelated to r
among subjects with the same value of the unobserved covariate, so treatment
assignment would have been adjustable given both the observed subclasses and
U; this says that adjustments would have sufficed had U been observed and
included in the subclassification or matching, or informally that U is the relevant
unobserved covariate. Also, (6.1) is DTS as a function of (z,u) for y > 0.

The observed unaffected response r provides information about imbalances in
U when they are positively related; this is true in two senses. Section 7 considers
the conditional power for fixed (but unknown) U, while the proposition immedi-
ately below concerns the expected power averaging over a distribution for U.
Combined with Theorem 1 above, Proposition 1 states that the unaffected
outcome r provides an unbiased test for imbalances in U providing U is
positively dependent on r, that is, providing the (continuous or discrete) condi-
tional density, pr(U = u;r), of U given r is DTS. [Many familiar models for
positive dependence in pr(U = u;r) yield'a DTS distribution; for instance, this
is true if

S ng
pl’(U =u; l‘) = I—[l I:[lfs(usilrsi)’

where f(:| - ) is a TP, conditional density for each s.]

ProPosITION 1.  Under model (6.1) with y > 0, pr(Z = z;r) is DTS whenever
pr(U = u; r) is DTS.

Proor. From (6.1)
pr(Z =z;r) = fpr(Z =2z[U=u) - pr(U = u;r) du,
so that the result follows from the composition theorem for DTS functions. O
7. The conditional power given U. Instead of introducing a distribution

for U as in Section 6, we may consider the (conditional) power B(r,u) of the test
for hidden bias as a function of U = u, namely,

B = T [tar) > o] — 2

2e% T.oegexp(yuz*)’

where [£(z,r) > c] equals 1 if {(z,r) > ¢ and equals 0 otherwise. The following
proposition says that the power increases steadily as the ordering of u and r
becomes more similar within each subclass. [D’Abadie and Proschan (1984) gave
the name “isotonic power in the arrangement ordering” to this property of a
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power function.] This is the second sense, mentioned in Section 6, in which an
unaffected response r provides information about an unobserved covariate with
which it is positively related.

PRrOPOSITION 2. If #(-,-) is DTS and y > 0, then the power B(r,u) is also
DTS.

ProoF. Since [#(z,r) > c¢] is DTS because #(-, -) is DTS, the result again
follows from the composition theorem for DTS functions. O

8. Ties. In Section 2, ties were assumed absent. Of course, ties will be
numerous when the response r,; is discrete, and especially so when the response
is binary. In fact, ties present no fundamental problem, though they do require a
few adjustments.

Large parts of the previous argument are unchanged by the presence of ties.
DTS functions are still defined as in Section 2. From this definition, permuta-
tions that involve tied responses do not change the value of a DTS function; that
is, if r,; =r,;, then #(z,r)= #{z,;,r}. Many familiar statistics for discrete
scores or binary responses are DTS, including: (i) the rank statistics mentioned
in Section 2 with average ranks used in case of ties; (ii) the statistic of Mantel
and Haenszel (1959) and Birch (1964) for binary responses; (iii) the statistic of
Mantel (1963) and Birch (1965) for discrete scores; (iv) in the case of matched
pairs—that is, n, = 2, a, = 1 for each s—the statistic of McNemar (1947) and
Cox (1958). Propositions 1 and 2 and their proofs are unchanged.

The one substantive change occurs in connection with the Savage lattice and
the relationship between the lattice partial order and the class of DTS functions.
As in Section 2, subjects are numbered in decreasing order of their responses, so
that r,; > r,; if i <j; however it may now happen that r,; = r,; for some i <.
(The ordering of tied subjects may be done in any arbitrary way that does not
involve Z; for instance, it may be done at random.) The Savage lattice is as
before; however, the partial order now creates artificial distinctions or orderings
associated with the arbitrary arrangement of ties. The DTS functions are now a
proper subset of the functions isotonic in the lattice order—actually the interest-
ing subset, namely the isotonic functions that ignore the arbitrary ordering of
tied responses. Theorem 1 is true and its proof unchanged for all isotonic #(z,r)
and pr(Z = z;r); hence, it is true in particular if these functions are DTS. Of
course, since the ordering of tied subjects is arbitrary, Theorem 1 is of interest
only for DTS functions which ignore the arbitrary ordering.

In short, the results of previous sections are true as stated in the presence of

tied responses.

9. Other uses of Theorem 1.. Theorem 1 may be applied to problems other
than detecting biases in observational studies using an unaffected outcome. To
sketch one familiar example, consider the subclassified two sample problem: For
s=1,...,8, the bivariate response/sample indicator vectors, (R, Z,;), are
independent and identically distributed with (discrete or continuous) conditional
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densities f,(r|z). One sense in which f,(r|1) might be said to be larger than
f«(r|0) is if f(r|1)/f,(r|0) is monotone increasing in r over the possible values of
r, that is, if there is a monotone likelihood ratio (MLR), which implies f(r|z) is
TP,, and hence that pr(Z = z; r) is DTS. It follows from Theorem 1 that any
DTS statistic 4(Z,r) yields an unbiased test of the hypothesis of no difference
within each subclass against MLR alternatives within subclasses. This covers
some familiar and some less familiar cases. For instance, if R takes on K ordered
values, Theorem 1 says that the Mantel (1963)-Birch (1965, Section 5), test for
2 X K X S contingency tables is unbiased against MLR alternatives, providing
the scores attached to the K columns of each of the S 2 X K tables are
monotone.
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