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A COUNTEREXAMPLE IN THE APPROXIMATION
THEORY OF RANDOM SUMMATION

By DIETER LANDERS AND LOTHAR ROGGE
University of Cologne and University of Konstanz

Let X», ne N, be independent and identically distributed random
variables and 7, be random summation indices such that zn/n — 7 > 0 in
probability. It is shown that even if r,/n converges to r as quickly as
possible (i.e., tu/n =) no general approximation orders for suitably
normalized random sums 372’ X, () are available. If, however, the limit
function ¢ is independent of X,, ne N, we give a positive approximation
result.

1. Introduction. Let X, ne NN, be a sequence of independent and identically
distributed (i.i.d.) random variables with mean 0 and variance 1. Let 7,: Q —
N, neN, and 7: Q — (0, co) be random variables such that

(1) lim, . P {

f"_(“’l_ll>e}:0 forall ¢>0,
nt(w)

ie., 7,/n— 7 in probability.

It is well known that under condition (1):

) SUP,e g P{L(%%f_‘”l < t} - q)(r)’ 0
and
3) SUP,cx P{L(_:‘f'(’_j)()f_“’l < t} - (I)(t)1 00,

where @(7) is the distribution function of a normally distributed random varia-
ble with mean 0 and variance 1.
In [2] it is shown that if 7 is a constant limit function and (1) is strengthened to

@ P{|=Y 1> e} = 0

(where 1/n < ¢, — 0) then in (2) and (3) the order of convergence is O((e,)?).
The question arises whether, under assumptions of type (4), convergence orders
are also available for nonconstant limit functions z.

In this paper it is shown (see our example) that for each sequence of i.i.d.
random variables each convergence order for (2) and (3) can be destroyed by a
two valued limit function = even with z, = nr. Hence the maximal sharpening
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of (4) to P{|(z,/nt) — 1| > 0} = 0 does not guarantee any convergence order for
(2) or (3), even if r is two-valued.

It turns out that the limit function = in our example depends on the sequence
X,, ne N. For limit functions = which are independent of X,, ne N, we give
a positive result for vector-valued random variables which contains the approxi-
mation result given in [2] for a constant limit function r and real-valued X,.
For references concerning the random central limit theorem, see [2].

2. The results. Let (Q, %7, P) be a probability space. Denote by (2, %7,
P, R¥) the space of all .%-measurable R*-valued functions with P(|f|") < oo.

ExamMpLE. Let X, e &£5(Q, 7, P, R), ne N, be a sequence of i.i.d. random
variables with mean x and variance ¢’ > 0. We construct for each sequence
0, —>n-w 0 @ two-valued measurable function z: Q — {1, 2} with

P25 (X, — 1) = 0} — @(0)] = 4,

for infinitely many n e N. Put z, = nr, then (4) is fulfilled for each sequence
¢, — 0, but the convergence order in (2) and (3) cannot be better than O(d,).

Put 9,” := 9, + p/d*(2n)}, where p = P(|X, — p|*). Define S, := 37 , [X, —
#]. From the central limit theorem we immediately obtain

(i) lim,_, P(S,<0,S,, >0)=:¢c>0.
Now construct a subsequence k() € N such that

(li) Z;_o=”+1 k(7) = k(n)/4
(i) 7o, Ohmy < /4.

We shall show that we can define inductively an increasing sequence j(n) with
(lV) .](n) > k(n) 5,7('») S a;c(n)
and sets 4, with

V) d,c4+---+4,,0{S im = 0, Sy(my > 0}
(vi) P(4,) = 28,
(Vi) P(Sjmy S0, 4, + -+ 4+ 4,) — P(Syjin) £ 0, A + -+ - + A4,) = 305

Accordmg to (i) there exists j(1) = k(1) with 0}, < d;, and P{S, <0

Sy > 0} = ¢/2 for all n = j(1). As o(X,:neN) is countably generated and
Plo(X,: n € N) has measure zero for each atom, P|¢(X, : n e N) is a nonatomic
measure.

According to a theorem of Ljapunoff (see [1], page 26) the range of a non-
atomic measure is connected, hence there exists a set

A, C {S;0 = 0, Sy, > 0}

with P(4,) = 20},,, whence (iv)-(vii) are fulfilled for n = 1. Let (iv)—(vii) be
fulfilled for / < n. According to the conditional central limit theorem of Rényi
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(see [4]) there exists j(n + 1) > max (k(n + 1), j(n)) such that
(+) |P(S:(n+1) =04, + -+ + A,‘) - P(S2a(n+1) =0,4,+ --- + An)l
< fak(nﬂ) .
W.l.o.g. we may assume that 0’,.,, < 0;(ns1)-

As by (vi) and (iii)
P(Al + tee + An n {Sj(‘n+1) g 0’ Sﬁj('lﬂ-l) > 0}) z _;— - 2 Z?=1 5;t(]') > 2627(‘"4‘1)

there exists according to the theorem of Ljapunoff a set
A'n+1 C A1 + S An n {Sy(n+1) S 0 S2](%+l) > 0}
with
P(An+1) = 25;&('n+1) .

Hence (iv)—(vi) are fulfilled for n 4 1. As furthermore, using (%)

P(S;iniy =0, 4, + -+ F+ Auer) — P(Ssjney =0 A 4+ - + Aptr)
= P(S](,,H) £0,4, + --- + A4,)
— P(Syjinen = 0,4, + -+ + A4,) + P(4,4)
= 26;:(n+1) — $0kminy = %ai(nﬂ) ’
this concludes the induction.
Let A:= Y 7., A, and define
T(w) =1 for weAd
=2 for wgAd.

According to the theorem of Berry-Esseen

|P{S, = ()}——Iéﬁ3 ) neN.

Hence it follows from (ii), (iv), and (vii) that
P{Zis (X, — p) = 0} — ()
= P(Sjim = 0, 4) + P(Syjy < 0, 4) — %
= P(Sjim < 0, A) — P(Sz,-m < 0, d) + P(Syym < 0) — %
= PS;n =04+ - +4,) — P(S;;, =0, 4, + -+ + 4,)
— P(EFanir 4) + P(Syjom = 0) — 3

36;(») - 2 Z;o n+l ;c(j) + P(SZJ('n) = 0) %
= 5;:(7») + P(S2J('n) = 0)

1(7») ey (2](”)) b= J(n) .

in) =

IIV

IIV

This completes the proof.
Thus, for an arbitrary limit function = no general approximation order in the
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random central limit theorem is available. We give now a positive result for a
limit function z, which is independent of X,,ne N. If x > 0, let [x] : = min {le
Nix <} (%% oo, x%) < (05 % - - -, p¥) means x* <yfori=1,...,k.
THEOREM. Let X, € Z£5(Q, &7, P, R¥), ne N, be a sequence of i.i.d. random
variables with positive-definite covariance matrix C. Let ¢, be a sequence with n~! <

€y —nen 0. Let7,:Q > N,neN,andz:Q — (0, oo) be S7-measurable functions.
Assume that there exist constants c,, ¢, > 0 such that

wilm@ s el o
(@) P‘I . m ll > n} = O0((e)Y)
® Ploze@) < 2} = 0((e))

) 7 is independent from X,,neN .

Then we obtain

i b e ot 22 () — P _ ) _ ol — one
() supiegs|Plo: s <1} — 0()| = 0(e)Y)
and

.. Dy Y@ (X (@) — P(X,

(ii) SUP; e gk P{w. c-i X ((Tf((z))* X)) < t} — (I)(t)l = O0((ea)Y)

where Q(t) is the distribution function of a normally distributed random vector with
mean 0 and covariance matrix 1.

Proor. W.l.o.g. we may assume that P(X,) = 0 and C = /, the identity-
matrix. First we prove that

1 sup;e ge [P{ 215 X, (0) < ([nr(@)])}}) — Q)] = O((ea)?) -
Using the fact that 7 is independent of X, n ¢ N, we obtain from (B) and the
.theorem of Berry-Esseen that

Supee gk [P{ZI X,(0) < ([ne(@))H) — @()]
= SUPsege | S T X(0) S 1, [12()] = 1} — O()]
= SUPcx | S P[ne(@)] = HP(SEo Xio) < B} — ©(2)]
< Diteyen PUNT(@)] = 1} S0P [P{EL Xo(0) S Be — O(1))
+ P {m'(w) < EE%J»
< Titteen PIne(@)] = 1} 5 + O((e)) = O((e)) -

Let
I(o):={jeN:[n(@)](1 — ¢¢,) =J = [mr(@9)](1 + ¢¢,)} -
Let
t=(7 ) and  X(0) = (K@), -, XKH@))
An(t) L= {w: maxjel,,.(w) Z:]::l Xyi(w) é ti([n‘r(w)])i for i = 13 ] k} ’
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and
B,(1) := {o:min;.; «, 21, X,(0) < f([nr(w)])t for i=1, ..., k}.
In the second step we prove

2 Sup;e gk [P(By(1)) — P(4.(1)] = O((en)?) -
Let  A,(f) := {o:max;.; o, 2i, X,Y(0) < t¥([nr(0)])}} and B,(f):= {w:
Miler ) Di-1X(@) < ([re(@)])?}.  Then  B,(1) — 4,(f) € Uk {B.("") —
A,(t}. Hence it suffices to prove that
*) supyi [P(B,(1) — Au(1))] = O((ea)?) -
Using the fact that r is independent of X,, n e N, as in (1) and arguing similarly
as is in the proof of Theorem 1 of [2], we obtain (*) and hence (2).

According to (a)

Plo:7,(0) € L(@)} = O((c.)!)

and therefore
() P(A.(0) — O((e)}) = P{Z5 X (o) = ([re(@)])t} < P(Bu(1)) + O((ea)?)

and

4) P(A,(1)) = P2V X, (0) = ([nr()])1} = P(B(Y)) -
Now (1), (2), (3), and (4) imply
©) SUPce gk [P{ 228 X,(0) = ([n7(@)])1} — ©(1)] = O((e)*) -

For (i) it therefore suffices to show according to a lemma of [3]—which also
holds true for vector-valued random variables—that

P (%‘(%])* = 1> @7e)t} = (e
This follows from (3) as

(o) 1> @t =

nt(w)
[nr(w)]
C{re(@)] — nr(0) > ey7%e,[n7(@)]} C {1 > ¢;7%,[n7(@)]}
c {1 > ¢,7 %, nt(w)} .
Thus we have proved (i).
Assertion (ii) follows from (5) and a lemma of [3], since according to ()

P {l(%)* - 1‘ > (clen)*} < P{{%% ~ 1] > cle,,} = O((ea)?) -

We mention that condition (8) is always fulfilled if z is bounded away from zero.

- ll > Cz_len}

REMARK. (i) Our theorem contains Theorem 1 of [2] as a special case, since
for a constant = conditions (8) and (y) are always fulfilled and condition (*) in
Theorem 1 of [2] implies condition («).
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(ii) Example 3 of [2] shows that a “maximal” sharpening of (a), (8) and (7),
namely 7 = 1
71

P{w:r(w)(nz}zﬂ, neN

n

Tn(w)_l‘>e"}=0, neN
nt

and

does not lead beyond the approximation order O((e,)?) in (i) and (ii) of our
theorem.

(iii) None of the three conditions (a), (8), (y) can be dispensed with, either
for assertion (i) or for assertion (ii) of our theorem. Assumption (a) cannot be
omitted according to Example 4 of [2]. Assumption (y) cannot be omitted ac-
cording to our preceding example [even for 7, = [nr] and a two-valued function
r]. Assumption () cannot be omitted according to the following consideration:

We shall show that under condition (y) and with r, = [nr] (whence condition
(@) is always fulfilled) each approximation order can be destroyed in (i) and
(ii) of our theorem. Let 6, — 0 and choose a subsequence d,, n € N,, with
Dineny On = 1. Let X,, neN, be a sequence of i.i.d. random variables with
mean zero and P{X; = 0} > 0. Furthermore, let 7 be a random variable inde-
pendent of X, n e N, with

P{r:i}:&,, for neN,.
n

Then
P{ZE’:I] Xv = 0} = P{[m'] = 1, Xl = 0} = B"P{Xl = 0} . n GNO

and therefore the approximation order in (i) and (ii) (with z, = [nr]) cannot be
“better than O(3,).
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