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THE ASYMPTOTIC JOINT DISTRIBUTION OF
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Empirical versions of appropriate centering and scale constants for
random variables which can fail to have second or even first moments are
obtainable in various ways via suitable modifications of the summands in
the partial sum. This paper discusses a particular modification, called
censoring (which is a kind of winsorization), where the (random) number of
summands altered tends to infinity but the proportion altered tends to zero
as the number of summands increases. Some analytic advantages inherent
in this approach allow a fairly complete probabilistic and empirical theory
to be developed, the latter involving the study of studentized or self-nor-
malized sums. In particular, the joint asymptotic distributions of the
empirically censored quantities of center and scale are determined as well
as precise criteria for convergence to each of the allowable limit laws.
Applications to the Feller class and domains of attraction are also consid-
ered.

1. Introduction. Let X, X;, X,,... be independent identically dis-
tributed (i.i.d.) random variables with distribution function F(x) = P(X < x)
and partial sums S, = L7, X;. When E(X?) = o, it is well known that there
are centerings u, and deterministic normalizations (scalings) o, such that for
some nondegenerate S,

(1.1) /(S"—_“’i) - B,

op

iff B is a stable probability measure, i.e., B = _£(S,), where S, is a stable
random variable of index a, 0 < @ < 2. The distributions F for which u, and
o,, exist so that (1.1) holds are said to be in the domain of attraction of a stable
law of index «, and we denote this by writing F € DA(«a).

Necessary and sufficient conditions for F' € DA(«a) are classical [e.g., Feller
(1971)] and it is obvious that any 7, ~ o, can be used in (1.1). When 0 < a < 2
and F € DA(a), there are three classical ways to determine normalizations
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7, ~ 0, so that (1.1) holds. They are
(1.2a) (the tail equation) 7, = sup{¢t > 0: nP(|X| > ¢) > 1},
(the truncated second moment equation)
7, = sup{t > 0: nEX?I(|1X| < ¢) > t?},
(the censored second moment equation)
7, = sup{t = 0: nE(X? A t%) > t?}.

The term censoring refers to the replacement of X by the censored quantity
(1X] A t)sgn(X) as opposed to the truncated quantity XI(|X| < #). Further-
more, in (1.2b) and (1.2¢), for all but the first few n, 7, actually satisfies the
resulting equation with equality and the solutions suﬂ'ice when a = 2 as well.

In pursuing a more robust weak convergence theory when E(X?) =, a
number of recent investigations have examined weak limit theorems for
self-normalized or studentized partial sums suitably centered. A fundamental
paper in this area is Logan, Mallows, Rice and Shepp (1973) and further
references are contained therein. Another method is via trimmed sums studied
recently by several authors. Ours is a third approach which combines some
ideas from each of these. [For a related work more closely connected to
trimming and winsorizing, see Hahn, Kuelbs and Weiner (1989a).]

To obtain self-normalized limit theorems, it is natural to examine normaliz-
ers (empirical scale quantities) 7, obtained from the empirical version of
(1.2a), (1.2b) or (1.2c) when the distribution function F is replaced by the
empirical distribution function F, = (1/n)X%_,8 x,- If the censoring equation
is used, then the empirical version of 7, is

n 1/2
dF (x) = } - (z Xf)
j-1

and the corresponding version of the centerings i, can be defined by

(1.2b)

(1.2¢)

2/\2

(1.3) T :sup{t>0 nf

1 n
(14) 4, = [(X] A £ )sgn(x) dF(x) = - X (X;| A 7, )sen(X;).

Since 7, > max; _,|X;|, notice that
n n
i, = L (X A%)sen(X)) = L X; =8,
j=1 j=1

and the paper by Logan, Mallows, Rice and Shepp (1973) relates to the limiting
behavior of the self-normalized sums

(1.5) j(s_‘_”i) =j(i£f“_”))

o Tn* Tn

In fact, if 1 < @ < 2, they assume E(X) = 0 and set all centerings equal to
zero. When 0 < a < 1, they again use centerings equal to zero along with the
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assumption that X is strictly stable for « = 1. With these centering assump-
tions in place, they then prove that all limit laws have a subgaussian tail which
depends in a complicated way on the perhaps unknown parameter «a. Further-
more, the limit laws have densities which have infinite discontinuities at +1,
so they are far less familiar than the classical normal density. Finally, the
results do not include distributions F outside the domain of attraction of some
stable law, although the quantities in (1.3) and (1.4) are, in fact, appropriate in
a much wider setting.

Consequently, we seek an alternative approach which attempts to address
some of these problems. It is highly desirable to keep the normal or “nice”
functions of it as the limiting distribution. The basic reason for nonnormality
above is due to the existence of terms of excessively large magnitude as noted
in Lévy’s classic theorem of 1937. Thus, the basic idea is to somehow delete or
otherwise neutralize their effect in S,. Notice that since 7, > max; _,|X}], all
of the large terms in {1, remain unaltered. One way of improving this
situation is to reduce the empirical censoring levels 7, in (1.3) and similarly
their probabilistic analogues 7, in (1.2¢). This can be achieved by considering
scale quantities a, determined by

X2 A a?
(1.6) nkE ( — | =r

n?

a?

n

with 7, > 1 instead of the equation resulting from (1.2c). Once the normaliza-
tions are determined, they are used to determine centerings vy, given by
(1.7) Yo = E(IX| A a,)sgn(X).

Our study then concentrates on the corresponding empirical versions d, and
9, of a, and vy, defined through the empirical distribution function by

n

Z (X7 A a2%),

rp, =

(1.8)

§|b—‘ Q)

= L (i el ).

Since 9, is defined through &,, a detailed study of 9, entails a detailed study
of the joint distribution of (§,, 4 ,).

If r, is bounded, there is typically no net improvement with respect to
asymptotic normality. [Compare Mori (1984) and Maller (1982).] Hence we
must consider 7, — ». Furthermore, in order to study scale and centrality
quantities whlch in the limit involve the entire dlstrlbutlon it is necessary
that lim, _, r,/n = 0. [However, the case lim, ., r,/n =c > 0 4 la Stigler
(1973), is also of interest and is being considered elsewhere ] Moreover, r, can
be, interpreted as a bound on the number of excessive terms which require
modification [see Remark 3.5(ii)]. It is worth noting that the tail equation or
truncated second moment equation analogues of (1.6) would serve as the basis
of two other approaches. The first corresponds to that of trimmed or win-
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sorized sums when the summands are ranked by magnitude [see, e.g., Griffin
and Pruitt (1987) and Hahn, Kuelbs and Weiner (1989a)] while the latter
truncated sums correspond to the approach taken in Hahn and Kuelbs (1988).
For further discussion and comparison see Hahn, Kuelbs and Weiner (1989c).

The purpose of this paper is to pursue this alternative approach using the
censoring equation analogue (1.6) of (1.2¢). It rectifies most of the previously
mentioned problems. The censoring equation has been selected for three
reasons. First, the normalizations determined by the tail equation (1.2a),
unlike those determined by (1.2b) and (1.2¢), are not suitable for normalizing
the full sums for variables in the domain of partial attraction of the normal.
Second, the approach based on the truncated second moment equation (1.2b)
encounters serious analytic difficulties in its mathematical implementation.
Finally, the equations defining the parameters and their empirical versions in
the censored case are analytically nice enough to allow for a complete set of
self-normalized results.

Some of the analytic techniques used in the paper resemble or were inspired
by Griffin and Pruitt (1987), (1989), while the stochastic integral representa-
tions used throughout the paper were certainly influenced and inspired by
work in, for example, Csorgd, Horvath and Mason (1986) and Csérgs, Haeusler
and Mason (1988a), (1988b). Our joint approach has precedent in the work of
Davis and Resnick (1984).

Organization and results. 'The major results of this paper are Theorem 5.1
and Theorem 5.50. Theorem 5.1 gives the joint asymptotic distribution of
(9,,4@,). Theorem 5.50 gives precise criteria for convergence to each of the
limit laws allowed by Theorem 5.1.

The censoring distribution parameters of scale and center are defined in
Section 2. This requires the introduction of some auxiliary functions and
notation to be used throughout the remainder of the paper. The analogous
empirical versions are discussed in Section 3. If F is symmetric about the
origin, Theorem 3.6 establishes the universal asymptotic normality of the
self-normalized or studentized quantity ny, / (\/E é,). The symmetry assump-

tion cannot be relaxed in general by merely considering n(y, — v,)/ (\/;': é,).
(See the paragraph before Corollary 5.70.) One goal of this paper is to identify
when this assumption can be relaxed.

Since the centerings are determined by the normalizers (or scale constants),
the latter must be studied first. The heart of the paper is Section 4 which gives
the basic probabilistic results and a fairly complete detailed study of the
empirical scale quantities. In particular, Theorem 4.7 characterizes both tight-
ness and stochastic compactness of the properly normalized empirical scales

(1.9) Gn, 1
G * -! rnk ank b

for any subsequence of integers n, — «. All possible subsequential limiting
distributions are specified. Further, Proposition 4.34 determines precisely
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when there is subsequential convergence to a specific limiting distribution.
Necessary and sufficient conditions for the quantities in (1.9) to be tight (or
stochastically compact) with only mean zero normal limits are given in Propo-
sition 4.35. Finally, Corollary 4.29 determines that tightness (respectively,
stochastic compactness) of the quantities in (1.9) holds universally for every
sequence r, = © with r, /n = 0 and any n, — « if and only if X is in the
Feller class (resp., X is in the Feller class but outside the domain of partial
attraction of the normal).

Section 5 focuses on the self-normalized results. A fairly complete theory of
the joint asymptotic behavior of ¥, and &, is provided. Theorem 5.1 includes a
characterization of tightness of the properly normalized vectors, a determina-
tion of the form of all subsequential limits, conditions for subsequential
convergence to a given limit law of allowable type whose support is not all of
R? and precisely when the support of the limit laws is a curve in R? rather
than all of R2. Crucial to the proof of this theorem is Proposition 4.3, of which
Theorem 5.1 can be regarded as an empiricalization. General necessary and
sufficient conditions for convergence to a given limit law are provided in
Theorem 5.50. A characterization of tightness and stochastic compactness with
only mean zero bivariate normal limits appears in Corollary 5.59, while
Corollary 5.64 provides necessary and sufficient conditions for convergence to
a bivariate normal limit. The marginal behavior of §, is finally deduced in
Corollaries 5.68 and 5.70. Empirical determination of the limiting covariance
matrix is achieved in Theorem 5.81.

The final section of the paper features applications and examples. For
variables in the domain of attraction of a stable law, joint asymptotic normal-
ity (with specified limiting covariance) always occurs and other results greatly
simplify. The Feller class [where (4.27) holds] is also considered. A broad class
of tractable examples inside the Feller class is introduced which leads to
nonsingular joint asymptotic normality. Finally, an example is included where
even simple consistency, &, /a, — 1 in probability, fails.

2. Notation and preliminaries.

Auxiliary functions and properties. Let X be a nondegenerate random
variable with cumulative distribution function F. Fix ¢ > 0. The joint and
one-sided tails of X will be denoted, respectively, by

G(t) = P(X| >t), G*(t)=P(X>t) and G (t) =P(X< —t).

The pth moments of truncated and censored random variables for any positive
integer p will be designated by

M(p,t) = E(XPI(X| <)),
M(p,t) = E((IX| A t)sgn(X))"
M(p,t) + tPG(t), if p is even,
T\ M(p,t) +tP(GH(t) - G(¢)}, if pisodd.

(2:1)
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It will also be convenient to have a notation for the above quantities normal-
ized by a relevant power of ¢,

m(p,t) =t *M(p,t),

m(p,t) =t PM(p,t)
_[m(p,t) + G(2), if p is even,
B {m(p,t) + {G*(t) — G~ ()}, if pisodd.

Recall that integration by parts allows the pth moment to be related back
to the joint tail or one-sided tails as

(2.2)

j:Pyp_lG(y) dy, if p is even,
(23)  M(p,t) -

[(py"HG* (3) = G~ ()} dy, if p is odd.
0

Write M(p,t) = t?m(p, t). By (2.3) and the product rule of differentiation, off
a countable set,

ptP Y (G(t) — m(p,t)), if p is even,
pt?"Y(G*(t) — G~ (t) —m(p,t)), if pisodd.
Recalling (2.2), it follows that for that a > 0,

P)
tP— t) =
atm(p) {

m(p,t) =m(p,a) —pft@ dy.

Letting a |0, using the monotone convergence theorem on the positive and
negative parts of m(p,-) and using dominated convergence to evaluate
m(p,0) = m(p,0+ ) yields

m(p,
P(X+0) —pft——(f,—y) dy, if p is even,
0
(2.4) m(p,t) = -
tm(p9y) . .
P(X>O)—P(X<O)—prdy, if p is odd.
0

Now let A = A = inf{y > 0: G(y) < P(X # 0)}. Then m(2,s) = P(X # 0)
for 0 < s < A. Moreover, since m(2,¢) > 0 for all £ > A, it is clear that m(2, - )
decreases strictly and continuously on (A, »). Dominated convergence implies
that lim, ,, m(2,¢t) = 0 while, in fact, m(2,¢) > 0 for every t > 0. Conse-
quently, m(2, - ) has a well-defined, continuous inverse on (0, P(X # 0)).

A final observation that will be used several times is that

(2.5) ifz,>y,,2,~y,, thenm(2,z,)~m(2,y,).
This follows because both
m(2,z,) <m(2,y,)
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and

2
m(2,z,) =z,°M(2,z,) > 2;2M(2,y,) = (y—") m(2,y,) ~m(2,y,).
z

n

Similar reasoning yields the analogue of (2.5) for m(p, - ) when p > 2 is even.

Center and scale constants. Fix a real sequence {r,} satisfying

T

(2.6) 0<r, > x, — = 0.

n
Since X is assumed to be nondegenerate, P(X # 0) > 0. Thus, by the discus-
sion following (2.4), there is, for each n sufficiently large, a uniquely defined

distribution scale parameter a, given implicitly by the equation

(2.7) nm(2,a,) =r, ‘
Alternatively, if d denotes the inverse for m(2, - ), then a, = d(r, /n). Recall
that d(1/n) provides classical scalings in the context of the usual central limit
theorem for sums. One should view 7, as a bound on the expected number of

terms of excessive magnitude to be modified when censoring. [See Remark
3.5(ii).] These scale parameters a,, satisfy

(2.8) r, =nG(a,) + nm(2,a,) > nG(a,—) = nG(a,).
Furthermore, the scale parameters can be used to define the centering con-
stants vy, by

(2.9) Yo =M(1,a,) = E((X| A a,)sgn(X)).

Because r,/n — 0 we also have a, —» ». Thus, if E|X| <, y, » EX. If
EX? < », the additional relation a% ~ (n/r,)EX? clearly holds.

3. Self-normalization and universal asymptotic normality for sym-
metric distributions. The underlying c.d.f., F, is often approximated via
the empirical distribution function (e.d.f.) F, = n'lZ j-10x, The empirical
versions of the probabilities and integrals 1ntr0duced in (2 1)’and (2.2) will be
designated with a subscript n. In particular, the three quantities of most
interest for self-normalized results are

nG,(t) = #({j < n:1X,| > t}),

AM(1,6) = Y (X A £)sen(X;),

(3.1) j=1
n X2 At?
nm,(2,t) = ¥ —T5—.
j=1 !

Fix a sequence {r,} as in (2.6). Then, empiricalizing (2.7) and (2.9) leads to
(3.2) nm,(2,4,) =r,
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and
(3.3) Yo =M,(1,4,).

The empirical version @, of the scale constant a, will, for convenience, be
termed the scale estimator throughout this article. It is natural to call ¥, the
empirically censored mean and

- ¥ () A,)sen(X,)

the empirically censored sum. Technically, n$, is not a winsorized sum
because the censoring levels &, are not order statistics. However, 9, can be
computed directly from knowledge of the summands ordered by magnitudes.
We are interested in the self-normalized quantity

n(f = 7v)  Zi{(X)] A d,)sgn(X;) — v}

Vrabh (E5-(x7 1 2)”

First, it needs to be shown that (3.2) uniquely defines the estimator & ,. Let
A, = Ay [see the statement following (2.4)] and notice that m (2, 4A,) = ‘G (0)
whlle m,(2, - ) decreases strictly and continuously to zero on (A,,®). Then
(3.2) can be solved uniquely for a positive value of &, if and only 1f G,(0) >
r,/n. For definiteness, define @, = 0 on the event [Gn(O) <r,/nl. We will
show that

(3.4) G, ® as.

A

In particular, ¢, is almost surely eventually positive and hence uniquely
defined by (3.2).
Let C > 0. By the strong law of large numbers,

1
m, (2,C)=C"2%— ZXz/\Cz-%m(Z C)>0 as.

j 1

By monotonicity of m (2, - ), &, < C implies m ,(2,C) <r, /n. Since r, /n —
0, it follows that

P(é, < C infinitely often) < P(m,(2,C) < 3m(2,C) infinitely often) = 0.

[Note that G (0) = m (2,0) > m (2,C) > im(2,C) > 0 for all sufficiently large
n, almost surely, so that in particular ¢, > C > 0 is uniquely defined.]

3.5 REMARKs. (i) If P(X = 0) = 0, then G,(0) = 1 a.s. In this case, it is
enough to require that r, /n < 1 in order to insure that for each n > 1, @, is
strictly positive and uniquely defined by (3.2). In particular, this is the case if
F is continuous.

(i) Let Y,; > Y,, > -+ >Y,, > 0 denote the order statistics for the sam-

ple of magnitudes {|X|: j < n} arranged in descending order, breaking ties by
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priority of index (or any other method). Now nG (Y, ;=) =j. Also, by continu-
ity and (3.2), the analogue of (2.8) holds,

#J=n:Xjl 2 d,) =nG(a,-) <nm,(2,d,-) =nm,(2,4,) =r,

on the event [d, > 0]. In particular, ¢, > Y, .

If F is assumed to be nondegenerate and symmetric about the origin, the
empirically censored sums when self-normalized can be shown to always be
asymptotically normal. [Note that under symmetry, y, = 0 in (2.9).] The
universality of the following asymptotic normality result is suggestive of the
relative insensitivity of the censoring method to heaviness of the tail of the
distribution.

3.6. THEOREM. Assume F is nondegenerate and symmetric about the ori-
gin and {r,} satisfies (2.6). Then
j(ﬂ—) =/(Lmn(1,dn))
Vr.d, Vrn
J-1(X,1 A &, )sgn(X))
\/ZLI(XJ'Z A di)

Proor. Assume {X: j > 1} are defined on the probability space (Q, 7, P).
Let {¢;} be i.i.d. on a space (0, &, P') with P(g; =1)=P(e; = —1) = ;. Let
V=0xQ, "= FX F, P'=PXxXP'. Since 4, is a function of
{IXq],...,1X,|} alone and X is symmetric, -#(¢,|X,|, £, X5, e g,0X,0,8,) =
(X, X,,...,X,,8,). Let

A = liminf[é&, > 0] = [4, > O for all sufficiently large n].
n—o

- 4(0,1).

Then A € & and, by (3.4), P(A) = 1. [We recall, by (2.4), that
(n/ \/r,)m,(1,8,) is defined by continuity even at a, = 0, if we interpret it as

W ((ma(1,8,))/Ym,(2,8,))
when ¢, = 0.]

We will show that for every ¢,
m X |AG,
¢,(t) = Eexp{it > “I—Asgn(Xj)} e /2 asn - o
j=1 \/Ean

Fix ¢. For w € ), consider

B & (XK@ Ad(0)
A(w) = j;)lexp{ltxl( ~rd(w) g;(o')

j=

} dP'(a).
Then
dn(t) = fQ A(0) dP(w) = fA A(@) dP(w).
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Once it is shown that A, (w) — e /2 for every w € A, an application of the
bounded convergence theorem completes the proof.

Fix w € A and let b, (o) = 1/(}/1,, 8 (@)X ;(w)| A ,(w)). By (3.2), since
o € A, for all sufficiently large n, 0 < bnj(w) < 1/\/2 — 0 and i b,%j(a)) =
1. Therefore,

A(w) = /ﬂrexp{iti b,;(w)e;(w')} dP'(o') = E exp{itT,(w)},

Jj=1

where, o having been fixed, we may regard T (w): ((V, ¥, P') > R as the row
sum of the rowwise P’-independent triangular array {b (w)e (0): j <n,
n > 1}. Since {¢;} is a Rademacher sequence on ({V', 77, P), it 1s 1mmed1ate
that for each fixed €A, AT (w) - #(0,1). Thus A (w) - e /2 for
each w € A and the proof is complete. O

4. Limit theorems: Deterministic censoring/normalization; the
scale estimator. Fix a sequence {r,} of positive numbers such that

(4.1) r,>» and r,/n -0,

unless otherwise noted (specifically, in Corollary 4.29 and Example 4.40).
Naturally, the asymptotic properties of &, and §, will depend in part on the
asymptotic behavior of the corresponding parameters a, and vy,. Recall that
eventually ¢, and 9, are determined by the equations

n
’971 = Mn(]"dn) and d%l = _Mn(27dn)'
r,

n

The joint behavior of the empirically censored quantities M,(1,4,) and
(n/r,)M,(2,4,) will be derived from the joint behavior of the correspond-
ing deterministically censored sums M,(1,a,) and sums of squares
(n/r, )M (2,a,). The following proposition examines the joint asymptotic
behavior of these latter quantities in complete generality. Following its proof
we turn our attention to the properties of the scale estimator ,. The joint
asymptotic behavior of the pair (¥,, &,), which is our major objective in this
paper, will be considered in Section 5, in particular in our main result,

Theorem 5.1. Let
2 : 2
(4.2) a(X) - {Var(X)/EX . if EX? < o,

1, if EX? = o,

4.3. PrOPOSITION. The sequence {(n//r,)Xm (1,a,) — m(1, a,),
m,(2,a,) — m(2,a,)) is tight in R? and every subsequentuzl limit is mean
zero bwanate normal with (possibly degenerate) covariance matrix of the form

_[e¥(X) b
(4.4) p ( b 62)’
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where

0<a%(X)<landb=c?=0, if EX? < o,
a®(X)=1,0<c?<landb? <c?, ifEX?=o.

Convergence in distribution occurs along subsequences for which both

n
—m(3,a,) - b,
(4.5) n
—m(4,a,) - c2
rn
Finally, if X is asymptotically symmetric, i.e.,
I G*(t) -G (¢)
tl_{l;lo G(t) -

(4.6)

then for every subsequential limit law, b = 0.

Proor. Using the Cramér-Wold device, consider for z and v in R,

T (ulm(La,) ~m(L,a)) +o(m(2,0,) ~ m(2.0,)

=y [ WK A en)een(X)) — B((X) A a,)sen(X,)
j=1 anr,
(X7 Aak) - E(X? Ad?)

+v ai\/r:

n
E yn,j‘
Jj=1

The rowwise i.i.d. triangular array {y,;: j < n} is infinitesimal and the only
possible limits are normal since

2u 2v 0
€=+ == - as n — oo,
Y Y

Moreover Ey,; = 0, so the weak convergence will follow upon establishing
convergence of the variances. Now

n n
nVar(y,;) = uzazr Var((|X| A a,)sgn(X)) + v?*——Var(X? A a?)

anry

2uv
+ 5, " Cov((|X| A @,)sgn(X), X2 A a?).

n'n
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First assume that EX? <. Then a2 ~ (n/r,)EX? while Var((X| A
a,)sgn(X)) - Var X. Moreover, if EX 4 < o, notice that

Var(X2 Aa%) < pr E(X‘* Aat) ~

n nn n'n

( (n/r,)r, ) O(%) =o(D).

But if EX* = o, then EX? < » implies that

EX*

4
a,r

E(X* A at) = afr 3G(y)dy [by (2.3)]

a.,r

n'n

= (f "4yM(2, y)dy)

anry

no, n (1
=0 a‘flrna" =0 - =o0(1).

The second equality utilizes the fact that EX? < « implies
limsup (G(¢t)/m(2,¢)) =0,

t— o0
so that y2G(y) = o(M(2,y)). The covariance terms now tend to zero by
application of the Cauchy-Schwarz inequality.
Thus, without loss of generality, it may be assumed that EX2 = «. In this
case both
> Var(((X( Aa,)sgn(X)) ~ a2 E(X?*Aa?) = —m(2 a,) =1

n'n n n

and

Var(1X|?> Aa? ((|X|2 Aa?) ) = rim(4, a,) < rim(2, a,) =1

4
a,r,

using (2.7). By selecting subsequences it may be assumed that
(np/ry,)m(4,a,) > c* <1

Turning to the covariance term,

3 Cov((|X| Aa,)sgn(X), X% A ad? )

— ——(E((XP A a)sgn(X)) — E((X| A a,)sgn(X))E(X? A o))

a,r,

n
= _(m(3’an) - m(17an)m(27an))'
rn
Notice that (n/r,)m1,a,)m?,a,) =m(,a,) > 0, whereas

n
—m(3,a,)
r

n

n n
< —a;’E(X?Add) < —m(2,a,) = 1.
rn rn
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Thus, by selecting further subsequences, it can be assumed that
(ny/r,)m(3,a,,) > b where b> < ¢?, by Cauchy-Schwarz. The form of (4.4)
and subsequential mean zero asymptotic normality are thereby verified.

Finally, if E|X|® <, then EX%2 <o and so b=0. But if E\X|? = oo,
condition (4.6) together with (2.3) implies that

n rnan

“m(3,0,) = —5 [ "3*G"(5) - G () dy

n

o [5G () @y

r,a;,

n

o(r’;3 E(|X|3/\ai)) =o(rim(2,an)) =0(1). O

n n n

The remainder of this section will be devoted to the behavior of the scale
estimator é,. As we will see, to relate 9, to M,(1,a,), it will be necessary in
general to have much more than simple consistency of d,, ie., d,/a, =, 1.
Specifically, we will require that {\/E (4, /a, — 1)} be tight. The following
theorem provides the necessary and sufficient analytic condition for this
tightness and also provides the criterion for simple consistency, along a given
subsequence. Additionally, a description of the resulting subsequential limit
laws is given. After the proof, this analytic condition will be discussed further
and a very general but much more intuitive and classical sufficient condition
will be provided. Finally, asymptotic normality and precise conditions for
convergence to a given limit law will be considered.

Recall that a sequence is stochastically compact if it is tight and every
subsequential limit is nondegenerate (i.e., not concentrated at a point).

Most of the following results concern subsequences. This allows not only
greater generality for determining the precise criteria for convergence of the
appropriate variables, but also increases the flexibility for application of these
results here and elsewhere. Thus, fid a sequence of integers n, — ® unless
otherwise noted (specifically in Corollary 4.29 and Example 4.40).

4.7. THEOREM. Given 0 <p, — ® such that pn‘k/‘/rnk — 0, the following
two conditions are equivalent:

G,, —a,,

a ‘/r""

np

(4.8) P

> pn,,) -0,

(49) gm%{m(z,ank(l - ‘;;""_ )) - m(2’ank)} = o,
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In particular, {(4,, — ank)/ank)‘/rnk} is tight if and only if (4.9) holds for
every p,, — ® such that Pn,/ \Tn, = 0, while &, /a, — 1 in probability if
and only if (4.9) holds for some p, — » such that P,/ {Tn, — 0. Every
subsequential limiting distribution of {((&,, — a,,)/a,)\/T,,} has the form
(4.10) Z(¥74(2)),

where Z ~ #(0,c?) with 0 <c?<1 as in (4.5) and V¥ is convex, strictly
increasing with ¥(0) = 0, ¥(®) = ®, ¥(—w) = — and 2(1 — ¢?) < V' < 2.
The sequence {((&,,, — ank)/ank)\/ r,,} possesses no degenerate subsequential
limit laws if and only if

(4.11) llmlnf—m(4 a, ) > 0.

koo rnk

The sequence {((4,, — ank)/ank)‘/ Ty, } is stochastically compact if and only if
(4.11) holds and (4.9) holds whenever p,, — » and p, / ‘/a - 0.

ProoF. As the proof is rather lengthy and quite technical, it is divided into
several parts.

StEP 1: General facts. Here are derived certain general asymptotic identi-
ties which will provide the key to the analysis of the scale estimator ¢ ,. These
culminate in (4.16).

A fundamental consequence of (3.2), (2.7) and (2.4) is the following identity
which holds on the event [4, > 0] [and thus which holds, due to (3.4), with
probability tending to 1]

n
n ‘/Z
n

T(mn(z,an) - :L—n)
(mn(z’an) - mn(z’dn))

B

(mn(z’an) - m(2,an))

_ n
(412)  /r,
a,m (2 s)

_\/7[
20 ((@pman) e U
rfo (2a(1+\/a)

n

ds

1
1+ du,

u
V.
where the last line employs the change of variable v = (s — a,)/a, )\/_ and
we interpret [? = — /g when B <a.

Analysis can proceed because the behavior of { B,} is completely determined
by Proposition 4.3. In all that follows, we can and do restrict to the event
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[@, > 0]. Because all claims will be made at the level of weak convergence, no
loss of generality results, due to P(4, > 0) — 1 via (3.4).
Fix 0 < p, — o, such that p, = o(\/a ). Now clearly with probability tend-

ingto 1, m,(2,-)>0o0n (a,1—p,/ \/;': ), ), so on this ray, the rightmost
member of (4.12) is (with probability tending to one) a strictly increasing
function of (4, — a,, /d,)y/r, . Thus, (4.12) shows that (again with probability

tending to 1) (&, — a,)/a )1, = p, if and only if
2n ,p,
B,>— [ rhn(2,an(1 +
r, 7o

_ %’f[:“m(z,an

2n .o,
+—["{m
r. Yo "

u

Ve

du
1+u/yr,
du

1+u/‘/;‘:

u

t

u

Jr

2,a,|1+

n

(4.13) —rh(2,an(1 + \/L:_n)

n
R — {m(Z, a,) — m(z,an
Vra

2n

+ fpn ~
— m
r. Jo "

}1+C:;\/Z
)

al

Il

1+

2,a,

n

=7, +T,.

du
1+u/pr,
Similarly, (&, — an)/an)\/a < —p, if and only if

B, %{m(z’“”) B m(z’a"(l ) ‘;% ))}

IA

2n o | u
(4.14) _E’[—pn m,l2,a,l1+ \/E)
N g 8 . u du
I e \/Z) 1+ upr,

-v, + U,.
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We will show that |T,| + |U,| —, 0, which reveals the relative dominance
of the terms 7, and v, introduced in (4.13)-(4.14). Noting that (1 + p,,/
‘,/E)“1 — 1, for large n,

E(T,) + 10,) < 2E| [ (2,01 + =
+ < — +
(IT,0 + 15,0 =< — f_pnmn a1+
n|2 1 “ 1 “ _Id
-m|2,a,[1+ +
mi|2,a s N u
2 gl (2,0, 14+ 2
e m,l2,a, N
-1
n|2 1+ ‘ 1+ “ du
— ,a,
" Ve Ve
(by Fubini’s theorem)
2n o e (g 1 22| 1+ ) g
—_— + —_— JRN—
< . /—pn ar m,|2,a, N N u
(4.15) (by Cauchy-Schwarz)
3 Pn . u
< Zf—p,, nim (4,an(1 + \/E )) du
o -1
[since 1+ — ) Hl}
Vrn
3 Pn u
< — 2, 1+ d
< f_pn nm( a, \/E)) u
6
< pn\/nm(2,an(1— Pn ))
T Vra

6
- :’W [by (2.5)] -

6p,,
N

By Markov’s inequality, |T,| + |U,| —, 0.
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We may now rewrite (4.13)-(4.14) in the form

d. —a
a’l

(4.16)

A

n _an
T < —py = B, + 0,(1) < .

n

The asymptotic identities (4.16), valid for every p,, — ® such that p, / \/;': -0,
are the key to all the subsequent analyses of & ,,.

SteP 2: Equivalence of (4.8) and (4.9). Fixp,, — «suchthatp, //r,, — 0.

First, suppose (4.9) holds. Then the quantity v, in (4.14) and (4.16)
satisfies v, — . This forces the quantity 7, in (4.13) and (4.16) to obey
1, — %: Using (2.3) and a change of variables similar to that employed in
(4.12), we have, along n = n, — o,

pn2n y y |7
'rn—fo Zm(2,an 1+ \/E) (1+ \/E) dy
AL FEa | | P _Sd
-, P A Y oS B

4.17 1 X
( ) z—fo —m(2,a,)|1+ dx
2_Pnn \/E
LN P PR | | PR I
> - — ,a,ll+ —— + x
1 .o n~2 ) x 1 x _ld
> -/ — ,a,|1+ + x

[since P, = o(\/a)]

= —y — o,

8”

where we have twice used M(2, - ) nondecreasing and p,, / \/E - 0.
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It follows, then, from (4.16), that

i

using the tightness of {B,} obtained in Proposition 4.3. Thus, (4.8) holds.
Now suppose (4.8) holds. In order to verify (4.9), we must show that v, of

(4.14) and (4.16) obeys v, — ». Given {n)} c{n,}, restrict to a further

subsequence {n/} < {n}}, along which (4.5) holds and also along which

Q,

_a"\/a

an

> pn) <P(B,+0,(1) >1,)+P(B, +0,(1) < —v,) >0

LR L B

We claim that v = «, establishing (4.9). So suppose v < ». First, assume
¢?> 0in (4.5). Then let n = n, —> ~ and observe that .#(0, ¢?) is a nondegen-
erate normal distribution; in particular, a continuous one. By assumption
(4.8), Proposition 4.3 and (4.16), we have

dn_an
0= lim P(—;—\/Z < —pn) = lim P(B, < -v,) = P(Z < —v),

n—>oo

where _£(Z) = 4710, c?). This contradiction would force v =« if ¢ > 0.
Therefore, suppose that c¢2 = 0. We would have, for every x € R along the
appropriate subsequence, by (2.2) and the analogue of (2.5) for m(4, - ),
x n
1+ —)) ~ —m(4,a,) — 0.

Z a,ll+ \/E Szm , Ay \/E y

Utilizing (2.5), (2.7) and (2.2), it follows that for every x,

J;ﬂ))ﬂ.

Then via (2.4), the definition (4.14) of v, and the bounded convergence
theorem, for every R > 0 and sufficiently large n in the appropriate subse-

quence,
x -1
(1 + _) dx

>v+1 /Ozn”(z (1+ * )
©>v >v, = —m|2,a, —_—
" -on T \/E \/;':

n

1+

n

n
(4.18) r—rh(2,an

1+

n
(419)  ° 2—r‘h(2,an 1+

-R Ty

x -1
W) @

x
7
- f 0 2dx =2R,
_R X
a contradiction when R is large. Therefore, v = « and (4.9) is established.

“SrEP 3: Criteria for consistency and tightness. It is clear that tightness of
{«,, - an,,)/an,,)\/"n,,} is equivalent to (4.8) holding for every p,, — ; it is

no real restriction to consider only p, — % such that p, / Vi ™ 0. As for
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consistency, clearly ¢,,/a,, — 1 in probability if and only if for some o, — o,
we have P(lo,(d,,/a, — Dl >1) - 0. Now without loss of generality we
need consider only o, = o(]/rnk ). Letting p, = V', /0, We see that
d,,/a,, — 1 in probability if and only if (4.8) holds for some Pn, = ® such

that p,, //r,, = 0.

Step 4: Form of the limit laws. Assume that {((d,, — a,,)/a,)\/r,,} is

tight. Fix p,, — « such that p, / ‘/ a — 0. In all the following, restrict
attention to the subsequence {n,} but suppress the subscript k. Define

|

1
1+ 1+ du,

u u)
0 r, Vra V.

(@ ~an)/a i) Apysegn(a, —a,) 21
Bn,lEf (&,—a,)/a,lr) Ap,)sgn(a a)__m (2’an

-1
((An_ n n n) n) (A,,__ n)2n ~ u u
anE[(’a e B ) 2,a,|1+ 1+ du,
) 0 rn ‘[rn [rn
(n-a,)/a )y 2T u u \7!
B, ,= [ Lo o f1r ) [1+ -5 aw.
0 r, vrn ‘/rn

Recalling the last member of (4.12), P(B, # B, ) < P(|(&, — a,)/
a,|lyr. > p,) = 0. Also,

pn 21 _ u B u
E\B, , - B, ,l SE/")HTH‘ m,l2,a,l1+ W -m|2,a,l1+ \/E
-1
u
x(l + ) du — 0,
Vra
by the computation in (4.15). Finally,
dn - all
P(B, ;+ B, 3) SP( —a——\/a Zp,,) - 0.

Therefore, B, — B, ; —, 0.
To clarify the exposition and aid in the Helly selection procedure to follow,
define new functions f,,: R — [0, ) by setting

-1

2n Pn Pn .
r—nm 2,an1—\/.’: 1—‘/a , if —o<x < —p,,
2n x x \7
(4.20) f,(x)= Tn—m 2,a,l1+ ‘/a 1+W , if—p, <x<p,,
-1
2r—:lﬁ7,2,anl+‘;% 1+‘7:7n , ifp, <x <o,

In particular, B, 5 = [é“i"‘“ﬂ)/“")‘/r—”fn(x)dx +0,(1).
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Since m(2, s) = m(2,s) — G(s) is the difference of two nonincreasing func-
tions, each f, is of bounded variation. Uniform boundedness follows from

2n

-3
oo = Fafne i ol 3]

(4.21)

IA

IL\D
s S

3
——

vl\')

Q

S
—

—

+
B b
~———
~————

=2,

recalling (2.5) and the fact that M(2, - ) is nondecreasing.

Given {n,} < {n,}, apply Helly selection [for the most useful version, see,
e.g., Taylor (1985), page 398] to find {n}} c {n/} and f of bounded variation
such that

(4.22) Vx: lim f,(x) =f(x).
n’,;—nzo
Define
B, = [T N (2 dx.
0

We claim that, along {n}}, B, 3 — B, 4 — 0 in probability. Given ¢ > 0,
choose R so that for all large n = n%, P(|(4, — a,)/a,lyr, > R) <e. Then,
using the bounded convergence theorem, choose K so large that for 2 > K,

R
[ (%) = f(2)] dx <.
Now, off a set of probability at most ¢, for 2 > K,
R
1Buy,s = Bugal < [ V(%) = f(2)]dx <,

establishing the claim. Define

X
(4.23) V(x) = f f(s) ds.

0

Then, choose a further subsequence {n%} c{n}} along which _#(B,) —
410, c?) as in Proposition 4.3. [In particular, assume (4.5) holds.] Along {n7},

(4.24) j(?(%—aﬁﬁ)) = A(B,,) ~Z(B,) > #(0,c?).

To establish the form (4.10), it remains to consider the properties of V¥ in
order to utilize (4.24). We claim that f in (4.22) and (4.23) is nondecreasing,



1304 M. G. HAHN, J. KUELBS AND D. C. WEINER

whence ¥ is convex. Obviously, ¥(0) = 0. Fix x < y. Then for large n,

2n x x 7!
fulx)=—m|2,a,[1+ 1+ —

3*1
« F

IA
|
“N
s}
—
+

:‘t
X
I

(4.25)

-1

L A Y
_rnm 2,an1+\/a (1+ rn)
3

_ 1+y/r,
—fn(y)(m

Letting n — « along {n’} gives f(x) < f(y).
From (4.21), 0 < f(x) < 2. But along {n%}, (2.5) and its analogue for m(4, - ),
show that for «x,

2 2 f(x) = lim f,(x)
. 2n x
= hmr—n m(2,an(1 + W)) - G(an
.n x
=2- 2hmZG an(l + \/;': ))

n
>2 - 2lim—m(4,a,) = 2(1 — ¢?),
r,

n

(4.26)

where in the last equality (4.5) is used.

In (4.24); restrict to a further subsequence such that (4, —a,)/a,)
\/E ) - u, say, and let Y ~ u. By continuity of ¥, (4.24) implies ¥(Y) ~
210, ¢2). If ¢2 > 0, #10, c?) is fully supported on all of R. Thus, necessarily
P() = o and ¥(—o) = —oo, since ¥ is nondecreasing. Also, f = ¥’ is nonde-
creasing by (4.25). Thus if for some x,, we had f(x,) = 0, it would follow that
f=0 on (-, x,], whence ¥(—) = ¥(x,) > —, a contradiction. Thus f =
¥’ > 0 and V¥ is strictly increasing. Hence ¥ ! exists and is continuous. We
have Z = ¥(Y) ~ #10, c2) whence Y ~ ¥~ (Z), as required.

If, however, ¢2 = 0, (4.26) shows that in (4.22), f = 2, so that in (4.24), we
have W(x) = 2x. Thus along the appropriate subsequence, (&, —a,)/
an)\/a — 0 in probability, and certainly here, -#(0)'= £ (¥~X(Z)) with Z ~
410, 0), since ¥(0) = 0. Moreover ¥(x) = 2x clearly has the required proper-
ties. Thus, form (4.10) for the limit laws is fully established.

SteP 5: Degenerate limits and stochastic compactness. Suppose (4.11)
fails. We can restrict to a subsequence on which (n/r,)m(4,a,) > 0. By
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restricting to further subsequences, the argument involving ¢? = 0 at the end
of Step 4 reveals that {((d,, — a,)/a, k)m } has a degenerate subsequential
limiting distribution.

Now suppose (4.11) holds. To show that every subsequential limit is non-
degenerate, we may as well assume that {(d,, — ank)/ank)‘/: } is tight.
Given any subsequence of {r,}, we can restrict to a further subsequence where
(4.24) holds for ¥ as in the statement of the theorem and along which
(n/r,)m(4,a,) > c* By (4.11), ¢®> 0. From (4.24) follows, -2((4,
a,)/a, )‘/—) —u/(\lf Y(Z)) with Z ~ .#1(0, c?). We claim that since .#(0, ¢ )
has support exactly R, so does -Z(¥~1(Z)). (In particular, this limit law is
nondegenerate.) Let —o <a <8 <. Then ¥' = f> f(a) > 0 on (a, B), so
that the strictly increasing property of ¥ gives

P(¥~Y(2) € (a,B)) = P(¥(a) <Z<¥(B)) >0,

since V(B) — ¥(a) > f(aXB — a) > 0 and _A(Z) = .#(0,c?) has an every-
where strictly positive density. Hence no subsequential limits of {«a,,
a,) /ank)‘/ r,,} are degenerate. Recalling that stochastic compactness is 51m-
ply tightness W1th no degenerate limits, we have completed the proof of The-
orem 4.7. O

The reduced scale quantities {(d,,, — @, )/a, k)‘/;; } and the analytic tight-
ness criterion (4.9) for them depend on the given pair of sequences {n,}, {r,}).
It is natural to ask under what conditions (4.8) and (4.9), or (4.11), will hold
for every pair {n},{r,}. The answers are very classical ones. Moreover, when
these classical conditions hold, various results in the sequel can be simplified
. and/or strengthened.

Following recent usage, a random variable X (equivalently, its distribution
F) is said to be in the Feller class provided

4 .27 A li G(t)
(4.27) TSR @)

Feller (1967) showed that (4.27) is necessary and sufficient for the partial sums
S, =X, + -+ +X, derived from F to be affinely stochastically compact, i.e.,
for there to exist shifts §, and normalizations d, such that the sequence
{£((S, —5,)/d,)} is stochastically compact. In particular, the Feller class
includes the domain of attraction of every stable law and thus is quite large.

Recall that Lévy (1937) proved that X (distributed according to F) is
outside the domain of partial attraction of the normal (i.e., for no sequences
{n4}, (8, {d}} can £((S,, — 8,)/d,) — N(0, 1)) if and only if

‘r}J

> 0.

lim inf G(2)
(4.28) A= im in m(.0)
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4.29. CoroLLArY. (((@, — a,)/a,)r,} is tight for every r, —  such that
r,/n =0, if and only if X is in the Feller class. {(&, —a,)/a,)y/r,} is
stochastically compact for every such {r,} if and only if X is in the Feller class
but outside the domain of partial attraction of the normal.

ProorF. Assume X is in the Feller class. Fix r, » «, r, /n — 0 and then
Pr =%, p,/ \/;‘: — 0. Since a, — », there exists 0 < 8 < 1 — A such that via

(4.27),

n P
ﬁ; {m(2,an(1 - ‘/;:) —m(2,an)}
3 2n o0 5 ) u du
o, /_pnm S Vre )1+ upr,
du

2n .o 9 1 u
= ?/_pnﬁm ,a,11 + \/E
Bn

> —m(2,a,)p, = Bp, = ©.
T,

n

1+ upr,

Thus, (4.9) holds for the full sequence {n, = &}, for every p, — « such that

pn/ = 0.
If in addition (4.28) holds, note that

_.n _..n . G(a,)
liminf —m(4,a,) = liminf —G(e,) = liminf ————— > A > 0,
n—w I, n—ow I, n—ow m(2,an)

so that (4.11) holds as well on {n, = k}.

Suppose that X is not in the Feller class. We construct {r,} and appropriate
{p,} so that (4.9) fails along every subsequence. Define d(-) implicitly by
tm(2,d(t)) = 1. Since (4.27) fails and d(-) is continuous,

G(d(t
1= limsup ——— = limsup—(—(L = lim sup#G(d(%)).
§—®© m(27s) t—o m(z’d(t)) t—o

Thus, there are ¢, —» © with ¢,G(d(¢,)) — 1. By selecting a subsequence if
necessary, it may be assumed that ¢, ,, > ¢, + 2. Define the sequence {r,} by

(4.30) T = ; if [£2] <n < [t7,4],
k

where [-] denotes the integer part of x. Notice that r, = [t21/t, ~ t, = o,
whereas n/r, =t, on the block [¢ti] <n <[tZ,,], so that n/r, - . [It is
important here that we have never required that {r,} or {n/r,} be integer
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sequences.] As always, nm(2,a,) = r,, which implies that a, = d(n/r,) so
that

lim —G(a,) = lim £,G(d(t,)) = 1.

n—ow I,

Thus, (n/r,)m(2,a,) - 0. Let p, = (n/r,)m(2,a,)~! A rl/3 so that p, —
» but p, = o(y/r,). Then

2,an(1— Pn )

Jrn

- m(2,an)}

-

_2n 0o _ 9 1 u du
- LR ( " r) 1+ uyfr,

ano M(2 (1+ z )) -2 au

== y @y a,

rn “Pn ﬁ: (1 + u/ﬁ:)3
3 -

< —’gf_o‘anM(Z,an)a;2 du

3n
= r—fn(2,an)pn < 3.

Since (4.9) fails (for every subsequence), by Theorem 4.7 (&, — a,,)/a,)y/r,}

has no convergent subsequence.

. Suppose, finally, that X is outside of the domain of partial attraction of the
normal, so that (4.28) fails. Choose a subsequence on which (n/r,)G(xa,) —» 0

for every x > 0 [as in the proof of Lévy’s (1937) theorem, page 113]. Then (2.7)

and standard arguments show that on this subsequence,

n n -~
—m(4,a,) = —f 4s3G(sa,)ds — 0.

Thus (4.11) fails. Theorem 4.7 now implies that {(&, — a,)/d,)y/r,} has a
degenerate subsequential limit. O

It is important to note that (4.27) is not necessary if {r,} is fixed. See
Example 4.40.
Next we derive necessary and sufficient conditiens for convergence in

distribution of {((4,, — a, k)/ank)\/a} to a given law of the form in (4.10).
Specifically, given a number 0 <-¢2 < 1 and a strictly increasing convex func-
tion ¥ with ¥(0) = 0, ¥(—®) = —o, ¥(x) = and 2(1 — c?) < V' < 2, we
identify exactly when £((&,, —a,,)/a,)yr.,) > Z(¥~YZ)), where Z ~

N, ¢?).
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Let v = Z(¥~Y(2)). First consider the case of v degenerate. Necessarily
c?=0.If 2(a,, - ank)/ank)‘/a) — v = §,, then consider a subsequence
along which (n/r,)m(4,a,) - c3 and f,(x) - f,(x). By tightness and (4.24),
along this subsequence ~(((¢,, — ank)/ank)\/i ) > L (Y5 UZ,), where
Vo(x) = [§fo(s)ds and Z, ~ N(0, c}), as in Theorem 4.7. Therefore ¥, '(Z,)
is2 degenerate, so necessarily c§ = 0. Consequently, lim,, _, (n, /T )md,a, ) =
c; = 0.

Conversely, if lim, _, (n, /1, Jm(4, a,)= c?=0, (4.26) shows that f,(x) —
f(x) =2 so ¥(x) = 2x. The argument surrounding (4.19) gives (4.9) and
hence, by Theorem 4.7, tightness of (4, — a,,)/a nk)‘/ r,, }- But then, Propo-

sition 4.3 and (4.24) give 2((4,,, — a,,)/a n )Y Tn,) ~p 0. Thus if v is degener-
ate, (4, — ank)/ank)\/a) — v if and only if

ny
4.31 lim —m(4, =0
(4.31) fim *m(4,a,,)

If v =_2(¥~Y2)) is nondegenerate, a unique representation for the limit
will be required. Now certainly c? > 0. Let ¥, i = 1,2, be strictly monotone
and convex with ¥;(0) = 0, ¥(®) = ®, ¥,(—®) = —x and 0 < ¥’ < 2. Suppose
Z; ~ N(0,c?) with 0 < ¢? < 1 and A(¥; Y(Z)) = £A(¥;(Z,)). Then

Z(Z,) ==/(\I'1(‘P1_1(Z1))) ==/(‘I'1(\P2_1(Z2)))

= (V5 (Zyey/c0)).

The strict monotonicity of w(¢) = ¥(V¥, Y(c,t/c,)) leads to w(t) = ¢, which is
equivalent to ¥, /c; = ¥, /c,. To see this, let ¢ be the density of .#(Z,). Then
for every ¢,

f_t q(s)ds=P(Z, <t) = P(w(Z;) <w(t))

w(t)

=P(Zy <w(?) = [""a(s) ds,

whence [ q(s)ds = 0. But q(s) > 0 for every s and thus w(¢) — ¢ = 0.
Therefore the expression ¥ /c is invariant among representations for v of the
form (4.10). Thus given nondegenerate v = (¥ ~YZ)), Z ~ N(0, ¢?) and ¥
as in Theorem 4.7, we can uniquely represent v in the canonical form
v =_A(¥Y3(Z,)), where Z, ~ N(0,1) and ¥, = ¥ /c.

Now we can determine convergence criteria for a given nondegenerate v in
canonical form v = Z(¥;%(Z,)). For the necessity part, suppose £ «a,, -

a,,)/d nk)‘/ ry,) = v. By Theorem 4.7, (4.11) holds, We claim, in addition, that

(4:;2) lim \/:z m(z’a”"(l ’ x/‘/;;)) = %\Ifa(x)

koo ‘/m(4,ank)




SELF-NORMALIZED CENSORED SUMS 1309

for all but countably many x (recalling the convexity of ¥,): Given any
subsequence of {n,}, restrict further so that (n/r,)m(4,a,) - ¢ > 0, using
(4.11). Restrict further so that (4.22) holds, for some f, where we recall (4.20).
As in the proof of Theorem 4.7, it follows that on this restricted sequence,
28, —a,) /G, Wr,) > L(¥~YZ)) where Z ~ N(0,c?) and ¥' =f. By
uniqueness of the representation of v, ¥/c = ¥,, so V'(x) = c¥{(x) off a
countable set. Thus, (4.32) holds on this restricted subsequence and a standard
subsequence argument now shows (4.32) holds on the original subsequence
{n,}. For convenience, we note that in view of (4.11), (2.5) and (2.7), equation

(4.32) is equivalent to
X 1
ank1+? =§ 6(.76),
off a countable set.

Thus, (4.11) and (4.33) are necessary for £((&,, — a,,)/d nk)‘/a) - 0.

We claim (4.11) and (4.33) also suffice for (4, — ak)/ank)\/r_n:) - .
Restrict to a subsequence where (n/r,)m(4,a,) - c¢? > 0 and define ¥ =
cV,. Now (4.32) leads to (4.22) with f= V', off a countable set. On this
restricted subsequence, it will follow from (4.24), etc., that on this subsequence
Z((&, — a,)/a)r,) » L(¥"UZ) with Z ~ N(0, c?), provided
{«a,, - ank)/ank)\/a} can be shown to be tight. This will be done by
verifying (4.9). Note that if p, = «, p, = O(E ), then using properties of ¥,

-1/2
n n
(4.33) lim {—km(4,ank)} (1 - g

np

np

v, = fo fo(x)dx > /Ofn(x)dx - /Of(x)dx = —W¥(-R) = ¢¥y(-R) - =,
¢ “Pn R R

where first n and then R have tended to infinity. Thus (4.9) holds. Tightness
now follows from Theorem 4.7. Finally, note .2 (¥~1(Z)) = v, independent of
the particular subsequence, thereby establishing the following proposition.

4.34. PROPOSITION. Fix integers n, — «, Then

,/(((dnk - ank)/ank)\/r—n;) -8,

if and only if (4.31) holds. Given nondegenerate v as in (4.10) with canonical
representing convex function ¥,, £((&,, — a,,)/a, )\/r,,) = vifand only if
both (4.11) and (4.33) hold. .

Now turn to the asymptotic normality problem for subsequences of {((&, —
a,)/a,)r,}. Assume (4.9) holds. Then {(4,, — a,,)/a nk)‘/rnk} is tight with
subsequential limit laws of form (¥ ~%(Z)) where Z ~ .#(0, c?) as in (4.10).
Under what condition will every such resulting law be normal?
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4.35. PropOSITION.  The sequence {(&,, —a,,)/a, )\r,} is tight with
only mean zero normal or degenerate subsequential limit laws if and only if

. ny,
limsup —G(a,,) <1,

k— o ny

(4.36)

G 1+

n
Vx: lim —k

a
np
ko rnk

- G(ank)} =0.

)

Stochastic compactness of {(&,, — a, k)/ank)‘/a} with only mean zero nor-
mal subsequential limits holds if and only if (4.36) and (4.11) both hold.
Convergence to #(0,«?2), k2> 0, occurs along subsequences where (4.36)
holds and

rn.m(4? an)

nm(2,a,)”

Proor. Restrict to a subsequence of {n,} along which (4.22) and (4.24)
hold. If ¢Z = 0, then the computation in (4.26) shows f is constant and hence
V¥ is linear. If ¢% > 0, then for Z ~ .#1(0, c?), -Z(¥~YZ)) is nondegenerate
normal exactly when ¥~! (hence V) is linear. [This was argued following
(4.31) since V¥ is strictly increasing.] Linearity of ¥ is equivalent to constancy
of f (since f is nondecreasing). But, necessary and sufficient that every Helly
selection f as in (4.22) will be constant is

1+ ‘/:_n: )) ~ rh(Z,ank)} =0,

or utilizing (2.2), (2.5) and (2.7), its equivalent

e
(4.37) Vax: hm——{m(Z,ank

k—o r"k

. nk x
(4.38) Vx: lim —{Gl|a,|l+——|| - G(a,,)} =0.
k—x rnk rnk
Indeed, in the notation of (4.20), (4.37)-(4.38) are equivalent to
(4.39) Va: lim (f,(x)—f,(0))=0.
nj,—o

Under (4.39), along a subsequence where f,(0) — £, we will have V x: f,(x) —
f(x) = &€ If € > 0, then (4.9) follows using the argument surrounding (4.19).
But if ¢ = 0, by a diagonalization argument and bounded convergence it is
possible to produce p, = ©, p, = o(‘/a ) such that along a further subse-

quence,

%(m(Z,an(l - %)) - m(2,an)) = f_op fu(x)dx = 0,
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whence (4.9) fails. Thus (4.9) [under (4.39)] is equivalent to

E= li]IerLiorolffnk(O) > 0.

To see this, use the argument surrounding (4.19). Now

1
lim sup (n,/r,,)G(a,) =1~ EE.
koo
Hence (4.9) and (4.37)-(4.38) can be combined into the compact asymptotic
normality criterion (4.36) and the proposition is proved. O

Given r, » », r, /n — 0, it may be asked whether (4.36) and (4.11) (the
stochastically compact asymptotic normality criteria) can hold for the full
sequence {n, = k} for a random variable X not in the Feller class. The answer
is affirmative as the next example shows.

4.40. ExaMPLE. Let X be a Doeblin universal random variable; that is, X
belongs to the domain of partial attraction of every infinitely divisible law
[Doeblin (1940)]. Necessarily X is not in the Feller class by a result of Pruitt
(1983). By considering an infinitely divisible law with no normal component
and a continuous, infinite Lévy measure, we see that there are ¢, — o,
thi1 >t +2,¢2>0and 0 < ¢ < 1 such that

1im1 lim t,G(yd(¢t,)) =1 - &,
y=>1 .=
(4.41) *

I}im tym(4,d(t,)) = c?,

where lim denotes each (in turn) of lim and lim, and where we recall that
tm(2, d(¢)) = 1 for large ¢ > 0. Construct r, = », r, /n — 0 as in (4.30). Then
d(t,) = a, for [t2] < n <[tZ,,]. We claim (4.36) and (4.11) hold, as was to be
demohstrated. But (4.41) gives (n/r,)m(4,a,) = ¢ > 0 which is (4.11) and
(n/r,)G(a,) = 1 — £ < 1 which is the first part of (4.36). For the rest, choose
0 <y; <1<y, < xand write, for given x and large n,

G(an \;_n )) ~ G(a,)

Letting n — « and then y, 11, y, | 1 and utilizing (4.41), we obtain the rest of

(4.36).
Utilizing Proposition 4.35, it can in fact be shown 'that

Z(((8, = a,;) /a,)yr, ) = N(0,c?/4¢?)

along the full sequence {n}, despite the highly irregular analytic properties
inherent in the universal distribution £ (X).

| =

1+ {G(y,2,) = G(y5a,)}-

=<

n
(442) —

n

)

n
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5. Self-normalized and empirical limit theorems. Once again fix a
sequence {r,} as in (4.1) and integers n, — «, unless otherwise noted. In this
section the complete joint asymptotic behavior of §, and &4, will be deter-
mined. Note that the quantity (n/d,\/r, X9, — v,) is the self-normalized
expression

f (X;| A é,)sgn(X;) — E(X| A a,)sgn(X)

i1 (zn_, X2 A a2)"* ’

which assumes a studentized form.

Our main result is Theorem 5.1, which gives criteria for tightness of the
naturally self-normalized joint estimators and characterizes the resulting sub-
sequential limit laws. Criteria for convergence to a given limit law are given in
Theorem 5.50. In particular, normal limits and criteria for convergence to
them are considered in Corollaries 5.59, 5.64, 5.68 and 5.70. Our results
providing for the empirical determination of standard normal limiting distri-
butions are presented in Theorem 5.81.

We begin with our main result dealing with tightness of the naturally
self-normalized joint estimators and characterizing the resulting subsequential
limit laws. The naturalness of the self-normalizations is suggested by Theo-
rems 4.7 and 3.6. (See also the discussion immediately preceding Corollary
5.70.) The subsequential limit laws have support on all of R? except in two
special cases. As will be seen, these cases are intimately related to X belonging
to the domain of partial attraction of the normal or of the ordinary Poisson
law with parameter 1.

5.1. THEOREM. (i) The sequence

ng N 4 dn - a,
/( A _(ynk_ynk)’ kA . rnk)}
ank

8,0/,

is tight in R® if and only if (4.9) holds for every p,, — © such that
Pn,/ \/ r,, = 0. Every subsequential limit is of the form

(5.2)

(5.3) (2, + o(¥™Y(Z,)), ¥™(Z,)),
where (Z,, Z,) is mean zero bivariate normal with covariance
(X) b
(5.4) 3 = (“ | )
b c?

with 0 < c? <1, b2 < c? and ¢ = 0 when a*(X) < 1 and a*(X) is as in (4.2).
¥ is a strictly increasing convex function with range (—»,®) such that
V(0)r=0,21 -c®) <V <2and ® = d*+ &, where ®* are nondecreasing
concave functions with ®*(0) = 0 and (®*) + (®~) =1 — V. A limit law
represented by (5.3) and (5.4) is supported on all of R? when det 3, # 0 and is
supported on a curve in R? when det 2, = 0.
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(ii) The sequence (5.2) will have subsequential limits of the form (5.3)
whose support is not all of R?, if and only if along some subsequence {n'} of
{n,}, for each 0 < x < x,

I

lim r—G*(xa ) =alg ,(x),

(5.5) n’
lim —G (xa,) = /31(0,(:)(3‘7),

n' - rn

where aB = 0 and either
@ b2=c?=0and a=B=0
or
) b2=c2>0and a +B =c2
In either case, the corresponding limit law for (5.2) is concentrated on a curve
in R2,

Proor orF THEOREM 5.1(1). For clarity the proof is divided into several
steps.

STEP 1: Tlghtness of (5.2) implies (4.9) holds whenever p, — © and
pnk/‘/r — 0. If (5.2) is tight, the second marginal {(1 — an,,/an,,)\/T,,} is
tight, and thus é,, /a,, —, 1. Hence {(4,, — a,) /ank)‘/rnk} is tight and so
(4.9) holds, for every p, — o such that p, / ‘/Tk — 0, by Theorem 4.7.

StEP 2: (4.9) holding whenever p, — « and p,,, / \/"n,, — 0, implies tight-

ness of (5.2). When (4.9) holds for even some p,,, — « such that p, / Vi =
0, we have 4, /a, —, 1 by Theorem 4.7. Thus the two sequences

ng
i)

and

{ nk‘/ (9, = vn,,)}

are asymptotically equivalent. From (2.3), we have the fundamental

n . _n Ly

an‘/;: (7n - yn) - an‘/'rz (Mn(l’an) ]%l(l’an))

(5.6) - ;r—(Mn(l,an) - M(1,a,))
n

[ (G (s) — Gy (s)} ds

an
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Proposition 4.3 establishes the asymptotic normality of the first term. To
seek tightness of the second term and (later) identify the joint limits, we will
proceed very much as in the proof of Theorem 4.7.

After a change of variables, s =a, (1 +u/ ‘/rnk ), tightness of {((d,, —
a,)/a nk)\/a} (as guaranteed by Theorem 4.7) can be used to reduce the
study of :

nyg

(5.7) (PG (s) — Gofs)) ds

a Nk rnk @y

to the study of the asymptotically equivalent quantity (whose form is useful

below)
u
a, (1 + ))
k r
np

u
e |

G+

f((d,,h—a,,h)/a,,k)‘/r_,,: n,

0 Ty,

(5.8)

-G~

ank

du
\/rnk \ 1+ u/‘/rnk '
The replacement of G,° by G* in (5.7) is accomplished by an argument
analogous to that in (4.15) and utilizes

n

n
Var—Gni(an
r

IA

u
< 2,a,[1+ .
To see that (5.7) is tight due to the tightness of {(d,, — ank)/ank)\/a},

simply note that given p,, — ® with p,, / W/rnk — 0, the integrand of (5.8) is
eventually dominated uniformly in |u| < p,, by

u n "
))sz—’iG a,,(1— Pny ))

r r, k r

npg k ng

n . n
c gk, 2,ank(1 - ”_k) ~2,
rn], \/rnk
utilizing (2.7) and (2.5) as usual. Since P((&,,, — a,,)/a, /7w, | > Pr,) = 0,

the quantity in (5.7) is, with probability tending to 1, dominated in magnitude
by the tight quantity 3|(@,, — a,,)/a, )/, |-

n
2—*ta

rnk

a,|l+
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STEP 3: Characterization of the limit laws. To ease the notation, in this
step we suppress the subscripts %, but it is to be understood that here all
sequences are either {n,} or subsequences thereof. Assume hereafter that (4.9)
holds whenever p, — « and p, / ﬁ—» 0.

Choose 0 < p,, — o such that p, / \/r: — 0, and construct two sequences of
functions {g,*} by

X
3
X
3

n
—|G*la,|1~ , ify< —p,,

.
-

(5.9) &, (y) = G*la,ll+ , if —p, <y <p,,

n
r,

-1

>3
>3

ify=>p,.

n
—1G*la, |1+ 1+
rn

n / / ’
rn rn

Applying Helly selection (twice) to the sequences (5.9), nonincreasing limit
functions g * are obtained such that the quantity (5.8) can be approximated in
probability along appropriate subsequences by the quantity

A

é,-a,)/ay)r, _ a, —a
(510) [ g (y) — g (y)}dyscb(——

0 a
where

o(x) = [{g°(y) ~g (1) dy
(5.11) 0

= [ &' W dy - [ g7 () dy = @ (2) - @7(x).

[This approximation is accomplished via tightness of {(&, — a,)/a,)y/T, } and
an application of the bounded convergence theorem similar to that following

(4.22).] Concavity of each of ® * in (5.11) follows from each of g * nonincreas-
ing. Note that

g, (y) +&,(y)

=;;G(a,,1+7%) (1+ /y_)
15-12) _{m(21r))mz(1;))}(lr)
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recalling (4.20). Let n — « along the appropriate subsequence. Then, via (2.5),
(2.7) and (4.22), g*+ g =1 — if,ie, (@YY + (®7) =1 - 3V

Restrict to a further subsequence so that the approximation in probability
of (5.7) by the term (5.10) is valid and also

oG R

where B, is as in (4.12). This uses the argument leading to (4.24). Let
A, = (n/an‘/_r:){Mn(l, a,) —M(@,a,)}. Using (5.6), we then have (using ab-
solute continuity of ¥~! and ®)

a, —a

I

a,

(5.13)
= (A, +®(¥~Y(B,)), ¥ B,)) +0,(1).
Restrict further so that (4.5) holds. Then Proposition 4.3 asserts that

Z(A,, B,) - #(0,3). Letting (Z,, Z,) ~ .#(0,3), (5.13) yields the form in
(5.3) immediately.

STEP 4: The support of (5.3) is all of R? (resp., a curve in R2) precisely when
det 3 is nonzero (resp., zero). Given a law of the form in (5.3), etc., suppose
det 3 # 0. Then the support of #(Z,, Z,) is exactly R% The transformation
T: R? - R? given by

(5.14) T(u,v) = (u+ (¥ '(v)), ¥ '(v))
is absolutely continuous with (locally) absolutely continuous inverse
~ (5.15) T Yx,y) = (x — ®(y),¥(y)).

[The local absolute continuity of ¥~! is an easy consequence of 0 < V¥’
nondecreasing and the absolute continuity of V¥; cf. Kestelman (1937).] It
follows that -#(T(Z,, Z,)) has support exactly R?.

Now suppose det 3, = 0. If ¢? = 0, then Var Z, = 0, so Z, = 0 a.s., whence
Z(T(Z,,0)) has support {(x,0): x € R} in R% (Note that Z, is never degener-
ate unless X itself is degenerate.) If c2 > 0, necessarily (by the proof of
Proposition 4.3) EX2 = and so Z, ~.#(0,1). Recall that a*(X) =1 if
EX? = . Thus 0 = det 3 = ¢ — b? and .A(Z,, Z,) = .£(Z,, cZ,) has support
{(x, cx): x € R?). It follows that #(T(Z,, Z,)) has support

{(x + (¥ (cx)), ¥ Y (cx)): x € R}

- {(—i—\lf(t) + (b(t),t): te R}.

In summary, the law of the form in (5.3) either has support R? (when
det 3 # 0) or its support is a smooth curve, i.e., the image of the real line in R?
under an absolutely continuous transformation with locally absolutely contin-
uous inverse (when det 3 = 0).

(5.16)
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Our proof of Theorem 5.1(ii) depends upon the introduction of certain
auxiliary measures designed to play the role of the traditional Lévy measures
in situations where the latter may not be available. Since the new technique
involved is fairly self-contained and, in addition, may be of some independent
interest, it is convenient to introduce these auxiliary measures (called pseudo-
Lévy measures) and collect a few useful facts about them before completing the
proof of Theorem 5.1.

5.17. Pseudo-Lévy measures. The scale equation nm(2,a,) = r, generally
provides normalizations suitable for partial sums of length ¢, = [n/r, 1 ~ n/r,.
Define two functions I',= on (0, ©) by

(5.18) T#(x) = ;—Gi(xan).

When X belongs to the Feller class, the normalized sums

(5.19) {-1- X (X, - vn)}

n j<t,
are stochastically compact. In this case, for every subsequence of {I', =} there
are right-continuous functions I'* and a further subsequence along which
I[LF— I't at every continuity point of the latter. The measure u on R\ {0}
described by
/J'(x9°°) =r+(x)’ I“L(_Oo’_x) =l_‘4(x)9 x>0’
is a Lévy measure. Traditional computations show that along the appropriate
subsequence,
n
1=1lm—m(2,a,)
r

n

—lim—n—f(ac2 A1) dG(xa,)
rn

Il

v

[ (&* A D dn(x),
RN {0}

n
lim—m(3,a,)
rn

(5.20) i
—limr—f(|x|3 A 1)sgn(x) d(G*(xa,) — G (xa,))

Il

= [ (A Dsgn(x) du(x),
RN\{0}

n n
lim—m(4,a,) = —lim——/(ac4 A 1) dG(xa,)
r o

n

- /R\m)(x‘* A1) du(x).

[Note that strict inequality holds in the first line when F € DA(2).]
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However, when X is not in the Feller class, (5.19) may not even possess any
subsequential limit distributions, much less be tight. We will nevertheless
require a computationally useful analogue of the Lévy measure u for which
essential properties such as (5.20) hold. But the measures we require need
only be concentrated on [—1,1]\ {0}. As we will see, the equation
(n/r,)m(2, a,) = 1 affords us some control in (5.18), at least for 0 < x < 1.

Define functions QF on [0, ©) by

n
(5.21) Qf(x) =(x2 A l)r—Gi(xan).
In order to provide for relative compactness of {Q1*} on [0, ») and for Helly-
selected convergent subsequences, note that Q(0) = 0 and each Q7 is right-
continuous and of bounded variation on [0, ©) because G *() is nonincreasing.
ForO0<x <1,

n n n
O* <x2—@G <x2—m(2, = M(2,
Fx) < G(xa,) 5 m(2,5a,) = oy M(2,0,5)
(5.22) n
< rnaiM(z’a”) = Zm(2,an) =1,

while for 1 < x < o,

n n n
(5.23) Qf(x) < —G(xa,) < r_G(a") < ;—m(2,an) =1.
rn n n
To obtain Helly compactness, it is enough to restrict to [0, 1], since on [1, «),
each of {Q) £} are monotone and uniformly bounded due to (5.23).
On [0, 1], write

0;(%) = ——(x0,)’G" (xa,)

n=n

rnr;%l E((X2 A (anx)z)I(XZ 0)) _

n
ay,

EX?I(0 <X <a,x),

n

which reveals Q} as the difference of two nonnegative, nondecreasing func-
tions, each of which is uniformly bounded, as in (5.22), by 1. A similar
representation shows that {Q2} also has uniformly bounded total variation.

Thus {Q 2%} is Helly compact. Along a weakly convergent subsequence, there
are right-continuous functions Q* of bounded variation on [0, ®) such that
QF(x) » Q*(x) at every continuity value x > 0 of Q%

Now define I'*(x) = Q*(x)/x? for x >0 and put ' =T"+ T~ and Q =
Q"+ Q~. Finally, define the functions I'* on (0, ©) by

r*(x), ifo<x<1,
0, if x>1.

The measure /i on R \ {0} induced by I'* is determined by
(5.25)  A(x,0) =T*(x), f@(-»,-x)=T"(x), x>0,

(5.24) t(x) = {
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and is concentrated in [—1, 1]\ {0}. We shall designate i as a pseudo-Lévy
measure. Its tails I'* are faithful to the original tails I* along the subse-
quence only on (0, 1], but unlike genuine Lévy measures, pseudo-Lévy mea-
sures such as [ are always available with the Lévy-like properties desired
below.

We need the following facts to hold along the subsequence along which
IF->r* '

(5.26) f x2di(x) <1,
R\{0}
n

(5.27) —m(3,0,) > [ x*di(x),
r, R\{0}
n

(5.28) —m(4,an)—>/ x*dji(x).
r, R\{0}

To prove (5.26), let £ > 0. Then (along the subsequence) (2.7) and (2.3)

imply

n .1 n .

1=—1/ 2 — | 2xG

"n'/;) xG(xa,) dx > rn[g xG(xa,) dx

(5.29)
1
- j 2xT(x) dx = —f x2dT(x) + I'(1) — e2T(¢).
€ (e,1]

Since £2I'(e) = Q(e) < 1 by (5.22), we can let £ |0 in (5.29) and use mono-
tone convergence. Therefore, Q(0 + ) = lim, o Q&) = lim, |, £°I'(¢) exists. If
QO+)>0, forsome 0 <5 <1,

1 1 dx 5 dx
5.30 1> [ 2xT(x)dx = | 2x2°T(x)— = | Q(0+)— = o,
(5.30) [ 250 () dx = [[26°T () = > ["0(0+)
a contradiction. Thus, Q(0 + ) = 0. Then (5.29) implies that

12> ["2xT(x) dx = —[(0 ®2dT(x) +T(1-)
0 ,1

= x? dji(x),
RA(0)

the desired bound.
For (5.27), let £ > 0. Then

rim(s,a,,) - —rn—jolst{G+(xan) — G (xa,)} dx

n

(5.31) _ 3[05{91'(36) — 0 (x)} dx + 3f1{9,+,(x) - Q,(x)} dx

=wq(n,e) + wy(n,e).
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Now |w(n, ¢)| < 3¢ by (5.22), whereas

wy(,8) =, 3[ {07 (x) — Q7 () dx
(5.32) ¢

o0 [ (07 (x) — 07 (2)) dx

by two applications of bounded convergence. Therefore, along the appropriate
subsequence,

m(3,a,) = 8[I (x) ~ T (x)) d

= [ ®0d(r*(x) ~ I ()} +T*(1) - T (1)
(5.33) @4

_f 3d{l“+(x) -T (x)} +T*(1-) -T (1-)

[ x°di(x),
R\{0}

via integration by parts and the fact thatlim , | , °T *(x) = lim, | , xQ*(x) = 0.
Finally, (5.28) follows similarly, noting

n 1, 4 '
o r—nm(4,an) - fo4x I'(x)dx = _'/;0,1)x al(x) +I'(1-)

= f xtdi(x).
RN\{0}

Now the proof of Theorem 5.1 can be completed.

ProoF oF THEOREM 5.1(ii). Given a limit law v represented by (5.3)-(5.4)
which is not supported on all of R, restrict to a subsequence where (5.2)
converges to v and where (4.5) holds. Restrict further so that I'¥— I'* as in
the discussion of pseudo-Lévy measures. Our goal is to show that at least one
of T'* vanishes identically and that if c2> 0 in (4.5), the other of I'*
vanishes on [c, «) but holds constant at ¢~ 2 on (0, ¢). This will verify (5.5), etc.,
when we show that ¢2 = 0 forces both of I'* to vanish.

Let i be the pseudo-Lévy measure corresponding to I'*t asin (5.24)-(5.25).
By (5.27)-(5.28) and (4.5),

(5.35) b= fx3d,[i(x), ¢ = fx“d;l(x).

Since v is degenerate, det > = 0. If ¢2 = 0, (5.35) shows that & has no
mass. Via (5.24), both functions I' * must vanish identically and (5.5)a) holds.
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So assume c2 > 0. Then a?(X) = 1 so that % = ¢2 > 0. But from (5.35),
the Cauchy-Schwarz inequality and (5.26),

z < (f|x|3d,4l(x))2 < fx2 d,a(x)fx4 di(x)
(5.36)

= czfxzd,a(x) <c? =02

The first inequality in (5.36) would be strict unless either ([i(0,%) = 0 or
((—,0) = 0. In either case, (5.24)-(5.25) force one of I'* to vanish identi-
cally. Suppose it is '~ which vanishes, which is to say & > 0. (The other case
is similar.)

The second inequality in (5.36) (the Cauchy-Schwarz) would be strict
unless for some s > 0,

(5.37) xt=sx3 ae-i.

Since c¢? > 0, we must have s > 0. Thus i is concentrated entirely on {s}.
Necessarily s < 1 due to (5.24)-(5.25). Thus I'*(x) = 0 for x > s and ' (x) =
ARN{0}) = for 0 <x <s.

Finally, equality throughout (5.36) forces

(5.38) 1= fxzd,&(x) = s%j
and thus
(5.39) o= [x*dia(x) = 5% = s*(s%) = 5%,

revealing s = ¢ and j = ¢ 2 This corresponds to (5.5)(b) and completes the
proof of Theorem 5.1. O

5.40. REMARK. To facilitate interpretation of the conditions (5.5), fix a
subsequence {n}} for which they hold and let m, = [n,/r, ]. Then there are
centerings B, such that either .~ ((S,,, — B;)/a,,) —> A (0 D or .Z((S,,
Bi)/a,,) = P01s(a6 + B8_,), the law of an ordlnary Poisson random varlable
with parameter c?, or the law of its negative. Under (5.5), to verify these
claims it is necessary only to check the variances condition in the general
central limit theorem. But, along the subsequence,

n (e n 1
1> —f 2xG(xa,) dx + —f 2xG(xa,) dx.
70 r, e

When c¢2 =0, letting n —» o gives (n/r,)/[!2xG(xa,)dx - 0 and thus
nVar{(X/a,)I(|X| < ea,)} = 1 for each ¢ > 0. If ¢® > 0, then for 0 <& < 1,

lim —f 2xG(xa, )dx—foF(x)dx—(c —¢ )Cl2 -1

n—oo I,
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as ¢ | 0. It follows that

lim lim nVar{£1(|X| < san)} =0,
el0 n_—:o a,
as required. ,

Since the DPA of a Poisson is contained in the DPA of the normal
[Gnedenko and Kolmogorov (1954), pages 189-190], the conditions (5.5) can
only occur when X € DPA of the normal. This will be useful when studying
full sequential results later. [See also (6.8).]

Next, we consider criteria for the convergence of (5.2) to a given limit law of
the allowable form as specified by Theorem 5.1. Because these limit laws are
generally nonnormal, certain canonical unique representations of them will be
required first in order to develop the necessary conditions for convergence. The
establishment of these bivariate canonical representations is more involved
than was the case for their second (i.e., scale portion) marginals as considered
in the proof of Proposition 4.34. The considerable space required is justified,
however, by our consequent ability to simply derive the correct necessary
conditions. In the study of a related problem similar to ours but involving
trimmed sums [Griffin and Pruitt (1989); Csérgd, Haeusler and Mason (1988a)],
necessary conditions for convergence to a given limit law of the allowable type
are incomplete due to the (present) lack of suitably unique canonical represen-
tations for these limit laws.

Define the class of limit laws < on R2 by

¢ = {v: there exists { X;} nondegenerate i.i.d., integers n, — o

(5.41) and numbers r,, — «such that r, /n, — 0and

n a, —a _
k A ng ng
L\ =Ty = Y)s — T | 2 V-
@, é,,

Fix v € €. Let v have first and second marginals v, and v,, respectively. Since
canonical representations for v will only be required when v, # §,, first
assume this is the case. In particular, since such a limit can arise only from
{X;} with EX? = o (via Propositions 4.3 and 4.34) it suffices to assume that
a*(X) = 1 for every representation (5.3)—(5.4) for v.

When v is represented in the form (5.3)-(5.4) as described in Theorem 5.1,
we will write v =[3, ¥, ®]. It is understood that the matrix X and the
functions ¥ and ® obey all the properties listed in Theorem 5.1. When the
decomposition ® = ®*— &~ is required, we will write v = [2, V, ®; d*, & ]

Suppose v has two representations, v = [3,, ¥;, ®,], i = 1,2, where

s 1 b
P b; Ciz’
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Since vy # 8y, ¢Z > 0, the proof of Proposition 4.34 shows ¥,/c; = V¥, is
invariant. Let B, = b,/c; and then

1 B
We have v = [II,, ¥,, ®,], as may be seen by replacing Z, by Z; = Z,/c and ¥
by ¥, in (5.3), so that

(zl,z3)~/(o,(b}c b{"’)).

Without loss of generality, assume 82 > B2.
Define transformations T;: R> » R? by T\(x,y) = (x + ®(¥; (y), ¥; 1(y)).
Then T; is continuous and has continuous inverse. We have '

(5.42) (T (W, W) = £(Ty(Y,,Ys,)),

where (W,, W,) ~ .#(0,11,) and (Y;,Y,) ~ .#(0, I1,). Thus
(T H T W, Wy))) = 2(Y,,Yy).

If ®=®, — o, then

(5.43) L(W, + &(VyY(Wy)), W,) = #(0,11,).

Using elementary properties of the bivariate normal distributions, write W, =

BW, + /1 - B2W, and Y, = B,Y, + /1 — B2Y,, where W,, W,,Y,,Y, are
i.i.d. standard normal variables. Using independence, rewrite (5.43) as

./z/(o, ( Lt g)) v (B, + B(T5 (W), W)

_ 1-82 o)), B2 B
(5.44) _/V(o,( ; 0)) ///(0,(32 1))

2
o o ol %)
0 0 0 0 By 1
where in the last line the fact 87 > B2 has been used. Since the characteristic

function of any normal (even degenerate) is never-vanishing, the common
normal factor in (5.44) can be cancelled to obtain

Z(BW, + ci’(q'(;l‘( W,)), W,)

(5.45) 0(3%—3% 0))*,4/0 Bi B ‘
’ 0 0 By 1

=4
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The left member of (5.45) is supported on a curve in R2, whereas
if B2 —B2> 0, the right member will have support on all of R2 Thus
BZ = BZ = B3, where always B, > 0 is selected. Thus

L(BW, + B(WTU(W,)), W,) = /,/(0, (B% ﬁz))
By 1

= j(ﬁzYz, Yz)-

(5.46)

For the last member of (5.46), the law of the ratio of the first marginal variable
to the second is the point mass at B,. For the same ratio applied to the first
member of (5.46),

d(w;t
j(Bl + (OT(WG))) = 332
2
and then
O(v; (W,
(5.47) S M) = 8, p,-
W2 2 1

By continuity of ® and elementary properties of ¥, and (W), it is easily
shown that necessarily ®(¥, X(x)) = (B, — B)x, so that & = (B, — BV,
and thus ®, = ®, + (B, — B)¥,. Now B? = 7 implies either 8, = B, and
P, =d,,or B; = —B, and ¢, = O, + 2B,¥,.

By reversing the preceding development it may be shown that if

[ 2]

1 —
v=[(_B 1B),\I'O,d>+2ﬁ\lf0].

To summarize, if v € € with v, # §,, then among representations

[ 2y

the objects ¥, = ¥ /c and B, = y/b?/c? are invariant.’ There are at most two
allowable ®, and v admits at most two canonical representations

w,:( 1 BO),‘I’@, q)P:| and [( : _ﬁo)’\lfo’q)N: Op + 23011,0 ’

then also

.30 1 _30 1

where P stands for positively correlated and N for negatively correlated, in



SELF-NORMALIZED CENSORED SUMS 1325

reference to the bivariate normal law used in representing v. The function ®,
is unique and v will possess a unique canonical representation if and only if
Bo = 0.

It is now convenient to introduce another abbreviation. Henceforth write
v = (By, ¥y, Pp) when

(5.48) v = L B Wy, ®p | = _1 o)y, ay = b, + 28,7, |.
By 1 Bo 1

Finally, we consider the invariance of the decompositions &, = ®5— &5
and ®, = &, — @y [cf. (5.11)]. These decompositions are unique only when c?
is fixed among representations

1 b
v, ;0" O,
[(b cz); s Fy ’ ]

Indeed, given 0 < ¢? < 1, ®7F will be determined by the equations (which hold
due to Theorem 5.1)

®z(0) =0,
(5.49) df— Op= Dp,
(PF) +(Pp) =1- 3V =1- 3¢V,

where the last equation holds off a countable set, with similar determining
conditions for ®z. Thus the indexed collections {®7 . 0 <c? <1} and
{®F 2: 0 < c¢? < 1} are uniquely determined by system (5.49) and its counter-
part for ®F. It will occasionally be convenient to augment the canonical
representation for v by writing v = (B,, ¥,, ®p;{®z }), where of course o7 ,
determines ®p . and then & ..

Now consider the degenerate case, v € € with v, = §,. Because in the
representation (5.3)—(5.4) for v, ¥ ~1(0) = 0, necessarily

b= N(O, (GZ(OX) g)).

The convergence criteria can now be stated.

5.50. THEOREM. Letv € ¢.

. @) Ifvy = 8, write
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Then

A
a, —a,
by~ Oy - )_,U

( ‘/— (ynk 'Vnk 4 ny
Tk

if and only if

n
(5.51) lim —*m(4,a,) =0 and a*(X) =a?.

ng

(i) If v, # 8, write v = (By, ¥, ®p). Then

./( ‘/—(Ynk Y,,k P n"\/r )——)U

if and only if each of the following holds except at most for countably many
values of x:

I\

(5.52) lllinmf—m(4 a,,)>0;
— 0 ey
m(2,a,(1 +x/‘/rn 1
(5.53) lim ./ — ( "( ")) = SV4(x);
k—o Tnp m(4,ank) 2
(3 a, ) g
(5.54) iy m—) = Bos
m(3,a )

1+

n
(5.55) — - dp(x);

n

for each subsequence of {n,} on which 0
\/m(4 a,
G* i G~ 1+ ?
_ a —
m(3,a,)

n
b sub hich — ——_— 5 -8,
for each subsequence of {n,} on whic 4% \/ma_,,) Fo

ool ol )

(iii) Moreover, when (5.52)-(5.54) hold, so do the following off a countable
set: Given a subsequence of {n,} on which (n/r,)m(4,a,) - ¢ € (0,1], and

n
(5.56) — - Op(x).

n
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determining {CDI}”, .} and {d>1$, .} via (5.49),
for every further subsequence such that (5.55) holds,

nG* 1+ i
e G

- (®5,.)'(x),

(5.57)

26 14 — - (®5 .)(x);

r, a, \/7,; P,c ’

for every further subsequence such that (5.56) holds,

2etlaf1+ —= - (D% ) (x)

r, n \/7,,— N,c ’
(5.58)

26 a1+ — ®

—G~ + || = (®5 ) (%).

r, a, ‘/E ( N,c) (x)

Proor. Let u, = Z((n/a,\/r, )3, — v,),(&, —a,)/a,)\/r,) and denote
the marginals of u, by u’,, i = 1,2. We separate the cases:

@ If u,, - v, then u? — v, = §, so that (n,/r, Jm(4,a,,) — 0 by Propo-
sition 4.34. Inspection of (5.5)-(5.8) makes it clear that

A((n4/ @ ) (Mo (1, 0,) = M(1,0,,))) ~ ik, = #(0,02).

Then Proposition 4.3 forces a?(X) = a? and thus (5.51) holds.

Conversely, suppose (5.51) holds. Then /.LGk — 8, by Proposition 4.34 and
again (5.5)-(5.8) lead to ul, ~ =./((nk/a,,k‘/r—n:)(Mnk(l, a,) - M{1,a,)) >
#1(0,a*(X)) by Proposition 4.3. That u, — v follows from these simple
marginal convergences is an easy consequence of v, = §,.

(i) First suppose that u,, — v. Then uz,,k — v,, so that (5.52) and (5.53)
hold by Proposition 4.34. Given any subsequence of {n,}, restrict to a further
subsequence such that (4.5) holds and such that gf(y) — g *(y) for every y,
recalling (5.9). Letting ®(x) = [ g(y) dy, we see that ®'(x) = g(x) off of a
countable set. Moreover, the argument leading up to (5.13) yields, along this
restricted subsequence,

1 b
b~ o> [(b cz),w,cb],

where ¥ = ¢¥,. Invariance forces b%/c? = B2, so that (5.54) holds, due to the
separate boundedness of (n/r,)m(3,a,) and (n/r,)m4,a,). If b > 0, then
invariance also forces ® = @, and if b < 0, then & = &,

. Conversely, assume (5.52)-(5.56). In particular, u2 , — Us, by Proposition
4.34, so that (4.9) holds by Theorem 4.7. By Theorem 5.1, {u,, } is tight. Given
any subsequence of {n,}, restrict to a further subsequence on which u, — A,
say, and then restrict further so that (4.5) holds. By (5.54), b2/c? = B3. The
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argument leading to (5.13) in the proof of Theorem 5.1 can be modified slightly
to give, on this restricted subsequence,

1 b
A~ v, o
I'Ln—')l:(b cz): ’ ];

where ¥ = c¥, by (5.54) and where, if b >0, ® = &, by (5.55), while if
b<0,d =, by (5.56). Thus

1 1 -
A=[(Bo :310)’\1,0’(1)1)] or Az[(“ﬁo lﬁo),wo,@N]

and in either case A = v. Thus, Kp, = U, as desired.

(iii) Assume (5.52)-(5.54) and suppose that for some subsequence of {n,},
(n/r,)m(4,a,) = c? € (0, 1]. Given a further subsequence where (5.55) holds,
Helly-select a further subsequence and nonincreasing nonnegative functions
h* such that, on this subsequence,

n
2o

Iy

x
1+ ——)) - h*(x),
Ve

for every x. Putting H *(x) = [fh*(s)ds, it follows from (5.11) that H*—
H™= ®p, while (5.53), (5.12) and (2.5) lead to H*+ H = 1 — 3c¥,. Since the
solution of system (5.49) for @7, is unique and H * also satisfies (5.49), it
follows that H*= @7 . and H = @, . The same argument works when (5.56)
holds instead of (5. 55) and the proof of Theorem 5.50 is complete. O

Turning to the question of asymptotic normality, under what conditions will
every subsequential limit of (5.2) be bivariate normal? Recall that a sequence
of distributions on R? is stochastically compact in R? if it is tight and if no
subsequential limit is supported on a proper hyperplane (i.e., line or point)
of R2,

5.59. CoroLLARY. The sequence

ng, dn - a,
5.60 L —(7, — —
( ) { (d"k‘/r"k (ynk ynk)’ é”k rnk )}

is tight with only mean zero bivariate normal subsequential limits if and only
if (4.36) holds. The sequence (5.60) is stochastically compact in R? with only
(rnondegenerate) mean zero bivariate normal subsequential limits if and only if
(4.36) holds and for no subsequence of {n,} do both (4.5) and (5.5) hold.

ProoF. Let {u,} denote the sequence (5.60), and denote the marginals of
wy by wh, i = 1,2, If {u,} is tight with only normal limits, the same is true of
{12} and thus (4.36) holds by Proposition 4.35. Also, if a limit of {x,} is normal
but concentrated on a curve in R?, that curve will be a line. Hence if {u ») 1S
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stochastically compact with only normal limits, Theorem 5.1 guarantees that
for no subsequence of {r,} will (4.36), (4.5) and (5.5) all hold.

Conversely, assume (4.36). Then (4.9) holds whenever p, — © and
pnk/\/"nh — 0, as in the proof of Proposition 4.35. By Theorem 5.1, {u,} is
tight. Given any subsequence, restrict so that (4.5) holds and w, — v, say. If
vy = 8y, then v is obviously normal by Theorem 5.1. Otherwise v, # §,, so
take v = (B, ¥y, Pp). Now apply Theorem 5.50. Then (5.53) holds and so ¥
is constant due to (2.5) and the proof of Proposition 4.35. Thus, ¥, is linear.
But, recalling the notation (5.9), relations (2.5) and (5.12) and using the
nonincreasing nature of g},

(g (¥) — 8, (¥)) — (84 (0) — £, (0))l
=1(&, () —£.(0) — (8. (y) — £, (0))]
<lgr(y) —&;(0) + I8, (¥) — £, (0)|
= (gr (v) + &, (¥)) — (£.(0) +g,(0))|

(1 +0(1) = 3£.(¥)) = (1 = 3£,(0))

= 3lf(y) = £a(0)] + o(1).

Letting n — o along the appropriate subsequence, the final term in (5.61)
tends to zero for every y due to constancy of W¥{. It follows that each of ®}
and ®}; must be constant, by appealing to (5.55)-(5.56). Hence, ¥, linear
implies that both ®, and ®, are linear. Thus (B,, ¥,, Pp) is also normal.
Finally, its support can be a proper hyperplane of R? only when (4.5) and (5.5)
hold along an appropriate subsequence, by the normality and Theorem 5.1. O

(5.61)

Before giving the normal convergence criteria, we need some facts concern-
ing the representation of normal laws in ¢. If v € ¢ is normal and v, = §,
then

for unique 0 < a2 < 1.

If v € € and v, # §,, write v = (B, ¥y, Pp) uniquely. If v = 410, I), say,
then both ¥, and &, are linear, as may be deduced from the proof of Corollary
5.59. Take ¥y (x) = x/¢ and ®p(x) = 0x, where ¢ > 0 by strict monotonicity
of ¥,. Defining

(5.62) A, - (1 05)

0 ¢
yields v = £(Ap(Z,, Z,)"), where

1 B
(Zl,Z3)~J/(O,(BO 1")).
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Thus, standard covariance computations yield

1
o= CovA,(Zy,Z;) = A”(Bo Bl")AtP.

Of course, ®p(x) = Pp(x) + 2B8,¥o(x) = (8 + 28,/&)x and

1 —
H=AN(_BO ].BO)AtN’

where

1 6¢£+2
ae (L7 0)

However, the numbers 6, ¢ and B, with [§] <1, £> 0 and 0 < 8, < 1 such
that

(5.63) : Ho=((1) 0;)(,;0 B10)(01§ g)

are unique, lest the representation v = .#71(0,I1) = (B,, Yo(x) = x /£, Up(x) =
6x) be nonunique. Moreover, given II,, the matrix A, in (5.62) can be
determined uniquely by (5.63) and the bounds on 6, £ and B,, via ordinary (if
slightly tedious) algebra.

5.64. COROLLARY. Letv € ¢ with v = #(0,11,).

W If
- (% 9)

with 0 < a? < 1, then

ank rnk ank

n, i, —a
A k ng
‘/(A —(Ynk_ynk)’ ~ rnk)-_)v

if and only if (5.51) holds.

(i) If
1 B
HO:AP(BO 10)AtP
with Ap as in (5.62), then '
n, a, —a,
] . i
(&nk\/rnk (Ynk ynk) d'%k r”k ) or
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if and only if (4.36), (5.52) and (5.54) hold as well as the following:

n, m(2,a,
(5.65) lim ./ —% ——(_:’) _ L
k- I‘nk \/m(4’ank) 2
0 b £ (n,) such that || = —m329n)
n eve suosequence o, n sSuc Qa — T ’
 subsed : ey P

(5.66) ri(GJr(an) ~G (a,)) —o.

o) b £ {n,} such that | — m(8,a,)
n every suosequence o n Suc 07 — T > — )
T Sneed ¢ o ymday

(5.67) =(G*(a,) = G (a,)) > 0 + 2B/

Proor. (i) was part of Theorem 5.50. (ii) is a direct consequence of the
invariance in representing normal v € ¢ and by a direct application of Corol-
lary 5.59 and Theorem 5.50. O

Inspection of the correlation coefficient of the normal distributions N(0,11,)
in Corollary 5.64 sheds light on the asymptotic dependence between the
reduced quantities (n/d,\/r, X#, — v,) and (&, — a,)/a,)y/r,. The impor-
tance of the quantity B, there (and its relative b in Proposition 4.3), which is
essentially determined by censored third moments, recalls the role played by
the classical quantity EX3. Particularly important is the case of asymptotic
symmetry [i.e., (4.6)] as might be surmised from Theorem 3.6. Recall the
definition (4.2) for the quantity a?(X).

5.68. COROLLARY. Assume (4.6) and (4.9) hold for every p,, — ® such that
pnk/\/rnk — 0. Then

ng

ankvrnk

(5.69) L (9, = Vn,) | = #(0,0%(X)).

Furthermore,
nk R a —a
A_:(YIlk - Ynk) and M V rnk
ng ng ank
are asymptotically independent.
Proor. Recalling (5.9), asymptotic symmetry (4.6) forces g, — g,— 0.

Since (4.9) holds, Theorem 5.1 guarantees that every limit (5.3) of the se-
quence (5.2) has the form Z(Z,, ¥~1(Z,)), where

2
j(zl,zz)=./1/(o,(“(X) 0)).
0 c?
Both claims of the corollary now follow immediately. O



1332 M. G. HAHN, J. KUELBS AND D. C. WEINER

The behavior of the first marginal, that is, the studentized quantity (n(¢, —
7)) /dn\/a , is of independent interest. When X is symmetric, Proposition 4.3
and Theorem 3.6 suggest that generally the integral term in (5.6) tends to zero
in probability (and thus plays no essential role in the weak convergence study).

Now, under (4.9), Corollary 5.68 guarantees exactly this behavior under
asymptotic symmetry, regardless of the tail of .2 (X). However, if X is almost
surely nonnegative and also outside the domain of partial attraction of the
normal, Proposition 4.3 and (5.6)-(5.8) make it easy to see that consistency
(4,/a, — 1in probability) and tightness of (n/d ,\/r, X9, — ¥,) in (5.6) force
tightness of (4, — @,)/a,)y/r, and hence also the validity of the tail-control-
ling condition (4.9). For general asymmetric X, therefore, the precise neces-
sary and sufficient conditions for tightness and/or asymptotic normality of
(n/&,Vn X%, — v,) will involve quantification of the delicate playoff between
heaviness of tails versus balance of tails (near-symmetry) in expressions such
as (5.6) and (5.8). For brevity, we only consider asymptotic normality for
(n /dn‘/a X9, — v,) under conditions sufficient for its tightness without sup-
plementary tail-balance assumptions. The general case is being investigated
elsewhere.

5.70. CorOLLARY. Assume (4.9) holds wheneverp,, — «andp,, /+/r,, = 0.
Then every subsequential limiting distribution of (n,/G, /1, XVn, = Vn,)
will be normal or degenerate, if and only if for all y,

. G+(ank(1 +y/‘/a)) - G‘(ank(l + y/ﬁ))
ko (2,a,,(1+y/4/m, )

G*(a,,) — G (a,,)
Bl m(2,a,,)

(5.71)
= 0.

Proor. Inspection of limit laws of the form in (5.3) shows that the desired
normality /degeneracy occurs exactly when every pair ¥, d resulting from
Helly selections satisfies ® o ¥~ ! is linear. This amounts to every quotient
@’ /¥’ being constant, since by Theorem 5.1, ¥’ > 0. Recalling (4.18), (4.20)
and (4.22) along with (5.9) and (5.11) [where g™, g~ are Helly selections from
(5.9)] establishes the corollary, since (5.71) is simply the condition that every
such quotient (g*— g7)/f be constant. O

The remainder of this section will be devoted to the statistical problem of
empirically determining the limiting covariances II in the setting of Corollary
5.64. The emphasis will be on obtaining full sequential convergence to the
standard normal (in R or R2) for empirical normalizations of (§, — v,) and
($, — ¥n, @, — a,), respectively, under appropriate conditions, leading to an
invariance principle. In this way our main empirical result, Theorem 5.81
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represents the analogue in the censored setting of the classical results which
hold under finite second or fourth moments.

For the remainder of this section let n, = k in order to consider the full
sequence. Assume the asymptotic normality condition (4.36) holds—again,
along the full sequence.

Now along subsequences on which the limit of (5.2) is of the form of
Corollary 5.64(i) (i.e., degenerate normal) it is not possible to estimate the
(nonexistent) quantity B,. It is therefore desirable and convenient to have an
alternative, common representation for the covariances I1, in Corollary 5.64(i)
and (ii) in terms of quantities that can be empirically determined in the limit.
Temporarily viewing B, as b/c and ¢ as c¢/u in Corollary 5.64(ii), we can
rewrite

(1 e/m\[aa(X) b\ 1 0
(5.72) ”"‘(0 1/#«) 2 e )

where b, 8, 1 and c? are subsequential limits of, respectively,

b

" 3
—m(3,0,),

n

n
0, = r_(G+(an) - G—(an))’

(5.73) y
Hy = r_ﬁl(z’ an)’

n

n
c.=—m(4,a,).
rn
However, the form (5.72)-(5.73) also represents I, as in Corollary 5.64(), i.e.,
even along a subsequence where ¢ — 0 = c2.
The quantities appearing in (5.73) can be consistently estimated. Defining
the obvious estimators, we will show that

A n n
(5.74i) b, —b, = —m,(3,4,) - —m(3,a,) >, 0,

n n

n
on - an = r_(G:(&n) - G;(&n))
(5.74ii) i
- r—n(G*(an) -G (a,)) =, 0,
n n
(5.74ii) Ao = b= —m,(2,8,) = —h(2,a,) =, 0,
n n
(5.74iv) &2 —¢2= —mu(4,4,) = —m(4,a,) =, 0.

n n
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But first a consistent estlmate of a?(X) must be produced. The obvious
choice is A2 =1 — n92/(r,42) =1 — f/M (2,4,), for then A2 is the sam-
ple variance for the sample {(IXI A @, )sgn(X; )/(‘/— 4,): j<n}). Now if
EX? < , then (&, — a,))/a, ‘/— —, 0, so with probability tending to 1,

1 1 _
(5.75) Mn(2,an(1 N )) <M,(2,4,) < M,,(z,a,, 1+ ‘/;;) .
It is easy to check that M,(2,a,(1 + 1//r,)) - M(2,a,(1 £ 1//r,) -, 0.
Since M(2,a,(1 + 1/‘/—‘)) — EX? < o, (5.75) forces M,(2,d,) —, EX? But
E|X| < » as well, so §, », EX. It follows that A2 Var(X)/EX2 = a%(X),
when EX? < o,
If, however, EX%? =, then a*X)=1 and it must be proven that
$2/M,(2, d,) -, 0. Observe that by (4.36) [which implies (4.9)] and
Theorem 5.1,

In In/ 4% ( n )

M, (2,4,) m,(2,4,) r,

2
n(n(3,=7) Vr. | 7. a,
—_— = + _A_
G/, n a,d,

S

A

an,

(5.76)

YH 2
+ Z(l + Op(l)))

of2) o)z 2z -0

But, since EX? = o, we have (E(|X| A t))? = o(E(X2 A t?)) as t — », so that
rn
e < (EIX| Aa,)” = o(EX? A d2) = o(a®m(2,a,)) = o(a‘i;)

and therefore (5.76) forces 92/M,(2,d,) -, 0 and A2 -, a®(X), as desired.
Turning to (5.74), we will verify (ii) here the proofs for the other cases are

similar and even easier. It will be clear that due to continuity considerations

a la (2.5) and analogues, (i) and (iv) depend only on (4.9), although (ii) and (iii)

appear to require the full strength of (4.36).

~ Under (4.36), a diagonalization argument shows there exists 0 < p, — ®

such that p,, / ‘/E — 0 and

11 %))—G(an))—»O

5.77 "
(5.77) -

G(an
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Since {(&, — @,)/a,)/r, } is tight, with probability tending to 1,

(5.78) G,,(a,,(1 + ‘;’% )) <G, (a,) < Gn(an(l - ‘% ))

Now

L G 1 Pr 2 G 1+ Pr =0 —1
\Y + — — || =

arrn danl . < -z a,ll+ . -]
so that (5.77) guarantees

Pn
Vra

The argument in (5.61) shows that (5.79) guarantees

1+

n

n

) - G(an)) -, 0.

G:(an(l + ;% )—G*(an)

ie, 0,—86,—,0.

We note that the impossibility of singular covariances Il in Corollary 5.64
is equivalent to (4.28), since we are proceeding along the full sequence, so that
by Remark 5.40, degenerate limits in Theorem 5.1 occur if and only if X is in
the domain of partial attraction of the normal.

Putting [appropriate to (5.72) and (5.74)]

ﬁn=(1 é\n/ﬁn)(A%l 6”

n

—p 0,

n -—
+r— Gn a,

n

14 -n ))—G‘(an)

V.

n

1 0
0 1/8,\8, ¢é,[\6./0, 1/8,
and taking 17172 = I if I1_ is singular, we have the following analogue to the
classical results.

(5.80)

5.81. THEOREM. Let n, = k and assume (4.36). Then

26,6, 822\ a
(5.82) £[| A2+ —/—= + =5 - ($, = v,)| = N(0,1).
fin @2, ,/r,

If in addition (4.28) holds, then

t
N(0,1
B Lo r))e 0.1

and, in particular, fIn is nonsingular with probability tending to 1.

(5.83) |12

5.84. REMARK. The subsequential analogues of (5.82) and (5.83) are avail-
able even without (4.28) if (4.36) holds only on the given subsequence and if on
no further subsequence do (4.5) and (5.5) both hold.
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6. Applications and examples.

6.1. Domains of attraction. Fix a sequence {r,} as in (4.1). The various
empirical results of Section 5 are considerably simplified for F € DA(a). In
particular, full sequential joint asymptotic normality for the self-normalized
quantities is available throughout the entire class DA(a), 0 < a < 2 [compare
Davis and Resnick (1984)].

6.2. THEOREM. Suppose F € DA(a), where 0 < a < 2. Then

n a,—a

2 W(Yn‘)/n)’ _zl/«—ﬁ ‘*///(Oano),

n

where
3(2 — 3
(2p - 1)(2 - a) ] 32— )(2p ~ 1)
- o 2(3 —a)
0 0 2 3(2 — a)(2p — 1) 4 - 2a
a 2(3 —a) 4—a
(6.3)
1 0
x| Cp-1D2-a) 2
83 (04
. Moreover,
(6.4) ~||A2 20,6, 6:6) " (¥ )| - (0,1
. T ~ + — — = Yn — ,1),
i, £, a,/r, § (0:1)

where A2 =1 — n$2/(r,62) and b,, ¢é,, 4, and 6, are given by (5.74). If
a = 2, then

an - an . ey
—\/Z — 0 in probability.

A

(6.5)

n

Finally, if a + 2,

A

n a, —a,
A \/;_(iln_’)/n)7__—d—\/a))-—)'ﬂ/(0’1)’

n n n

(6.6) |12

where 11 is given by (5.80) and 11,2 is defined to be I when 11, is singular.

6.7. REMARKS. The proof of Theorem 6.2 is an application of Theorems 5.1
and 5.81 involving relatively routine computation.

Theorem 6.2 motivates a new approach to the statistical problem of estimat-
ing an exponent of regular variation in the tail of a distribution. Development
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of this approach, together with a fuller discussion of the proof and statistical
implications of a generalization of Theorem 6.2 may be found in Hahn, Kuelbs
and Weiner (1989b).

6.8. Remarks on the Feller class. Many of the results of Section 5 improve
and simplify when X is in the Feller class, i.e., (4.27) holds. In Corollary 4.29
it was shown that (4.9) holds along the full sequence {n, = k}. Thus subse-
quential results can be extended to the full sequence. Also, bounds on the
quantities appearing in the various results can be given via (4.27), for example,
in (5.63), ¢ = 1/(2(1 — A)). Moreover, Pruitt’s 1983 result shows that under
(4.27), X cannot be in the domain of partial attraction of an ordinary Poisson
law. Hence, Remark 5.40 shows that the only limit laws of the sequence in
(5.2) of a degenerate form in (5.4) will be

woa 9]

where a? = a%(X). In particular when X is in the Feller class, a necessary and
sufficient condition that with n, =k, every limit from (5.2) have support
exactly R2, is that X be outside the domain of partial attraction of the normal,
ie., that (4.28) hold. When (4.28) fails, there will be degenerate limits and
they will be concentrated on the line {(x, 0): x € R}.

6.9. Examples of joint asymptotic normality. Combining Corollary 5.59
with the preceding remarks on the Feller class enables us to present a
relatively large class of examples generating joint asymptotic normality (with
nonsingular limiting covariance) for the quantities 7, and &,. In particular,
the invariance principle, Theorem 5.81 applies. Now in Theorem 6.2 it was
. seen that X € DA(a) (0 < a < 2) generates exactly this desired behavior, but
here we show that regular variation/balance in the tails G,G* can be
replaced by mild assumptions concerning the smoothness of G and m(2, - ).
Suppose the distribution H of the random variable |X| has Lebesgue density f,
such that for some T > 0, either f is continuous on (7T, ) or the function
g(t) = tf(¢) is nonincreasing on (T, «). Suppose, further, that

£ (¢) £ (€)
6.10 < liminf ——— < li —— < 1.
( ) 0 1§n11°1°1 £2s%f(s) ds = 11;1_)s;1p §2s%f(s) ds
[In particular, m(2,-) varies ‘“dominatedly” at «, since we will see that
m(2, - ) is monotone; cf. Seneta (1976).] We claim that

(i) X is in the Feller class,
(ii) X & DPA(N(0, 1)),
(iii) (4.36) holds.

The desired nonsingular joint asymptotic normality will then follow from
the aforementioned results. If £ is continuous on (T, ), an application of the
extended (or Cauchy) mean value theorem as in the proof of 1’Hospital’s rule
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leads to
. ' G(t) . . f(g)
ey = P ene 0
(6.11)
£3f (&)

R s ds 7

recalling (2.4) and m(2, x) = x 2§ s2f(s) ds. But monotonicity of #f(¢) makes
it easy to remove the assumption of continuity in (6.11). [Indeed, this mono-
tonicity assumption could be replaced by any condition validating (6.11).]
Claim (ii) follows and claim (i) is obtained in the same manner. For (iii), we will
first show that for some T' > T, (2, - ) is nonincreasing on (T, ). From
G +m(2,-)=m(2,-) it will then follow that for 5 >a > T, 0 < G(a) —
G(b) < m(2,a) — m(2,b). Then (4.36) will follow (for x < 0) from (i) and

= lefefs- )| -oten)

(6.12) ”{ (2 (1+ i (2,a,)
. Z milz,a, W)) —mi4,a,
m(2,an(1 +x/\/a)) ~ 1} Lo,

- rim(2,an){ m(2,a,)

n

IA

by (2.5) and (2.7), with a similar argument applying when x > 0.
To see that m(2, - ) is eventually nonincreasing, use the quotient rule of
differentiation to write (for large ¢ and off a countable set)

S0 =) - 2 [53(s) ds

oF
J5 25/ (5) ds

(613) _ 2t_3 ]tszf(s) ds{
0

<0,
by (6.10).

It is interesting to note that the essential feature of these examples, namely,
that m(2, - ) is nonincreasing on (7", ), actually forces F to have a Lebesgue
density on (—o, — T'] U [T’,). To see this, note as above that (2, )
nonincreasing forces 0 < G(a) — G(b) < m(2,a) — m(2,b) for b > a > T, so
that on (T',), the measure induced by G is dominated by the measure
induced by m(2, ). The latter is absolutely continuous with respect to
Lebesgue measure by (2.4). Finally, the measures induced by G* are domi-
nated by that induced by G, and thus G * are absolutely continuous functions.
Hence, F is absolutely continuous. Examples of probability densities f as
required are easy to generate: Take any random variable Y in the Feller class
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but outside the DPA(N(0, 1)) and put f(t) = ct~'P(|Y| > t)h(¢), where h is
slowly varying at «, h is eventually nonincreasing, [ (h(¢)/t)dt < » and c is
the suitable normalizing constant. [Note that P(]Y| > ¢) varies dominatedly.]
Then (6.10) is immediate.

Finally, we present a computationally convenient and illuminating example
where even the simple consistent estimation of scale (ie., 4,/a, > 1 in
probability) can fail. Naturally, our choice is a distribution with slowly varying
tail.

6.14. Example of inconsistent scale estimation. Since the behavior of @,
as governed by Theorem 4.7 depends only on the distribution of |X], it is
enough to describe the latter. Let Y = |X| satisfy, for each Borel set A C R,

dx

1
(6.15) P(YeA)=§IA(O)+f(e A{(logx)—Z_(logx)-s}?.

,®)N
Thus,
1 1 _
logx_zl 5, ifx>e,
(6.16)  G(t) =P(Y>1) ={ (log %)
= fo<x<e,
so that for ¢ > e,
6.17 2,¢) =2 [‘2xG(x) d ! il
(617) m(2,0) =% [(226(x) dr = 1 ~ 5.

Fix r, » « such that r,/n — 0 and fix p, — © such that p,/ ﬁ—» 0.
. Computations show that, relevant to (4.8)—(4.9), one has

%{m(&an(l - %)) - m(2,an)}

(6.18) .
_ r":"(l +o(1)) - % :’;2 (1 +0(1)).

But the size of a, can be (grossly) estimated from

1 n

loga, (1- O(.l)) r_n

to satisfy a, = exp((n/r, )1 + 0(1))). Thus in (6.18), clearly (whatever p,, is)

" b, oo
(6.20) F{m(&an(l - ‘/r—)) - m(2,an)} ~ P =o( - )

Therefore if r, = O(n?/3), the left member of (6.20) tends to zero no matter
how p,, is chosen, and thus by Theorem 4.7, 4, /a, - 1. But if r, /n?/® — o,

(6.19) 1= rim(2,an) =

n
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it may be possible to choose p, so that r,p, /n — « and hence P(|¢,/a,l] =
P/ ‘/7: ) = 0 (and thus d,/a, — 1 in probability). However, under no cir-

cumstances can {\/Z (é,/a, — 1)} be tight, because in (6.20), it is always
possible to find p, — « such that r,p,/n — 0, since r, /n — 0. Hence tight-
ness fails due to Theorem 4.7.
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