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UNUSUAL CLUSTER SETS FOR THE LIL SEQUENCE IN
BANACH SPACE!

By KENNETH S. ALEXANDER

University of Southern California

Let S, =X, + --- +X,,, where X,, X,,... are iid Banach-space-valued
random variables with weak mean 0 and weak second moments. Let K be the
unit ball of the reproducing kernel Hilbert space associated to the covariance
of X. The cluster set A of {S,/(2nloglog n)'/2} is known to be a.s. either
empty or have form aK, with 0 < a < 1 determined by a series condition. To
show that this series condition is a complete characterization of A, examples
are given to show that all @ € [0,1) do occur; A = ¢ and a = 1 are already
known possibilities. A regularity condition is given under which A must be
either ¢ or K. Under stronger moment conditions, a natural necessary and
sufficient condition for A = ¢ is given.

1. Introduction. Let X, X, X,,... be iid random variables with law P
taking values in a separable Banach space (B, | -|) and defined on some
(2, #,P),let S, ==X, + --- +X,,and a, = (2nloglog n)'/2. Wesay X € WM
if Ef(X)=0and Ef%X) < oo for all f € B*. Let A be the cluster set of the
sequence {S,/a,} in B. It is well-known [see Kuelbs (1981)] that when X €
WM, there is a nonrandom closed set D such that A = D as.

The “canonical” value of the cluster set A is the unit ball K of the
reproducing kernel Hilbert space Hp, C B associated to the covariance of X.

That is,
K= {u;: f€B%|fll,<1},
where

up = fxf(x) dP(x) for f € L%(P),

|| - || is the L% P) norm, and B* is the closure of the dual B* in L%(P). K exists
as a subset of B whenever X € WM{. An equivalent definition of K is

(1.1) K={yeB: f(y) <|Ifllyforall f e B*}.
Let B} be the unit ball of B*. Then
sup{||5ll: ¥ € K} = o = sup{||f|ly: f € B} < o0.

For details, and more about K, see Goodman, Kuelbs and Zinn (1981).
The reasons K is canonical are twofold. First, intuitively, (1.1) and the
one-dimensional law of the iterated logarithm (LIL) make K natural. Second,
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more concretely, a result of Kuelbs (1976) says that if there is a compact set
D c B such that

(1.2) A=D as.
and
(1.3) d(S,/a,,D) - 0 as,

then this limit set D must be K. Here d(y, D) := inf(||y — z||: 2 € D} is the
distance from y to D.

When (1.2) and (1.3) hold for some compact D C B (necessarily D = K) we
say X satisfies the compact LIL, denoted by X € CLIL. When {S,/a,} stays
bounded a.s., we say X satisfies the bounded LIL, denoted by X € BLIL. By the
one-dimensional LIL, X € BLIL implies X € WM.

In contrast to the finite-dimensional situation, in infinite-dimensional Banach
space (1.2) can hold, but (1.3) fail, for a nonempty bounded D c B. Further,
X € BLIL does not ensure that A = K as.; A = @ a.s. is also possible. (1.2)
and (1.3) may hold with D = K even if K is not compact. Examples of these
phenomena were given by Goodman, Kuelbs and Zinn (1981) and by Kuelbs
(1981).

In all of these examples, the cluster set is either @ or K a.s. There has been
speculation in the literature that these might be the only possible values. Indeed,
the possible cluster sets are limited by the following characterization of A, from
Alexander (1989). Let vy > 1 and

ny=ny(y) = [Yk]7 I = L(y) = [np ng,y).

When there is no ambiguity or when a result does not depend upon y we will
suppress the y in this notation.

THEOREM 1.1. Suppose X € WMZ. Define a € [0,1] by

=]
a? = sup{ﬁ >0: ), k7 PP[||S,/a,|| < 8 for somen € I,]

(1.4) k=1

= oo forall & > O}

whenever this set is not empty. Then

4= aK a.s. if the set in (1.4) is not empty,
@ a.s. if the set in (1.4) is empty.

Thus the obvious question: Do examples exist in which A = aK a.s. with
0 < a < 1? Our main result answers that question affirmatively. Let ¢, denote
the space of all sequence of real numbers converging to 0, endowed with the sup
norm.

THEOREM 1.2. For each a € [0,1) there exists a bounded c,valued random
variable X for which A = aK a.s.
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Without these examples, Theorem 1.1 would not of course be a true character-
ization of the cluster set A.

All proofs will be given in Section 2-4.

Theorem 1.1 leads us to look for natural conditions under which the unusual
clusters sets of Theorem 1.2 do not occur, and for alternate necessary and/or
sufficient conditions for A = K and for A = @. Here are some results in these
directions. The second shows that for D = K, (1.2) and (1.3) are not completely
separate aspects of the behavior of the LIL sequence. The third shows that the
unusual cluster sets can only occur when the sequence { P[||S,/a,|| < §]: n > 1}
is quite irregular.

THEOREM 1.3. Suppose EX = 0 and E||X||? < co. Then the following are
equivalent:

(i) A = Da.s.
(ii) liminf, ||S,/a,|l > 0 a.s.
(iii) liminf, E||S,/a,|| > 0.

THEOREM 14. Suppose X € WM? and d(S,/a,, K) > 0 a.s. Then
A=Ka.s.

THEOREM 1.5. Assume EX =0 and E||X||?> < w. Suppose that for each
8 > 0 there exist p > 1 and A, p, 7 > 0 such that

(1.5) PLIS./a.ll < 8] = 7P[|IS/a,l <A1
whenever n and [ satisfy n < I < n*. Then either A = K a.s. or A = @ a.s.
The examples of Kuelbs et al. mentioned preceding Theorem 1.1 will be shown

to satisfy the hypotheses of Theorem 1.5. Therefore both K and @ are possible
cluster sets under those hypotheses.

2. Preliminary results. The following is an extension of Theorem 2.3 of
Alexander (1989).

THEOREM 2.1. Suppose X € WM? and let h B* with h + 0. Then the
following are equivalent:
() u, € A as; ,
(ii) for each B < ||h||3 and 8 > 0, there exists y > 1 such that

(2.1) Y. k7 PP[|IS./a,ll < 8 for some n € I(v)] = oo;
k=1
(iii) for each B < ||h||3, 8 > 0 and y > 1, (2.1) holds.

If also E|| X ||2 < oo then (i)-(iii) are equivalent to:
“(iv) for each B <||h||Z, 6 >0,y > 1andm > 1,

(22) X k7PP[IS,, /a,,) < 8]" = w.
k=1
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For h = 0 the same result holds with “each B < ||h||2” replaced throughout by
“B —_ O.”

Note that Theorem 1.1 is an immediate consequence of the equivalence of (i)
and (iii), since X € WM? implies A ¢ K by a lemma of Kuelbs (1976).

The equivalence of (i) and (iv) reinforces our earlier comment that the
sequence {P[||S,/a,|| < 8]: n > 1} must be very irregular for the cluster set to
be other than K of @. If that sequence were at all regular, divergence of (2.2) for
all m > 1 for some B > 0, which occurs if the cluster set is not empty, would
imply that P[||S,, /a, | < 8] approaches 0 more slowly than any positive power
of k, if at all. This would mean (2.2) diverged for all 8 < 1, which by the
equivalence of (i)—(iii) makes A = K.

In our proofs we will, without saying so explicitly each time, make statements
which are only valid provided the parameter k or n is sufficiently large.

To prove Theorem 2.1, we will need several lemmas. The first two are
standard results, given for completeness in Alexander (1989). The first establishes
the equivalence of (ii) and (iii) of Theorem 2.1.

LeEmMA 2.2. Let {F,, n> 1} be any sequence of events and B > 0. Then
convergence or divergence of

)

Y. k~PP[F, occurs for some n € I,(y)]
k=1

does not depend on vy > 1.
LEMMA 23. Let &, ¢,,... beiid with n 'L ¢, > 0 a.s., let § > 0 and let

{m,} be an increasing sequence of positive integers such that for some & > 0,
my, > e£%_1m; for all k > 1. Then

pn
)y P[ Y&
k=1 i=1

> Smk} < 0.

LEMMA 2.4. Let % be a collection of mean-zero functions on (B, %, P) and
suppose { f 2 f € F) satisfies the SLLN, that is,

nl _f (F¥(X,) - Ef“’(X))l >0 a.s.

(2.3) sup
F
Then for each 8 > 4 sups( Ef 2(X))/?,

i supP[

k=1 &%

ng

Z f(Xi)/ank

> 8] < 0.
k=1

%PROOF. Let (¢;) be a Rademacher sequence (1 and —1 with probability 3
each) independent of (X;). Let P, and E, denote probability and expectation
with the X;’s held fixed and only the ¢;’s random, and vice versa for Py and E x.
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Then by Lemma 2.7 of Giné and Zinn (1984), for each > 0 and f € %,
P[ > SJ
I3

Z f(Xi)/an,,
i=1
)y eif(Xi)/ank

i=1

> 8/4]

< Expe[

(2.4) < 2Exexp(—82(loglog n,)/16n;! ZIE fz(Xi))

i=1
> 'rl}

+2 exp(—82(loglog nk)/16(n + s;pEf 2(X)))

ny! gl(ﬁ(x,-) — Ef%(X))

< 2P| sup
F

The second term on the right side of (2.4) is summable if 7 is small; the first is

summable by (2.3) and Lemma 2.3. O

LemMA 2.5. If B is separable, EX =0 and E|X|?< oo, then ¥:=

{2 f € B¥) satisfies the SLLN, that is, (2.3) holds for = B}x.

PROOF. For each x € B consider the random element ¢, of (%) given by
@ f?) = f%x)— Ef¥X). If x, » x in B, then @, — @ in I°(9); it follows
that the random element @y takes values in a separable subspace of I*(%). Since

Elloxllm) < 2E(|| X||?) < oo, the SLLN applies to ¢y. O

Let b, := (2loglog n)'/2.

LEMMA 2.6. Let 8§ >0 and let m and n be positive integers satisfying

m < n8"’ =1 (equivalently, b, < 2b,). Then
PLISun/@mall < 81 < P[|IS,/a,|| < 36m¥/?]™
+m(m — 1) sup IP[| f(Sy/a,)| > 8m‘1/2].
feB¥

Proor.
PLISnn/@mall < 8]
< P[|(Sn = Sir-1yn)/a, || < 36m'/* for all r < m]
(25)  +P[||(S.n = Sir_1yn)/au|| = 36m'72 for some r < m; IS,/ Al < 8]
< P[IS,/a, < 3m7]) ™ |
+mP[[1S,/a,ll = 38m"/%; |1,/ @l < 26m1/2].
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Now given X,..., X, for which |S,/a,| < 38m'/2, there exists fe& B}
for which f(S /an) S 35ml/2 the last event in (2.5) occurs, then
It follows that the last probability in (2.5) is bounded above by

sup Ip“g(smn - Sn)/anl > 8m1/2]
gEBt

and the lemma follows. O

LeMMA 2.7.  Suppose EX = 0 and E|| X |2 < co. Let m be a positive integer,
y>m, and § > 4sup,EB*(Ef %(X))'/2. Then

6) P[u i/ G, || = 6Y26m Y2 S, /a,|| < 8
. k=1

for some n € Ik+1] < 00.

Proor. Note that mn,, < n,,,. Given X,...,X,,, for which|S,, /a,, | >
6y28m™"/2 let f € B¥ satisty fSpn,/@mn,) = 6v?8m~'/% Then (S, /a,,..) > 35.
By a standard argument, conditionally on these X,’s, the probability in (2.6) is
bounded above by

' f mnk) nk+2

[nel,, X ' > 28]

< 2P[|f LT ank+2)| > 8]

< sup IP“g( nk+2/an,,+2)| > 8]
ge

so that this last bound also holds unconditionally. The result now follows from
Lemmas 2.4 and 2.5. O

As in Alexander (1989), we need to decompose X into two parts. Let IT =
{Ey, ..., E;} bebounded partition of B, that is, a partition in which E, is the
only unbounded block, and p; = P(E;). Let &% denote the (finite) o-algebra
generated by II, set

=E(X|¥), X"=2X-E(X¥),

and let S; and S’ be the corresponding sums. Note that E(X|¥) is well-defined
when X falls in Eoc, when X € WM but E||X| is not finite, and X falls in E0
we define E(X|¥) to be the weak mean

N = —pO_IP(EO)E(X|E0°),
which satisfies ’

f(%) = E(f(X)X € E,) forall f € B*.
The following is Lemma 2.12 in Alexander (1989).
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LEMMA 2.8. Suppose X € WMZ, 6>0,0<p<B<l(orp=B8=0), Ais
a bounded partition of B and for every § > 0
Y k7 PP[|IS/a,ll < 8 for somen € I,] = co.
k=1

Then the bounded partition I1 can be chosen so that 11 refines A and

Y E*P[|IS;/a,|| < 6 for somen € I,,] = .
k=1

The following is a variant of Lemma 2.15 of Alexander (1989). The proof is
essentially similar, but simplified considerably by the assumption E|X| < o,
which eliminates the need to condition separately on the variable T, of the
earlier article.

LEMMA 2.9. Suppose E||X|| < co. Then for all § > 0 and v > 1,

I (PLISi/an < 8] = P17/, < 231181/a,l < 3]} < oo.
=1

The proof of the following for m = 1 is essentially contained in the proof of
Theorem 2.3 of Alexander (1989)—see (2.29) through (2.30) of that article—
though Lemma 2.9 above must be used where Lemma 2.15 of that article was
used. The argument there is easily modified to handle m > 1.

LEMMA 2.10. Suppose X € WMZ, § > 0, B > 0, m is a positive integer and
had m
Y kEP[IIS, /@)l < 8] = oo.
k=1
Then

Elk—ﬁp[usnk/ankn < 38]" = oo.

Proor oF THEOREM 2.1. The equivalence of (i), (i) and (iii) is the content of
Proposition 2.6 of Alexander (1989). It is clear that (iv) = (iii), so we must show
that (iii) = (iv).

So suppose (iii) holds and EX =0, E| X||?> < o0. Fix § >0, y > 1, 8 with
0 < B <|hAl% (B=0if h=0) and a positive integer m. Fix an integer r such
that y” > m. Let A be bounded partition of B such that

(2.7)w E|X - E(x12)|° < 6%/16

whenever II is a refinement of A. By Lemma 2.8, II can be chosen so that II
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refines A and

)

2 hP[|1S;/a,) < 8 forsome n & I, (v7)] = oo.
k=1

Let n, denote n,(y"). By (2.7), sup; < ps(Ef 2(X"))'/% < /4, so by Lemma 2.7,
w0 =Y kPP[|IS},, /]l < 6v2m~12].
k=1
Therefore by Lemma 2.6,

o =Y kP[|IS;/a,,|l < 18y?8]"
k=1

+m(m - 1) i sup IP“ f(Sn,/an,,)I > 6720m‘1].
k=1 fEB}

Since 6 is arbitrary and n,(y") = n,(y), the result now follows from Lemmas
2.10, 2.4 and 2.5. O

3. Examples with unusual cluster sets. The underlying idea of these
examples is the following. Let us illustrate with « = 1/ /3. We wish to make the
series in (2.2), with m = 1, diverge if and only if B < 1. This will occur if the
probability in (2.2) is almost 1 when £ is (nearly) a perfect cube, and very small
otherwise. This is accomplished using a random variable for which E|S, /a,,l
stays bounded away from 0 except when % is near a perfect cube, where it drops
rapidly to near O and then rises rapidly away again. Here “rapidly” means at
almost rate ny/2.

For each j>1 let m; be a positive integer, ¢, > 0 and p; € [0,1/2]. Let
sj=X{.imj, and L;=[s;_,, s;). For each I € L; let £}, i > 1, be iid with

¢; with probability Dj»
(3.1) ¢t = { —c; with probability Dj»
0  with probability 1 — 2p;,

independent for distinct I. Let
X=( %’ ;‘2’-")’ 1217

13

n
Sp= L&,
i=1
Z,, = max|S!/n'/?.

el

Note that Z,, is the maximum of m; independent sums of iid real random
variables, and

2 —
IS, /n'/?|| = m;a.ij,,.
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Let us examine heuristically the behavior of EZ;, as n varies. We will not
prove anything yet formally, and will not use these heunstlcs in our latter formal
proofs, so we will make statements here which are actually only correct up to a
constant. Suppose c; and p; are small and m; is large. Then roughly,

c;n? for n < (log mj)/(log pj_l)’
(32) EZ,= ¢,(log m;)/n'/* og((log m,) /np;)
: Jn for (log mj)/(log Pj_l) < n < (log mj)/pi’
¢;(2p,log mj)1/2 for n > (log m;)/p;.

The first range on n is the “deterministic regime,” where with high probability
S} achieves its maximum possible value ¢;n'/? for some ! € L;. The second is the
“Poisson regime,” where P[|S:/n'/?| > EZ;,] can be approximated by a Poisson
probability for I € L, This last is the “Gaussian regime,” where this same
probability admits a Gaussian approximation. Note that EZ,, rises like n'/?
until n = (log m;)/(log p;’!), then falls like n~/? (up to a log factor) as n
increases to (log m;)/p;, then levels out.

The variability of each Z,, is very small, so ||S,/n'/?|| behaves like max ;EZ;,
with very high probability.

Let us use y = 2, that is, n, = 2%, The parameters ¢;, p; and m; will be
chosen so that

¢;n'? ~ (loglogn)"/* forn = (log m;)/(log p;') ~ 2/ = n,

that is, so that EZ,, reaches its peak value (loglog n;)'/? near n = n;. Thus Z,,
is responsible for keeplng !E||S,,/an|| away from 0 When n=2'=n. e

If several consecutive L;’s are “omitted” by setting c; = 0, then E||S,/a,,|| will
drop toward O that nearly an n-'/2 rate for n near the corresponding values 27,
by (3.2). For slightly larger j, if the L,’s are no longer omitted, E||S,/a,|| will be
pushed back higher at nearly an n'/2 rate for n near the corresponding values 27,
until it is bigger than 1, where it levels out.

The choice of which L .’s to omit thus controls the subsequence of values £ for
which E||S, /a, | is small, that is, P[||S,/a,| < 8] is large. Appropriate choice
of this subsequence leads to any desired value of the a of (1.4).

Keeping this in mind, we present the formal proof. We will need Bernstein’s
inequality [see Bennett (1962)]: for 7,,...,n, iid mean-zero random variables
bounded in magnitude by ¢ > 0 with var(n,) < s? and M > 0,

n
n~% Y m,

i=1

> M] < 2exp(—M?/2s*(1 + Mc/3n"/%s?))

P
(3.3) [
< 2exp(—M?/4s?) + 2exp(—Mn'/?/2¢c).
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ProOOF OF THEOREM 1.2. Let us first consider @ > 0. Fix 0 < a < 1 and set
vy = 2 and

Q= {[ml/"‘2]: m=>1},

R = U [J_ [Ingj]yj"' [Ingj]],
JERQ
pj=j ‘logJ,

m; = [1 + exp(2/*%log j)],
oo | 227108 ) i jeR,
/ 0 if jeR.

We will use the notation of the above heuristic.
We now make four claims:

(3.4) Y k=0 ifg<ad?
ke@
(3.5) Y EB=c iff>a
keR
(3.6) lizneing[”S"k/a"k” < 28] =1 foreverye >0,
(3.7 Y P[IIS,,/a,,ll < 1] < .
k&R

Once these claims are established, it follows from (3.4) and (3.6) that (2.2) holds
for y=2, m=1and all § >0 and B < a® Hence so does (2.1) (which does not
" depend upon v), so u, € A as. for all A € B* with ||A||, < a. It follows from
(3.5) and (3.7) that (2.2) fails for y =2, m =1,y =1and all 8 > o? s0 u, & A
a.s. for all A € B* with ||h||, > a. It follows that A = aK a.s.

ProoOF OF (3.4). For 8 < o?,

Y kR i m =P/ = oo,
ke@ m=1

PRrOOF OF (3.5). For 8 > a?,

Yk B< Y 2PR7P(1 + 2log, k).
kER ke@

o0
<222 jB/(1 + 2a 2 log, j)

J=1
< 00.
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PROOF OF (3.6). Fix &€ > 0. Let
— l
Y,=05,2Z, = ’llg}fjlsnk/ankl

J ny “jny

and for each j > 1let U, i > 1, be iid with the distribution (3.1) of ¢ when

le L, Let g
v, =k —[logy k], wy,=Fk+ [log,%]
and fix £ € Q. Then
”Snk/ank“ < lj-riab}: Y}k + jnia;ji Y}k

= (I) + (II).

Now (II) can be bounded deterministically: We have for j > wy,

Yy < nye;/a,, < (2n,/loglog n,)"*((log j)/2f)1/2 < A\ /RV2,

so that (II) < A /kl/ 2 < ¢, where A, and other A; to follow, are constants not
depending on £ or J.
For (I), we need an upper bound for

9, =P

maxY;, >e
J<vy

By Bernstein’s inequality (3.3),

e

ny

P U| = ea
i-1

< 2exp( —¢*(loglog n,)/8¢3p;) + 2exp(—ea, /2c;)

<2 exp( —X,e(log &) j2//(log j)z)

+2 exp( —\qe(27/log j)"*(2* log k) )
= 2‘”‘_]/9 + 2V1k,

so
(3.8) qp <2 3 mi(p + ).

i<
Further (if & is large, as always), for all j < v,
logm; < 2/*%log j < (logu;kl)/2
and ‘
(log 1) /log m; = A ,e(2* log k)" /2/*(log j)*'*
> Asek'/2/log k
> 2.
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Therefore (3.8) leads to
(3.9) a<2 X (ug?+ %)
J<0
But
Y vt< kexp(—>\3zs(2"Z logk)l/z) -0 ask— ©
J<vy
and, by considering separately the sum over j < log,(2/A ,¢%),
Y 142 < (logy(2/A,e?) )exp(— A6 log k) + k exp(—2log k)
J<vy
-0 ask — oo.
Thus g, — 0 as £ = oo, and (3.6) follows.

PROOF OF (3.7). Since a,, /c, ~ 2*71/% = 271/?n,,

Y P[IS,/a,ll<1] < ¥ P[Y,, <1]
kER k&R

D

k&R

ny
1- P[ 2 Uy
i=1
Y. exp —mkP[
k&R

my
< Y exp(—m,pi*).

(3.10)

IA

ny
Y Uu|za,,
i=1

kER

Since n,, log p; ! ~ 2¥log £ ~ (log m,,)/4, the right-hand side of (3.10) is bounded
above for some %, > 0 by
ko+ Y exp(—mYy?) < co.
k>ky
This establishes (3.7) and completes the proof of Theorem 1.2 for a > 0.

For a = 0 the proof is similar except that for @ we use a sequence {j,,}
growing faster than any power of m. O

By the method of proof of (3.6), énd using Bennett’s (1962) improvement of
Bernstein’s inequality to handle v, < j < w,, one can readily check that these
examples satisfy the BLIL.

4. Proofs of Theorem 1.3-1.5. The proof of the following is contained in
the proof of Proposition 2.6 of Alexander (1989); see the argument surrounding
2.8 of the article. .

LEMMA 4.1. Let X € WM¢ and 0 > 0, and let T be a bounded partition of
B. Suppose 0 € A a.s. Then the partition I1 can be chosen so that I1 refines T
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and

liminf||S!/a,| <8 a.s.
n

ProoF oF THEOREM 1.3. If liminf, E||S,/a,|| = 0, then {S,/a,} has a subse-
quence converging to 0 in probability, so 0 € A a.s. Thus (i) implies (iii).
Equivalence of (i) and (ii) is immediate from Theorem 1.1, so it remains to
show (iii) implies (ii). Suppose ¢ := liminfE||S,/a,|| > 0. Let T be a bounded
partition of B such that whenever II is a refinement of T,
(4.1) E|X"|? < (e/192)°.
Now fix such a refinement II. Let 7 > 0 and

Y, = X/1I1X/) < 7(i/loglog i), Z,= X/ - Y,
Tn = Z },i! W’Il:= ZZt
i=1 i=1

By Lemma 2.3 of de Acosta (1983), which, as de Acosta points out, works for
Banach-space-valued random variables,

(4.2) W,/a, >0 as.

Inequality (3.5) of de Acosta (1983), redone as a lower bound with virtually no
change to the proof, says

PLIT./a,ll - E|T,/a,| < —¢/4]
(4.3) < exp(— (£2/64E| X"||?)(2 — exp(er/4E|| X"||))log log n)
< exp(—2loglog n),
provided 7 is sufficiently small (depending on ¢ and E||X"||?) by (4.1). Since
n
EIW,/a,l < a,* ¥ E|Z|

i=1
4.4 n
(4.4) <a;' Y A(E1X7)2) (i  loglogi)"
i=1
-0 asn— oo,

for some sequence A; — 0, we have liminf, E||T,/a,| = e, so that by (4.3),
. )
(4.5) L P[IT, /a,,ll < /2] < .
k=1 .

Since |Eg(T,,/a,)| = |Eg(W,/a,)| for g € B}, (4.4) implies
|Eg(T,/a,)| = 0 uniformly in g.
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Using Bernstein’s inequality (3.3), it follows that

sup P[|g(T,/a,)| > ¢/48]
8EB

(4.6) < sup Pllg(T,/a,)| - E&(T,/a,)| > /9]
gEBY
< exp(—2loglog ).
The proof of Lemma 2.7, using m = 1, y = 2 and & = ¢/48, and using (4.6) in
place of Lemmas 2.4 and 2.5, shows that

o0
kz P[IT,,/a.]l = ¢/2; IIT,,/a,|| < &/48 for some n € Iiy] < 0.
=1

With (4.5), (4.2) and the Borel-Cantelli lemma this shows
liminf||S! /a,|| = ¢/48 a.s.

Since the refinement II of T is arbitrary, Lemma 4.1 shows that 0 ¢ A a.s., that
is, (ii) holds. O

PrOOF OF THEOREM 1.4. The underlying idea is that if u; is on the edge of
K, then the only way for f(S,/a,) to approach 1 (as it must i.0.) is for S, /a, to
approach u;. But a cluster point on the edge of K makes A = K a.s.

Thus fix f € B* with ||f||; = 1, and & € (0,1). By the one-dimensional LIL,
infinitely often both

f(S/a,) 21— and d(S,/a, K) <e/(|flz V1)
When this occurs, there exists g € B* such that ||g||, < 1 and
1S,/a, = ugll < /(I fll5 V 1)
so |f(S,/a,) — f(ug)| < €® and f(u,) = 1 — 2¢%. Therefore
If—al3=11lI5+18l3— 2f(u,) < 4¢°
so that ||u; — u,|| < 2e0. Hence
IS,/a, — usll < (20 + 1)e.
Since ¢ is arbitrary, we have u; elA as. But u; & aK for any a <1, so the

result follows from Theorem 1.1. O

ProoF oF THEOREM 1.5. Suppose A # K a.s. Then there exist § <1,y > 1
and 8§ > 0 such that the series in (2.2) converges for'm = 1. Let p, A, r and 7 be
such that (1.5) holds. Corresponding to A, there exist further constants p,, Ao, 7,
and 7, such that (1.5) holds with 8, 7, A, r and p replaced by A, 7, Ay, 7o and
Pos respectlvely We may assume P <P For convenience of notation we will
assume p, is an integer, but this is in no way essential to our argument. Let n(s)
denote n, for integers s > 1. Then for some constant ¢, which may vary from
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line to line,

w > Y kPP[|IS, /a,,ll < 8]
k=1

=X X EPP[IS,/a,l<8]

s=1 P(S)Sk< s+1
it r
>t Z p?)(l—lg)lp[“sn(s)/an(s)“ < )\] .
s=1
Hence for u := py @~A)/7,
P[lISuey/@noll < A] = 0(u®) ass - oo.
It follows from (1.5) that for v := /" and all p§ < & < p§*,
P[IIS,, /@l <o) < tv°.

But for m > rr,/(1 — B),

L P[IIS, /@l < Ao]™
k=py

=X I PlIS,/a,l<A]”

s= 1p"6$k< s+ 1

[}

<t ) (pp™)’
s=1

< 00

since pyv™ < 1. Thus by Theorem 2.1, A = @ as. O

The examples mentioned before Theorem 1.1 all have the following form: The
Banach space B is c;, and X = (gA}, &,),,...) for some nonrandom sequence
A, 10 and (¢;) a Rademacher sequence. For such X, and ¢ > 0,

P[IIS,/n"?| < ¢] = w (1 - [n‘l/z zn‘, g;| > c/AjJ)
J= I=1
jn n
= exp(— y ﬁl,,j[l:l’[n‘l/2 Y el > c/)\j]),
j=1 i=1

where j, := max{J: ¢/A; < n'/?}, for some constants B,; which approach 1
“uniformly in n and j as ¢ > co. Since a /ll/ 2 is approximately constant over
the range of / needed (for each fixed n) in Theorem 1.5, the following result
shows that the hypotheses of Theorem 1.5 are satisfied for these X.
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LEMMA 4.2. There exists a universal constant R, such that forallm > n > 1
andy > 1,
" >

The proof of this lemma is an elementary exercise in approximating binomial
coefficients and binomial probabilities using Stirling’s formula, so we omit it.

n
w2 Y e,

i=1

m
> y} < ROIJ’Um‘V2 Y e

i=1
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