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SOLUTIONS OF A STOCHASTIC DIFFERENTIAL EQUATION
FORCED ONTO A MANIFOLD BY A LARGE DRIFT

By G. S. KATZENBERGER
University of Wisconsin
We consider a sequence of R?-valued semimartingales {X,) satisfying

Xn(t) = Xn(o) + j:o'n(Xn(s_)) dzn(s) + j:F(Xn(s_)) dAn(s)’

where {Z,} is a “ well-behaved” sequence of R®-valued semimartingales, o,
is a continuous d X e matrix-valued function, F is a vector field whose
deterministic flow has an asymptotically stable manifold of fixed points T,
and A, is a nondecreasing process which asymptotically puts infinite mass
on every interval. Many Markov processes with lower dimensional diffusion
approximations can be written in this form. Intuitively, if X,(0) is close to
T, the drift term FdA, forces X, to stay close to I, and any limiting
process must actually stay on I'. If X, (0) is only in the domain of attraction
of T under the flow of F, then the drift term immediately carries X,, close
to I' and forces X,, to stay close to I'. We make these ideas rigorous, give
conditions under which {X,,} is relatively compact in the Skorohod topology
and give a stochastic integral equation for the limiting process(es).

1. Introduction. To introduce our topic, consider the following small
random perturbation of a dynamical system:

b.(x,t) =x + eW(t) + /otF(¢e(x, 5)) ds,

where W is d-dimensional Brownian motion and F is a vector field on R®. If F
is locally Lipschitz, Gronwall’s inequality implies that ¢, — ¢,, as £ — 0,
uniformly on compact subsets of R? X [0,). Many authors, going back to
Wentzell and Freidlin (1969), have considered such systems in a neighborhood
of an isolated stable equilibrium point of the deterministic system ¢,. We are
interested in the system near a manifold of stable equilibria.

Suppose that ¢, has an asymptotically stable manifold of fixed points I'. By
this we mean that if the deterministic system ¢, is started at a point x near T,
then ¢(x, ) converges as ¢ — © to a point ®(x) € I'. The expected behavior of
¢, on its natural time scale is to follow the trajectories of ¢, as they converge
to points of I. In particular, if we start ¢, at a point on T, then in the limit as
€ — 0 the system just sits there. To capture the interesting behavior of the
random system, we need to speed up time so that the random term does not go
away in the limit. Using the scaling properties of Brownian motion, the
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1588 G. S. KATZENBERGER
process . (x,t) = ¢ (x, t/&2) satisfies

5w t) =5 WD) + = [T (x,9)) ds,

where W is a different d-dimensional Brownian motion than that appearing
previously. Intuitively, when ¢ is small the drift term ¢ 2F(y,) dt very force-
fully pushes ¢, toward TI. If ¢, is started near I, the drift term easily
overpowers the tendency of the Brownian motion to carry #, away from T.
However, there is nothing preventing the Brownian motion from carrying the
system tangentially along I'. This suggests that if y € T, then _(y, - ) should
converge as ¢ — 0 to some diffusion process on I'. More generally, if x is in the
domain of attraction of I' under the deterministic system ¢,, then ¢, (x,t)
should follow ¢(x,%/¢?) until it is close to T, at which time y, is free to
diffuse on I as before. Note that the convergence of ¢,(x, t/¢2) to ®(x) is very
fast for ¢ small. Thus ¢, (x, - ), in the limit as ¢ — 0, should get ‘“zapped”
instantly to ®(x), then diffuse nicely on I'. This can be summarized by saying
that the process

U (x,t) + do(x,t/6%) + P(x)

converges to a diffusion process on I'. For ¢ close to 0, ¥ (x, ) — ¢o(x,t/e%)
should be close to 0; for ¢ bounded away from 0, ¢,(x, t/e2) — ®(x) is close
to 0.

We consider processes like ¢, in the sense that they are the sum of a
well-behaved term and a “large” drift term which pushes toward a manifold.
More precisely, we consider a sequence {X,} of cadlag R%valued semimartin-

gales satisfying
X,(t) = X,(0) + [(0(Xo(s-)) dZ,(s) + [[F(X,(s-)) dA,(s),

where {Z,} is a well-behaved sequence of cadlag R°-valued semimartingales, o,
is a continuous d X e matrix-valued function, F is a vector field whose
deterministic flow has an asymptotically stable manifold of fixed points I" and
A, is a cadlag nondecreasing process which asymptotically puts infinite mass
on every interval. Thus, in the preceding example, Brownian motion plays the
role of the first integral term and the large drift plays the role of the second
integral term. In the example, A,(¢) would be ¢, %, where ¢, > 0 as n — «,

Many Markov processes with lower dimensional diffusion approximations
can be written in the general form given previously. Examples of such pro-
cesses include population genetics models [see Ethier and Nagylaki (1980,
1988)], certain queueing systems [see Reiman (1983), Johnson (1983) and
Peterson (1985)] and critical branching processes [see Kurtz (1978) and Joffe
and Métivier (1986)].

Heuristically, if X,(0) is close to T, the drift term FdA, forces X, to stay
close to I', and any limiting process must actually stay on I'. More generally, if
X,(0) is in the domain of attraction of I' under the deterministic flow of F,
then the drift term immediately carries X, close to I' and forces X, to stay
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close to I'. We make these ideas rigorous, give conditions under which {X,}
(when appropriately stopped) is relatively compact in the Skorohod topology
and give a stochastic integral equation that any limiting process must satisfy.
What we mean by the ‘deterministic flow” of F depends on the jump

behavior of A,. We consider two cases: the asymptotically continuous case,
when

sup AA,(s) =0,

0<s<t
where AA,(¢) = A, (t) — A, (t— ) is the jump of A, at time ¢, and the counting
process case, when A, is a counting process. In the asymptotically continuous
case, the relevant flow is the usual continuous flow of F,

d(x,t) =x + [0‘1«"(¢(x, s)) ds.

In the counting process case, the relevant flow is the discrete dynamical
system consisting of iterates of x + F(x).

The counting process case is much more general than a first glance sug-
gests. In particular, if A, is a pure jump process with well-behaved jump sizes
which are bounded and bounded away from 0, then the system can be
reformulated as a process driven by a counting process. The counting process
case is particularly useful in proving diffusion approximations for discrete-time
processes, in which case A ,(¢) is typically | a,t |, where | -] denotes the greatest
integer function and «, is a sequence of real numbers going to .

The basic strategy we use is to find a stochastic differential equation (SDE)
for X, with well-behaved coefficients and driving processes. We then apply
results of Kurtz and Protter (1991) on convergence of stochastic integrals to
get the results. In finding a “nice”” SDE for X,,, we need to eliminate the large
drift term in an appropriate way. To accomplish this in the asymptotically
continuous case, we first find a C? function ®: R? — T such that ®(y) = y for
y € T and d®(x)F(x) = 0 for x € R?. Applying It6’s formula to ®(X,,) yields

O(X,(1) = (X,(0) + [99 0, d2,

+1X [0,® oitait d[ZE, ZL] + mu(2),
ijki "0
where 7, represents jump correction terms. We then show [under appropriate
conditions on X,(0)] that 5, = 0 and d(X,,I') = 0, which implies X, —
®(X,) = 0. Then X, is a solution of

X,(t) = X,(0) + [0 ‘o0 o, dZ, + %21 [0 9,,® oitail d[ZE, ZL] + £4(2),
ijk

where ¢, = 0 as n - ». The function ®, which plays a critical role in this
strategy, is the limit map of the flow of F. A result of Falconer (1983) provides
the necessary smoothness of ®.
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The main advantages of this strategy over the semigroup approach utilized
in Ethier and Nagylaki (1980, 1988), for example, are the local nature of the
estimates involved and the ability to handle the situation where the ‘“fast” and
“slow’’ processes are not separated.

Section 2 provides the necessary background in the Skorohod space, integra-
tion against cadlag functions, stochastic integration and general notation used
in the remainder of the paper. In Section 3 we investigate exponential stability
of I" under the appropriate deterministic systems and construct certain strong
Liapounov functions used in showing that the stochastic system stays close to
I'. Section 4 contains a result on relative compactness of stochastic integrals.
In Section 5 we give conditions under which d(X,,T) = 0 and give a result
used in showing the jump correction terms go to 0 in the asymptotically
continuous case. Section 6 contains the main results in the asymptotically
continuous case and Section 7 handles the counting process case. Section 8 is
devoted to examples.

2. Preliminaries. A function g: [0,%) - E mapping [0, ©) into a Banach
space E is said to be cadlag if it is right-continuous at every ¢ € [0, ©) and has
a left limit g(¢— ) at every ¢ € (0, ). D;[0,») denotes the space of all cadlag
functions from [0, ®) to E with the Skorohod topology [see Ethier and Kurtz
(1986) for the definition and properties of the Skorohod topologyl. For g €
Dg[0, ), we write Ag(¢) = g(¢) — g(¢— ) for the jump of g at time ¢ and write
g7(t) for g(¢ A 7). If g € Dg[0, ») has finite variation on bounded intervals, we
say simply that g has finite variation and write g°¢ for the continuous part
of g,

g(t) =g(t) - X Ag(s).

0<s<t

Let M(d, e) be the set of all d X e matrices with real entries. If g € Dg.[0, ©)
has finite variation and f € Dy, ,)[0,®), we define the integral

[ ‘fdg

as the limit of sums of the form
n—1
Z f("i)(g("i+1) - g("i)),
i=0

where s =ry <r; < -+ <r, =t and the limit is as the mesh of the partition
goes to 0. Note that [ is evaluated at the left-hand endpoint of the interval
(r;,r;41] and not at an arbitrary point in the interval, as is traditional with
Riemann-Stieltjes integration. If u, is the R°-valued measure defined by
1[0, D = g(#) — g(0), then

[ ‘fdg = I S ng(dr),
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where the integral on the right is the usual Lebesgue integral. Furthermore,
t t
[fdg = [fdge+ L f(r-)ag(r),
s 8

s<r<t

where the integral [/fdg® is equal to the usual Riemann-Stieltjes integral. We
often write

f:f(r-) dg(r) for f:fdg-
Define

t t

[f(r)dg(r) = [f(r-)dg(r) + £ Af(r)Ag(r).

s s s<r<t
Note that [/f(r)dg(r) = [ ,,f(r)u (dr), so the notation is justified. We
emphasize that [/fdg equals [!f(r— ) dg(r) and not, in general, [!f(r) dg(r).
If f and g have no jumps in common, then these are the same.

If f,g € Dgl0,») are both of finite variation, then we can integrate by

parts:

f(t)&(t) = F(0)g(0) + fo’fdg+ [o’gdf+ Y Af(s)Ag(s)

0<s<t
3 t
=1(0)g(0) + [ f(s—) dg(s) + [&(s) df(s).
0 0
If g € Dgl0, ) is of finite variation and G: R — R is C1, then

G(8(8) = G(g(0) + [(G'~4) dg
+ L [AG(g(s)) - G'(e(s-)) Ag(s)]

O<s<t

= G(g(0)) + [(Gog)dgc+ ¥ AG(g(s)),
Y 0<s<t
where AG(g(s)) = G(g(s)) — G(g(s—)). This change of variables formula can
be extended to higher dimensions in the obvious way.

We also need to integrate against semimartingales. A semimartingale is the
sum of a local martingale and an adapted finite variation process. If X and Y
are adapted stochastic processes, X has sample paths in Dyy4, [0,), Y has
sample paths in Dg[0,%) and Y is a semimartingale, then the integral [/XdY
is defined, as in the deterministic setting, as the limit of sums

n—1
go X(r)(Y(rie) — Y(ry)),

where s =r; <r; < -+ <r, =t, the limit being in probability as the mesh
size goes to 0. Standard results in stochastic calculus imply that this limit
exists. We use the same notation conventions for stochastic integrals as for the
deterministic integrals. For cadlag real-valued semimartingales X and Y, the
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integration by parts formula is
X(1)Y(t) = X(0)Y(0) + fthY+ ftYdX+ [X,Y]1(?),
0 0

where [ X, Y(¢) is the cross variation of X and Y on (0, ¢], defined as the limit
of sums

n—1
E:O (X(is1) = X(2))(Y(t:11) — Y(25)),

where 0 = ¢, <, < -+ <t, =t and the limit is in probability as the mesh
size goes to 0. This limit exists for any cadlag semimartingales. If X is an
R¢-valued semimartingale, we write

d
[X]= gllX‘}X"]-

There is also a stochastic change of variables formula, called It6’s formula. If
Y is a real-valued cadlag semimartingale and G: R — R is C?, then

G(Y(t)) = G(Y(0)) + [O’G'(Y) dy + %j:G”(Y)d[Y]
+ T [a6(¥(s) - @'(Y(s-)) AY(s)

O<s<t
~3G"(Y(s-))(AY(5))"]
= G(Y(0)) + fO‘G'(Y) dy + %fotG"(Y) dIY
+ X [AG(Y(s)) - G'(Y(s—)) AY(s)].

0<s<t

This also has the obvious generalization to higher dimensions. In general, Y is
not of finite variation so Y° need not exist, but [Y ] is always of finite variation.
For a complete discussion of stochastic integrals against cadlag semimartin-
gales, see Protter (1990).

We need a form of Gronwall’s inequality.

LEMMA 2.1. Let f, g € Dgl0,©) with g nondecreasing and g(0) = 0. Let
n > 0 and assume

(2.1) 0<f(t)<n+ [f(s—)dg(s), t=0.
0
Then f(t) < 1ef® forall t > 0.

Proor. Iterating (2.1),
2
t) <m +
f( ) n n n§1 '/;) ‘/;0, ED) '/;

® 1
<n+n) ;g(t)n = neé®. m
n=1""

48 (sy) -+ dg(sy) dg(sy)

orsn—l
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Let d(-, - ) denote the Euclidean metric on R?. By a neighborhood of a set
A we mean an open set containing A. For a C! function f: R? - R®, df
denotes the total derivative of f, that is, the e X d matrix of partial deriva-
tives, (9; f ?). For nonnegative functions f and g, we write f < g to indicate
that f < cg for some constant ¢, and we write f ~ g to indicate that f < g
and g < f. A function f is said to be LC* if f is C* and all of its k£th-order
derivatives are locally Lipschitz.

3. Deterministic results. In this section we study relevant deterministic
systems. Let U c R? be open and F: U —» R? be a C! vector field. Assume
I' = {x|F(x) = 0} is a C° submanifold of U of dimension m. Let G: U X
[0,0) » R? be continuous with G(x,0) =0 for x € U and G(y,¢) =0 for
y €Tl and £ > 0. Assume that for every compact K c U and & < =, there
exists C = C(K, §) < « such that

(8.1) IG(x,¢) —G(y,8) <Céllx —yl, forx,ycKand0 < ¢ <3.

Usually, G(x, ¢) = ¢F(x). Let £ be the following class of integrators:
S = (a € Dg[0, »)|a is nondecreasing and a(0) = 0},

For 6 > 0, let

H(5) = {a e #|supAa(t) < 5},
t=0

S(8) = {a € F(8)la(w) = =).

For 6 > 0, let D(§) ={z € C||6z + 1] < 1} and let D(0) = {z € C|Rez < 0},
where C is the complex numbers and Re z denotes the real part of z. Note that
D(8) c D(n) if 6 = 7.

For a € .#, define the flow of (F, G) driven by a to be the solution of

(82) o(x,8) =2+ [FUy(x,5))da*(s) + L G(u(x,5-),8a(s)).

0<s<t

When G(x, £) = £F(x), (3.2) reduces to

(3.3) U (x,t) =x + fotF(d/a(x, s—)) da(s).

The form of (3.2) is invariant under smooth coordinate transformations, while
(8.3) is not. In light of (3.1) and Lemma 2.1, the standard Picard existence and
Gronwall uniqueness proofs work to provide existence and uniqueness of ¥,
up until it leaves U. We say a set S C U is #(§)-invariant if S is ¢, -invariant
for every a € #(8). For a € .7, let

U, = {x eU I lim ¢,(x, t) exists and is in I‘}
t—oo

and, for x € U,, let ®(x) = lim, _,, y,(x,t). Note that I' c U, and &, is the
identity on T
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The main results of this section are contained in Proposition 3.5. We show
under eigenvalue conditions on JF that I' is exponentially stable under ¢, and
we construct strong Liapounov functions for ¢, used in the analysis of the
stochastic equations.

First we consider the fundamental linear system driven by a € _#(8).

LemMA 3.1. Let 6 > 0 and A € M(d, d) with the spectrum of A in D(3).
Fora € .7, let

\Ifa(t,s)=I+ftA\Ifa(u— ,8)da(u), t>s=>0.

Then there exists @ € GL(d) and B > 0 with

Q™ 1¥,(¢,5)QI < exp[-B(a(t) — a(s))]
forallac #(8)and t = s > 0.

Proor. If § = 0, then there exists 8 > 0 such that the spectrum of A is in
D(8'), so we can assume that & > 0. By considering A’ = §A, we can take
=1 Let a € #(1) and let B =1+ A. The spectral radius of B, p(B), is
less than 1. Examining the real Jordan canonical form implies p(B) =
infg ¢ g1a)|@ ~"BQ), so there exists @ € GL(d) with |Q "'BQ| < 1. For x € R?,
define IIxﬁ = |Q x|. The operator norm of B relative to this norm is « =
IBll = |@ 'BQ| < 1. Note that

V,(¢,5) = exp[ A(c(t) —¢(s))] S<I_Ir<t(1 + Aa(r)A),

where ¢ is the continuous part of a. Let B =1 — a so [le?*| = |leB%|le ™ <
e P“, for u > 0. Then [exp[ A(c(t) — c(s)]l| < expl—pB(c(t) — ¢(s))]. For 0 <
£E<1,

I+ £Al=1éB+ (1 -¢&)Ill<éa+(1—¢)=1-BE <e P
so that

I1 (I+Aa(r)A)“ssHtI|I+Aa(r)AllseXp(—B ) Aa(r)),

s<r<t <r< s<r<t

completing the proof. O

Next we show local exponential stability of I' under ¢, when T is a linear
subspace of R?.

LEmMA 3.2. Assume U is a neighborhood of 0 and T' = N N U for some
linear subspace N c R%. Assume & > 0, the matrix JF(0) has d — m eigenval-
ues in D(8) and

lim su |G(x,¢) — ¢F(x)| _
x—0 o<gls)a £d(x,T)
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Then there exists a bounded #(8)-invariant neighborhood W of 0, a C?
function h: W — [0,%) and a constant B > 0 such that W cC U and the
following hold:

() h(P(x, 1) < e P*Dh(x), foralla € #(8), x € Wand t > 0;
() A ~y2w=3 |0h| < yw= 3 + y2w~* and |9%h] < w3 + y*w ™5 on W,
where y(x) = d(x,T) and w(x) = d(x, W°),
(i) if a € HZ(8), then W c U, and ®, is continuous on W.

Moreover, 0 has a local base of #(8)-invariant neighborhoods.

REMARK. Item (ii) implies that 1/A, extended to be 0 outside W, is C2 on
R? —T.

Proor or LEMMA 3.2. If § = 0, then there exists §' > 0 such that dF(0) has
d — m eigenvalues in D(&'). Thus [setting G(x, £) = ¢F(x) if § = 0] we can
take & > 0. By considering F = 6F and G(x, ¢) = G(x, 6¢), take & = 1. Let
A = 3F(0) and P be the range of A. N is the null space of A andR¢ =P & N.
Let mp and m, be the projections corresponding to this decomposition. For
a € S, let ¥, be as in Lemma 3.1. Note that ¥, = mp¥,7p + my so P is
V-invariant. Also p((I + A)lp) < 1, so Lemma 3.1 implies the existence of an
invertible linear operator @ on P and a constant a > 0 such that

(34) |Q~ 1,2, 5)IrQ| < exp[ —a(a() — a(s))],

fora € #(1)and ¢ > s > 0. Extend @ to R? by @ = @mp + my and define the
vector norm || - || on R? by |lx]l = |Q x|. Then (3.4) becomes

(3.5) I ¥,(t, )1l < expl —a(a(t) — a(s))].

Let 0(x) = F(x) — Ax and ¢(x, &) = G(x, &) — £Ax. Fix € > 0 such that « —
2¢e* >0 and let B =a — 2¢e® Then 96(0) = 0 and there exists a convex
neighborhood V c U of 0 such that [|96]| < £ onV, [|G(x, £) — éF(x)|| < eéllmpxll
on Vx[0,1] and V = 7w,V + 7, V. Since 6 vanishes on N, for x € V and
0<é¢x<1l,

(3.6) lo(x)ll = ”[130(wa + tmpx)mpX dt“ < ¢llmpxll
0
and
(3.7) lo(x, E) < IG (%, &) — EF(x)Il + £ll6(x)ll < 2eélmpxll.
Applying the integration by parts formula to ¥ (¢, r)y (x, r) yields
Val,8) = Wo(t, ) a(%,8) + [Wo(t,7)0(d(x, 7)) da*(r)

(3.8)
+ X V8, 7)d(du(x, =), Aa(r)).

s<r<t
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Let 7,(x) = inf{¢ > 0ly(x,t) & V). Applying 7p to (3.8) and using (3.5)-(3.7)
yields

lmpda(x, )l < exp[ —a(a() - a(s))]lmp(x, s)I
+ 2ee [‘exp[ ~a(a(t) — a(r—))lmpiry(x, r—)l da(r),

for s <t <7, (x) and @ € #(1). Then Lemma 2.1 (Gronwall’s inequality)
implies

(8:9) llmpdha(x, )l < exp[-B(a(t) — a(s))|llmpio(x, s)l, s <t<r(x).
Applying 7y to (3.8), noting that 7y ¥,(¢,r) = my and using (3.6), (3.7) and
3.9),

”7TN¢a(x7t) - 17-Nlpa(x7 8)"

(3.10) < 2ellmpy(x, S)H/:GXP[—B(G("—) —a(s))] da(r)

2¢ef "
< Tllwp%(x,S)”(l — exp[—-B(a(t) — a(9))]),
for s <t < 7,(x). Letting M = 2ze?/p, setting s = 0 and adding M times
(3.9) to (3.10) gives
(3.11)  llmyio(x, t)ll + Mllmpg,(x, 8)ll < llmyall + Mlmpxll, t<7,(%).
Fix p > 0 small enough that the closure of
Wy = {xl lmyxll + Mlimpaxll < p)

is contained in V. Then (3.11) implies that 7,(x) = « for x € W, and that W,
is #(1)-invariant.

Let f(x) = p~Ylwyxl, g(x) = Mp Ympxl,v = g + Vi2+g2u=Q1-v)3
vV 0 and W = {x|u(x) > 0}. On W define » = g2/u. Note that f+g<vso
W W, If x;,,, x5, ¥, = 0 with y, < Yo and x; +y, < x, + y,, then

i+ yal+yf <y, + yxf +y2.
This, (3.9) and (3.11) imply that v((x, 1) < v(x) and Ay (x, 1) <
e 2*Op(x) fora € #(1), x € W and ¢ > 0.

Note that
3 3
g%l -g+VfP+g%) (1+2¢ - f2)
3 .
(=7 - 4g7)
If(1-f%?<4g%thenv> 31 —F2 + 1+ 2 >1,s0( — fH2—-4g%2>0
on W. Since f? and g2 are C*, to show that 4 is C? it suffices to show that
the numerator is CZ. This is left to the reader.

It is ciear that u ~ w3 and g ~ y on W, implying the first estimate in item
(ii). The other estimates are straightforward.

h=
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Fora € “Z(1)and ¢ > s > 0, (3.9) and (3.10) imply
(3.12) g (x,¢t) — ¢ (x,8)ll < Cllmph(x, s)ll < Cllmwpxlle P4 — 0

uniformly on W as s — «. Thus ¢, (x,¢) converges uniformly on W to a
continuous function ®,(x) € W. But 7,y,(x,t) > 0so & (x) € T and W c U,.
O

Henceforth, take G(x, £) = ¢F(x) so that (3.3) holds. This is not necessary,
but simplifies the discussion [see Katzenberger (1990)]. The next lemma
provides local results without the assumption that I is a subspace.

LemMA 3.3. Lety, €T and 8 > 0. Assume T is C? and dF(y,) hasd — m
eigenvalues in D(8). Then there exists a bounded #(8)-invariant neighbor-
hood W of y,, a C? function h: W - [0,%) and a constant B > 0 such that
W c U and items (i)-(iii) of Lemma 3.2 hold. Moreover, ¥o has a local base of
H(8)-invariant neighborhoods.

Proor. For notational convenience take y, = 0. Let A = 3dF(0), let N be
the tangent space of I" at 0 and let P be the range of A. Then N is the null
space of A and R = P @ N. Let 7, and 7 be the projections corresponding
to this decomposition. All the eigenvalues of Alp have negative real parts so
Alp is invertible. Then, since I' is C? there exist sets V, c PN U and
Vn €N N U and a C? function ¢: Vyy > Vp such that the following hold:

(i) Vp is a neighborhood of 0 in P and V), is a neighborhood of 0 in N.

Gi) Vo + Vy c U.

(iii) For v € Vy, there exists a unique element ¢(v) in V, such that
v+ ¢(v) el

Let V, = Vp + V. Then T' N V,, is the graph of ¢. Extend ¢ to V), @ P by
defining ¢(x) = ¢p(mryx). Then n(x) =x + ¢(x) is a C? dlﬁ'eomorphlsm of
Vy © P onto itself with n~(x) = x — ¢(x). Moreover, n carries V) onto
I' N V,. Let 6,(x,2) = 7~ (n(x), ). Then 6, solves

0,(x,t) =x +fF(Ba(x s))da’(s) + ¥ G(6,(x,5-),Aa(s)),
O<s<t

where

F(x) = n~"(n(x)) F(n(x)),

G(x,&) =0~ (n(x) + £F(n(x))) - x.

Note that dn~'(0) = I, so in a neighborhood V; c 5 ~(V,) of 0, an~Mn(x)) is
invertible. Then {x VIIF(x) 0} = N N V,. Moreover, dF(0) = 9F(0) and, for
x near 0 and 0 < ¢ < §, |G(x, &) — £éF(x)| < §In(x)|d(x N), implying

im  su G(x, &) — ¢F(x)l _

x—0 0<§IS)3 §d(x, N)
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Then F and G restricted to V, satisfy the conditions of Lemma 3.2. The result
now follows from that lemma and the smoothness of . O

The following lemma is used to patch together the local Liapounov func-
tions constructed in Lemma 3.2 and Lemma 3.3.

LEmmA 3.4. Assume that hy: Wy - [0,0) and hy W, — [0,®) are C2
functions with h; ~ y’w; 3, 10h;| < yw; 2 + y*w;* and 0%h,| < w® +
Y?w;® on W, where y(x) =d(x,T) and wyx)=d(x,W°). Let g, = 1/h;,
extended to be 0 outside W,, and let W= W, UW,. Then the function h:
W — [0, ©) defined by

0, forx e WNT,
h(x) = 1

—————, forxeW-T,
81(x) + ga(x)

is C® with b ~ y*w ™3, |0h| < yw™3 + y2w™* and 9%k < w23 + y2w 5 on
W, where w(x) = d(x, W°).

The proof is technical but straightforward and so is omitted.
Next we extend the local results of Lemma 3.3 to a neighborhood of T.

ProrposiTioN 3.5. Let 8 > 0. Assume T is C? and, for every y €T, the
matrix 0F(y) has d — m eigenvalues in D(8). Then there exists an #(5)-
invariant neighborhood V C U of T such that the following hold:

() If a € A(8), then V c U, U, is open and ®, is continuous on U,.

(ii) For every compact K C V there exists an #(8)-invariant neighborhood
Vg CVof K, a C* function h: Vi — [0,) and a constant B > 0 such that Vy
is a compact subset of U,

h(¥(x,t)) <e P*Oh(x), forallaec #(8),x€ Vg, t>0,
and h(x) ~ d(x,T)? and |0h(x)| < d(x,T) on compact subsets of V.

Proor. Fory €T, let W, and h, be as in Lemma 3.3 and let V = U,erW,.
Then for a € Z(8), we have V c U, so

U,= U {x € Uly,(x,t) € V}.

t=0

For fixed ¢, the map x ~ y,(x,?) is continuous, so U, is open. Lemma 3.3
implies that &, is continuous on V. Let K c U, be compact and note that
there exists T <o with ¢ (K,T)CV. Let b(¢) =a(t + T) — a(T). Then
D, (x) = D,(¢,(x, T)) is continuous on K, so @, is continuous on U,.

Let KcV and let {y)]1 <i<n}cT with KcVgy= UZ W, using the
subscript ¢ in place of y,. Define g, = 1/h,, extended to be 0 outside of W,,
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and define h: Vi — [0, ©) by
0, forx e VynNT,
h(x) = 1
gi(x) +gx(x) + - +g,(x)°
Applying Lemma 3.4 (n — 1) times implies that A is C? and proves the

estimates on h and dh, while Lemma 3.3 provides the exponential decay of ~
along ¢,. O

forx € V- T.

The following theorem of Falconer (1983) provides the smoothness of the
limit maps which we need in studying the stochastic equations.

THEOREM [Falconer (1983)]. Let f: U —» R? be an LC* mapping where
U c R? is open and k > 0. Suppose that T = {x € Ulf(x) = x} is a C' sub-
manifold of U of dimension m and that for every y € I, the matrix df(y) has
d — m eigenvalues in {z € C| |z| < 1}. Write f for the nth iterate of f. Then

U, = {x € Ul lim f™)(x) exists and is in l"}
is a neighborhood of T and f® = lim, ., f™ is C* on U,.

COROLLARY 3.6. Assume k > 1, F is LC* on U, T is C? and, for every
y €T, the matrix dF(y) has d — m eigenvalues in D(0). Let c(¢) = t. Then @,
is C* on U,.

Proor. Let f(x) = ¢(x,1). Standard results on smoothness of dynamical
systems imply that f is LC*. Proposition 8.5 implies that I is the fixed point
set of f restricted to U,. For y €T, the derivative df(y) = exp(3F(y)) has
d — m eigenvalues in the open unit disk. Then Falconer’s theorem provides
the conclusion. O

COROLLARY 3.7. Assume k > 1, F is LC* on U, T is C! and, for every
y €T, the matrix dF(y) has d — m eigenvalues in D(1). Let d(t) be the greatest
integer function |t]. Then &, is C k on U,.

Proor. Falconer’s theorem applies immediately to f(x) = ¢;(x,1) = x +
F(x). O

ReEMARKS. In the preceding corollaries, ¢, is the solution of
U (x,t) =x+ ftF(nllc(x, s))ds
0
and ¢ (x, k) is just the kth iterate of x + F(x).

4. Convergence of stochastic integrals. This section contains results
on the convergence and relative compaciness of stochastic integrals. We use
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results due to Kurtz and Protter (1991). Jakubowski, Mémin and Pageés (1989)
contains similar results. The symbol = indicates convergence in distribution.
For 6 > 0, define h: [0, ) — [0, ©) by

_ /0, for r <6,
hs(r) = {1 -8/r, forr=>54.

Define Jj: Dgal0, ©) — Dgdl0, ) by
J5(8)(t) = X hy(1Ag(s)]) Ag(s).

0<s<t
J; is continuous in the Skorohod topology and the map g — g — J,(g) simply
truncates the jumps of g which are larger than & in magnitude.

ConpiTiON 4.1 [Kurtz and Protter (1991)]. For n > 1, let Y, be a {-£"}-
semimartingale with sample paths in Dgd[0, ). Assume that for some & > 0
(allowing & = ») and every n > 1 there exist stopping times {r*|k > 1} and a
decomposition of Y, — J4(Y,,) into a local martingale M, plus a finite variation
process F, such that P[7} < k] < 1/k and .

supE[[M,](t A 7F) + T, 5(F,)] <,
n>1

for every ¢ > 0 and & > 1, where T,(-) denotes total variation on the interval
[0, ¢].

REmMARK. Condition 4.1 is satisfied if Y, — J4(Y,) has a decomposition
M, + F, such that both M, and F, have bounded jumps and {T(F,)|n > 1} is
stochastically bounded for each ¢ > 0. Condition 4.1 is an assumption of
Theorem 2.2 of Kurtz and Protter (1991), which we use to provide convergence
of stochastic integrals.

ConDITION 4.2. For n > 1, let Y, be a {#,}-semimartingale with sample
paths in Dgd[0, ). Assume that for some & > 0 (allowing 8 = ) and every
n > 1 there exist stopping times {7*|k > 1} and a decomposition of Y, — J,(Y,,)
into a local martingale M, plus a finite variation process F, such that
Plr} <kl < 1/k,{IM, )¢ A7) + T, , .(F,)In > 1} is uniformly integrable for
every t > 0 and £ > 1 and

(4.1) lim limsupP| sup (T,,,(F,) — T(F,))>¢|=0,

720 pow 0<t<T
for every ¢ > 0 and T > 0.

REMARKS. Condition 4.2 implies Condition 4.1. Under the uniform integra-
bility condition, (4.1) is equivalent to requiring that {7,(F,)} be relatively
compact in Dgl[0, ») and have continuous limit points [see Theorem 3.8.6(c) of
Ethier and Kurtz (1986)].

ProposiTION 4.3. If {Y,} is a sequence of Rd-valued cadlag semimartin-
gales satisfying Condition 4.1 and Y, = Y, then [Y},Y/]1=[Y"Y’] and
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{[Y;, /1 satisfies Condition 4.1 (with M,, = 0). Moreover, if Y is continuous,
then {[Y,}, Y/} satisfies Condition 4.2 (with M, = 0).

Proor. Theorem 2.2 of Kurtz and Protter (1991) implies that Y is a
semimartingale and

[¥i, Y]] = YY) - [YidY] - [¥{adY;=[Y'Y'].

Let 0<8<w and F,=[Y}Y/]-J,(Y},Y/]D. Then T(F,) <[Y,I#) so
{T(F,)} is stochastically bounded for each ¢ > 0. Let

c, = inf{C > 1|supP[Ty(F,) > C - 1] < 1/k}
nx>1

and ‘T,’: = lnf{t > Oth(Fn) = Ck}’ Then P[T,I: < k] < l/k and Tt/\‘rﬁ(Fn) =
C, + 8, so {[Y,}, Y71 satisfies Condition 4.1.

Trivially, {T,,+(F,)ln = 1} is uniformly integrable for each ¢ >0 and
k > 1. Note that [Y,] = [Y] and T(F,) — T,(F,) <[Y,1(¢) — [Y,1(s), for all
t > s > 0. Thus {T(F,)} is relatively compact in Dg[0,%). If Y is continuous,
then [Y] is also continuous, so the limit points of {T,(F,,)} are continuous. O

Next we consider relative compactness of stochastic integrals with bounded,
not necessarily convergent, integrands.

PropoOSITION 4.4. Forn > 1, let (H,,Y,) be a {£,"}-adapted process with
sample paths in Dy, . g0, ). Assume that Y, is a {Z;"}-semimartingale,
{Y,} is relatively compact and satisfies Condition 4.2 and
(4.2) sup |AY,(¢)l = 0.

0<t<T

Let H (t) = sup, ., . JH,(s)| and assume that {H,(¢)} is stochastically bounded
for each t > 0. Then {(Y,, (H, dY,)} is relatively compact in Dge, dl0, %) and
satisfies Condition 4.2.

ProoF. Let 8, M,, F, and 7 be as in Condition 4.2. (4.2) implies
[H, dJy(Y,) =0,

so it suffices to consider [H, dY,}, where Y;? = Y, — J,(Y,). Condition 4.2 and
(4.2) imply [Y,,] — [M,] = 0, so Proposition 4.3 implies that {{ M,,]} is relatively
compact and

lim limsupP| sup ([M,](t+v) - [M,](¢)) >¢| =0,
T

720 poe O<t<

for all e > 0 and T > 0. We use Theorem 3.8.6(c) of Ethier and Kurtz (1986)
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to show relative compactness. Let u,(L) = infiz > 0|H (¢) > L}). Then, for
k>t,

P[ Ot L dM, >L0] < Pz} <k| + P[H,(¢) > L]
+—E[[H dM7n N nL) ]
1 L2
<+ +P[H() = L] + —E[[M 1(t A 7).

Taking the supremum over n > 1, letting L, = «, then L — » and 2 — » we
see that {/{H, dM,} is stochastically bounded for each t>0.

We now verlfy a form of the so-called Aldous condition. Let 7, be a
{#"})-stopping time with 7, < T — y a.s., where T > y > 0. Then, for0 < u < vy
and 2 > T,

2
E||[""H,dM,| A 1]
2
< P[T,’:' < k] + P[ﬁn(T) > L] +E f‘r"an dM:L'f’;/\/-Ln(L) ]
1 .
1

<+ +P[H(T)=L] + L%

+ LB IHD); sup (M, + ) - [M,](0)) > o]
0<t<T

Taking the lim sup as n — =, letting y — 0 and using the uniform integrabil-
ity on the last term, then letting ¢ —» 0, then L — « and % — », we see that
Theorem 3.8.6 of Ethier and Kurtz (1986) applies, so {(H, dM,} is relatively
compact in Dgd[0, »). Similarly, {/H, dF,} is relatively compact. Both of these
are asymptotically continuous, so their sum is relatively compact and the
sequence of pairs, (Y,, [H, dY,), is relatively compact. That this sequence
satisfies Condition 4.2 follows from the preceding estimates. O

5. Convergence of X, to I. In this section we describe the precise
setting for the remainder of the paper and show, using the deterministic
results, that under suitable conditions d(X,, ') = 0 in the Skorohod topology
Let U, F and T be as in Section 3, so that UcRis open, F: U - R%isa C!
vector field and I' = F~4(0)is a C 0 submanifold of U of dimension m.

For n > 1, let (", #",{%"},.,, P) be a filtered probability space, let Z,
be an [Re-valued cadlag {9 "}-semimartingale with Z,(0) = 0 and let A, be a



STOCHASTIC DIFFERENTIAL EQUATIONS 1603

real-valued cadlag {%,"}-adapted nondecreasing process with A,(0) = 0. Let
o,: U - M(d, e) be continuous with o, = ¢ uniformly on compact subsets of
U. Let X, be an R%valued cadlag {.%,"}-semimartingale satisfying

X,(1) = X,(0) + [(0(X,) dZ, + ['F(X,) dA,,

for all ¢ < A,(K) and all compact K c U, where
Aa(K) = inflt > 01X,(¢-) & K or X,(¢) & K}.

We assume further that for every compact K c U, the sequence {Z}*®)} is
relatively compact and satisfies Condition 4.1, and
(5.1) - sup  |AZ,(¢) =0

0<t<TAA(K)

as n — o, for every T > 0.
We need the following conditions.

(C5.1) For every compact K c U, {Z}»¥)} satisfies Condition 4.2.

(C5.2) For every T > ¢ > 0 and compact K c U,

inf A(t+¢e)—A[(t
OstsTl/l\l,\n(K)_g( n €) n( )) = ®

as n — », where the infimum of the empty set is taken to be .

REMARKS. The filtration {%,"} is not assumed to be right-continuous and
complete. Nevertheless, A,(K) is an {Z,"}-stopping time. (5.1) implies that any
limit point (in distribution) of {Z*¥)} is continuous. Theorem 2.2 of Kurtz
and Protter (1991) implies that any such limit point is a semimartingale.
Proposition 4.3 implies that {{Z}, Z/]**¥)} is relatively compact and satisfies
Condition 4.2. Moreover, if Z*»%) = Z along some subsequence of the positive
integers, then [Z:, ZJ1*»®) — [Z!, Z/] along the same subsequence. Condition
(C5.2) requires that, asymptotically, dA, puts infinite mass on every interval.
Katzenberger (1990) handles the more general equation

X,(1) = X,(0) + [(o,(X,) dZ, + [[F(X,) d4;,

+ )Y, G(X,(s—),AA,(s)).

O0<s=<t

The results and proofs there are similar but slightly more complicated.

THEOREM 5.1. Let 8 > 0, assume T is C2 and that, for every y €T, the
matrix dF(y) has d — m eigenvalues in D(58). Assume (C5.1), (C5.2) and

P sup AA (t) <d6| -1,
0<t<TAA(K)

for every T > 0 and compact K C U. Then d(X®),T) = 0 in Dg[0, ®).
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We need a lemma.

LEmMMA 5.2. Forn > 1, let Y, be a real-valued cadlag process, let B, be a
cadlag nondecreasing process with B,(0) = 0 and let 7, be a random time.
Assume the following:

() {Y,7} is relatively compact in Dgl0, «).
(i) For every T > 0, supy, <7 A, [AY, ()l = 0 as n — .
(iii) For every T > 0 and ¢ > 0, 1nf05,5T,\, _(B,(t + &) — B,(t)) = = as

n —> o,

Then

(5.2) sup e B®

0<t<TAT,

fteBn ay, \ =0,
0
for every T > 0.

REMARK. This lemma does not assume that Y, is a semimartingale. Never-
theless, the integral in (5.2) makes sense as an appropriate limit of sums (or
can be defined by integration by parts) since B, is a finite variation process.
We apply this lemma only when Y, is a semimartingale and B,, is adapted.

Proor oF LEMMA 5.2. By redefining B,(¢t) for ¢t > 7, to be B,(r,) +
n(t— 7,) and replacing Y, with Y=, we can take 7, = . Moreover, if suffices
to prove (5.2) when Y, converges in d1str1but10n to a continuous process Y. By
the Skorohod representation theorem we can assume that all of the random
variables are on the same probability space and Y, — Y uniformly on bounded
time intervals a.s. We take Y,(0) = 0. Integrating by parts,

(53) e_Bn(t)j:eB" dYn — e—Bn(t)[Yn(t) + j:(Yn(t) _ Yn(s)) d(eB,,(s))].
Now

sup e B0y, (#)| < sup IY(t) - Y(#) + sup e BOY(t)l,
0<t<T 0< 0<t<T

which — 0 in probability. Also,

sup e‘Bn“’le(t) — Y,(s)ld(e5®)
0<t<T

<2 sup |Y,(t) - Y(¢) + sup e B0 [1¥(t) - Y(s)ld(eB).
0<t<T 0

0<t<T
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The first term on the right-hand side — 0 a.s. as n — ». The second term is

< sup Y(¢) = Y(s) + sup e[ I(r) - ¥(s)ld(eP)

s,t<T e<t<T
|s—tl<e

< sup |Y(¢) — Y(s)l +2 sup |Y(¢)l sup exp[—(B,(t) — B,(¢t— €))].
IZ’—ttlsg; 0<t<T e<t<T

The second term — 0 in probability as n — « and the first — 0 a.s. as ¢ — 0.
O

Proor oF THEOREM 5.1. Let Vc U be as in Proposition 3.5. Then it
suffices to prove the result for compact K c V. Fix a compact K C V,let Vi, h
and B > 0 be as in Proposition 3.5 and write A, for A (K). It suffices to show
that A(X») = 0 on {X,(0) € K}, so we may as well assume that X, 0 eK
a.s. To simplify notation, we write 4 ,(¢) for h(X,(2)), 0,(¢) for o,(X,(¢)) and so
on. Integrating by parts,

(5.4) d(ef4=h,) = ePArdh,, + h, d(ePAr) + Ah, AeP4n,
Itd’s formula yields

(5.5) d(eP4n) = BePAn dAS + AePAn

and

dh, = oh, o, dZ, + oh, F, dAS, + 1 ¥ 9k, d[U;, U]
(5.6) i

+ Ak, —oh, 0,AZ,,

where U,(¢) = [jo, dZ,,. Integrating (5.4) and using (5.5) and (5.6), we get that
h,(¢) equals '

(5.7) e~PAO (0)
(5.8) +e 40 ['ePAn 3h, 5, dZ,
0
(5.9) +e B4 ['¢bAn(3h,, F, + Bh,) dAS,
0
(5.10) +3e A0y jo ‘eP4n 9, b, d[US, US]°
7]

+e PAD BT ePANTI@PAADY (5) — b (s—)
O<s<t

(5.11) —oh,(5—)0,(s—) AZ,(s)].

Since h > 0, it suffices to show that the supremum over 0 <¢ < T A A, of
the positive part of each of these terms goes to 0. Proposition 3.5 implies
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0hF < —Bh on Vg so (5.9) is less than or equal to 0 for ¢ < A,,. For (5.7),
sup e PAOR(X,(0)) <h(X,(0)) = 0.

0<t<TAA,

For (5.8), let Y,(t) = [{"**0h,, 0, dZ,. By Proposition 4.4, {Y,} is relatively
compact, so Lemma 5.2 implies

Sup e_ﬁAn(t)
0<t<TAA,

[eP4n ay, \ = 0.
0

The supremum of (5.10) over 0 <¢ < T A A, is
-BAN®) [foBA
<C sup e P4 fe ~d[Z,],
0<t<TAA, 0

which = 0 by Proposition 4.3 and Lemma 5.2.
Now consider (5.11). Note that

eP*h(x + z + £F(x)) — h(x) — 0h(x)z
= ePh(x + £F(x)) — h(x)
+eP[h(x +z + £F(x)) — h(x + £€F(x)) — dh(x)z]
+(eP - 1) oh(x)z.

The set K' = {x + éF(x)lx € K, 0 < ¢ < 8} is a compact subset of Vg, since Vi
is #(8)-invariant. Let ¢ > 0 be small enough that H = {x|d(x, K') < ¢} is
contained in Vi. If £ <8, x € K and |2| < ¢,then x + z € H and x + éF(x) +
tz € H for all ¢t € [0, 1]. Then the first term on the right-hand side of (5.12) is
less than or equal to 0, the magnitude of the third term is bounded by a
constant times £|z| d(x, I') and the magnitude of the second term is

(5.12)

= oPt

fol(ah(x + £F(x) + tz) — 0h(x))zdt

< Clzl(éIF(x)| + lzl) < Clz|* + Clzl¢ d(x,T).

Thus, for £ <8, x € K and |z| <,
ePh(x + 2 + £F(x)) — h(x) — oh(x)z] "
(5.13) [e#h(x +2 + ¢F(x)) - h(x) - oh(x)e]
< [2I® + |z)¢ d(x,T) < |2I* + |zl¢.
Let M = sup,, ., sup, c glo,(x)| and let A, be the event where
&
sup AA,(t) <6 and sup [AZ,(¢) < —.
0<t<TAA, 0<t<TAA, M

Then P[A,] > 1.0n A, and for ¢ € [0,T A A, ] we have AA (¢) <8, X, (t—)
€K and |o,(t—)AZ,(¢)| <& Thus, on A,, the supremum of (5.11) over
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[0, T AA,lis

t
<C sup |AZ,(t)] sup e—BA,.(t)f ePAndA,
0<t<TAA, 0<t<TAA, 0

t
+ C sup e‘“"(‘)f efAnd[Z,]
0<t<TAA, 0

<C sup |AZ,(t)|+C sup e‘BA"(’)fte"A"d[Zn].
0

0<t<TAA, 0<t<TAA,

The first part goes to 0 by assumption and the second part goes to 0 by
Proposition 4.3 and Lemma 5.2. This completes the proof. O

The following result is used only in Section 6, but its proof is closely related
to that of Theorem 5.1 and so is included in this section.

PRrROPOSITION 5.3. Assume T is C? and, for every y € T, the matrix dF(y)
has d — m eigenvalues in D(0). Assume K c U is compact,

sup AA,(t) =0,
0<t<TAMN(K)

for every T > 0, and d(X*»¥)T) = 0. Then
Y d(X(t-),T)(A4,1)) =0,

0<t<TAN(K)

for every T > 0.

Proor. By replacing U with a slightly smaller set, we can assume that
there exists § > 0 such that, for every y € I, the matrix dF(y) has d — m
eigenvalues in D(8). Let V c U be as in Proposition 3.5. We can assume that
KcV. Let Vg, h and B > 0 be as in Proposition 3.5, and we write A, for
A, (K). Since h(x) ~ d(x,T)? on Vg, it suffices to show that {/] " *h(X,) dA,)}
is stochastically bounded. Assume that X,(0) € K a.s.

For0<s<TAA,,

TAA
"eTPAdA, < a,,

P4
J
where a, = e®/B and 8, = supy ., 7 A, AA, D).
We use the notation conventions of the proof of Theorem 5.1 and label the
terms (5.7)-(5.11) as r,, u,, v,, w, and y,, respectively. Note that v,(¢) <0
for t < A,.For r,,

(5.14) [, dA, < a,h,(0) = 0.
0
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For w,, interchanging the order of integration,

fT/\)«,,lwfl dA, < CfTAAne—ﬁAn(t—) ePA) 5[ Z.1(s) dA ()
0 0 ©,)

(5.15)
< Can[Zn](T A )‘n)’

which is stochastically bounded.

Now consider y,. Let € > 0 be small enough that H = {x| d(x, K) < 2¢} is
contained in V. If necessary, make § > 0 smaller so that sup, . x |F(x)| < £/3.
Asin (5.13), for ¢ <8, x €K and |z| <,

[eP¢h(x + z + £F(x)) — h(x) — oh(x)z] "
< |21? + [zl d(x,T) < |2 + £2h(%).

Let M = sup,, ., sup, c g lo,(x)| and let A, be the event where §, < § and

€
sup |AZ,(¢) < —.
0<t<TAA, M

Then P[A,] > 1.0n A, and for ¢ € [0,T A A,] we have AA (¢) < §, X, (t—)
€ K and lo,(t—)AZ,(#)| <&, so

[y, dA, <Cay L [IAZ,(s)P + ho(s—)(AAL(s))]

0 0<s<TAA,
<Ca,[Z,)(T AL, + Cananfom"h,, dA,.
Thus
(5.16) jo Ty dA, <a, +b, jo My dA

where {a,} is stochastically bounded and b, = 0.
Before dealing with u,, we need to estimate [(Jv,| + |y,|)dA,. Note that
for £ < 6 and x € K,

lePéh(x + £F(x)) — h(x)| < (P — 1)h(x) + |h(x + £F(x)) — h(x)|
< ¢h(x),
so that, for ¢ <8, x € K and |2| <,
lePéh(x + 2z + £F(x)) — h(x) — dh(x)zl < |2I® + £h(x).
Then, on A,

[ (] + y,l) dA, < Ca,[Z,)(T A M,) + Ca,[""""h, dA,.
0 0 .
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This, (5.14) and (5.15) give an a priori estimate on [|u,|dA,:

[Tl dA, < [T (B + 1] + o] + ] + b)) dA,
0 0

TAA,

50n+dnf h,dA,,

0

where {c,} and {d,} are stochastically bounded. This is too weak to be useful
directly, but it is used below to bound [u, dA,.

Let Y,(¢) = [{oh,0, dZ,, so that u (¢) = e PAD[fePAr dY . Theorem 2.2 of
Kurtz and Protter (1990) implies that Y*» = 0. Integrating by parts,

u,(t) = e‘BAn(t)[Yn(t) + ft(Yn(t) _ Yn(s))d(epA,,(s))
0
so u’» = 0. Let V,(t) = P4 Oy () = j'éeBAn dY,. Integrating by parts,

[ B da, = [ pera, da,
0 0

—u (T AM,) + [OT“"e-BAn dv,

(5.17)
+ Y un(t—)(e“’AA"(t) - 1+BAA (1))
0<t<TAA,
+ X AY,(t)(e P24 — 1),
0<t<TAA,

Now, u, (T AA,) =0 and [f"*e P4 dV, =Y, (T A A,) = 0. The last term
on the right-hand side of (5.17) is
<C T Pk (t-)I8Z,(0) AAL(E)

0<t<TAA,

<C T |1z &) + ok, (t-)P(aAL))]

0<t<TAA,

TAA,
h
n

<C[Z, (T AA,) +canf dA,.

0
Finally, the third term on the right-hand side of (5.17) is

<C T lu(t)(AAL)) <C8, [ lu,ldA,
0

0<t<TAA,
< Cé,c, +Co,d, [ """h, dA,.
0
Thus
(5.18) [, dA, <d, + b, [k, dA,,
0 0

where {a',} is stochastically bounded and b, = 0. Combining (5.14)-(5.16)
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with (5.18),

TAA, TAA,
fo b, dA, sfo M+ + ] +,) dA,

<d, + 0, [ " "h, dA,,
0
where {a,} is stochastically bounded and &), = 0. This completes the proof. O

6. Asymptotically continuous case. Assume, in addition to the as-
sumptions of Section 5, that

(6.1) sup AA,(t) =0,
0<t<TAN(K)

for all T > 0 and all compact K c U. Let (x, ¢) be the solution of

U(x,t) =x+ j:F(l/f(.’)C,S)) ds,

Ur = {x € Ullim, _, , ¢(x, ¢) exists and is in '} and &(x) = lim, _,, ¢(x, 2).

Theorem 6.1 is self-contained in the sense that is does not use any previous
results of this paper, but assumes many of their conclusions. Theorem 6.2
combines Theorem 6.1 with results from Sections 3, 4 and 5, producing a
result which assumes no a priori knowledge of the behavior of X, other than
the convergence of X,(0) to I'. Theorem 6.3 provides the big picture. It has the
same assumptions as Theorem 6.2 except that the limit of X,(0) is only
assumed to be in U and not T' itself. The conclusions of Theorem 6.3 include
the initial behavior of X,,, its “instant’ translation along ¢ to I'. This is a
boundary layer type result similar to those found in the singular perturbations
literature.

THEOREM 6.1. Assume Uy is a neighborhood of T, ® is C2 on Uy, Kc U
is compact, X,(0) = X(0) € T, d(X}»®,T) = 0 and
(6.2) Y d(X.(t-),T)(AAL(2)) =0,
0<t<TAA(K)
for every T > 0. Then the sequence of triples {( X+, Z*»¥) ) (K))} is rela-
tively compact in Dga,ge0,0) X [0,]. If (X,Z,A) is a limit point of this
sequence then (X, Z) is a continuous semimartingale, X(¢) € T for every t
a.s., A > inf{t > 0|X(¢) & K} a.s. and
X(t) = X(0) + [ o0(X)o(X) dz
0
(6.3) L . .
+32 [0, 0(X)e*(X)ol(X) d[ 2%, Z'].
ijkl °0

ReMArks. If A, is continuous or

[ £ @)

0<t<TAM(K)
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is stochastically bounded in n for each T > 0 then (6.2) is automatically
satisfied. If Z}»®) = Z A (K) = A and (6.3) has only one solution X which
stays on T, then X*«¥) = X  Note that (6.3) will have a unique solution (for a
given Z and A) if o is locally Lipschitz and ® is LC? Corollary 3.6 provides
conditions for the required smoothness of ®. Theorem 6.1 holds for more
general coefficients o, [see Theorem 5.4 of Kurtz and Protter (1991)].

Proor orF THEOREM 6.1. We can assume that K c U.. Note that
d®P(x)F(x) = 0 for x € Ur. Using the notation conventions of the proof of
Theorem 5.1, It6’s formula implies

D(X,(t)) = D(X,(0)) + [o ‘9®,0, dZ,

(6.4) ; o
+3T [9,®, ot d[ ZE, ZL] + m,(2),
ijkl °0
where
() = X |AD(8) — ID,(5—) AY,(s)
(6 5) O<s<t

_%Z aijq)n(s_) AY,f(s) AYI{(S)
ij

and Y,(¢) = [lo, dZ,. Let ¢ > 0 be so small that
H = {x|d(x,K) < 2¢} c U,
and let 6 > 0 be so small that sup, . x |F(x)| < ¢/8. Let

6.6 = 9. . ® —9..® .
(6.6) p(a)  Jnax x{I;ngl,, (%) —9;;®(y)l
[x—yl<a

Then, since ® is C? p(a) > 0as @ — 0. Let x € K, |z| <& and ¢ < 6 so that
x + tz + s¢F(x) € H for all s,¢ €[0,1)]. Then

D(x +z+ EF(x)) — O(x + ¢F(x)) — 0P(x)z — %Z 9,;d(x)z'2

y

<

[1/12 [8;;®@(x + stz + sEF(x)) — aijd)(x)]tzizf dsdt
070 ij

[ [10,@(x + ste + sEF(x))€2'F(x) ds dt
0’0

< p(lz| + ¢IF(x))lz1? + l2l¢ d(x,T)
and, since d®(x)F(x) = 0,
®(x + £F(x)) - O(x)

<

j:[adJ(x + tEF(x)) — 0®(x)] EF(x) dtl < £2d(x,T)%
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Thus, for x € K, |2| <& and ¢ < 6,

P(x +2z+EF(x)) — P(x) —00(x)z — 3 ) 0;,;P(x)z'2’
(6.7) i
< p(lzl + €IF(x)))l2l? + |2l¢ d(x,T) + £2d(x,T)>
Let A, be the event where
sup AA,(t) < and sup |AY,(t)l <e,

0<t<TAA, 0<t<TAA,
and let
a,= sup (AY,(¢) + IF(X,(t-)) AA,(2)).

0<t<TAA,
Then P[A,] - 1and a, = 0. (6.7) implies that, on A,

sup In(¢)l
0<t<TAA,

<p(@)[Z)(T AR + ZT d(X,(s-),T)’(84,(s))’
<s<TAA,
+[z,,](TAAn)1/2( Y d(X,(s-),T)(AA(s)) 1/2,
0<s<TAA,

which = 0. Thus, n}» = 0. Moreover, the assumption that d(X}T)=0
implies that X2» — ®(X2») = 0 as well. Then (6.4) becomes

Xn(t) = Xn(O) + /;)taq)n o, dZn + %E /:aijq)no-rfko.ﬁﬂ d[Zr’:s ZrlL] + Bn(t)’
ikl

where &) = 0. Proposition 4.3 implies that {{Z}, Z/]} is relatively compact
and satisfies Condition 4.1. Then Theorem 5.4 of Kurtz and Protter (1991)
yields the relative compactness of {(X}», Z}» 1 .)}. Let (X, Z, 1) be a limit
point of this sequence. Theorem 2.2 of Kurtz and Protter (1991) and Proposi-
tion 4.3 imply that Z is a semimartingale and that (6.3) is satisfied. This in
turn implies that (X, Z) is a semimartingale. The other assertions are elemen-

tary. O

THEOREM 6.2. Assume that I is C? and, for everyy € T, the matrix dF(y)
has d — m eigenvalues in D(0). Assume (C5.1) and (C5.2) hold, ® is C? (or F
is LC?) and X,(0) = X(0) € I. Then for every compact K C U, the conclusions
of Theorem 6.1 hold.

Proor. This follows immediately from Proposition 8.5, Corollary 3.6, The-
orem 5.1, Proposition 5.3 and Theorem 6.1. O

REMARK. Theorem 6.2 can also be proved using Proposition 4.4 in place of
Theorem 5.4 of Kurtz and Protter (1991) to get the desired relative compact-
ness.
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THEOREM 6.3. Assume that ' is C2 and, for every y € T, the matrix dF(y)
has d — m eigenvalues in D(0). Assume (C5.1) and (C5.2) hold, ® is C? (or F
is LC?) and X,(0) = X(0) € Uy. Let

and, for compact K c Uy, let
pa(K) = inf{t > 01Y,(¢t—) & Kor Y,(¢) & K}.

Then, for every compact K c Ur, the sequence {(Y!», Zu-¥) y (K))} is
relatively compact in DRdee[O o) X [0,). If (Y, Z, ) is a limit point of this
sequence, then (Y,Z) is a_continuous semimartingale, Y(¢t) € I for every t
a.s., u > inf{t > 0|Y(?) & K} a.s. and

tAR

Y(t) = Y(0) +[ ®(Y)o(Y) dZ

(6.8) *
+1% [, 0(Y)at(Y)o/(Y) d[ 2%, 2'].
ijkl = 0

REMARK. Basically this theorem says that X, follows the flow of F accord-
ing to the clock A,(¢) until X, is close to T, then it stays close to I' and moves
according to the SDE given in (6.8). Notice that ¢(X,(0), A,(¢)) — ®(X,(0)) is
small for ¢ bounded away from 0. The theorem implies that X,(¢) —
(X ,(0), A,(#)) is small for ¢ close to 0. This is made precise in the proof.

Proor oF THEOREM 6.3. Fix a compact K c U;. We can assume that
X,(0) € K as. Let V be as in Proposition 3.5 (with 8 = 0). Then there exists
T > 0 such that ¢y(K,T)CV. Let Vx be a y-invariant neighborhood of
y(K, T), as guaranteed by Proposition 3.5. Note that Vi can be chosen so that
V, is a compact subset of Ur. Then

H=V,U{y(x,t)lxeK,0<t<T}

is a compact y-invariant subset of Uy with K C H. By similar reasoning, there
exists a compact y-invariant L c U with H C L. Let

Va(8) = ¥(X,(0), A,(2))

= X,(0) + fF(V)dAc + Y AV(s).
O<s<t
Let B = 2/d(H, L°) and define
T =1n 1nf{t >0 sup (B +A(8))X(s) — Vi(s)] = 1}

0<s<t
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Then T, is an {#;"}-stopping time with T, < A,(L). Let U,t) = [¢o, dZ,,.
Then

IX:"(L)(t) _ V,:\"(L)(t)l < IUnAn(L)(t)l + Cft/\)tn(L)lxn _ andAi
0

(6.9) X IF(X(s-))AA(s)

0<s<tAA (L)
= ¢(Va(s—),04,(s)) + V,(s-)l.

For x,y € L and ¢ > 0,

EF(x) = ¥(y,€) +yl < EIF(x) — F(y)l + 1EF () — ¥(y,€) + !

< &l —yl + €2
Then (6.9) becomes
X2t - V()

tAAL(L),

< [U(t)] + Cf X, - V,JdA,+C ¥ (AA(s))

0 0<s<tAA(L)
< Up(t) + Co,() At A A(L)) + C["™PIX, — V,ldA,,
0

where
U,(t) = sup [UMP(s) and &,(¢t)= sup AAL(s).

O<s<t 0<s<tAA, (L)
Lemma 2.1 (Gronwall’s inequ;,lity) implies
X5 (t) — V2(t) < exp(CA,(t A A, (L)))
X (Ua(2) + C8,(t)AL(t A A (L))).
Then, on {T, < 1},
1< sup (B+A,(s))X.(s)— V,(s)l
(6.10) 0<s<T,
< (B + Ay(T,))exp(CA(T,))(Un(T,) + C8,(T,) A(T,)).
For M > 0, let v,(M) = inf{¢ > 0|A,(¢) = M}. Then (6.10) implies
(6:11) 1z, <rny,ary < (B + M)eM(Uy(v,(M)) + CM5,(7,(M))).

(C5.2) implies that y,(M) A A, (L) = 0. Then the relative compactness of
U} (by Proposition 4.4) and (6.1) imply that the right-hand side of
(6.11) =0, hence P[T, <1; A(T,) <M]- 0. Then (C5.2) implies that
A (T, = =,

Let Ny=1and, for k > 1, let

N, = min{N >Ny o1 | inf P[AL(T, AR} 2 k] 2 1- l/k}.
n=
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Each N, is finite since A, (T, A ) = =, for fixed ¢ > 0. Define ¢, = 1/k, for
N,<n<N,,,,andlet 7, =T, A¢,. Then 7, = 0 and A,(7,) = . By defi-
nition of T,,

sup |X,(t) —V,(¢)l < A ) sup (IAX,(s)l + [AV,(s)I),
O<t<rt, n\Tn 0<s=<A (L)Ae,

which = 0. Then X» — V» = 0 in Dyd[0, ).
1X(7,) — ®(X,(0)) < 1X,(7,) = Va(m)l + [V (7,) — D(X,(0))l = 0
so X, (1,) = ®(X(0)). Let
X(t) =X (t+7,), Z(t) =Z,(t+1,) = Z,(7,),
Yu8) =Y (t+1,), A(t)=A(t+7,)—A(r)
and A (K) = inf(z > OIX t-)e& K or X () & K). For compact K'cCL,
A(K) <A(L)so X,, Z and A, satisfy the hypotheses_of Theorem 6.2 on

L. Then the result follows from Y » — Y,(0) = 0, ¥, — X, = 0, 7,=0 and
Theorem 6.2. O

7. Counting process case. Throughout this section we assume A, is a
counting process. We also assume the following condition:

(C7.1) The process
Z,(t)= X AZ,(s)AA(s)

0<s<t
exists, is an {#;"}-semimartingale and, for every compact K < U, the sequence
{Z22()} is relatively compact and satisfies Condition 4.1.

_ Remarks. If Z, is continuous, or if Z, does not jump when A, does, then
Z, = 0 so the conditions are trivial. More importantly, If Z, jumps only when
A, does, then Z, = Z, so the conditions are already assumed. This is typically
the case when X, is a step-interpolation of a discrete-time process.

Let ¥(x,0) =x and ¢(x, k = 1) = y(x, k) + F(y(x, k) so that (x, k) is
the kth iterate of x + F(x). Let

Ur= {x evU Iklim Y(x, k) exists and is in I‘}

and ®(x) = lim, _,, y(x, k).
Theorem 7.1 is the counting process analog of Theorem 6.1, Theorem 7.2
corresponds to Theorem 6.2 and Theorem 7.3 to Theorem 6.3.

THEOREM 7.1. Assume (C7.1) holds, Uy is a neighborhood of T, ® is C?
on Up, X,(0) = X(0) € T, K c U is compact and d(X*»® T) = 0. Then the
sequence {( X5, Z2 ¥ ) (K))} is relatively compact in Dyaygl0,®) X [0, =].
If (X,Z,)) is a limit point of this sequence, then (X, Z) is a continuous
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semimartingale, X(¢) € T for every t a.s., A > inf{t > 0|X(¢) ¢ K} a.s. and

X(t) = X(0) + [o‘“aqa(X)g(X) dz

(7.1) t

+1X [Mo,0(X)ot(X)o(X) d[ 2%, 21].

ijkl ~ 0

Proor. We can assume that K c Up. Using the notation conventions of
the proof of Theorem 6.1, It6’s formula implies that (6.4) and (6.5) hold,
where, as in Theorem 6.1, Y,(¢) = {0, dZ,. Let K' = {x + F(x)|x € K}. Then
K' is a compact subset of Ur. Let ¢ > 0 be small enough that

H = {x|ld(x,K') < ¢} c Ur.

Let p be as in (6.6), so that p(a) — 0 as @ — 0. Note that ®(x + F(x)) = ®(x)
and d®(x + F(x)XI + dF(x)) = d®(x). Then for x € K and |z| < ¢,

D(x + 2+ F(x)) — P(x) —®(x)z — 3 3, 9;,,®(x)z'2/

(7.2) -y [olfot[a,.jcp(x + 52 + F(x)) — 3,,0(x)]2'2/ ds dt
y

—d®(x + F(x))dF(x)z.

The absolute value of the integral term is bounded by p(|z| + |[F(x)|)|z|%. Let
0(x) = d®(x + F(x))dF(x). Then @ is continuous on U, and 6(y) = 0 for
y €T. Let A, be the event where sup, ., .7 »,x)|AY,(#)] <& and let

a, = sup  (AY,(¢) + IF(X,(¢-)))).
0<t<TAA(K)

Then P[A,] » 1 and a, = 0. Equation (7.2) implies that, on A,

sup In(t)] < Cp(a,)[Z,)(T A A,) +
0<t<TAA,
Note that p(a,) = 0 and 6(X}») = 0, so Proposition 4.3 and Theorem 2.2 of
Kurtz and Protter (1991) imply that n)» = 0. The remainder of the proof
follows that of Theorem 6.1. O

[ 0(X,)0,(X,) dZ,|.
0

THEOREM 7.2. Assume that T is C? and, for everyy € T, the matrix dF(y)
has d — m eigenvalues in D(1). Assume (C5.1), (C5.2) and (C7.1) hold, ® is
C2 (or F is LC?) and X,(0) = X(0) € T. Then, for every compact K c U, the
conclusions of Theorem 7.1 hold.

Proor. This follows immediately from Proposition 3.5, Corollary 3.7, The-
orem 5.1 and Theorem 7.1. O

THEOREM 7.3. Assume that I is C? and, for every y € T, the matrix dF(y)
has d — m eigenvalues in D(1). Assume (C5.1), (C5.2) and (C7.1) hold, ® is
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C? (or F is LC?) and X,(0) = X(0) € Uy. Let

Yn(t) = Xn(t) - lp(Xn(O)’ An(t)) + q)(Xn(O))
and, for compact K c Uy, let

pn(K) = inf{t > 01Y,(t—) & Ror Y,(¢) ¢ K).

Then, for every compact K c Uy, the sequence {(Y}~E, Zu®) y (K))} is
relatively compact in Dy, pl0,%) X [0,]. If (Y, Z, u) is a limit point of this
sequence, then (Y, Z) is a_continuous semimartingale, Y(¢t) € T for every t
a.s., p > inf{t > 0|Y(¢) € K} a.s. and

Y(2) = ¥(0) + ["o0(Y)o(Y) dZ
0
(7.3) tAR . .
+1T [Ma,0(Y)0M(Y)e(Y) d[2*, 2],
ijk 0
See the remark following the statement of Theorem 6.3.

Proor oF THEOREM 7.3. Fix a compact K c U.. We can assume that
X,(0) €K as. Let V be as in Proposition 3.5 (with & = 1). Then there exists
N > 0 such that ¢(K,N)cV. Let Vx be a y-invariant neighborhood of
(K, N), as guaranteed by Proposition 3.5. Note that Vi can be chosen so that
Vi is a compact subset of Uy. Then

H=ViU{y(x,k)x €K,0<k<N)

is a compact y-invariant subset of U with K c H. By similar reasoning, there
exists a compact y-invariant L c U with H c L. Let

Vi(t) = $(X,(0), 4,(8)) = X,(0) + ['F(V,) dA,(s).
Let B = 2/d(H, L°) and define
T,=1A inf{t >0 I sup (B +A,(s))X,(s) — V,(s)l = 1}.
O<s<t

Then T, is an {%"}-stopping time with T, < A,(L). Let U(¢) = /¢, dZ,.
Then

IX2E)(£) — VAIE(2)]| < [UMD(2)] + [0 “MEYRXL) - F(V,)dA,
(7.4)

tAAL(L),

<Ut) +Cf X, - V,ldA,,

0

where U,(¢) = sup, ., ., |UE)(s)|. Lemma 2.1 (Gronwall’s inequality) im-
plies

X E(2) = ViE(8)] < exp(CA,(¢ A A (L)))U,(t).
As in the proof of Theorem 6.3, this implies that A (T,) = «. Following the
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construction of 7, in Theorem 6.3, we get

sup |X,(¢) — V,(¢)l < y sup [AU,(s)I,

O<t<r, w(Tn) 0<s<A(L)As,

which = 0. The remainder of the proof follows that of Theorem 6.3. O

To see how the preceding theorems can be applied to a more general setting,
consider the system

(75) X, (t) =X (0)+/ (X,)dZ,+ Y G(X,(s—),AB.(s)),
O<s<t

where B, is a cadlag {%,"}-adapted nondecreasing process with B,(0) = 0 and
B; =0, so that B, is a pure jump process. Suppose that there exists an
{#;"}-semimartingale §, and a counting process A, such that

B,(t) = [8,dA, = ¥ 5,(s—)AAL(s).
0 O<s<t
Then we can rewrite (7.5) as

1 R S RN e T

n

r [0 an,,

which is of the form
X,(t) = X,(0) + ['6,(X,)dZ, + [F(X,)dA,.
0 0

Thus Theorems 7.1, 7.2 and 7.3 apply to this situation. In particular, note that
if 8, is a constant and §, —» & > 0, then the eigenvalue condition needed to
apply Theorems 7.2 and 7.3 is that, for y € T, the matrix 9,G(y,5) has d — m
eigenvalues in D(1).

8. Examples.

Diffusion. Let ® and Uy be as in Sectigh 6. Assume I" is C? and, for every
y €T, the matrix dF(y) has d — m eigenvalues in D(0). Let o,: U > M(d, )
and b,: U - R? be continuous with o, » o and b,—b umformly on compact
subsets of U. Let W be an e-dlmensmnal Browman motion and let X, be a
solution of

X,(t) = X,(0) + fotan(x,,) dW + fotb,,(Xn) ds + anfotF(X,,) ds,

where @, — © as n — «. Theorems 6.2 and 6.3 apply immediately to this
situation. However, if we require additional smoothness of o, b, and ®, we
can get convergence in probability. Assume X,(0) - X(0) € T in probablhty,
® is LC? (or F is LC?®) and, for each compact K c U, there exists a constant
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L = L(K) such that
lo,(x) — ()] < Llx — yl,
b.(x) — b,(¥) < Llx - yl,
for all x,y € K and n > 1. Let X be the solution of

X(t) = X(0) + [O‘aq>(X)g(X)dW+ [O‘acb(X)b(X)ds

(8.1) ,
+3 L [3,0(X)a"(X) ds,
J

where a = (@) = o0a”. The coefficients in (8.1) are locally Lipschitz on Uy, so
the solution of (8.1) is unique up until the first time it leaves U.. For compact
K c Uy, let AM(K) = inf{t > 0|X() ¢ K}. Then we have the following theorem.

THEOREM. XAK) — XME) jn Cpdl0, ) in probability.

REMARKS. Note that X, is stopped at A(K), not A, (K). Crdl0,) is the
space of continuous functions f: [0,) —» R? with the topology of uniform
convergence on bounded time intervals. The convergence in Theorem 6.3 can
also be shown to be in probability.

- ProoF oF THE THEOREM. Condition (C5.2) is satisfied by A, (¢) = a,t. Let

H c U; be compact with K ¢ H. We write A, for A, (H) and A for A(H) Let
P, =9dg, and P=9do. Theorem 6.2 lmphes that ®(X2») — X2» - 0,
P,,(X,’)") - P(X,’)n) - 0 and b,(X}") — b,(X2) - 0in probability. Then (8.1)
and It6’s formula applied to ®(X,,) yield

IXan "2 (8) = XM RA(8)] < v, (2) +

[ (P(x,) - P(X)) aw

+ "X, - Xids,
0

where v, is continuous, nondecreasing and adapted and v,(¢) — 0 in probabil-
ityasn —» «. Fore > 0,let u5, = A, A A A inf{¢ > 0]y,(¢) > £}. Then by Doob’s
inequality,

E[ sup  1X,(¢) — X(£)l%; s, > 0

0<t<TAu,

<22+ SE[j“"’"lp(X,,) - P(X)I?ds; ps, > o]
0
+ 2077 ["E[| xt5 - X4 s i, > 0] ds
0

< 26 + Cp [ E|| xt5 - X% s i, > 0] ds.
0
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Applying Gronwall’s inequality,

E| sup X, (¢) — X(t)1% s, > 0| < 2e27Cr,
0<t<TAu,
Since P[uS, <A, A A] - 0, this implies X}»"* — X*»"* — 0 in probability.
Since P[MK) < AMH) A A (H)] - 1, we get that XX® — X*@ jn proba-
bility. O

Diffusion in shrinking domains with reflection at the boundary. Let y, ®
and Uy be as in Section 6. Assume that U} is a neighborhood of T' and & is
C? on Uy. For n > 1, let U, c Uy be a neighborhood of T such that each flow
line {y(x, )| > 0} of F intersects U, in at most one point. Then, once a flow
line enters U, it is in U, for all future times. Assume U,,, c U,, N,.,U, =T
and sup, c gy, d(x, F) — 0 as n — o« for all compact K C UF Let 0,: U —
M(d, e) and b,: U —» R? be continuous with o, > o and b, — b unlformly on
compact subsets of U. Let W be an e- d1mens1ona1 Browman motion and let
(X,, L,) be a solution of

X, (t) = X,(0) + fo‘a,,(xn)dw+]0‘bn(x,,)ds +j0’F(X,,)dLn

such that X,(¢#) €U, for all ¢ >0 and L, is a continuous nondecreasing
process which increases only when X, (¢) € U, that is,

[15(X,)dL, = 0.
0

Assume X,(0) = X(0) € T'[and X,(0) € U, ]. Theorem 6.1 implies that { X*»5)}
is relatively compact in Ca[0, »), and any limit point (X, A) of {( X2+¥), A (K))}
satisfies

X(t) = X(0) + [

tAA tAA

ID(X)o(X)dW + [ dD(X)b(X) ds

+1Y [Mo,;0(X)al(X) ds,
ij 70

where a = (a¥/) = goT.

Moran diploid model. Let S ={x € M(r,r)lx =xT and 17x1 = 1} and
={x € 8|x¥Y>0,1<i, j <r}, where 1 denotes the vector of all 1 s. Let
{E,J} be the standard basis of M(r,r), e;; = 3(E;; + E;;) and §;; - 8;;
Then {e;;|1 <i <j <r} is a basis for the space of symmetrlc r x r matnces
and {0, ;x*/|1 < i <j < r} are the coordinates of x with respect to this basis.
We cons1der a population of individuals which have two chromosomes and
consider the two genes at a single locus of the chromosomes. The locus is
assumed to be multiallelic, each gene taking values in 1,...,r and we classify
individuals according to their genotype (i, j), 1 <i <j < r. We represent the
population by the matrix x € S, such that 6,;x*/ is the proportion of individu-
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als with genotype (i, j). The dynamics of the populations are defined by the
following:

1. Each individual dies at rate 1.

2. When an individual dies, it is immediately replaced by an individual whose
genotype is determined by selecting two individuals at random to act as
parents, selecting a gene from each and allowing each gene to mutate
randomly into a gene of another type.

From the dynamics, it is clear that the population size is constant. Consider
such a population of size n. Let X () € S, describe the genotypic proportions
of the population at time ¢. For x € S, let

L5 oiixii

r Jk..jk?
L k=107

pix) = (1= £ il aix) + X udiai(a),
J#i J#i
R7M(x) = 0,,2%6,;pi(x)pi(x),

where o, = (0,7) is the symmetric matrix of selection coefficients and u, =
(1)) is the matrix of mutation coefficients. We take 0,” > 0 and p!/ > 0 with
u'y = 0. Then qi(x) is the probability of selecting a gene of type i from a
population of type x; py(x) is the probability that, after mutation, the selected
gene is of type i and nR}/*!(x) is the rate at which type (%, [) individuals are
replaced by type (i, j) individuals. Then we can write

X0 = X0 + £ (e~ eu) N8 o[ BYH(X,) s

g,(x) =

i<j
k<l
| -
(8.2) ~X,0) + (e~ eu) N[ RM(X, ) )
i<j 0
k<l

+,/:[pn(Xn)pn(Xn)T - Xn] ds,

where {N*/*!|i <j, k < 1} is a collection of independent unit Poisson processes
and NU(t) = NYk(t) — ¢. Let Y, (¢) = X, (nt) and W,ik(¢) =
(1/n)N"*(n?), so that {Wi/*!|; < J» kB < I} converge in distribution to inde-
pendent Brownian motions. Then

) = 6 0) + £ (e~ en Wi ['RIM(Y,)
i<j 0
k<l

+n fo [P(Y)pu(Y)T - Yi(5)] ds

= Y,(0) + U,(t) + nfotFn(Yn(s))ds,
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where F(x) =p,(x)p,(x)T —x and U,¢) is the obvious sum. We seek a
diffusion approximation for Y, under the conditions u, —» 0, nu, = u, 0, > J
(the matrix of all 1’s) and n(o, — J) — o. Then qn—>p, p, = pand F, —>F
uniformly on S,, where p(x) =x1 and F(x) = xJx — x. Moreover, H
n(F, — F) converges uniformly on S, to some function H. Then

Y,(¢) = Y,(0) + U,(¢) + jO‘H,,(X,,) ds + n[O’F(Xn) ds.

Note that the argument of each W//*! in U, is Lipschitz uniformly in n, so
{U,} is relatively compact. It is straightforward to verify that {U,} satisfies
Condition 4.2.

Note that S has dimension d = r(r + 1)/2 — 1 and T = {x € S|xJx = x}
has dimension m =r— 1. It is easy to see that N = {x € M(r, r)lx = x7;
x1 = 0} has dimension r(r— 1)/2 =d — m and that forx €T and y € N,

OF(x)(y) = xJy +yJx —y = —y.
Thus at least d — m eigenvalues of dF(x) are —1. Since m of its eigenvalues
are 0, dF(x) has d — m eigenvalues in D(0).
It is easy to verify that the continuous flow of F is y(x,?) = (1 — e Daxdx +

e x and ®(x) = xJx = p(x)p(x)T so Theorems 6.2 and 6.3 apply. Then limit
points (Y, U) of {(Y,, + e "(Y,(0)JY,(0) — Y,(0)), U,)} must satisfy

Y(t) = Y(0) + fO‘(YJdU +dUJY) + f‘H(Y) ds + jO‘dUJdU,

U(t) = Z (elj ekl)Wlel(fo Yl‘lo Yk ds)
lSJ
k<l

where {Wi/*!|i < j; £ <1} is a collection of independent Brownian motions.
Also, Y satisfies the so-called Hardy—Weinberg proportions, Y(¢)JY(¢) = Y(¢).
At this point it is much easier to deal with P(¢) = Y(¢#)1, which satisfies

P(t) = P(0) + U(2)1 + fO‘h(P) ds,

where

h(p) = ¥ o¥p’p' — (pTop)p' — X wip' + ¥ u'ip’.

J J J
From this we can compute the generator of P to be
r ] ) 92 r
p*(8;; — p’ K (p

i,jZ=1 ( ’ )ﬁpi J 121 ( )apz
Note that Y = PP7, so this characterizes Y. Ethier (1976) proves uniqueness
for a class of diffusions with generators of the form (8.3). Applying this result,
we get convergence of Y, to Y = PP”, as outlined in the remarks following
Theorem 6.1. Historically, this model was first proposed by Moran (1958).
Watterson (1964) applied diffusion techniques to it and Ethier and Nagylaki

(8.3)

DN | =
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(1980) proved diffusion approximations for several population genetics models,
including this one.

Wright-Fisher diploid model. To describe this model we use the same
notation and the same assumptions on the selection and mutation coefficients
as in the previous example. The difference between this model and the Moran
diploid model is in the dynamics. The Wright-Fisher model is a discrete-time
model in which the following hold:

1. Each individual lives for one unit of time, so the entire population is
regenerated at each time step.

2. Individuals of a new generation have iid genotypes. The probability that a
new individual has genotype (i, j) given that the previous generation had
genotypic frequencies described by x € S, is 6, pix)pi(x).

For each n > 1, let {¢*i|k > 0, 1 <i < n} be an iid set of random variables
taking values in the space of measurable functions from S to{e;;|1 <i <j <r}
such that

E[£ki(x)] = pu(x)pa(x)".

Note that this completely characterizes the distribution of £k i(x) for each
x € S (but not the distribution of £*7). Then X, can be modelled as the
solution of

1n .
X,(r+ 1) = - T 61(X,(1)).
Let
1 n
k — k,i _ T
{n(x) o El(fn (%) = Pu(%)Pu(%)")

and F(x) = p,(x)p,(x)" — x. Then

1 =1 ~1

X,(7) = X,(0) + T L (X (k) + X F(X,(k)).

n k=0 k=0

Letting Y,(¢) = X, (nt)),

Y, (2) = Y,(0) + Uy(t) + [ Fo(Y,) dA,
0
= Y,(0) + Up(t) + [‘H,(Y,)dB, + [F(Y,) dA,,
0 0
where A (t) = |nt], B,(t) = |nt]/n and
1 lnzl-1 k
n . o n

We need to show that {U,|n > 1} is relatively compact and satisfies Condition
4.2. To do this, it is convenient to view elements of S as vectors instead
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of matrices. We identify the space of symmetric r X r matrices With.Rd, d=
r(r + 1)/2, in such a way that the coordinates of x in R? are {0;;x"/|1 <i <
J < r}, the genotypic frequencies. Using the algebraic structure of R?, let

a,(x) = E[£,(x)¢(x)"],
so that a,(x) € M(d, d). Then a,(x) is symmetric and
DD () = pi(f‘)PrJ;(?)(l — pu(%)pi(x)), for (i) = (kl),
" ~pi(x)pi(x)pk(x)pl(x), otherwise.

Under the conditions set forth in the Moran model, a, — a uniformly on S,
where

pi(x)p’(x)(1 — pi(x)p/(x)), for (ij) = (kl),
—-p'(x)p’(x)p*(x)p'(x), otherwise.

Note that {{*|k > 0} is an iid set of mean-0 random variables, so U, is a
martingale. Moreover,

a(ij),(kl)(x) = {

sup sup E[I{,’f(x)|4] < oo,

n>1x€e8,
hence {|(¥(x)]?ln > 1,k > 0, x € S,} is uniformly integrable. This implies that
{{U,X®)|n > 1} is uniformly integrable for each ¢ > 0, so {U,} satisfies Condi-
tion 4.2. Theorem 3.8.6(c) of Ethier and Kurtz (1986) provides relative com-
pactness of {U,}. As shown in the Moran model, F satisfies the eigenvalue
condition of Theorem 7.2. Moreover, x + F(x) €T for x € S, so ®(x) =x +
F(x) = xJx. Thus, Theorems 7.2 and 7.3 apply.

Let (U,Y) be the limit point of (U,,Y,). We want to characterize U in

terms of Y. Note that

M,(t) = U()Uy(8)" - fo‘a,,(Yn) dB,

is a martingale. Moreover, {M,(¢)} is uniformly integrable for each ¢ > 0. M,
converges (at least along a subsequence) to

M(t) = U)U(t)T - jo‘a(Y) ds.

The uniform integrability implies that M is a martingale with respect to the
filtration generated by U and Y. This provides us with the cross variations of
U, which is a first step toward our goal. Next, we want to write U as the
integral of a symmetric matrix B(Y) against a Brownian motion. The fact that
M is a martingale tells us that if this is possible, the matrix S(Y) must be a
square root of the matrix a(Y). Note that a(x) is symmetric, is continuous in
x and has nonnegative eigenvalues. Then considering a diagonalization of a(x)
implies that there exist measurable symmetric d X d matrices B(x), b(x) and
c(x) such that B(x)? = a(x), B(x) has nonnegative eigenvalues, B(x)b(x) +
c(x) =1, B(x)c(x) = c(x)B(x) =0 and b(x)c(x) = c(x)b(x) = 0. Applying
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Theorem 2 of Dunford and Schwartz [(1963), page 922] to the function
f(z) = y/(Re z)" implies that B is continuous. Let Z be a d-dimensional
Brownian motion which is independent of (Y, U), and let

W(t) = [B(Y)dU + ['e(Y) dz.
0 0

We write [ X, X1(¢) for the cross variation matrix of a martingale X. The fact
that M is a martingale implies that d[U, U] = a(Y) dt. Then the definition of
W and the independence of Z and (Y, U) imply

d[W, W] = b(Y)d[U,Ub(Y)" + e(Y)d[Z, Z]e(¥)"
= (b(Y)a(Y)b(Y) +c(Y)?) dt.

But bab + c¢? = (bB + c)XbB + ¢)T = I. Thus, by Lévy’s characterization [see
Durrett (1984), page 78], W is a standard d-dimensional Brownian motion.
Moreover,

fotB(Y)dW=f0tB(Y)b(Y) dU+f0tB(Y)c(Y)dZ
=f0t(I—c(Y))dU= U(t) —[O’C(Y)dU.
But,
/Oc(Y) dU

|

Thus U = [B(Y) dW and

2] - TrE[fOtc(Y)d[U’U]C(Y)]

= Tr [O’E[C(Y)a(Y)c(Y)] ds = 0.

Y(t) = Y(0) + fo’aq>(Y)ﬁ(Y)dW+[’acp(Y)H(Y)ds
0

+1% [O’aijcp(Y)aif(Y) ds.
ij

Returning to the original matrix notation and considering P(¢) = Y(#)1, we
see that Y(¢) = P(#)P(t)T and P has the same generator as in the Moran
model. Thus we actually have convergence (in distribution) of (Y,,U,) to
(Y, U), and the limit here is the same as for the Moran model.

Brownian motion on a manifold. Assume T is a C? submanifold of U of
dimension m < d. Assume that for every x in some neighborhood U c U of
I' there exists a unique ®(x) €I’ such that |x — ®(x)| = d(x, ). Assume
further that ® is C2 on Uy. Note that |x — ®(x)|* = min lx — ®(y)?, so

(8.4) ad(z)"(x — ®(x)) = 0.
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Let
F(x) = —3VIx — ®(x)I> = —(1 - 9®(x)")(x — ®(x)) = B(x) — x.
We can assume for x € U and u € [0, 1] that ux + (1 — u)®(x) € Uy as well.
Then
P(ux + (1 —u)d(x)) = P(x).
This implies that F(ux + (1 — u)®(x)) = uF(x) and that
y(x,t) =e'x+ (1 —e ")P(x)

solves
W(x,t) =x + jO‘F(.p(x,s)) ds.
Note that ®(x) = lim, _, , y(x, t). Let X, solve
X,(2) = X,(0) + W(t) + a, [ F(X,) ds,

where W is d-dimensional Brownian motion and «, — «. We need to verify
the eigenvalue condition of Theorem 6.2. Note that ®(®(x)) = ®(x). Differen-
tiating and restricting to T,

(00(y))* =0d(y), yeT.

Thus d®P(y) is a projection matrix. Since the range of ® is contained in T, the
range of d®(y) is contained in N(y), the tangent space of I' at y. But ® is the
identity on I' so the range of d® must be all of N(y). Differentiating (8.4) and
restricting to T,

a(y)"(I-3®(y)) =0, yeT.

This implies that d®(y) is symmetric, so d®(y) is orthogonal projection onto
N(y). Then dF(y) = ®(y) — I has d — m of its eigenvalues equal to —1, the
remaining m eigenvalues being 0. Assuming that X,(0) = X(0) € T, Theorem
6.2 applies and the limiting process satisfies

X(t) = X(0) + jO‘acb(X) dw + %fotACD(X) ds,

where A® is the Laplacian of ®.

Let Y be Brownian motion on T, defined as the diffusion whose generator is
the Laplace-Beltrami operator corresponding to the induced Riemannian
structure. Since d®(y) is orthogonal projection onto N(y) for y € T, Y satisfies
the Stratonovich equation [see Rogers and Williams (1987), pages 182-189],

Y(t) = Y(0) + ]O’acp(Y)odW.
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The corresponding It6 equation is [see Rogers and Williams (1987), page 185]
Y(£) = Y(0) + [00(Y) dW + 1[00(Y), W](t)
0

- Y(0) + fO‘acp(Y)dW+ 1T [,0(Y)9,0/(Y) ds.
ij °0

The identity ®(P(x)) = ®(x) implies (by differentiating twice) that for y € T,
(8.5) AD(y) = ¥ 6;;P(y)0,0' ()9, D/ (y) + 00(y) AD(y).
ijk .

Using that d®(y) is symmetric and idempotent, this simplifies to (suppressing
the argument)

Recall that ®(ux + (1 — u)d>(x)) = ®(x) for u €0, 1]. Dlﬁ‘erentlatmg with
respect to « and setting u = 1 yields
0P(x)(x — P(x)) =0.
Differentiating this with respect to x produces
9,P(x) + ) 9, P(x)(x* — Pi(x)) — aP(x) 9, D(x) = 0.

Although & is not necessarily thrice differentiable, we can differentiate this at
y €T to get (suppressing the argument)

20, — ¥ [0,® 35D + 9,5, 9, "] — 9P 3,z P = 0.
1

This implies that on T,

200 =2Y 5,,05,0 + 00 AD.
y

Together with (8.5), this implies 0® A® = 0 and
r

Thus X and Y satisfy the same Itd equation, implying that X is Brownian
motion on I'. In summary, when F(x) = — ; Vd(x, T')?, the limit is Brownian
motion on T.
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