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CONSISTENT AND ASYMPTOTICALLY NORMAL PARAMETER
ESTIMATES FOR HIDDEN MARKOV MODELS

By ToBias Rypkn!

Lund Institute of Technology

Hidden Markov models are today widespread for modeling of various
phenomena. It has recently been shown by Leroux that the maximum-
likelihood estimate (MLE) of the parameters of a such a model is consistent,
and local asymptotic normality has been proved by Bickel and Ritov. In this
paper we propose a new class of estimates which are consistent, asymptoti-
cally normal and almost as good as the MLE.

1. Introduction. A hidden Markov model (HMM) is, loosely speaking, a
sequence {Y}}7% ; of random variables obtained in the following way. First, a re-
alization of a finite state Markov chain {X, } is created. This chain is sometimes
called the regime. Then, conditioned on {X}}, the Y-variables are independent
of each other, and the distribution of Y; depends on {X}} only through X;. This
definition will be made more formal below.

HMMs have during the last decade become widespread for modeling se-
quences of dependent random variables with applications in areas like speech
processing [Rabiner (1989)], biochemistry [Fredkin and Rice (1992)] and biology
[Leroux and Puterman (1992)]. Markov-modulated Poisson processes (MMPPs),
a kind a doubly stochastic Poisson process used, for example, to model arrival
processes in modern communication networks [Heffes and Lucantoni (1986)],
are also closely related to HMMs. Sometimes the hidden Markov chain {X,}
does indeed exist, so that the physical nature of the problem suggests the use
of an HMM,; in other cases HMMs just provide a good fit to the data.

Inference for HMMs was first considered by Baum and Petrie (1966), who
treated the case when {Y} } takes valuesin the finite set {1,...,p}. In Baum and
Petrie (1966), results on consistency and asymptotic normality of the maximum-
likelihood estimate (MLE) are given, and the conditions for consistency are
weakened in Petrie (1969). In the latter paper the identifiability problem is
also discussed; that is, under what conditions there are no other parameters
that induce the same law for {Y}} as the true parameter does, with exception
for permutations of states. For general HMMs, with Y}, conditioned on X}, hav-
ing density f(- ; 6x,), Lindgren (1978) constructed consistent and asymptotically
normal estimates of the §-parameters, but no results on the estimation of the
transition probabilities were given. Later, Leroux.(1992) proved consistency of
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the MLE for general HMMs under mild conditions, and local asymptotic nor-
mality in the sense of Le Cam has been proved by Bickel and Ritov (1993).
However, in order to apply the latter result to the MLE, /n-consistency of this
estimate must be proved, which has not been done. Thus, asymptotic normality
of the MLE is still an open question. Recursive likelihood estimation for HMMs
has been studied by Holst and Lindgren (1991), and ML estimation for MMPPs
has been treated by Rydén (1994).

In this paper we propose a new class of estimates which under fairly general
conditions are consistent and asymptotically normal, and which are almost as
good as the MLE. These estimates are obtained by splitting the observations
into groups of fixed size, viewing these groups as independent and then maxi-
mizing the resulting likelihood. This approach was also used in Rydén (1993)
for establishing similar results for MMPPs.

The paper is organized as follows. In Section 2 the notation is given and
some regularity conditions are stated. In Section 3 the identifiability problem is
discussed, and the new class of estimates is introduced in Section 4. Consistency
and asymptotic normality are proved in Sections 5 and 6, respectively, and
finally some numerical results are given in Section 7.

2. Preliminaries. We will parametrize the problem in a way that is essen-
tially the same as in Leroux (1992). The parameter space is denoted by & C R?,
and the regime {X} };2 , is a stationary Markov chain with state space {1,...,r}
and transition probability matrix {o;;(¢)}, where ¢ € ® is any parameter. Let
{f(-;0); 6 € ©} be a family of densities on a Euclidian space Y with respect to a
measure u, parametrized by 6 € © C R?. Given {X,}, {Y2}32, is a sequence of
independent Y-valued random variables, Y} having density f(. ; 6x,(¢)), where
6;,i=1,...,r, are functions & — O.

The most common case is ¢ = (11,12, . .., %, 01, ..., 6;) with o;;(-) and 6;(-)
being the coordinate projections. We will refer to this case as the “usual parame-
trization” in the sequel.

The stationary distribution of the transition probability matrix {o;j(¢)} will
be denoted by {c;(¢)}. This distribution need not be unique, and therefore we
will also need the enlarged parameter space

7 = ¢, ),

where the union runs over all pairs (¢, «) such that ¢ € ® and « is a stationary
distribution for {o;;(¢)}.

Having introduced this notation, the likelihood for a sequence of observations
Y1, - -,¥m, Or the joint density of Y3, ...,Y},, is

(1) pm(yly e ,me",b) = Z e Z axlf(yl; 9x1(¢)) H axk_ lxkf(yk§ exk(¢))$
k=2

x1=1 xm=1

where ¢ = (¢, @). On the subset ®¢ of & such that {;j(¢)} has a unique stationary
distribution, p,,(y1,...,¥m;-) can be viewed as a function of ¢. For such ¢ we
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will use both ¢ and v as function arguments in the sequel. The true parameter
value will be denoted by ¢°.

The following conditions will be used throughout the paper. Note that condi-
tion C1 ensures that there is a neighborhood of ¢° which is contained in ®°.

C1. The transition probability matrix {e;j(¢°)} is irreducible.

C2. ® is a closed set.

C3. For all i and j, o;;(-) and 6;(-) are continuous, f(y; .) is continuous for all
y, and for all y, f(y; $) — 0 as |¢| — oo.

There is an integer m > 0 such that:

C4. Foreach p#4°, pm(y1, .- -,¥m;¥) and pm(y1, . . ., ¥m: ¥°) are not equal u™-
a.e.

C5. Eyo|log pm(Yy,. .. Y399 < oo.

C6. For each ¢ thereis a § > 0 such that E jo[supy/ _ 4| < sdog pm(Y1,..., Ym;
¥))*] < 0o, and thereisa b > 0 such that E yolsup /| > »10g (Y1, ..., Y3 9N
< 00.

C7. ¢° is an interior point of ®.

C8. For all y1, ...,ym, all partial derivatives of pm(y1,- .-, Ym; ¢) with respect
to ¢ of order three or less exist in a neighborhood of #°.

C9. For each i,

2
Eg [(% logpm(Yl,...,Ym;q&O)) ] < 00,

for each i and j,

32
— _log pm(Y1,. .-, Ym;#°
9604, gpm (Y1 ¢°)
and Ellog pn(Yy,...,Ym; #)] may be differentiated twice under the integral
sign with respect to ¢ at ¢°.
C10. Foreachi, jand &, there exists a function M: R™ — R and a neighborhood
G of ¢° such that EM(Yy,...,Yn) < oo and

Eg

< 00,

sup

108 P31, -+ 3m; ¢'>’ < M(y1,.. . 3m)
'eEG

83
0¢; 0¢; Oy,
for allyy,...,¥m.

We will use a technique developed by Wald (1949) to prove consistency [this
technique is also used by Leroux (1992)], and conditions C2—-C6 are similar
in spirit to those stated in Wald (1949), although the continuity assumptions
can be weakened slightly. They are also very close to the conditions in Leroux
(1992), but here partly formulated in terms of m-dimensional densities.

" Condition C1 implies that {Y}} is ergodic; see Lemma 1 of Leroux (1992).
Condition C4 says that the m-dimensional distribution of {Y}} uniquely iden-
tifies ° within ¥; we will discuss this assumption further in the next section.
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Conditions C7-C10 are of the kind that are normally used to prove asymp-
totic normality in a “Cramér fashion.” Bickel and Ritov (1993) assume similar
conditions to hold, but, in addition, they also need some moment conditions
which can be omitted in the current approach.

3. Identifiability. In this section we will discuss the identifiability condi-
tion C4 in closer detail. Suppose that the following condition is satisfied.

C4'. The family of mixtures of at most r elements of {f(y; 6); § € O} is
identifiable.

This condition means that if 6, ¢ © and §, € © fori = 1,...,r, and (a4, ...,q;)
and (@}, ...,a,) are probability vectors, then (6 is the point mass at 6)

r r r r
Zaif(y; 6,) = Za,ff(y; 0) p-ae. = Zaiégi = Zalféoi/,
i=1 i=1 i=1 i=1

that is, we can identify the mixing distribution. This holds, for example, for
the Poisson family, the negative exponential family and the normal family with
fixed variance. So far we have just discussed identifiability of one-dimensional
distributions, but it turns out that this property carries over to multidimen-
sional ones [see Teicher (1967)]; that is, the family of mixtures of at most r
elements of IIT'f(y;; 6;) (over ©™) is identifiable.

Now, assume that we have the usual parametrization and that condition
C4' is satisfied. Let r; be the number of distinct 9? and define the function
v {1, = {1,..., 71} by A() = 1) iff 6) = 69; that is, v describes how the
states of {X} } are “clustered.” Then, by the result in Teicher (1967), it is obvious
that C4 will be satisfied iff 4° is uniquely determined by the m-dimensional dis-
tribution of {y(X})} over ¥, the “product space” of r x r stochastic matrices and
the corresponding stationary distributions. Of course, we can always permute
the states of {X}} without changing the distribution of {Y}}, but this unessen-
tial ambiguity can be taken care of, for example, by ordering the 6;. If r; = r,
that is, all 0 are distinct, then it is clear that for m > 2, condition C4 will be
satisfied if C1 is. On the other hand, if v(Z) = «(j) for some i # j, then there
is, in general, an infinite number of stochastic matrices that induce the same
finite-dimensional, and hence also m-dimensional, distributions for {7(X})} as
1° does. This is shown in Ito, Amari and Kobayashi (1992), where an explicit
algorithm for constructing such other matrices is also given.

To summarize, if we have the usual parametrization and condition C4’ holds,
the most interesting case is that when all §° are distinct. It should also be
noted that in any case the finite-dimensional distributions of {Y}} are uniquely
determined by the 2r-dimensional one. This is true since the corresponding
property holds for {y(X})}; see Gilbert (1959).

4. Maximum split data likelihood estimates. Suppose that we have
observed a data sequence y1,...,ymn. If the m-dimensional random variables
Yy,...,Yn),(Yyi1,. .., Yoy, and so on, were independent, then the likelihood
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would be

n
@) LW 31, Ymn) = [ P (Omk =0+ 1s- - Ymks ),
k=1

where p,, is the joint density of (Y1,...,Yn) [see (1)]. We call L° a split data
likelihood, and any global maximum point ¢ of it is a maximum split data
likelihood estimate (MSDLE). To stress the dependence on m, we sometimes
write “the m-dimensional MSDLE.” Although L? is a “false” likelihood, it will
nevertheless turn out that the MSDLE is strongly consistent, because of the
identifiability condition C4, asymptotically normal and in many cases as good
as the MLE.

The case m = 1 was treated by Lindgren (1978), but, as noted in Section 1,
this m is, in general, too small for estimation of the complete parameter ¢.

5. Consistency. Inthis section we prove strong consistency of the MSDLE.
The basic technique of the proof is due to Wald (1949). We start with a lemma
concerning the m-dimensional Kullback—Leibler information

Pm (Yla oo aYm; 1/)0)

0 W) =E. :
Km(w 71/))_E¢ log pn(Y1,... Y3 1)

LEMMA 1. Assume that conditions C4-C6 hold. Then K, (% ) > 0 with
equality iff ¢ = ¢°.

ProOF. Let Hy, (4%, %) = Eyollog pm(Yy,. .., Ym; ¥)]. By conditions C5 and
C6, H,,(4°,1°) is finite and H,, ()%, %) < oo, so that K, (¥°, %) is well defined.
By Jensen’s inequality,

pm(Yl’ e aYm; '(/))
Pm(Y1,. -, Yim; 9°)

with equality iff p,(y1,. ., ¥m; V) =Pm(¥1, .-, ¥m; %) p™-a.e. However, by con-
dition C4, this is true iff = °. O

<log 1=0,

- m(¢°,¢)=E¢0 IOg

We now prove strong consistency.

THEOREM 1. Assume that conditions C1-C6 hold and let ™ (n) be the m-
dimensional MSDLE based on mn observations. Then ) ™(n) — ° P-as. as
n — oo.

PRroOOF. By condition C3,pn(y1,---,¥m; ) is continuous for all y,,...,ym. As
in'Wald (1949), one readily shows

(3) lim Ey o sup log pm(Y1,...,Ym;9") =E¢o[logpm(Y1,...,Ym;1/))]
810 ' -9l <6



ESTIMATES FOR HIDDEN MARKOV MODELS 1889

for any ¢ € ¥, and

(4) lim E,,,o[ sup logpm(Yl,...,Ym;zp)] = —0o0.
b—oo ¥l >b

Now, let € > 0 be arbitrary, let S, = {%) € ¥; [ —¢°| < e} and let C = ¥ NS,
Choose by > 0 such that

Ed)"[ sup logpm(Yl,...,Ym;zl))] SE¢0[10gpm(Y17---aYm;%bo)] -1,
[4] > bo

" [this can be done by (4)], and let C; = C N {¢ € ¥; |[¢| < bo}. It follows from
Lemma 1 and (3) that for each ¢ € C; there is an €, and a neighborhood G, of
1 such that

E«po[ sup Ingm(Yla“-aYm;'wl)] §E¢o[logpm(Y1,---,Ym;w")] —€y-
P EGy

Note that conditions C2 and C3 imply that ¥ is closed (as a subset of R**"),
so that C; is compact, and thus there is a finite set {11,...,%q} € ¥ such that
C; C U‘li G;, where G; = Gy,. Define also Gy = {¢ € ¥; 9| > bo}. The ergodicity
of {Y;} now yields

sup (logLs(Yl, s Yon; ¥0) — logLs(YI, cee aYmn;"/)o))
PpeS:

= max ( sup logLs(Yl,...,Ym,,;z/))—logLs(Yl,...,Ymn;qpo)> — —00,
0<i<d YeEG

and since ¢ is arbitrary, ¢ ™(n) is strongly consistent. O

If condition C4 does not hold, then we can introduce an equivalence relation ~
on ¥ by writing ¢ ~ 1 if ¢ and ¢’ induce the same m-dimensional distribution
for {Y}}, and the proof of the theorem above can easily be modified to yield
strong consistency in the quotient topology generated by ~; that is, if G is an
open set containing the equivalence class of /°, then 1 ™)(n) € G for n sufficiently
large, P,0-a.s. The main theorem of Leroux (1992) is formulated in this way.
With the last paragraph of Section 3 in mind, it is clear that if we have the
usual parametrization, condition C4’ holds and m > 2r, then ~, in fact, denotes
equivalence of the finite-dimensional distributions.
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6. Asymptotic normality. The hardest part in proving asymptotic nor-
mality of an MLE is often to obtain a central limit theorem for the score func-
tion, that is, the derivative of the log-likelihood. In many cases a martingale
approach is successful. For the MSDLE, asymptotic normality is very easily
verified, since L° is a product of scalars, and hence log L° is a sum. We will use
the regenerative properties of {Y;}, and therefore we give some basic results
for such processes.

A discrete-time random process {Z;};2, is said to be regenerative with in-
dependent cycles if there exists a (possibly delayed) renewal process {S:}32,,
Sr =Ty +---+ T}, such that:

(i) foreachn > 0,{T,+1,Th+2,---,{Zs, +x}52 o} is independent of Sy, ..., S,
and its distribution does not depend on n, and

(ii) conditioned on {Si}, {{Z;;Sr-1 <Jj < Sk — 1}}32, is a sequence of inde-
pendent random elements.

We will study sums of the form 7 _, g(Z), whereg = (g?,...,g@)is an R?-
valued function, and for this we introduce the random variable U = £} 1] 'g (Z),
the mean cycle length T = E[T] and the probability measure PP defined
by PP(A) = P(A|Sy = 1), corresponding to the case when {S,} is a pure
renewal process.

A straightforward modification of Theorem 5.3.1 of Asmussen (1987) proves
the following law of large numbers.

THEOREM 2. IfT < oo and EP|UY| < o for all i, then

1 gZy) S EPIUIT.
n k=1

A similar modification of Theorem 5.3.2 of Asmussen (1987) and an applica-
tion of the Cramér—Wold device gives a central limit theorem.

THEOREM 3. IfEPT? < 00 and EP|UD |2 < oo for all i, then
1 & _ _
Tn > {g@y - E*IU1/T} % N(0,5/T),
n k=1

where

¥

We now have the necessary tools for proving asymptotic normality of the
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MSDLE. Let iy € {1,...,r} be arbitrary and define

0
hi(yla s aym,¢) = 5{)’ Ingm(yla cee 1ym;¢)1
i
T= min{k > 1: Xm(k—l)+1 = io},
T-1

AE'}') =Ey [ Z hi(Ymt-v+1s-- o Ymr; ¢°)
k=1

XAj (Yt =1s1s-- - Ymk; %) | X1 = io},

T-1

{

vim =E¢0[ Ri(Ym -4t Ymis 6°)

v

]

k

N
| =

1
X hj(Ym(k—~1)+1a~'aYmk;¢0)]X1=i0:|-
k=1

THEOREM 4. Assume that conditions C1-C10 hold and let 9 ™ (n) = (¢ ™(n),
a™(n)) be the m-dimensional MSDLE based on mn observations. If A™ is
nonsingular and m is a multiple of the period of {c;;(¢°)}, then

VR (8™(n) — ¢°) — N(0,C™),
where C™ = [A™] =1V mM[AM]-1/q, (4°).

ProoOF. The proofis essentially the same as the proof of Theorem 6.4.1(ii) of
Lehmann (1991). Since ¢ ™ is strongly consistent, for n sufficiently large ¢ ™ (n)
is an interior point of ® for which the stationary distribution of the correspond-
ing transition probability matrix is unique. For such n a Taylor expansion of
the gradient of

Z(QS) = IOgLs(qS) = Z logpm (Ym(k —D+1y--- ’Ymk; ¢)
k=1

about ¢° yields

0=£(0™) =£(¢°) + > (&7 ~ 69)85(#°)

Jj=1

1~ ~ _
+32° (87— 8N (B — ),

j=1k=1

where @ is a point on the line between ¢° and ™, and the dependence of ¢ ™
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on n has been suppressed. Following Lehmann (1991), we have to prove
1
(5) Aijn - ___e// (¢0) Z (¢(m) ¢k)£”/k(¢) iy aO A(lr;l)’

(6) {Wm}l 1= {TZ:( )} s N(O, a?OV(’")) P¢0'Weakly,
where a° = a(¢). -

By the ergodicity of {Y}}, the strong consistency of ¢ and condition C10,
the second term on the right-hand side of (5) tends to 0 Py-a.s., and it follows
from condition C9 that

32
_ =l (40 I v ) _
E (¢°) = A E¢o[ 54199, log pm (Y1, Ym; ¢ )] Po-as.
and
@) A'ij =Ey [hi(Yl, cos Yo q&o)hj(Yl, . ,Ym;¢°)].
Now, note that {(Y,m - 1)+1,-- -, Yme)}52, is a regenerative process with inde-

pendent cycles, & being a regeneration point if X,, 4 _1)+1 = io. Fix i and j, let
g1, ¥m) = hi(y1, ., ¥m; OB (¥1, ..., ¥m; ¢°) and define U as above. Since
{Xomr-—p+1}isa Markov chain with stationary state probabilities a°, the mean
cycle lengthis T =1 / o; < 00, and hence the hidden Markov structure of {Y}}
and condition C9 1mp1y E s|U| < 0. By Theorem 2, the ergodicity of {Y;} and

(7), it follows that A’ = a° E? U, proving (5).

19 QSO
It remains to prove (6). Redefine g by g = h; for i = 1,...,s and redefine
U in the obvious way. Since EZ,T{ < oo, we have EJ,|U")|* < oo for each i.

Moreover, E g (Y1, ..., Ym; ¢° ) = 0, and, in view of the ergodicity of {Y,} and
Theorem 2, we get Ef;oU = 0. Hence, by Theorem 3,

1 1<
0= ﬁ;g(m_ D1s-e s Y 8°) = N(0,03 V),  Pyo-weakly,

which proves (6) and thus also the theorem. O

Expressing V™ and A™ in terms of regenerative theory is particularly
useful if we want to obtain these matrices by simulation. It is simple to generate
samples of the random variable U which are indeperident, and thus we may
easily estimate the mean of U with desired accuracy by the sample mean. In
practice, we do, of course, not know the true parameters, but we may then use
the MSDLE instead.

We could also have used the mixing properties of {Y}} to derive the central
limit result needed in the proof. By an argument given in Lindgren (1978), page
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TABLE 1
True parameter values, MLEs and 30-dimensional MSDLEs with approximate 95% confidence
intervals for cases A-D. The number of observed samples N was in all cases 5000

Case a b 6, 6y
A True values 0.1 0.4 1 4
MLE 0.0938 0.4043 1.007 3.909
MSDLE & 95% C.I. 0.0943 + 0.015 0.4069 +0.048 1.012+0.045 3.919+0.22
B True values 0.1 0.1 1 4
MLE 0.0870 0.0893 0.984 3.997
MSDLE & 95% C.I.  0.0878 £ 0.014 0.087440.015 0.988 +£0.049 4.004 + 0.094
C True values 0.1 04 1 2
MLE 0.0839 0.4287 1.012 2.079
MSDLE & 95% C.I.  0.0791+0.072 0.4626 +£0.19 1.026 £ 0.095 2.128 £0.51
D True values 0.1 0.1 1 2
MLE 0.0777 0.0851 0.988 2.042

MSDLE & 95% C.I.  0.0881+0.031 0.0846 +0.031 0.964 +0.087  2.006 +0.11

87, {(Ymk - 1)+1,- - -» Yma)} is strongly mixing, and thus a central limit theorem
like Theorem 18.5.3 of Ibragimov and Linnik (1971) can be applied.

For the theorem to hold, A must be nonsingular. If A is singular, then
{h(-;¢")}s_, arelinearly dependent, but in most cases {h(-; #°)} are nonlinear
functions such that this is impossible.

7. Numerical examples. With the usual parameterization and f(y; 6) be-
ing the Poisson family, the negative exponential family or the normal family
with fixed variance, on readily verifies that conditions C1-C10 are satisfied for
any m > 2 if 60 are distinct. Thus, so far we know that for any m > 2 the
MSDLE is a consistent and asymptotically normal estimate of the parameters,
but we do not know which m to choose. This question will be addressed now.

We will study four different two-component Poisson mixtures with transition

probability matrix
l-a a
b 1-b

and Poisson parameters 6; and 65, respectively, listed in Table 1 and denoted
cases A-D. For each case, one run of length N = 5000 samples was simulated,
and all point estimates are computed from these four runs. Intuitively, cases A
and B are the easiest ones for estimation, and cases C and D are the hardest
ones. This is confirmed by the MLEs; see Table 1.

First, we study the MSDLE errors. In Figure 1 the errors in the m-dimensional
MSDLE relative to the errors in the MLE are plotted. The curves indicate that
for m > 20, say, the MSDLE is as good as the MLE. Of course, the figure shows
results only for one sample run from each of two different HMMs, but we have
also studied other examples which all gave similar curves.
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1B = 401/16: - 49| 1™ — 21/16: - 6

Fic. 1. Error in the m-dimensional MSDLE relative to error in the MLE versus m for case A (left)
and case D (right). The number of observed samples N was in all cases 5000.

Next, we study the confidence intervals obtained from Theorem 4 above. If the
total number of observed samples N is fixed, the number of groups n = |[N/m |
will decrease as m grows, but, on the other hand, C™ will also change. In
Figure 2 half of the relative widths of the approximate 95% confidence inter-
vals for the parameters are plotted versus m for cases A and D. The covariance
matrices C'™ were obtained by simulation as outlined above, using 20,000 in-
dependent samples of U calculated for the true parameters. The curves indicate
that it suffices to choose m larger than a threshold; making m even larger does
not improve the confidence intervals much. This threshold depends on the spe-
cific example, though, but these curves together with other examples show that

025 | WV VIFTRTL 68 4 (o nomet INTRT} [
. a . —— : a : —
bt ---- bt -m--
0.20 — L 01 — 1.2 - 01 [ —
l| 0y [ JR J—
0.15 1 2 2
\\ ______________________ 0.8 -
0.10
0.05 044 S===ee.o-----. . ———
, m \ m
0 1 I I 1 T 0 I 1 ! I T
' 0 20 40 60 80 100 0 20 40 60 80 100

Fic. 2. Half of the relative widths of the approximate 95% confidence intervals versus m for case A
(left) and case D (right). The number of observed samples N was in all cases 5000.
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m = 301is a safe choice. Not surprisingly, the curves also show that the transition
probabilities are harder to estimate than the Poisson parameters.

Finally, in Table 1 we give MSDLEs and approximate 95% confidence inter-
vals for all cases. Here, m = 30 and the MSDLESs were used in the simulations
performed to obtain the covariance matrices C (™.
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