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ON THE AVERAGE DIFFERENCE BETWEEN
CONCOMITANTS AND ORDER STATISTICS?

By PrEM K. GoEL AND PETER HALL

Ohio State University and Australian National University

For a sequence of bivariate pairs (X}, Y;), the concomitant Y};; of the
ith largest x-value X, equals that value of Y paired with X, In
assessing the quality of a file-merging or file-matching procedure, the
penalty for incorrect matching may often be expressed as the average value
of a function of the difference Y,; — Y{;,, We establish strong laws and
central limit theorems for such quantities. Our proof is based on the
observation that if G,(-) denotes the distribution function of Y given
X = x, then Gx(Y) is stochastically independent of X, even though G,(-)
depends numerically on x.

1. Introduction. An abbreviated account of the problem of micro data

file-merging or file-matching may be given as follows. [The reader is referred to

Office of Federal Statistical Policy and Standards (1980), DeGroot (1987) and
Goel and Ramalingam (1989) for more detail.] Suppose observations are
collected in the form of independent pairs (X;,Y;), 1 <i < n, but that before
the data are recorded the linkage between the X and Y values is broken.
Thus, only the two marginal data files X ={X;, 1 <i <n} and Y = {Y],
1 <i < n} are available, and we must endeavor to reconstruct the original
paired data by merging the X file with the Y file by matching X’s and Y'’s.
The reconstructed bivariate file has the form (X;), Y, ;)), where X;, < ---
<X, and Y4, < -+ <Y, denote the ordered marginal data, and ¢ is some
permutation of the integers 1,...,n.

Practical examples of the use of file-matching techniques have been dis-
cussed by Goel and Ramalingam (1989). They include two classical exact
file-matching problems—the Framingham heart study [Dawber, Kannel and
Lyell (1963)] and the study of Japanese A-bomb survivors [Beebe (1979)]—and
a file-merging problem that results from incomplete U.S. Treasury records. In
the latter case, file-merging methods are the key to solving the practically
important problems of estimating the correlation between X and Y variables.

DeGroot, Feder and Goel (1971) have shown that for a large class of models
for the joint distribution of (X, Y), the maximum likelihood solution to the
file-merging problem is to pair the ith largest X with the ith largest value of
8(Y), where & is a known function. If the parent density & of (X,Y) has a
monotone (increasing) likelihood ratio, meaning that h(x,,y)h(x,, y5) >

Received December 1990; revised September 1992.

'Supported in part by NSF Grants DMS-8906787, DMS-9008067 and INT-8913294.

AMS 1991 subject classifications. Primary 60F05, 60F15; secondary 62G30.

Key words and phrases. Bivariate order statistics, central limit theorem, concomitants, file-
matching, file-merging, induced order statistics, strong law of large numbers.

126

)
4
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%J%
The Annals of Probability. RIK®RN

WWW.jstor.org



LIMIT THEOREMS FOR CONCOMITANTS OF ORDER STATISTICS 127

h(xy, y)h(x,, y,) whenever x; < x, and y; < y,, then we may take & to be the
identity function. For this case, the maximum likelihood solution is to take
¢(i) =i, 1 <i < n [Chew (1973)], that is, to pair the x and y observations in
natural increasing order. If the likelihood ratio is monotone decreasing, then it
is optimal to take ¢(i) = n — i + 1, that is, to pair the x and y observations in
reverse order, or equivalently to take ¢(i) = i when the pairs are changed to
(X;, —Y;). Examples with monotone increasing or decreasing likelihood ratios
include bivariate normal distributions with correlationp > 0 or p < 0, respec-
tively.

Thus, the optimal solution to a wide range of micro data file-merging
problems is to pair X ;) with Y;). The “true” pairing corresponds to the actual
observation in which X, is pa1red with Y};;, the latter being the concomitant
of X, in the Y-sample, that is,

(11) [z] Z YI(rank(X) i}
Jj=1

where [ ,, denotes the indicator function of the set A. The concomitants of
order statistics are also called induced order statistics. The general theory of
concomitants of order statistics is discussed in David (1973; 1981, pages 109
and 110, 1982), David and Galambos (1979), and David, O’Connell and Yang
(1977). Work on the ordered multivariate data has been surveyed by Barnett
(1976), Bhattacharya (1984) and Galambos (1975, 1985).

The limiting behavior of sample paths of normalized sums of Y,
1,2,...,n, as n increases to «, is discussed in Bhattacharya (1974, 1976)
However if (X,Y) has a nondegenerate bivariate distribution, then it will
often be the case that Y;) and Y|, assume different values. Thus, there is a
cost or penalty associated with mismatching. If the cost is measured in terms
of the distance of Y;, from Y|;,, then the total cost of mismatches is

(1.2) g @ (Y4 — Yi)),

where z(-) is some specified function. Our aim in this paper is to derive a
strong law and central limit theorem for S.

Earlier results of this type are largely confined to the case where =(0) = 0
and z(x) =1 for x # 0. Here, there is unit cost associated with anything
other than perfect matching and S denotes the number of incorrect matches.
It has been shown that, in this context, n — S has an asymptotic Poisson
distribution [Goel and Ramalingam (1989), page 58]. For a slightly more
general cost function, in which 2(Y i)~ [l]) 1 if IY Y | >gand =0
otherwise, weak laws of large numbers have been derlved by Yahav (1982).
The strong laws of large numbers for this cost function are derived in Goel and
Ramalingam [(1989), page 45]. However, in cases of practical importance, = is
often a continuous function on (0, ©). For example, a majority of loss functions
in decision theory are of this form. The absolute value function is a very
common measure of distance [see, e.g., Goel and Ramalingam (1989), page 8].
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Large sample theory for such functions is highly important in the context of
file-merging problems. We shall generalize the results of other authors to a
class of functions =, which include examples such as these, by developing
strong laws of large numbers. We shall also develop a central limit theory for
these cost functions. In addition, we shall present a new proof for the central
limit theorem for order statistics from a sequence of multivariate random
variables. This result was proved under stronger assumptions by Babu and
Rao (1988), and it is needed in the proof of our central limit theorem for S.

The new method of proof is based on the observation that if G,(-) denotes
the distribution function of Y given X =x, then G4(Y) is stochastically
independent of X, even though G,(-) depends numerically on x. This fact may
be used to prove a range of other results, including simpler proofs of limit
theorems for linear combinations of concomitants.

2. Main results and summary. In Section 2.1 we present a result in
joint limit theory for quantiles from bivariate sequences, proved by Babu and
Rao (1988) under stronger assumptions. In particular, this result states that
the correlation coefficient for the asymptotic distribution of quantiles from
different marginals depends only on the bivariate distribution function, not on
the density. The correlation is proportional to the signed measure of associa-
tion for the 2 X 2 contingency table generated by the pair of marginal popula-
tion quantiles. This result is needed for the proof of Theorem 2.3.

Sections 2.2 and 2.3 present respectively a strong law and a central
limit theorem for the series S, defined in (1.2), when the function = is
bounded. Those results take the form n 'S — u with probability 1, and
n~Y%(S — nu) » N(0, 0?) in distribution, for appropriate constants u and
o 2. Remarks following those results discuss the regularity conditions imposed.
The proofs of these results are given in Section 3. In each case it is possible to
relax the assumption that = be bounded, at the expense of more stringent
conditions on the “tails” of the distribution of (X,Y). However, a general
account of such results involves cumbersome regularity conditions, and partic-
ularly lengthy proofs, and so is omitted.

2.1. Asymptotic theory for bivariate quantiles. Let (X,,Y;), i > 1, denote
independent and identically distributed random vectors, with absolutely con-
tinuous distribution function. Write X ;) < -+ <X, and Y;, < -+ <Y,
for the ordered marginals of the first n pairs (X;,Y;). Let (X,Y) denote a
generic (X,,Y;), and define m(x,y) = P(X <x, Y <y), my(x,y) = P(X < «x,
Y>y), my(x,y) = P(X >x, Y <y), mx,y) = P(X > x, Y > y), representing
the probabilities in the four quadrants defined by the point (x, y). Further-
more, let F(x) and G(y) [ f(x) and g(y)] denote the marginal cdf’s (densities)
of X and Y, respectively. For 0 <a,B <1, let ¢, =F Xa), ny =G (p)
denote the quantiles of the two marginals, and let (r, s) be integers satisfying
r=an +o(n'?),s = Bn + o(n'/?), and finally let p, = m,(£,,mp),i = 1,...,4.
The following result was proved in Babu and Rao (1988) by using Bahadur’s
representation of sample quantiles. However, a stronger assumption, in that
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the marginals F and G be continuously twice differentiable in neighborhoods
of ¢, and g, was required for their proof.

THEOREM 2.1. Assume that both of the first partial derivatives of each
function w(x,y) exist in neighborhoods of (¢,,7m,) and are continuous at
(£,,mp) and that f(£,), g(nB) are nonzero. Then {n'/*(X, — &), n'/*(Y,, -
Mg )} has an asymptotzc Joint normal distribution with respective variances
a(l —-a)f(e)7? B — B)g(nﬁ) 2 and correlation coefficient

p = (P1ps — Pops){a(l — a)B(1 - B)} /2

ReEMARK 2.1. The existence of f(x), g(y) for x, y in neighborhoods of £,
Mg, respectively, follows from the existence of the first derivatives of the
function ;.

REMARK 2.2. The correlation coefficient p is proportional to the signed root
of the “yZ-statistic” for a 2 X 2 contingency table with cell numbers propor-
tional to p,,..., p,.

REMARK 2.3. Babu and Rao (1988) state that the correlation p is equal to
(p; — apla(l — a)B( — B)} /% However, it is easy to check that the expres-
sion for p in Theorem 2.1 is equal to this one as the first factor simplifies to

(p, — ap).

REMARK 2.4. Theorem 2.1 implies that n'/*(X,, — £&,) and n'/*(Y,,, — np)
are asymptotically independent if and only if

P(X<¢, Y<ng)P(X>¢,Y>mn,)
=P(X<¢(,Y>n)P(X>€,Y <n),
or equivalently that, for fixed « and B,
P(X<¢, Y<ng)=P(X<¢&)P(Y <np).

This is, of course, a weaker condition than the condition that X, Y be
independent.

REMARK 2.5. Asymptotic normality for sample quantiles formed from the
marginals of independent m-vectors may be deduced by an argument similar
to that which produces Theorem 2.1. The covariance matrix in this more
general case, given in Babu and Rao (1988), may be written down immediately
from its counterpart for m = 2.

2.2. Strong law for S. Adopt the notation of Section 2.1 and assume that
(X,Y) has a continuous distribution, with uniquely defined quantiles on both
marginals. Let G(y) = P(Y<y|X=x), and let 2: R > R be a bounded
function and let S be defined by (1.2). Assume that G ! is continuous in x, in



130 P. K. GOEL AND P. HALL

the sense that for each A > 0,

(2.1) sup sup  |G;L(u) — G Yu)| -0 ase—0.

lyl<e O<u<l,|x|<A
In addition, suppose that:

either z is continuous, or « has a finite number of jump
(2.2)  discontinuities and the density of Y given X = x is bounded
uniformly in |x| < A, for each A > 0.

Let U follow the uniform distribution on the interval (0, 1) and let

(2.3) w= fOlE[¢{G§‘tl(U) —n)] de.

THEOREM 2.2. Under the above conditions, n~ 1S — u with probability 1.

REMARK 2.6. In cases of practical interest, condition (2.1) is a consequence
of the fact that D (u) = (9/0x)G; "(v) is bounded uniformly in x and . This
condition is easily checked in many examples where X, Y have uniformly
distributed marginals. It also holds when (X,Y) has a bivariate normal
distribution, as follows immediately from the fact that Y given X =x is

normal N(c,x, c,) where c,, ¢, are constants. Thus, D, (u) = ¢;.

2.3. Central limit theorem for S. Using the notation introduced in Sec-
tions 2.1 and 2.2, we introduce the following regularity conditions on the

function 2z and on the distribution qf (X,Y):

@, exist and are bounded and uniformly continuous on

(—oo, );

for both H=F and H =G, min{H(x),1 — H(x)} <
const.(1 + [x[)H'(x) and f{min(H,1 — H)}/? < , and

(2.5b) h = H'is continuous on its support;

(2.4)

(2.5a)

both first partial derivatives of each function =,(x,y) exist

(2.6) and are continuous for —o < x,y < o;

(2.7)  sup, ,|D,(u)|< e~ and D, is uniformly continuous in x.

Again, let U denote a random variable with the uniform distribution on the
interval (0, 1), and let u be as defined in (2.3). Given 0 < ¢, u, t,,t, < 1, define

(2.8) K(u,t) = G;Y(u) -,
ey = (&) 'E[D(U)Z{K(U,¢)}],

Cot =g(77t)_1E[¢'{K(U,t)}],
(2.10) w,(t,t) = 'n'i(ftl,ntz), i=1,...,4,

(2.9)
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and
(2.11) o = folvar[¢{K(U, £)}] dt.

Let { denote a normal N(0,o{) random variable and let (¢}, ) = {(¢y,,, {2,
0 <¢;,t, < 1} denote a zero-mean bivariate Gaussian process, constructed to
have a joint normal distribution with covariances

(2.12) E(gitlgitz) = (t, At){1 = (8, V 1)}, i1=1,2,
(0,04 — wyw3)
{(01 + 03) (03 + 0)(0; + 03)(0; + 0,))

where w; = w;(t,, t,) are defined in (2.10). Furthermore, for all 0 < ¢,¢,,¢, < 1,
let the covariances of ¢ and ({;, {,) be defined by E({{,,) = 0 and

B¢ = = [{[" e v = m) 46, ()

(2.18)  E(Zy o) =

1/2°

(2.14) 3
~Ge(n) [ ey = m) G () du.

The existence of the joint distribution of ¢, {;, {, is demonstrated in the proof
of Theorem 2.3, where it is shown that these processes arise as weak limits of
other processes. Now for (cy;, cy,) defined in (2.9), consider the zero-mean
normal random variable defined by

(2.15) {+ j;)l(cltgu ~ Carby,) di.

Let o2 denote the variance of this random variable.

THEOREM 2.3. Under conditions (2.4)—(2.7), n=Y*(S — nu) has an asymp-
totic normal N(0, o2) distribution.

REMARK 2.7. It may be proved by an argument similar to that used to
derive Theorem 2.3 that, under the same conditions, (S — ES)/{Var(S)}'/2 is
asymptotically normal N(0, 1).

REMARK 2.8. Condition (2.5a) implies that E(X?2) + E(Y?) < ». Con-
versely, the constraint [{min(H,1 — H)}*/2 < « holds for H = F, G if for some
e >0, E(XI>*) + E(JYI***) < w. To appreciate why, observe that if Z has
distribution function H and [{min(H,1 — H)}!/2 < «, then «/?|[H Y(u)| - 0
as u — 0, so that
fH‘1(1/2)u2 dH (u)

— 00

— (Y2011 2 5 _ (Y2 12| -1 —1/2| -1
= [TE @) du = [ H @) a2 ()| du

< clfol/zu"l/2|H‘1(u)|du < csz_l(l/z){H(u)}l/2 du < =,

— o0
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and similarly [, . z-14 jo,u® dH(u) < . Furthermore, if E(|Z [2*€) < o, then it
follows that min{H(u),1 — H(u)} < c3(1 + lu)~®*9), whence [{min(H,1 —
H}/? < .

REMARK 2.9. The remaining part of condition (2.5a), that is,
min{H(x),1 — H(x)} < c¢(1 + |x|)H'(x), holds for most continuous distribu-
tions—for example, for beta distributions (including the uniform), for the
exponential, gamma, normal, lognormal and Student’s ¢ distributions and for
more general distributions whose densities decrease like |x| ™ as |x| — o, for
a > 0.

The reasonableness of condition (2.7) was noted in Remark 2.6.

3. Proofs of the main results. In this section we shall give a new proof
of Theorem 2.1, under assumptions weaker than those in Babu and Rao
(1988). We shall also prove the remaining two theorems described in Section 2
as well as state and prove two results concerning the limiting values of the
linear combinations of differences of sample and population quantiles, which
are needed in the proof of Theorem 2.3. ‘

3.1. Proof of Theorem 2.1. Define A(i, j, k) = n{k!G — RI(j — k)Y (n —
i —j + B)}~! which is to be interpreted as 0 if any one of &, i — %k, j — &,
n — i —j + k is negative. Fix real numbers u and v and put

x=&,+nVA(E) Tu,  y=m,+n"Y2%g(n) M,

U= n_l/z(X(r) - ga)f(ga)’ V= n_l/z(Y(s) - nﬁ)g(nﬂ)‘

Let m; denote m;(x,y) evaluated at these particular values of x, y, and set
8; = n'/%(m; — p,). Define t,, ¢,, t; by i = n(p, + py) + n/?t;, j = n(p, + p3)
+ n'%t,, k = np, + n'/?¢,. Then

n n n
PUs<u,Vsv)= 2 ¥ X AQG, Jj,k)mimy i apmim/*k,
i=rj=s k=0

Now for i, j, & chosen such that ¢,, t,, t; are bounded and using Stirling’s
formula, we get

A, J, ymhmi b kg i
= (2mn) " **(p1pypsps) "/ exp(—(1/2)(Pt} — 2Qt; + R) + o(1)},
where
P= Zpi_l’
Q=pi'8, +p3'(ty — 85) +p3'(ty — 83) + Py (¢ + t2 +8,),

R =p;'67 + ps'(t; - 52)2 +pg 'ty — 63)2 + s (t ity + 54)2-
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Thus,

PU<u,V<v)~ j; (277)_3/2(171172173174)_1/2

20,%5>0, —0<tz<ow
xexp{—(1/2)(Pej — 2Q¢t; + R)) dt, dt, dt,
= (2m) " '(p1papsps) VPP V2
X exp{ —(1/2)(R - P1Q)*\ d¢, dt
‘[tlzo,tzzo Xp{ (1/ )( Q)} 172

=1 (say).

Some of the steps above, which require tedious algebra, have been omitted. To
simplify the formula for I, change the variables from (¢, ¢,) to (w, z) in the
last integral, where w = 8, + 8, — ¢,, 2 = 8, + 8; — t,. This gives

I= (277')_1(191192133174)_I/ZP_I/2

Xf exp{—(1/2) P~ (Aw? + Ay2® + 2A,wz)} dw dz,
w=<d8;+8;,2<6,+83

where A, = (pi ' +pgNp;' +pi"), Ay=(pi' +p;Nps' +p;h), Ag=
p1'pit — py'pst. Tt follows from the definition of the &;’s that &, + &, — u
and &; + 83 > v as n — . Therefore, the limit of I equals the integral of a
nonnegative function of (w, z) over w < u, z < v. This function must be the
density of the asymptotic distribution of (U, V), whence follows the theorem.

O

3.2. Proof of Theorem 2.2. The key ingredient of our proofs of Theorem
2.2 and 2.3 is the observation that we may write Y, = G}}(;(Ui), 1<i<n,
where U,,...,U, are independent, have the uniform distribution on the
interval (0, 1) and are independent of X, ..., X, . Since for each 0 < ¢ < 1,

sup (IX(i) =&yl + 1Y) — m/n|) -0,

en<i<(l—ée)n

with probability 1, then, in view of (2.1),
sup

i .
Vi — Yo - {K(U, _)}\ -0,
en<i<(l—-éen n

where K(u, ) is defined by (2.8). It now follows from (2.2) that with probabil-
ity 1,

(1-e)n (1-¢e)n i
(3.1 L oYy Yo)- L ofk[v, 1

i=en i=¢n

}+o(n).

Write S, for the series on the right-hand side. Since the U’s are independent
and < is bounded, it follows that E[(S, — ES,)*] = O(n?). Therefore, by
Markov’s inequality, P(|S, — ES,| > é6n) = O(n"2) for each & > 0. The
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Borel-Cantelli lemma now implies that n~(S, — ES,) — 0 with probability 1.
The theorem follows from this result, (3.1) and the fact that

limsupln'E(S,) —ul >0 ase— 0. O

n—o

3.3. Proof of Theorem 2.3. The proof of the theorem requires the follow-
ing two lemmas, whose proofs are deferred to the end of the section.

LemmA 3.1. Let Z,,Z,,... be independent and identically distributed
random variables with absolutely continuous distribution function H,
satisfying (2.5a). Let {M,;, 1 <i < n < «} denote nonnegative random vari-
ables with the properties sup, ; M,, < C, <%, and for each 0 <e < 4
max, 5(1 onM,; >0 zn probabzlzty Write Z;, for the ith largest of
Zl,. Z, andput {iyjn=H'G/n) for1<i<n—1,¢,,,={pn-1yn Then,
asn -

’ n
n=2 N \Zyy ~ & yu|M,; = 0 in probability.
i=1

LemMmA 3.2. LetZ,,Z,,... be independent and identically distributed ran-
dom variables with absolutely continuous distribution function H and density
h, satisfying (2.5a) and (2.5b). Using Rényi’s representation [David (1981),

page 21], write
. .
(L)—H_ { (— Z.j_lej)}’
Jj=i

where eq,...,e, are independent exponential random variables. Let B,;,
1 <i < n < », be random variables satisfying sup,, ;|B,;| < C, < ». Then

.

i=1

n n
-1
Z ( @)~ i/n)Bni == Z (e - 1)(Jn) Z ( ( i/n)) Bni + Op(nl/z)'
j=1
ReEmMARK 3.1. Our proof of Lemma 3.2 involves truncation arguments,
which also yield the following result. Given 0 < & < 3, write (/) for summa-
tion over i such that en <i < min{j,(1 — &)n}. (The sum is null if j <en.)
Put

(e »

(e, = )(n) " X i(k(4)n) B

i

R = —

€

S

J

Then, under the conditions of Lemma 3.2 and for each § > 0,

llr% lim sup P{ E( G i/n)Bni - R,

n—>w

> n1/26} =0.
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To begin the proof of Theorem 2.3, let Uy, ..., U, be as defined in Section
3.2. With a slight abuse of notation, define ¢,,, =¢,_;),, and 7, ,, =
Nn—1y/n- In view of (2.7) and (2.8), we can write

i
Y[i] - Y, = K(U ) + ( @~ i/n)Dg,-/,,(Ui)

_(Y(i) - ”i/n) + (X(i) - §i/n)3ni,
where sup,, ,ls,,;| < sup, ,|D,(x)| < «, and for each 0 < ¢ < 3,

sup |s,;| = 0 in probability.

en<i<(re)n

Therefore, by (2.4) and a Taylor series expansion, we can write

R

+{(Xe = €/a) Dy, (U) = (Yo~ n"/'.’)}“&,{K([]i’i)}h

+(|X(r) =& ynl + 1Yy — ni/nl)tni’
where

-suplt,;| < C < o, max |[¢,;] = 0.

n,i en<i<(ri)n

However, it follows from Lemma 3.1 that

n-1/2
/ E (l @ l/nl + 1Y, @) m/n|)|tn.i| -0,

whence
(3.2) S= 3 2(Y i~ Yoy = SO+S1_SZ+Op(n1/2)’
i=1
where
Sy = Za»{K(Ui,i)},
i=1 n
n i
(33) S1= E(X(i)_gi/n) n(U) { ( n;)}’
i=1

S, = 2”: (Y — ni/n)%'{K(IL, %)}

i=1

Both of the series S;, S, may be expressed in the form

Sl = Z (Z(i) - fi/n)bni(Ui)’
i=1
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where Z;) - ¢, ,, = X;) — &, /n when [ = 1, and equals Y;, — Mi,, When [ = 2;
b,; is a bounded function. We claim that the weights b,,;(U;) can in effect be
replaced by their expected values, that is,

(3.4) S, =8/ + 0,(n'?),

where

(3.4a) Sf=X (Ziy = 4i/n) E(0,:(U)}, l=1,2.
i=1

Here, Lemma 3.2 forms the first step in a proof of (3.4). In the case [ = 1 the
U;’s are independent of the e,’s, and therefore

n J 1 2
Bl X (= 1)(m)™ L i(h(ti/n) (6T - Eb,,i(UinJ
Jj= 1=
n J 9 9
(3.5) = Eum” L *(h(4i/n)) " E(bni(Uy) — Eb,(U))
J= 1=
n J 9
- o{ L (m)7 L i%(k(4yn)” } =o(n).
J= 1=
Hence,
n J
L (&= D0Um) ™ Lih(Liyn) " bl T)

M=

(e = 1)(Jn) " X ih(Li/n)  Efb,i(U)} + 0,(n'?).

Jj=1 =1

From this result and two applications of Lemma 3.2, the first with B, =
b,(U;) and the second with B,; = E{b,,(U,)}, and both having Ziy—&im=
Xy — & /n» we deduce (3.4) for [ = 1. The case I = 2 is similar, except that a
more complicated argument is necessary in place of (3.5), with the expected
value of the square of the sum over j being written as a double sum over J1
and j,, and expectation being taken term-by-term in the latter.

We may now write (3.2) in the form

(3.6) S =8, +8f =85 +0,(n'?),
where S, is as defined in (3.3) and
n
(3.63.) Sl* = n_l E Zl(i/n)cl(i/n)’ l = 1,2,
i=1

where {Al(i/n) = nl/z(X(,-) - §,~/n)f(§,~/n), fz(i/n) = nl/z(Y(i) - ﬂi/n)g(ni/n)
and (cy,, ¢yy), 0 < ¢ < 1, are defined by (2.9). The stochastic Process {y; ,, is
readily extended by interpolation to the continuous-time process ¢ w0 <t <1,
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Define { = n~Y/ %(S, — ES,). We claim that the process ¢ x (fl, fz) converges
weakly to the Gaussian process { X ({;, {,), the latter defined by (2.12) to
(2.14), just prior to the statement of Theorem 2.3.

Tightness of (£, 1 ¢ ») on C(0,1)? is easily proved. Therefore, to establish the
claim, we need only check convergence of finite-dimensional distributions.
That is, we must prove that for 0 <¢,,...,¢y,5,...,855 <1,

(37) (f’ fltl’ ceey Z\ltM, 5231’ sy fzsN) _-)d (Z’ thl’ ceey {1tM’ {231’ ceey {23N)‘

We present the proof only in outline, which gives explicitly the derivation of
the convergence for each pair of {’s and sketches the derivation of (3.7) in full

generality.
For i = 1,2 and any fixed L, the convergence
(3‘8) (iitl’ e ;tL) —d ({itl’ AR {itL)

follows from the well-known central limit theorem for order statistics from the
same marginal [see, e.g., David (1981), page 255]. Convergence of (fltl, {o) to
({1, {o,) follows from Theorem 2.1. It is straightforward to .combine the
methods used there with the methods employed to establish (3.8), to show that

(3.9) (iltl"“’fltM’g;sl"‘"£2SN) —d (fltl,~-~,§1tM,§2s1,~--,§2sN)-
We shall conclude by outlining a proof that

(3.10) (£, 60) =a (L)

Those methods, together with the techniques leading to (3.10) and the
observation that { is stochastically independent of {;, (since the U’s and X,’s
are totally independent) allows us to establish (3.7).

To prove (3.10), let » be an integer with the property r = nt + o(n'/?) as
n — « and note that

}’(r) “Nr/n = (I](,r) - t)g(nt)_l + Op(n_l)

(3.11) n B
= {t -n" ' Y I(Y; < m)}g(m) +o0,(n"1%).

i=1
Define u; = E[2{K(U,, i/n)}] and observe that, for all x,

el {x(on 3}

Therefore, conditional on X,..., X,, the variable

S; = Lle(K(U,i/n)} - u]

= My

has zero mean. Put Y} = Y};,,
n

Q= X {I(Y/ <n) —Gx(n)} and @, = X Gy, (n,) —nt.
i=1

i=1
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In view of (3.11),
Y, . = — -1 + -1 -1/2
(r) nr/n n (Ql QZ)g(T't) + Op(n )

Let —» <x; < -+ <, < and condition on X;,..., X, and on X, =x
1 <i < n; write |X to indicate this conditioning. Note that, conditional on X,
Y],...,Y, are independent, and Y; has distribution function G,. Therefore,

conditionally on X, S§ and @, are both sums of independent random vari-
ables. Likewise, @, = LGy (n,) — n¢ = L{G,(n,) — ?} is a sum of independent
random variables. Argulng thus, we may prove that, unconditionally,
(n~128%,n~ /%@, + @,)) has an asymptotic normal distribution with covari-
ance given by the limit of

nT'E{S§ (@ + Q3)}
nT'E[E{S§(Q: + Q)IX}] = nT'E{E(SFQ,IX)}

nE{ 21 ( [" @[ GELG)) = mijn] dGi(9) — i m))}

- fol[flz&(y - n,) dG, (y) — {f:oz(y - n,) deu(y)}Ggu(r,t)] du

=y, say.
Since S§ =S, - np + o(n'/2), it follows that {= —n~'/2S¥ + o(1); and
since Y(,) N n = —n"HQ + Qg(n,)” Y+ o0,(n"17?), it follows that £, =

-n7 V%@, + Q,) +o (1) Therefore, (£, ,,) has an asymptotic normal distri-
bution with covarlance —1v; the variances are those of the limits of the
marginals { and £, respectively, and equal o2 and #(1 — t).
The convergence in distribution of
n

n~V%(S —nu)y=¢+n"" Z (gl(i/n)cl(i/n) - §2(i/n)02(i/n)) + 0,(1)

i=1

[see (3.6a)] to
{ + /l(gltclt - gztczt) dt
0

follows from the weak convergence of { X (fl, fz) to ¢ X ({4, {y), after a little
classical analysis of the type used in the proof of Lemma 3.1. O

We conclude the section with the proofs of Lemmas 3.1 and 3.2.

Proor oF LEmmA 3.1. Let C;, j > 3, denote positive constants not depend-
ing on n. We write W, = W(n) for nonnegative random variables satisfying
(3.12) lim limsup P(W;>A) =0, j=1.

A—w n—o

Put U, = H(Z), representing the ith largest order statistic of an n-sample
from the uniform distribution on (0, 1). It follows from the results in David
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[(1981), page 36], that

-\ 4
l .
(3.13) max E(U(’i) - ;) < Cyn~*{min(i,n — i + 1)}°

l<i<n

Put h = H',let 0 < 6, < 1 and define a; = H™ "{i/n + (U, — i/n)}. Then,
for an appropriate choice of , and 1 <i <n — 1,

i i i
n n

' i - -1
|Z(i) - Zi/nl = n =\Ui — n h{H I(ai)}

<C

% {1+ H ()|} min(a;,1 - a;).

-
Uy

(The case i = n is similar.) For large values of |x|, the function (x) =
(1 + |xDimin{H(x),1 — H(x)}]"! is increasing for x > 0, and decreasing for
x < 0. Also, ¢ is bounded away from 0. It follows that for some C, > 1,
(xy) < Cfp(x,) + Y(x,)} whenever x; < x, < x,. Therefore,

W{H Y(a,)} < C[o{H Y(i/n)} + w{H YU} = Clw (L)) + ¥(Z0y))}
< C5(1 + I{i/nl + |Z(i)|)

X

(-1 i_l) o in(U,1— U))
_ _ + r _ "
{mm(n, - } {mln( iy (;))}

<Wi(1+14; ).l + 12y )n max{i~!, (n —i + 1) 7'}

Hence, for arbitrary fixed m > 1,

n/2
Z |Z(i) - Zi/nIMni
(314) 7" P
n i
<CWw, ¥ U} - ~ ni N1+ 1 ,,l + 12 )M,,;.
i=m

Define A,, as follows:
U, —i
@) n

A_ = max ni~ L.

m ;
m<i<n/2

In view of (3.13),
n/2 i
P(A,>e)< Y, P(lU(’i) -

i1=m

ni— !> e)

(3.15) o

i\t >
< Z (;8) C3n_4i2=038_4 Z i—2.
i=m

i=m

Given 8 > 0, choose Cg > 0 so large that P(W, > C;'Cy) < 8/2 for all n.
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By (3.15), we may choose m so large that P(A,, > 3Cs1) < 8/2 for all n.
Noting that (3.14) implies that

n/2
E |Z(i) - {i/nani
i=m
n/2 i
< CW, > |\Us — Py ni_l(l + 218 0l + 12y = & ul) M5,
i=m

we see that with probability at least 1 — 6,
n/2 n/2
> Z;y = & )nlM,; < CW, h
i=m 3

l=m

ni Y1 + 21¢; 1) M,,;

o
Uo =5

n/2
+C, - C'Cq - 5C5 1 E Ziy — & jnlMy;.

Hence,
n/2 n,/2 l .

(3.16) ‘Z Ziy = & ulM,; < 2CW, .Z Uy — ~ ni Y1+ 2l ,,M,,;.
1=m 1=m

Now, using (3.13),
1/4

4
l
E ni~t < {E(U(;.) - —) } ni~l < CY4712,
n

o
Uo =5

It follows that for each 0 < & < 3,
n/2

n-1/2 Z

i=en+1

!
Ue ~

i -
—|ni 1+2l,,)M,; —,0

and

! —_—
U

E{n_l/2 %

r=m

i
—|ni (1+ 2|§i/n|)Mni}

< CCM Y Y (n/i) {1+ 2AH V(i /n))

i=m

< C7f(:u_1/2IH_1(u)I du = 207[:|H—1(u)| d(uV?)

= 207{31/2IH‘1(5)| + [ H O ()1 dx} >0

as ¢ =» 0. Combining the results from (3.16) down, we conclude that, for each
&8 >0,

n/2
(3.17) lim sup P(n‘l/2 Y NZgy ~ & M, > 8’) <é.

n—o i=m
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The condition [{min(H,1 — H)}}/? < » implies that E(Z?) < », whence it
follows that

(3.18) _1/2< max |Z;| + max |H” 1(z/n)I} 0.

l<i<n l<i<n-1

Therefore, for each fixed m,
n=1/2 Z IZ(i) - gi/nIMni ~p 0,
i=1

and so by (3.17),

m/2
(3.19) n-1/2 Z| i = i M, >, 0.

Similarly, it may be proven that

n

Z |Z(i) L/nIM '_) 0
i=n/2+1

which together with (3.19) yields the desired result. O

Proor OF LEMMA 3.2. As in the proof of Lemma 3.1, define Uy, = H(Z))
and a; = H {{n~% + 60U}, — n~")}, where 0 < 6, < 1. For an appropriate
choice of 0;,

n

! 1 - -1

(320) Z IZ(L) L/n = Z (U(i) - ;)h{H 1(“:‘)} Bni = Tl + T2>
i=1

where

n i _
Tl = Z (l](,z) - ;)h(gz/n) ani’
=1

13

K

T, =

i

[0 - 5 )[mrr @) = 4

I

1

The first step is to prove that T, = op(nl/ 2), of which the first part involves
showing that the tails of the series defining T, are negligibly small. With C,,
C, and ¢ as in the proof of Lemma 3.1, we have

R{H Y (a)) "+ k(L))" < Cufo{H (@)} + ¥(&in)]
< 2C,C{¥(Z) + ¥(4iyn)}

< Wy(1+ 15 ) + 12| )n max{i=, (n =i + 1) 7'},
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where W, satisfies (3.12). Thus,

en

)»

i=1

T

en

<W, X

i=1

!
U(i) -

i
; ni—l(l + 2|§,/n| + |Z(;) - gi/nl)‘

The argument in the proof of Lemma 3.1 following (3.15) may now be used to
show that, for any 6 > 0,

En l
lim li P U, — —
Jim lim sup {E o]
(3.21)
xni~ Y1+ 214 | + 12y = & yal) > 5n1/2} =0.
Therefore,

en
lim lim sup P[ Y

e-0 550 i=1

; - -
Uy — ;“h{H‘l(ai)} C—h(gi ) 1[ > 5n1/2] = 0.

Similarly,

n

)»

i=(1-¢&)n

i
lim limsup P Ui — —l
n

e—0 n—o

(3.22)
x|h{H Ya)} " = k(&) > 3n1/2] o

In view of the continuity of A, we have for each ¢ > 0,

max |h{H_1(a,-)}_1 - h({i/n)_ll -, 0.

en<i<(l—¢)n

Furthermore,

n i
o[£ Jo- &) -0
i=1

and therefore

(1-é)n

(8.23) Y

i=¢n

i - —
Ui — ;“h{H_l(ai)} = h(&i)n) 1‘ =0,(n'/?).

Combining (3.21)~(3.23), we deduce that T, = 0,(n'/?).
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Now, put C,; = exp(—X%_,j ') and observe that

U, = Cmexp{ .Z'j'l(ej—l)}
j=i

j=i

where sup;, _, |Vl = 0,(1). Now, |C,,;, — i/n| < Cgn~", and so
"ol
1= £ o £ - ol B
(3.24) e
{ ! Zh(gi/n)_l}'

i=1

Furthermore,

R(£i) "h < Cp(&i )n) < Co(1 + 14 1) max{i = (n — i +1)° g

Therefore, since n™'/2 max; _,_,|H (i/n)| - 0 [see (3.18)],
n/2 n/2

n2 Y k(L)) < Coon~32 Y (i/n) HH Y(i/n)l
i=1 i=1
n/2
=Cpn ' ¥ (i/n) VA VAH Yi/n))|
(3.25) =1

n/2
= o{n-l Y (i/n)" Y2 IH‘l(i/n)I}
i=1

- b{[l/zu-1/2|H-1(u)| du} —o(1),
0
and similarly,
(3.26) n¥2 Y k(g ,,) " =0(1).
i=n/2

Combining (3.24)—(3.26) and changing the order of summation in the double
series on the right-hand side of (3.24), we deduce that

(327 T,=- E (e; — 1)(jn) " E ih({n) 'B,,+o0 L(n'/%).
-1

Lemma 3.2 follows on combining (3.27) with (3.15) and noting that T, =
0,(n'/?). 0O
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