A COUNTEREXAMPLE IN THE APPROXIMATION THEORY OF RANDOM SUMMATION

By Dieter Landers and Lothar Rogge

University of Cologne and University of Konstanz

Let X_n , $n \in \mathbb{N}$, be independent and identically distributed random variables and τ_n be random summation indices such that $\tau_n/n \to \tau > 0$ in probability. It is shown that even if τ_n/n converges to τ as quickly as possible (i.e., $\tau_n/n = \tau$) no general approximation orders for suitably normalized random sums $\sum_{\nu=1}^{\tau_n(\omega)} X_{\nu}(\omega)$ are available. If, however, the limit function τ is independent of X_n , $n \in \mathbb{N}$, we give a positive approximation result

1. Introduction. Let X_n , $n \in \mathbb{N}$, be a sequence of independent and identically distributed (i.i.d.) random variables with mean 0 and variance 1. Let $\tau_n : \Omega \to \mathbb{N}$, $n \in \mathbb{N}$, and $\tau : \Omega \to (0, \infty)$ be random variables such that

(1)
$$\lim_{n\to\infty} P\left\{ \left| \frac{\tau_n(\omega)}{n\tau(\omega)} - 1 \right| > \varepsilon \right\} = 0 \quad \text{for all } \varepsilon > 0 ,$$
 i.e., $\tau_n/n \to \tau$ in probability.

It is well known that under condition (1):

(2)
$$\sup_{t \in \mathbb{R}} \left| P\left\{ \frac{\sum_{\nu=1}^{\tau_n(\omega)} X_{\nu}(\omega)}{(n\tau(\omega))^{\frac{1}{2}}} \leq t \right\} - \Phi(t) \right| \to_{n \to \infty} 0$$

and

(3)
$$\sup_{t \in \mathbb{R}} \left| P\left\{ \frac{\sum_{\nu=1}^{\tau_n(\omega)} X_{\nu}(\omega)}{(\tau_n(\omega))^{\frac{1}{2}}} \leq t \right\} - \Phi(t) \right| \to_{n \to \infty} 0,$$

where $\Phi(t)$ is the distribution function of a normally distributed random variable with mean 0 and variance 1.

In [2] it is shown that if τ is a constant limit function and (1) is strengthened to

$$(4) P\left\{\left|\frac{\tau_n(\omega)}{n\tau} - 1\right| > \varepsilon_n\right\} = O((\varepsilon_n)^{\frac{1}{2}})$$

(where $1/n \le \varepsilon_n \to 0$) then in (2) and (3) the order of convergence is $O((\varepsilon_n)^{\frac{1}{2}})$. The question arises whether, under assumptions of type (4), convergence orders are also available for nonconstant limit functions τ .

In this paper it is shown (see our example) that for each sequence of i.i.d. random variables each convergence order for (2) and (3) can be destroyed by a two valued limit function τ even with $\tau_n = n\tau$. Hence the maximal sharpening

www.jstor.org

Received July 13, 1976; revised February 28, 1977.

AMS 1970 subject classifications. Primary 60F05; Secondary 60G50.

Key words and phrases. Independent random variables, convergence order, independent summation index, summation index depending on summands.

1018

of (4) to $P\{|(\tau_n/n\tau) - 1| > 0\} = 0$ does not guarantee any convergence order for (2) or (3), even if τ is two-valued.

It turns out that the limit function τ in our example depends on the sequence X_n , $n \in \mathbb{N}$. For limit functions τ which are independent of X_n , $n \in \mathbb{N}$, we give a positive result for vector-valued random variables which contains the approximation result given in [2] for a constant limit function τ and real-valued X_n . For references concerning the random central limit theorem, see [2].

2. The results. Let (Ω, \mathcal{A}, P) be a probability space. Denote by $\mathcal{L}_r(\Omega, \mathcal{A}, P, \mathbb{R}^k)$ the space of all \mathcal{A} -measurable \mathbb{R}^k -valued functions with $P(|f|^r) < \infty$.

EXAMPLE. Let $X_n \in \mathcal{L}_3(\Omega, \mathcal{N}, P, \mathbb{R})$, $n \in \mathbb{N}$, be a sequence of i.i.d. random variables with mean μ and variance $\sigma^2 > 0$. We construct for each sequence $\delta_n \to_{n\to\infty} 0$ a two-valued measurable function $\tau: \Omega \to \{1, 2\}$ with

$$|P\{\sum_{\nu=1}^{n\tau} (X_{\nu} - \mu) \leq 0\} - \Phi(0)| \geq \delta_n$$

for infinitely many $n \in \mathbb{N}$. Put $\tau_n = n\tau$, then (4) is fulfilled for each sequence $\varepsilon_n \to 0$, but the convergence order in (2) and (3) cannot be better than $O(\delta_n)$.

Put $\delta_n' := \delta_n + \rho/\sigma^3(2n)^{\frac{1}{2}}$, where $\rho = P(|X_1 - \mu|^3)$. Define $S_n := \sum_{\nu=1}^n [X_\nu - \mu]$. From the central limit theorem we immediately obtain

(i)
$$\lim_{n\to\infty} P(S_n \le 0, S_{2n} > 0) =: c > 0.$$

Now construct a subsequence $k(n) \in \mathbb{N}$ such that

- (ii) $\sum_{j=n+1}^{\infty} \delta'_{k(j)} \leq \delta'_{k(n)}/4;$
- (iii) $\sum_{n=1}^{\infty} \delta'_{k(n)} < c/4.$

We shall show that we can define inductively an increasing sequence j(n) with

(iv)
$$j(n) \ge k(n)$$
, $\delta'_{j(n)} \le \delta'_{k(n)}$

and sets A_n with

(v)
$$A_n \subset \overline{A_1 + \cdots + A_{n-1}} \cap \{S_{j(n)} \leq 0, S_{2j(n)} > 0\}$$

(vi) $P(A_n) = 2\delta'_{k(n)}$

(vii)
$$P(S_{j(n)} \leq 0, A_1 + \cdots + A_n) - P(S_{2j(n)} \leq 0, A_1 + \cdots + A_n) \geq \frac{3}{2}\delta'_{k(n)}$$
.

According to (i) there exists $j(1) \ge k(1)$ with $\delta'_{j(1)} \le \delta'_{k(1)}$ and $P\{S_n \le 0, S_{2n} > 0\} \ge c/2$ for all $n \ge j(1)$. As $\sigma(X_n : n \in \mathbb{N})$ is countably generated and $P|\sigma(X_n : n \in \mathbb{N})$ has measure zero for each atom, $P|\sigma(X_n : n \in \mathbb{N})$ is a nonatomic measure.

According to a theorem of Ljapunoff (see [1], page 26) the range of a non-atomic measure is connected, hence there exists a set

$$A_1 \subset \{S_{j(1)} \leq 0, S_{2j(1)} > 0\}$$

with $P(A_1) = 2\delta'_{k(1)}$, whence (iv)-(vii) are fulfilled for n = 1. Let (iv)-(vii) be fulfilled for $l \le n$. According to the conditional central limit theorem of Rényi

(see [4]) there exists $j(n + 1) > \max(k(n + 1), j(n))$ such that

(+)
$$|P(S_{j(n+1)} \leq 0, A_1 + \cdots + A_n) - P(S_{2j(n+1)} \leq 0, A_1 + \cdots + A_n)|$$

 $< \frac{1}{2} \delta'_{k(n+1)}.$

W.l.o.g. we may assume that $\delta'_{j(n+1)} \leq \delta'_{k(n+1)}$.

As by (vi) and (iii)

$$P(\overline{A_1 + \cdots + A_n} \cap \{S_{j(n+1)} \le 0, S_{2j(n+1)} > 0\}) \ge \frac{c}{2} - 2 \sum_{j=1}^n \delta'_{k(j)} > 2\delta'_{k(n+1)}$$

there exists according to the theorem of Ljapunoff a set

$$A_{n+1} \subset \overline{A_1 + \cdots + A_n} \cap \{S_{j(n+1)} \leq 0, S_{2j(n+1)} > 0\}$$

with

$$P(A_{n+1}) = 2\delta'_{k(n+1)}.$$

Hence (iv)-(vi) are fulfilled for n + 1. As furthermore, using (+)

$$P(S_{j(n+1)} \leq 0, A_1 + \dots + A_{n+1}) - P(S_{2j(n+1)} \leq 0, A_1 + \dots + A_{n+1})$$

$$= P(S_{j(n+1)} \leq 0, A_1 + \dots + A_n)$$

$$- P(S_{2j(n+1)} \leq 0, A_1 + \dots + A_n) + P(A_{n+1})$$

$$\geq 2\delta'_{k(n+1)} - \frac{1}{2}\delta'_{k(n+1)} = \frac{3}{2}\delta'_{k(n+1)},$$

this concludes the induction.

Let $A := \sum_{n=1}^{\infty} A_n$ and define

$$\tau(\omega) = 1 \quad \text{for } \omega \in A$$

$$= 2 \quad \text{for } \omega \notin A.$$

According to the theorem of Berry-Esseen

$$|P\{S_n \le 0\} - \frac{1}{2}| \le \frac{\rho}{\sigma^3} n^{-\frac{1}{2}}, \qquad n \in \mathbb{N}.$$

Hence it follows from (ii), (iv), and (vii) that

$$P\{\sum_{\nu=1}^{j(n)\tau} (X_{\nu} - \mu) \leq 0\} - \Phi(0)$$

$$= P(S_{j(n)} \leq 0, A) + P(S_{2j(n)} \leq 0, \bar{A}) - \frac{1}{2}$$

$$= P(S_{j(n)} \leq 0, A) - P(S_{2j(n)} \leq 0, A) + P(S_{2j(n)} \leq 0) - \frac{1}{2}$$

$$\geq P(S_{j(n)} \leq 0, A_1 + \dots + A_n) - P(S_{2j(n)} \leq 0, A_1 + \dots + A_n)$$

$$- P(\sum_{j=n+1}^{\infty} A_j) + P(S_{2j(n)} \leq 0) - \frac{1}{2}$$

$$\geq \frac{3}{2} \delta'_{k(n)} - 2 \sum_{j=n+1}^{\infty} \delta'_{k(j)} + P(S_{2j(n)} \leq 0) - \frac{1}{2}$$

$$\geq \delta'_{k(n)} + P(S_{2j(n)} \leq 0) - \frac{1}{2}$$

$$\geq \delta'_{j(n)} - \frac{\rho}{\sigma^3} (2j(n))^{-\frac{1}{2}} = \delta_{j(n)}.$$

This completes the proof.

Thus, for an arbitrary limit function τ no general approximation order in the

random central limit theorem is available. We give now a positive result for a limit function τ , which is independent of X_n , $n \in \mathbb{N}$. If x > 0, let $[x] := \min\{l \in \mathbb{N} : x \le l\} \cdot (x^1, x^2, \dots, x^k) \le (y^1, y^2, \dots, y^k)$ means $x^i \le y^i$ for $i = 1, \dots, k$.

THEOREM. Let $X_n \in \mathscr{L}_3(\Omega, \mathscr{N}, P, \mathbb{R}^k)$, $n \in \mathbb{N}$, be a sequence of i.i.d. random variables with positive-definite covariance matrix C. Let ε_n be a sequence with $n^{-1} \le \varepsilon_n \to_{n \in \mathbb{N}} 0$. Let $\tau_n : \Omega \to \mathbb{N}$, $n \in \mathbb{N}$, and $\tau : \Omega \to (0, \infty)$ be \mathscr{N} -measurable functions. Assume that there exist constants $c_1, c_2 > 0$ such that

$$P\left\{\omega: \left|\frac{\tau_n(\omega)}{\lceil n\tau(\omega)\rceil} - 1\right| > c_1 \varepsilon_n\right\} = O((\varepsilon_n)^{\frac{1}{2}})$$

$$P\left\{\omega:\tau(\omega)<\frac{c_2}{n\varepsilon_n}\right\}=O((\varepsilon_n)^{\frac{1}{2}})$$

$$(\gamma)$$
 au is independent from $X_n, n \in \mathbb{N}$.

Then we obtain

(i)
$$\sup_{t \in \mathbb{R}^k} \left| P\left\{ \omega : C^{-\frac{1}{2}} \frac{\sum_{\nu=1}^{\tau_n(\omega)} (X_{\nu}(\omega) - P(X_{\nu}))}{(n\tau(\omega))^{\frac{1}{2}}} \leq t \right\} - \Phi(t) \right| = O((\varepsilon_n)^{\frac{1}{2}})$$

and

(ii)
$$\sup_{t \in \mathbb{R}^k} \left| P\left\{ \omega : C^{-\frac{1}{2}} \frac{\sum_{\nu=1}^{\tau_n(\omega)} \left(X_{\nu}(\omega) - P(X_{\nu}) \right)}{\left(\tau_n(\omega) \right)^{\frac{1}{2}}} \leq t \right\} - \Phi(t) \right| = O((\varepsilon_n)^{\frac{1}{2}})$$

where $\Phi(t)$ is the distribution function of a normally distributed random vector with mean 0 and covariance matrix I.

PROOF. W.1.o.g. we may assume that $P(X_{\nu}) = 0$ and C = I, the identity-matrix. First we prove that

(1)
$$\sup_{t \in \mathbb{R}^k} |P\{\sum_{\nu=1}^{\lfloor n\tau(\omega)\rfloor} X_{\nu}(\omega) \leq (\lfloor n\tau(\omega)\rfloor)^{\frac{1}{2}} t\} - \Phi(t)| = O((\varepsilon_n)^{\frac{1}{2}}).$$

Using the fact that τ is independent of X_n , $n \in \mathbb{N}$, we obtain from (β) and the theorem of Berry-Esseen that

$$\begin{split} \sup_{t \in \mathbb{R}^{k}} |P\{\sum_{\nu=1}^{\lfloor n\tau(\omega) \rfloor} X_{\nu}(\omega) &\leq (\lfloor n\tau(\omega) \rfloor)^{\frac{1}{2}}t\} - \Phi(t)| \\ &= \sup_{t \in \mathbb{R}^{k}} |\sum_{i=1}^{\infty} P\{\sum_{\nu=1}^{l} X_{\nu}(\omega) \leq l^{\frac{1}{2}}t, \lfloor n\tau(\omega) \rfloor = l\} - \Phi(t)| \\ &= \sup_{t \in \mathbb{R}^{k}} |\sum_{i=1}^{\infty} P\{\lfloor n\tau(\omega) \rfloor = l\} (P\{\sum_{\nu=1}^{l} X_{\nu}(\omega) \leq l^{\frac{1}{2}}t\} - \Phi(t))| \\ &\leq \sum_{l=\lfloor c_{2}/\epsilon_{n} \rfloor}^{\infty} P\{\lfloor n\tau(\omega) \rfloor = l\} \sup_{t \in \mathbb{R}^{k}} |P\{\sum_{\nu=1}^{l} X_{\nu}(\omega) \leq l^{\frac{1}{2}}t - \Phi(t)|) \\ &+ P\left\{n\tau(\omega) < \frac{c_{2}}{\epsilon_{n}}\right\} \\ &\leq \sum_{l=\lfloor c_{2}/\epsilon_{n} \rfloor}^{\infty} P\{\lfloor n\tau(\omega) \rfloor = l\} \frac{c}{l^{\frac{1}{2}}} + O((\epsilon_{n})^{\frac{1}{2}}) = O((\epsilon_{n})^{\frac{1}{2}}) \;. \end{split}$$

Let

$$I_n(\omega) := \{ j \in \mathbb{N} : [n\tau(\omega)](1 - c_1 \varepsilon_n) \leq j \leq [n\tau(\omega)](1 + c_1 \varepsilon_n) \}.$$

Let

$$t = (t^1, \dots, t^k) \quad \text{and} \quad X_{\nu}(\omega) = (X_{\nu}^1(\omega), \dots, X_{\nu}^k(\omega)),$$

$$A_{n}(t) := \{\omega : \max_{j \in I_{n}(\omega)} \sum_{\nu=1}^{j} X_{\nu}^i(\omega) \le t^i([n\tau(\omega)])^{\frac{1}{2}} \text{ for } i = 1, \dots, k\},$$

and

$$B_n(t) := \{\omega : \min_{j \in I_n(\omega)} \sum_{\nu=1}^j X_{\nu}^i(\omega) \le t^i([n\tau(\omega)])^{\frac{1}{2}} \text{ for } i = 1, \dots, k\}.$$

In the second step we prove

(2)
$$\sup_{t \in \mathbb{R}^k} |P(B_n(t)) - P(A_n(t))| = O((\varepsilon_n)^{\frac{1}{2}}).$$

Let $A_n(t^i) := \{\omega : \max_{j \in I_n(\omega)} \sum_{\nu=1}^j X_{\nu}^i(\omega) \le t^i([n\tau(\omega)])^{\frac{1}{2}}\}$ and $B_n(t^i) := \{\omega : \min_{j \in I_n(\omega)} \sum_{\nu=1}^j X_{\nu}^i(\omega) \le t^i([n\tau(\omega)])^{\frac{1}{2}}\}$. Then $B_n(t) - A_n(t) \subset \bigcup_{i=1}^k \{B_n(t^i) - A_n(t^i)\}$. Hence it suffices to prove that

(*)
$$\sup_{t^i} |P(B_n(t^i) - A_n(t^i))| = O((\varepsilon_n)^{\frac{1}{2}}).$$

Using the fact that τ is independent of X_n , $n \in \mathbb{N}$, as in (1) and arguing similarly as is in the proof of Theorem 1 of [2], we obtain (*) and hence (2).

According to (α)

$$P\{\omega : \tau_n(\omega) \notin I_n(\omega)\} = O((\varepsilon_n)^{\frac{1}{2}})$$

and therefore

(3)
$$P(A_n(t)) - O((\varepsilon_n)^{\frac{1}{2}}) \leq P\{\sum_{\nu=1}^{\tau_n(\omega)} X_{\nu}(\omega) \leq ([n\tau(\omega)])^{\frac{1}{2}}t\} \leq P(B_n(t)) + O((\varepsilon_n)^{\frac{1}{2}})$$
 and

$$(4) P(A_n(t)) \leq P\{\sum_{\nu=1}^{\lfloor n\tau(\omega)\rfloor} X_{\nu}(\omega) \leq (\lceil n\tau(\omega) \rceil)^{\frac{1}{2}} t\} \leq P(B_n(t)).$$

Now (1), (2), (3), and (4) imply

$$(5) \qquad \sup_{t \in \mathbb{R}^k} |P\{\sum_{\nu=1}^{\tau_{\boldsymbol{n}}(\omega)} X_{\nu}(\omega) \leq ([n\tau(\omega)])^{\frac{1}{2}}t\} - \Phi(t)| = O((\varepsilon_n)^{\frac{1}{2}}).$$

For (i) it therefore suffices to show according to a lemma of [3]—which also holds true for vector-valued random variables—that

$$P\left\{\left|\left(\frac{n\tau(\omega)}{\lceil n\tau(\omega)\rceil}\right)^{\frac{1}{2}}-1\right|>(c_2^{-1}\varepsilon_n)^{\frac{1}{2}}\right\}=O((\varepsilon_n)^{\frac{1}{2}}).$$

This follows from (β) as

$$\left\{ \left| \left(\frac{n\tau(\omega)}{[n\tau(\omega)]} \right)^{\frac{1}{2}} - 1 \right| > (c_2^{-1}\varepsilon_n)^{\frac{1}{2}} \right\} \subset \left\{ \left| \frac{n\tau(\omega)}{[n\tau(\omega)]} - 1 \right| > c_2^{-1}\varepsilon_n \right\}
\subset \left\{ [n\tau(\omega)] - n\tau(\omega) > c_2^{-1}\varepsilon_n [n\tau(\omega)] \right\} \subset \left\{ 1 > c_2^{-1}\varepsilon_n [n\tau(\omega)] \right\}
\subset \left\{ 1 > c_2^{-1}\varepsilon_n n\tau(\omega) \right\}.$$

Thus we have proved (i).

Assertion (ii) follows from (5) and a lemma of [3], since according to (α)

$$P\left\{\left|\left(\frac{\tau_n(\omega)}{[n\tau(\omega)]}\right)^{\frac{1}{2}}-1\right|>(c_1\varepsilon_n)^{\frac{1}{2}}\right\}\leq P\left\{\left|\frac{\tau_n(\omega)}{[n\tau(\omega)]}-1\right|>c_1\varepsilon_n\right\}=O((\varepsilon_n)^{\frac{1}{2}}).$$

We mention that condition (β) is always fulfilled if τ is bounded away from zero.

REMARK. (i) Our theorem contains Theorem 1 of [2] as a special case, since for a constant τ conditions (β) and (γ) are always fulfilled and condition (*) in Theorem 1 of [2] implies condition (α).

(ii) Example 3 of [2] shows that a "maximal" sharpening of (α) , (β) and (γ) , namely $\tau \equiv 1$

$$P\left\{\left|\frac{\tau_n(\omega)}{n\tau}-1\right|>\varepsilon_n\right\}=0, \qquad n\in\mathbb{N}$$

and

$$P\left\{\omega:\tau(\omega)<\frac{2}{n\varepsilon_n}\right\}=0$$
, $n\in\mathbb{N}$

does not lead beyond the approximation order $O((\varepsilon_n)^{\frac{1}{2}})$ in (i) and (ii) of our theorem.

(iii) None of the three conditions (α) , (β) , (γ) can be dispensed with, either for assertion (i) or for assertion (ii) of our theorem. Assumption (α) cannot be omitted according to Example 4 of [2]. Assumption (γ) cannot be omitted according to our preceding example [even for $\tau_n = [n\tau]$ and a two-valued function τ]. Assumption (β) cannot be omitted according to the following consideration:

We shall show that under condition (γ) and with $\tau_n = [n\tau]$ (whence condition (α) is always fulfilled) each approximation order can be destroyed in (i) and (ii) of our theorem. Let $\delta_n \to 0$ and choose a subsequence δ_n , $n \in \mathbb{N}_0$, with $\sum_{n \in \mathbb{N}_0} \delta_n \leq 1$. Let X_n , $n \in \mathbb{N}$, be a sequence of i.i.d. random variables with mean zero and $P\{X_1 = 0\} > 0$. Furthermore, let τ be a random variable independent of X_n , $n \in \mathbb{N}$, with

$$P\left\{\tau=\frac{1}{n}\right\}=\delta_n \quad \text{for} \quad n\in\mathbb{N}_0.$$

Then

$$P\{\sum_{\nu=1}^{[n\tau]} X_{\nu} = 0\} \ge P\{[n\tau] = 1, X_1 = 0\} = \delta_n P\{X_1 = 0\}, \qquad n \in \mathbb{N}_0$$

and therefore the approximation order in (i) and (ii) (with $\tau_n = [n\tau]$) cannot be better than $O(\delta_n)$.

REFERENCES

- [1] DINCULEANU, N. (1967). Vector Measures. Pergamon Press.
- [2] LANDERS, D. and ROGGE, L. (1977). The exact approximation order in the Central-Limit-Theorem for random summation. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 269-283.
- [3] MICHEL, R. and PFANZAGL, J. (1971). The accuracy of the normal approximation for minimum contrast estimates. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 18 73-84.
- [4] RÉNYI, A. (1958). On mixing sequences of sets. Acta Math. Acad. Sci. Hungar. 9 215-228.

FACHBEREICH MATHEMATIK UNIVERSITÄT KÖLN WEYERTAL 86-90 D-5000 KÖLN GERMANY FACHBEREICH STATISTIK UNIVERSITÄT KONSTANZ POSTFACH 7733 D-7750 KONSTANZ GERMANY