CONFIDENCE INTERVALS FOR THE MEAN OF A FINITE POPULATION!

By V. M. Josur’

Unaversity of North Carolina, Chapel Hill

1. Introduction. The admissibility of estimates of the population total with
squared error as the loss function were considered by the author, (1965), II, and
a certain estimate was shown to be always admissible whatever be the sampling
design in the entire class of all estimates. This estimate is equivalent to using the
sample mean as estimate of the population mean. Here we consider the allied
question of admissibility of the confidence intervals for the population mean,
based on the sample mean and the sample standard deviation, which are also
commonly used in practice. These confidence intervals are here shown to be also
always admissible whatever be the sampling design.

Then, by generalizing, the result is also shown to hold for confidence intervals
based on a ratio estimate and a generalized version of the sample standard devia-
tion. It is interesting that as shown in a previous paper (1966), IV, Section 5,
with squared error as loss function, this ratio estimate is also admissible as an
estimate of the population mean, whatever be the sampling design.

9. Notation and definitions. The population U consists of N units uy , ug, - -+ *
uy ; with the unit u; is associated the variate value z;, 7 = 1,2, ---, N; z =
(21,2, -+, xx) denotes a point in the Euclidean N-space Ry ;a sample s means

any subset of U; S denotes the set of all possible samples s; a probability function
p is defined on S such that p(s) = 0 for all s, and Y s p(s) = 1. Following
Godambe and Joshi (1965), I, the pair (S, p) is called the sampling design. A
sample s is drawn from S according to p. Then we have

DEFINITION 2.1. An estimate e(s, z) is a real function e defined on S x Ry
which depends on z through only those z; for which u; ¢ s.

The above definitions of sampling design and estimate are wide enough to
cover all sampling procedures and classes of estimates; for a brief account we refer
to Godambe and Joshi (1965), I, Section 5.

We next define admissibility of a set of confidence intervals for the population
mean,

(1) XN = N_l ZI!=1 X;.

For a given sampling design d, we denote by S, the subset of S, consisting of all
those samples s for which p(s) > 0. Now let ¢ (s, x), ex(s, @) be two est_imates
(Definition 2.1) such that e;(s, ) < ex(s, =) for all x ¢ Ry and all s ¢ S; then

lex (s, ), ex(s, )] denotes the set of confidence intervals
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(2) e(s,7) £ Xy £ exs, ).

For every x ¢ Ry , let Scl,%, denote the subset of S consisting of all those samples
s for which (2) holds, and for any alternative set of confidence intervals [e; (s, 2),
e (s, )] let S.,” ., x , denote the corresponding subset of S consisting of all those
samples s for which

3) e (s,0) £ Xy £ e (s, 0).

We now dcfine,

DerintTiON 2.2. The sct of confidence intervals [ey (s, ), e (s, )] for the popu-
lation mean is admissible, if there exists no other set of confidence intervals
ler (s, 2), €2 (s, 2)] such that,

() e (s, ¥) — &' (s, ¥) £ es(s, ) — ex(s, x) for all & ¢ Ry and for all se S;

(1) 2sesrieyre P(8) Z 2oy P(s) forall we Ry ;
the strict inequality in (ii) holding for at least one @ ¢ Ry . The sums in (ii) are
obviously the inclusion probabilities for the confidence intervals.

We also define a weaker version of admissibility by

Derinrrion 2.3. The set of confidence intervals [ei (s, t), e (s, 2)] for the popu-
lation mean is weakly admissible, if there exists no other set of confidence intervals
[e)' (s, ), € (s, x)], such that,

(i) e (s, ) — e (8, 2) < es(s, ) — e(s, r) for all v e Ry and all se S;

(1) 2 seSuregra P(S) Z Duesyye . P(5),
for almost all (Lebesgue measure) z € Ry, the strict inequality in (ii) holding
on a non-null subset of Ry . To distinguish the admissibility, as defined in Defi-
nition 2.2, from weak admissibility, we shall refer to the former as strict admissi-
bility.

NotEe. Throughout the rest of this paper the measure considered will be the
Lebesgue measure on Ry . So also for any & dimensional subspace of Ry, the
measure considered will be the Lebesgue mcasure for the & dimensional subspace.
When the measure considered is for a k-dimensional subspace, it will be indicated
by (u).

The above definitions of admissibility of confidence intervals are based on the
definition for infinite frequency functions with an unknown parameter formu-
lated by Godambe (1961), and subsequently slightly modified by theauthor (1966).

3 (I). A Bayes solution. I'or a sample s, the sample mean &, is given by
4) o= [n(s)]™ Zm Xi

where 7 ¢ s is written shortly for u; ¢ s and is so written hercafter, and n (s) de-
notes the sample size, i.e. the number of units in the sample s.
The sample standard deviation is

() V' (s, 2) = [(n(s)™ e (s = )T

The usual confidence intervals based on the sample standard deviation,
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lei(s, z), e2(s, x)] are given by
(6) 61(87 IIJ) =T — U(S, IL‘),
62(8) 513) = T, + U(S, IL‘),

where v(s, z) = k,-v' (s, ), k. being positive constants. It is usual to take k, =
2/[n(s))! or 3/[n(s)]}, but our proof will hold for any arbitrary k, > 0. The con-
stants k, may vary with the sample s. As confidence intervals based on the sam-
ple standard deviation are used, we assume that for all s ¢ S, n(s) = 2.

As a first step towards proving strict admissibility, we now prove

TueoreMm 3.1. The set of confidence intervals [e; (s, ), ex(s, x)] in (6) is weakly
admassible.

OvuTLINE OF THE PROOF. As the proof of the theorem is rather long, we shall
first give its broad outline and fill in the details later. Suppose the theorem is
false; then there exists a set of confidence intervals [e (s, z)es (s, z)] for which
(i) and (ii) of Definition 2.3 hold. Let &(s, z) = e/ (s, z) + e (s, 2)],
e (s,z) = é(s,z) — v(s,z) and &" (s, z) = &(s, z) + v(s, z). Then by (i) of
Definition 2.3, for each z, and s ¢ 8, [e1” (s, ), 2" (s, z)] D [&1 (s, 2), €2 (s, z)].
Hence (i) and (ii) of Definition 2.3 hold also for the new set of confidence inter-
vals [e” (s, z), e2" (s, #)]. We next consider a prior probability distribution on
Ry , which is such that all the z; ,7 = 1,2, - - - | N, are distributed independently,
identically, and normally, with mean 6 and unit variance. Further we assume for
6 itself a prior distribution, with mean zero and variance r*. We then work out
the set of confidence intervals [e.(s, ) — v(s, ), e (s, ) + v(s, x)], whose
length for each z and s & S is equal to 2v(s, 2) and which are a Bayes solution
with respect to the above prior distribution. It is shown that the improvement in
the unconditional expected inclusion probability of the Bayes set of confidence
intervals over the given set [ei(s, ), e:(s, z)] is bounded by 2/7°. Next let
h(s,z) = é(s,x) — I, , and let E be the subset of Ry consisting of all those points
x for which, for at least one s S, h(s, 2) # 0 and v(s, ) > 0. It is shown by
using the maximizing property of the Bayes solution, that if E is not a null set
then, by making 7 sufficiently larger, the unconditional expected inclusion proba-
bility of the set of confidence intervals [e,” (s, ), e” (s, )] can be made less than
that of the given set [ei (s, x), e2(s, z)]. But this contradicts (ii) of Definition 2.3.
Hence E must be a null subset, and from this the weak admissibility of the given
set of intervals [e: (s, 2), e:(s, )], follows. We shall now give the detailed proof.

Proor. Suppose the theorem is false. Then, by Definition 2.3, there exists a
set of confidence intervals [e, (s, z), e (s, x)], satisfying

(7) &' (s,2) —e'(s,2) < ea(s, ) — ex(s, z)
= 2v(s,z) forall xeRy andall seS,

and

(8) Zsescl’.cg',z p(s) g Zscscpag.z p(s)
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for almost all z ¢ Ry, the strict inequality in (8) holding on a non-null subset of
Ry .
Let,

é(s,z) = 3l (s, @) + & (s, 2)];
9) e (s, z) = é(s, ) — v(s, x);
e (s, z) = é(s, z) + v(s, ).
Then by (7),
(10) & (s, z) < 3e (s, 2) + &' (5, 2)] — 3le (5, 7) — &' (s, 2)] = &' (s, ),

and similagly, e (s,z) = e (s, z). For every z & Ry denote by Seyr.en.c, the
subset of S, on which

(11) e (s,z) < Xy < & (s, ).

Then by (10)

(12) Serregre D Berteg o -

(12) combined with (8) now gives,

(13) D e ey P(8) Z Dty P(8)

for almost all z € Ry , the strict inequality in (13) holding on a non-null subset
of Ry .

We now consider a prior distribution on Ry, which is such that all the z;,
{=1,2, ---, N, are distributed independently, identically, and normally, with
mean 6 and unit variance. We assume further that 6 itself is distributed normally
with mean zero and variance 7°, i.e. 8 is N (0, 7°). We now determine the set of
confidence intervals [b; (s, ), ba(s, )], which are such that,

(14) bo(s, ) — bu(s, x) = 2v(s, )

for all z ¢ Ry and all s ¢ S, and which subject to (14), are a Bayes solution with
respect to the assumed prior distribution, i.e. which maximize the unconditional
expected inclusion probability of the confidence intervals. Let Ep denote the con-
ditional expectation for given 6, and E, the unconditional expectation. Further
for every = € Ry let Sp, 4,.. be the subset of S on which

(15) bi(s, z) < Xy < ba(s, 2).

Then, for any z & Ry, the inclusion probability of these confidence intervals
equals D 8,4, P (s) and its expected value for given 6 is equal to

(16)  Eof X sesyre P(8)} = 2oses P(s)Polbi(s, ) < Xy = ba(s, 2) | 8]

where Py(D | s) denotes the conditional probability, for given § and s, of the
Borel set D of Ry .
Now let,
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17) Xncniy = [N = ()] Dpei.

We want later to integrate out wrt the variables z;, 7 2 s. Hence we express the
density function on Ry for given 6, in the form

(18) f(x,0) = Llxi,ies| &) p@ — 0)-Llxi, 28| Xnonw) ¢ Xneniy — 8),
where,
@@ — 8) = [n(s)/2n) - exp [~ §n(s) (2. — 6)]
and
X vony — 0) = {[N — n(s)]/2r}'exp [-3(N — n(s)) Xyone — 6)°]-
For brevity put
(19) L, = Lz, 1¢5]|%];
Ly = Llxi,i 25| Xnn)

Let Cy , be the subset of Ry defined by
(20) Cos = [t e R, bi(s, 2) £ Xn < bals, @)
Then using (18), (19) and (20), we have in the right hand side of (16),
(21) Polbu(s, ) £ Xy < ba(s, 2) | 8

= [ep. Li Lo p(& — 0) ¢(Xneny — 0) da

where dr is written for short for [ [1 du. .

Hence taking expectation wrt the assumed prior distribution of 6, the expected
inclusion probability B, say of the confidence interval [bi (s, ), ba(s, z)] for a
particular sample s, is given by

(22) B, = @r) 7t [Zoexp (—67/27°) df
: fcb.a Ll'LZ'p (a-:s - 0) .g(XN—YL(S) - 0) d.l: .
In the right hand side of (22) the integrand is non-negative for all z and 6. Hence

by Fubini’s theorem, we may interchange the order of integration wrt 6 and x =
(21, -+, zxy). We then get

(23) B,. = @r)7 fe,. In-Lodz [T2p (%, — 6)
q(Xyeney —0)-exp (—6°/27°) db.
Now, substituting the values of p(# — 6) and ¢(Xy—ne — 6) from (18), we
have
24) @07 p(@ — 0)-¢(Xwon — 0)-exp (— 6°/27°)
= @m) 7 {n(s)/2m) ([N — n)s))/2n)
cexp {—3[n(s) (@& — 0)" + (N — n(s))[Xnoneo — 6 + 6°/7).
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We now put
(25) g=1+ (N7
and
(26) g =14 (n(s)-7")7.

Then the expression in the square bracket in the right hand side of (24) is equal
to

Ngb® — 20 {n(s)Z + [N — n(8)] Xnenw} + 2(8)E + [N — n(8)| Xy—nie)
= Ngl6 — [n(s)-& + [N — n(s)]- Xn_no]/Ngl*
+ {[N — n(s)l/Ng}-n(s)-g.Xx-nio + (n(s)/Ng)IN — n(s) + 771z’
— 2{[N — n()]-n(s)/Ng}-Xn_nco- %
= Ng{0 — [n(s)-Z + [N — n(s)]- Xnonwl/Ng}*
+ {[N — n(s))/Ng} -n(s) gl Xnniy — /gl + (&'/gs)- 7"
Using (26) we get,
the right hand side of (24)
= (Ng/2r)* exp {—3Ng {0 — [n(s)-& + [N — n(s)]- Xnoniw]/Ng}’}
@) AN = n@))/2eNg - [n(s)g)-exp (—HIN — n(s)l]-n(s)g./Ng]
[Xwoney — B/g.} - @mge) 77 exp (—2.°/2,77)
= F;-F,-F; say,

where F; , F, and F respectively denote the first, second and third factors in the
right hand side of (27).

We now substitute the right hand side of (27) in (23) and integrate out wrt
8. Fy is the only factor which involves 6 and its integral is =1. Thus (23) re-
duces to

(28) Br,s = fc,,_, L1-L2'F1'F2'dx.

Now by an orthogonal transformation of co-ordinates in the [N — n(s)] dimen-
sional space of the variates x, , ¢ £ s, we obtain that Xy_,(, is independent of the
other N — n(s) — 1 co-ordinates. Let " denote the group of the remaining
[N — n(s) — 1] transformed variables. Then for each fixed Xy_. ,

(29) [Lyde' = [Lixi, i 28| Xynw]de' = 1.

Using (29), we now integrate out in (28) with respect to the variables 2. Let
R,y denote the n(s)-dimensional space of the variates ., ¢ £ s. Also we have

(30) Xy =[N — n()IN "' Xynewy + n(s)N 'z, .

Hence it is seen from (20) that for given values of x;, 7 £ s, Xy_n¢) varies over
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the linear interval I , given by
(31) Ipe:NIN — n(s)['bu(s, ) — n(s)[N — n(s)] %

= Xyww £ NIN — n(s)]7'be(s, 2) — n(s)[N — n(s)] 7' .
Thus by integrating out wrt the variables 2, and using (29), we have from (28),
(32) Bro = [ruy, In-Frodas [1,,, F2-dXy_nc)

where dz, is written for short for H;es dz; .

Considering the expression for F, in (27), it is seen, that at each point of
R, , the right hand side of (32) is maximized by taking I, to be centered at the
point Z,/gs . Further since by (14), bs(s, x) — bi(s, x) = 2v(s, ) the length of
the interval I, , in (31) must be 2N[N — n(s)] " v(s, z). Hence the Bayes solu-
tion is obtained by taking in (31),

NIN = n(s)]'bi(s, ) — n(s)[N — n(s)]"'& = &/gs — NIN — n(s)] v (s, 2).
This gives,
(33) bi(s, 2) = &/g:)[1 — n(s)N" + n(s)N'-g] — v(s, z)

= &s-g/gs — v(s, ).
And similarly, b (s, z) = Z-g/g. + v (s, x). Clearly since the confidence interval
[b1(s, x), b2(s, )] maximizes B,, for given s, the set of confidence intervals

[b1 (s, x), ba (s, x)] maximizes the total expected inclusion probability viz., B, =
Z“S p(s)Br.s .

Thus b (s, ) and by (s, ) in (33) give the Bayes set of confidence intervals.
Since g, = 1 + 1/n(s)7" and g = 1 4+ 1/N+*, comparison of (6) and (33) indi-
cates that the improvement in the total expected inclusion probability would be
of the order of 1/7°. We shall now obtain a precise upper bound for this improve-
ment.

For a particular sample s, let A, denote the conditional inclusion probability
for given 6, of the confidence interval [e; (s, ¢), e:(s, z)], and let 4, denote the
expected inclusion probability. Let the corresponding probabilities summed
over all samples be A4 and A, respectively; then

(34) A0 Zsts p(S)AO,s )
Ar Zses I) (S)Ar,s .

Consider the probability A,;. We note that by a well known property of the
normal distribution for given s, v(s, ) is distributed independently of both 6
and 7, . We shall consider the conditional probabilities for given s, and given
v(s, z) = v.

As Xy_n and Z, are distributed independently of v(s, ), conditionally for
given s,  and v (s, z) = v,

35) (Xv-nw — %) is N(0, N/[N — n(s)]-n(s)).
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Now by (6), ex1(s, z) < Xw £ ex(s, z) holds if, and only if, | Xy — &l S v(s ).
Hence using (30),
(36) e(s, z) £ Xv < ex(s, z), if and only if
lXN—n(s) - jsl = N[N - n(s)]-]’v(‘g’ .’II)

Let a(s, v, 6) denote the conditional probability that (36) holds for given s,
the given value v (s, z) = v and for given 6. Then using 35),

(37) afs, v, 0) = Pol|Xn-nwy — &| = N[N — n(s)] o lv(s, x) = 0]
= RN @) dt,
where
) = @OHIN — n@)n@PNT exp[-3HN — n@]nENT )

It is seen that (s, v, 8) is independent of 6. Hence we may put (s,v,0) = a(s,v).
Now transform the variables by putting

2 = {IN = n()]n(s)/Nt.
Let
e = (N-n(s)/IN = n()} .
We thus get from (37),
(38) a(s, v) = @2r)~F o, exp (—7°/2) da.
Let ¢, (v) be the distribution function of v (s, z) which is independent of 6. Then
(39) Ags = [320 (s, v) doe (v).
Since the right hand side of (39) is independent of 8, we have
(40) Ao = [3=5 a(s, v) dos (v).
Now consider the expression for B, in (32). In the integral wrt Xvon
transform the variable by putting
(41) 2 = {[N = n(8)]n(s) g/ NgV [Xnonr — £1/g5]-

As observed below equation (32) in the interval I, (X nny — &s/gs) varies
from —N[N — n(s)] v to N[N — n(s)] " -v. Therefore the variable z in (41)
varies from —d, to +d,, where

(42) dy = (N-n(s)-g./IN — n(®)]-gt'v = eu(g./9)*
in which ¢, is the constant in (38).

Put
(43) B(s,v) = flb.a Fz'dXN—n(S) ’

where the integral in the right hand side is the same as the inner integral in
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the right hand side of (32). Noting the value of F, from (27), it is seen that by
making the transformation in (41) we get,

(44) B(s,v) = (2r)7* %, exp (—2°/2) d.
Since exp (—2°/2) strictly decreases as |2| increases, (44), (42) and (38), give,
B(s,v) < als, v)(g,/9)" = als, v){[1 + 1/n(s)-7)/[1 + 1/N7}}
(45) < a(s v){l + 1/n(s) -7} < als, v)-[1 + 1/2n(s)- 7]
< a(s, v)-[1 + 1/277)

since n(s) = 1 for all s ¢ S. Here we have used the values of g, and ¢ in (25).

Now for given s, 8(s, v) depends on v only. Hence in the outer integral in the
right hand side of (32), we may transform the variables by taking as independent
variables, &, and v. Let &’ denote the group of the remaining (n(s) — 2) trans-
formed variables. Using the value of F; in (27) it is seen that the integration
wrt , yields a factor equal to unity. Moreover the integral of Ly = L[z, 7 € s | &
wrt 2 must be equal to the probability density of v (s, x).

We thus get from (32),

(46) B,, = [125 B(s, v) dp,(v) < A, [l + 1/27] by (45) and (40).
Summing over all samples s ¢ S, we have
(47) B, = 32 sp(s)Bry < (14 1/27") 2osp(s)A.

= (14 1/2794,.

As A, is the expected value of a probability A, < 1. Thus finally we have
from (47),

(48) B‘r - Af < A7/2T2 < 1/2T2.

Thus 1/27° is an upper bound for the improvement in the expected inclusion
probability. Using this result we shall complete the proof of the theorem in part
II of this section.

3 (II). Weak admissibility. We have denoted by A4, and A, the conditional
and unconditional expected inclusion probabilities for a given sample s of the
confidence interval [e; (s, z), ez (s, z)]. Let Ag, and A., denote the corresponding
inclusion probabilities for the confidence interval e (s, ), € (s, 2)] in (9).
Next using the frequency on Ry in (18) we obtain the expressions for 4, , and
AY, which correspond to the expression for B,, in (32). Then, corresponding
to (31), let I, denote the linear interval of variation of Xy_, , given by

(49) I..:N[N — n(s)] "ei(s, ) — n(s)IN — n(s)]7'% < Xnwio
< NIN — n(s)] es(s, ) — n(s)[N — n(s)] ' .

Similarly let 1 7. denote the interval
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(350) I :NIN — n(s)] e (s, 2) = w6V = n($)) "% £ Xyoww
S NN — n@)] e (s, r) — n(s)[N — n(s)] "% .

Then proceeding step by step, exactly as from (22) to (32), we obtain in
place of (32),
(51) Ars = [ruey Ln-Frdas [, Fa-dXyoui 5

Al = Thuiey Tn Frdes [ings Fo-dXn_ue -

Hence, as both integrands in (51) are integrable, we may combinc them and
have,
(2) Arw — AL = Jupy I Frduasd [1,, FodXn_niey — [17,,, F2 dX v w0}

Here I/, and F, are the factors which occur in (27), and L, is the function

defined by (19).
We next define functions U (s, z) and U” (s, ) on R, as follows: Let,

(3) fo = 1IN = n(s)]-n(s)/2xN}}
cexp{ —23N — n()] n)N Xy — &l
Since as 7 — ©, g, — 1, and ¢ — 1, it is secen from the expression for F, in
(27), that f; = lim,,, F». Now put
(54) U(s, &) = [1,,fsdXn-nes ;
U'(s,2) = [n, o fordXnons) -

Note that U(s, +) and U” (s, 22) depend on a through only those z, for which
7 ¢ s. Hence they are estimates according to Definition 2.1. We shall now show

that forallz e Ry, U(s, z) = U” (s, 2).
Substituting for e; (s, x), es(s, x) by (6), the interval I, , can be also expressed

as
(55) I..:% — NIN — n(s)]v(s,0) £ Xyoww < & + NN — n(s)] (s, x).
Similarly substituting from (9), the interval I, is expressed as
(56) NIN — n(s)] "e(s, 2) — &) + &, — N[N — n(s)] v (s, x)

< Xvenw £ NIN — ()] '[e@s, v) — &) + & + NIN — n(s)] v(s, x).

Considering the expression for f, in (53), it is seen from (35) and (56) that we
have always,

(57) Us,2) — U"(s,z) = 0.

Moreover, in (57) this sign of equality must hold at any point « ¢ Ry, at which
eitherv(s,2) = 0, or h(s,r) = é(s,x) — T = 0, and the sign of strict inequality
must hold at any point x ¢ Ry, at which both (s, ) > 0 and A(s, z) # 0.
[(57) means that the given intervals [e; (s, ), e2(s, x)] are a Bayes solution when
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the prior distribution of 4 is taken to be a uniform (improper) density on — o <
6 < «.]

Now there are two possible alternatives viz.,

(i) for every sample s ¢ S, the subset of Ry on which the strict inequality in
(57) holds is a null (uy) subset of Ry, or

(ii) there exists at least one sample s ¢ S, for which the strict inequality in
(57) holds on a non-null (uy) subset of Ry .
Suppose (ii) is true. For any arbitrary positive constant a, let 7T, denote the
subset of R, defined by

(58) z= (zi,tes)eT,, if,andonlyif, |z: < a forallies.

Now U (s, z) and U” (s, z) depend on z only through those z; for which ¢ ¢ s.
Hence since the strict inequality in (57) is assumed to hold on a non-null (ux)
subset of Ry, it holds on a non-null (u.¢)) subset of R, . This implies that
there exists a positive constant k, (k > 0), and a number a, such that,

(59) fr, Ly dz,-[U (s, z) — U" (s, z)] = k.
Let T,° be the complement of T, , i.e., T, = Rus) — Ts. Then we have from
(52),
A,y — ALy = [r, LiFvdad [1,, F2 AXNoniy — [, F2 AX nnio)}
(60) ‘4 [re LiFydad [, Fe AX Nenis) — Jir,, Fa AX Nonis)
= J:+ J., say,

where J; and J, respectively denote the first and second integrals in the right
hand side.
Now noting the expression for F; from (27), J; can be expressed as,
(61) Jy = [@2m)' )™ fr, Gi(s, 2) da,,
where
(62) G.(s,2)
= gs—% exp- (—3-332/27'2) Ll{ f[,', F2 dXN._,.(s) - fpr". Fg dXN_n(s)} .
As 7 — o, Fy — f, . In the integrals within the curly bracket in the right hand

side of (62), the intervals I,,, I., are each of finite length = 2v(s, ). Also
from (27), since n(s) = 1, for all 7 say =1, we have

F2 < {[N — n(s))/@r)N}2n(s))! = M., say.

Thus the integrand in these integrals are bounded uniformly in = for 7 = 1, by
M, which has finite integrals on I,, and I.,. Hence by the dominated con-
vergence theorem, we can take limits under the integral sign. We thus have by
(54),

(63) lim,_,w fra.a F2 dXN--n(s) = II','x fs dXN-—n(S) = U(S, 13),
lim,, o fnm Fa dXN—n(s) = ,rt",,, fs dXN——n(S) = U” (sa x)
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Nore. The results in (63) also remain valid if the length 2v(s, z) of the in-
tervals I, and I., were infinite, as in that case the integrals in the left hand side
and right hand side of (63) all become equal to unity. Since F; and f, are proba-
bility densities, these results can also be proved alternatively, by a simple applica-
tion of the Helly-Bray theorem, see for instance page 182 of Probability Theory
by Logve (1960).

Hence, since g, — 1 as 7 — o, at every point of R, ,

(64) lim,,e Gr,s = LI[U(S; x) - U” (37 (l?)]
= integrand in the right hand side of (59).

Next we can also take the limit of the integlz_a] in the right hand side of (61)
under the integral sign. The integral of Fy wrt Xy_,() on any interval <1. Simi-
larly for all 7, g, > 1. Moreover

Li= Llzi,ies| &) £ Cr) "2 = 1y, say.

Hence G, (s, ) is bounded in absolute magnitude, uniformly in , by M, . Since
the set T, is of finite measure, M; has a finite integral on T, , = M;- (2a)"®.

Hence, again by the dominated convergence theorem, we can take the limit
under the integral sign. We thus get from (64) and (59),

(65) lim,,e [r, G- (s, z) dx, = k.

It follows from (65), that we can find a value ¢ of 7 such that
[G.(s,x)dx, = k/2, forall 7= 7.

Hence by (61),

(66) Ji 2 (2n) 7 k/2r forall 72 1.

We turn now to the second integral in the right hand side of (60). By virtue
of the maximizing property of the Bayes solution, the integrand is everywhere
reduced, if we replace the interval I.,, by the Bayes interval I, , . The resulting
integrand is non-positive for at all points of R, . Hence we can extend the
integration from the set 7'’ to the whole space R, . We thus get,

J2 g fTac Ll'Fl d.’l?s{ f’e,s Fz dXN—-n(s) - fl(,,s F2 dXN—ﬂ(s)}
(67) 2 Sruy Lo Frdad [1,, F2dXy-ni — [1,, F2 X y_nio}

= A, — B,,, by (51) and (32).
Adding up (67) and (66), we have from (60),
(68) Ar,s - A:’,s g (27!')_%‘10/21' + Ar,s - Br,s .

(68) holds only for the particular sample s for which the alternative (ii) stated
below equation (57), is assumed to hold. To distinguish this sample from other
samples, we shall denote it by s” and write (68) as

(69) Ay — Al = @n) 1 k/27 + A,y — B, .
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By the property of the Bayes solution, for every other sample s ¢ S,
A7, £ B,

and therefore

(70) A, — Al =2 A,, — B,,.

Multiply both sides of (69) by p (s") and both sides of (70) by p (s) and sum up
over all samples s ¢ S. Then denoting the total conditional (for given 6) and
unconditional expected inclusion probabilities for the confidence intervals
ler” (s, @), e (s, z)], by 44", A,”, respectively, we have as in (34),

(71) Ao” = ZseSp(S)A;’.s ’
Ar” = Zsssp(s)A:,,s .

Then by summing up (69) and (70) over all samples s, and then using (48), we
have,

(72) A, — A" 2 pG)@r) /21 + A, — B,
> p(s') @r) k/2r — 1/27°, forall 7= 7.

Since s’ ¢ 8, p(s’) > 0 by definition of S. Also & > 0 by assumption. Hence
the right hand side of (72) can be made >0 by making = sufficiently large. But
this contradicts the inequality (13). (13) implies that Aq” = A, for all 6. Hence,
we must have, i.e.,

(73) A" = A,
A, — A" £0 forall 7.

It follows from the contradiction, that the alternative (ii) stated below equation
(57), cannot hold for any sample s ¢ S. Hence, for every sample s ¢ S, the set
of points x ¢ Ry, on which both v (s, z) > O and also h(s, z) = &(s, ) — Z. # 0,
must be a null (uy) subset of Ry . As the total number of samples s is finite, it
follows that the set E of Ry is also a null (uy) set, where E is defined as,

(74) z ¢ E, if and only if, for at least one se S, both the following
inequalities hold, viz.:

(a) wv(s,z) >0,
(b) h(s,z) = é(s,z) — T #0.

We now complete the proof of Theorem 3.1 by returning to equation (52). By
considering the term in curly brackets; it is seen that the integrand in the right
hand side of (52) vanishes at every point x £ Ry, at which v(s, ) = 0. It also
vanishes at any point at which the intervals 1., and I ”. become identical, i.e.
by (55) and (56) at any point x at which h(s, z) = 0. By (74), the set of all
points z £ Ry at which both inequalities (a) and (b) in (74) hold for any one
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sample s ¢ S, is a null (uy) subset of Ry . Since v(s, ) and k(s, ) depend on
z only through those x; for which 7 ¢ s it follows that the subset E; of R, on
which both the inequalities (a) and (b) in (74) hold for a particular s, is a null

(Hn(s)) subset of R . It therefore follows from (52), that 4,, — A,, = 0 for
every s ¢ S. Therefore, summing over all s ¢ S we get

(75) A, — A =0.

But, for every 6, the prior density is positive (>0) for all 2 ¢ Ry . Hence since
the strict inequality in (13) holds on a non-null set of Ry , we must have 4," >
Ap for every §, — o < 6 < o, and therefore,

(76) 4, > A,.

It thus follows from (75), that the strict inequality in (13) and hence in (8)
cannot hold on a non-null subset of Ry. Thus no set of confidence intervals
led (s, z), €' (s, z)] can exist, which satisfies (i) and (ii) of Definition 2.3. This
proves that the given set of confidence intervals [ei(s, x), e:(s, )] is weakly
admissible. This completes the proof of Theorem 3.1. .

During the course of the proof, we have also proved the following result which
will be required for proving the further extentions of Theorem 3.1. If [e,” (s, z),
e (s, )] is a set of confidence intervals satisfying e.” (s, z) — e1” (s, ) = 20 (s, z),
and also equation (13) except for the requirement that (13) holds on a non-null
subset of Ry , and E is the subset of Ry defined by (74), then,

CoroLLARY 3.1. E s a null (uy) subset of Ry .

REMARK 3.1. It will be seen that in the proof of Theorem 3.1 we have used
only the following properties of the function v (s, 2) defined by (5) and (6), viz.,

(1) v(s, x) is non-negative;

(ii) v(s, ) is an estimate (Definition 2.1) i.e. it depends on z through only
those z; for which 7 ¢ s;

(iii) under the assumed prior distribution on Ry, for each se S, v(s, ) is
distributed independently of both 6 and Z, .

Let v* (s, ) be any other function defined on S x R which also satisfied the
conditions (i), (ii) and (iii) mentioned above. Then it follows that Theorem 3.1
and in particular Corollary 3.1 continue to hold for the set of confidence in-
tervals obtained by substituting v* (s, ) for v(s, ) in (6). This remark will be
relevant for the proof of the theorem contained in the next section.

4. Weak admissibility under constraints. The argument in the present section
runs closely parallel to that in a previous paper [(1965) III, Sections 4 and 5] in
which the admissibility of a certain estimate was proved. We consider the hyper-
planes in Ry obtained by assigning fixed values to some % of the variates. Let

Qv—« be the hyperplane in which, say the last k& variates ay—xt:, ¢ = 1,2, -+, k,
have fixed values ay_iy:¢, respectively. Let S; be the subset of S, consisting of
all those samples which contains each of the last & units uy_y¢,t = 1,2, -+, k,

ie.se S, if, and only if, uy_yresforallt = 1,2, --- ;kandse S. We denote
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by Si-S., ... the intersection of the set S; with the set S,,,.,. on which (2)
holds. The intersections of S; with the sets S, ., . on which (3) holds, and
Se7.erz on which (11) holds, are denoted similarly. Now suppose that for
zeQu_r,andse S, estimates e, (s, z), e2 (s, ) exist such that,

(77) Zs‘:sk'sel ‘ea'\z 14 (8) g Zsesk'ssl,cz,z p (s)

holds for almost all (uy—x)x € Qv , and let €(s, ) be as in (9).
Let Ex_; be the subset of Qy_; defined by

(78) veEy, if,and only if, =& Qy_

and,

(a) his,z) = &(s,z) — & #= 0,

(b) v(s, z) > 0,
both hold for at least one s & S, . We now prove,

THEOREM 4.1. If &' (s, ©), € (s, z) are estimates satisfying (77), and Ex_s
1s the subset of Qx_x defined by (78), then Ex_i. s a null (ux—) set.

OuTLINE OF THE ProoF. As the following proof is rather long, we shall first
give a brief outline. Let Qy_, be the hyperplane corresponding to another set of
values of the last & variates z;,7 = N — k + 1, --- , N. We establish suitably
a 1-1 correspondence between the points z ¢ Qi—; and the points z & Qy_s .
Then defining e (s, z), e (s, =) as in (9), for z e QF_x, the definitions
of &" (s, z), e’ (s, ) and v(s, z) for s& S;, are extended to the hyperplanes
Q~_: by fixing the values of these estimates at the point 7 e Qfl, in terms of
their values at the point x £ Qyv—& . The fixation is done in such a way, that cor-
responding to the non-null (uv—i) subset of Qyv—i, on which (a) and (b) in
(78) hold, there exists a non-null (uy_;) subset in each hyperplane Qf_. on
which also both (a) and (b) in (78) hold. Thus, by this construction, there
exists a non-null (uy) subset E of Ry, on which the inequalities (a) and (b)
in (78) hold at each point for at least one s & S;. In this process the function
obtained by extending the estimate v(s, x) ceases to be the sample standard
deviation. We therefore denote it by v*(s, ). In place of the set of confidence
intervals [e; (s, z), ex(s, )], the extended set of confidence intervals is [e,* (s, z),
e (s, x)], where &,*(s, ©) = & — v (s, ), and &* (s, z) = &, + v*(s, z). For
samples s ¢ (S — S;), the definitions of e (s, z), & (s, ) and v™ (s, z) are ex-
tended simply by putting them respectively equal to e, (s, ), e: (s, z) and v (s, ).
As a result of this construction the inequality corresponding to (13) holds for
the sets of confidence intervals [e)” (s, ), e” (s, )] and [e* (s, z), & (s, )],
and the set E of Ry on which both inequalities (a) and (b) in (78) hold at
each point for at least one se& S, is non-null (uy). The contradiction is then
established by showing that the new function v* (s, z) satisfies all the conditions
(i), (i) and (iii) in Remark 3.1, and therefore by Corollary 3.1 read with Re-
mark 3.1 the set £ cannot be a non-null set. We now give the detailed proof.

Proor. For z £ Qi , we define e,” (s, z) and " (s, ) as in (9). Then from
(12) and (77) we get,
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(79) Z"Sk'ss”l.c”g.z p (S) ‘>—‘ Zsfsk‘sel.cz.z p (S)

for almost all (uy—i)x € Qv—r . Now in (77) and (79), the estimates e; (s, z),
e’ (s, z), and hence e,” (s, z), " (s, ) and &(s, z) are defined only for samples
s& S, and points z & Qy_,. We now extend their definitions to other points
z ¢ Ry and to samples s ¢ S; as follows.

Let Q:,.'.k be the hyperplane C Ry given by zy_si: = ay_pse,t = 1,2, - - , k.
We establish a 1-1 correspondence between the points x ¢ Qv and 2’ ¢ Qs ,
by putting

(80) & =z +a r=12-,N—Fk
The constant ‘a’ can be fixed (uniquely) so that,

(81) Xy -1 =Xy — i,

for all z & Q5 , s € Si, where

(82) a‘:,,' = [n(s)]—l Zm 1‘.", XNI =N Zi‘;l xsl-
Such a constant always exists. Indeed let .

(83) & =k D Mo, a=k"'">Vrsna.

We have, since n(s) = k,
Z = [n()] 7k + n(s)d — ka + (n(s) — k)al,
and
Xy = N'ka' + NXy — ka + (N — k)al.
Hence, Xy’ — 2/ = [Xy — & — k(In(s)]" — N") (@ — & — a)], so that (81)

is satisfied if

’

(84) a=a — a

We introduce now a new estimate v*(s, z) defined as follows: for z ¢ Qy_; and
sesy,

(85) v (s, ) = v(s, 2),
and for " ¢ Qv+ , s € Sk,
(86) v (s, 2) = v(s, 2).

Since by (85) and (86) v* (s, x) is defined for every hyperplane QL. , it is de-
fined for all x ¢ Ry, for all se S;. In place of the original set of confidence in-
tervals [e; (s, ), e2(s, x)], given by (6), we consider a new set [e,* (s, z), &* (s, )],
where

(87) (s, z) = & — v¥ (s, z),

e’ (s, ) = & + 0™ (s, z).
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We denote by S,,+.,e.z , the subset of S, for each x ¢ Ry , for which
(88) a*(s,z2) £ Xv e *(s, ) holds.
We now extend the definitions of &(s, ), &" (s, ) and e (s, ) to other hyper-
planes Qy—: by putting
e(s, 7)) = e(s,z) + & — &;
(89) o' (s,2') = &(s,2’) — v*(s,2');
62” (8, x’) = é(s) x,) + U* (8, 13,)

Since for z ¢ Qa_i, & (s, ) and e* (s, x) coincide with e (s, ) and e (s, z),
Seyorentie = Sey 0.2 fOr every z £ Qu_i. . Hence (79) implies that

(90) Esck‘se'l,e”z.z P (8) -2— Z“Sk‘sel*rez‘.z p (8)

for almost all (uv—s) = € Qy—s -
Moreover there exists a non-null (uy—_z) subset of Qy—x viz., Ex_: , such that at
each point of this subset, both the following inequalities hold for at least one

se Sy, viz.:
(91) (a) é(s,z) = h(s,z) — as #0;
(b) v*(s,z) >0, for xeEyy.

Now (90) and (91) are easily seen to hold for every other hyperplane Qs .
Indeed, for any point =’ £ Q¥—+ , by (86) and (87),

(s, z) =3, — v*(s, 2 =1, —v*(s,2) + 3 — Z);
e (s, 7)) =& + 05, 2) = 3 + 0%, 2) + 3 — F).

Moreover, by (81), Iy = Iy + (:vs — xs), and by (89), (86) and (9), & (s, z')
= e (s, ) + (:n,8 — %) and " (s, x) e (s, x) + (@ - :vs) Thus for
every sample s ¢ S;, at every point z eQ%, (s, 2') < XN < (s, 2)
holds if and only if, at the point z £ @y— correspondlng tox’ accordlng to (80),
(s, r) < XN < e’ (s, ). Slmllarly, a'(s,z) £ Xy £ &' (s, ') holds, if
and only if, &, (s, z) < Xy < e’ (s, z) holds. Hence,

(92) Sk Seyrrearer = Sk Sersioptz
Sk ‘ Se;",ez”,z’ = Sk N Sel”,eg",z .

(92) implies that (90) holds for almost all (ux) z &£ Ry . Moreover since every
hyperplane Q& contains a non-null (uy—x) subset on which (91) holds, the
subset of Ry for which (91) holds is non-null (uy).

Consider samples s # S;, i.e. se (S — Si). We have not so far defined the
values of (s, z), &” (s, ), €2 (s, ), and v* (s, z) for se (S — Si). We now put,
forse (S — Sx) and all v ¢ R,
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é(s,z) = & ;
(93) v (s, 2) = v(s, 2);
e (s, x) = &(s, z) — v (s, 2);
32” (8, x) = é(s) x) + U*(S, x);
and e;* (s, z) and e* (s, z) as given by (87). It follows that for se (S — Sy),
and all z ¢ Ry,
o' (s,2) = a'(s,2); &' (s1) = a*( ).
Hence, denoting by (S — 8i)Seys.epvc and by (8 — Si)-S.yr.cpr.. the intersec-
tion sets of (S Si) with Se;s cpe.o and Sey» e,» - respectively, we have (S — S;)-
Serreqrz = (8 — 8i)- 8.+ .es%.c - Therefore,
(94) Z"(S—Sk)‘sol”,eg”,z 4 (8) = Z“(S—Sk)‘sq"cg*.z D (8)‘
Combining (90), (92) and (94), we obtain that
(95) Z“Sel ez P(8) 2 Zsesut,,'*" p(s) for almost all z ¢ Ry,
and moreover both the inequalities viz.
(96) (a) h(s,z) =é(s,z) — % #0 and (b) »*(s,2) >0
holds for at least one s ¢ S, on a non-null (un) subset E of Ry .

We now complete the proof by proving in Lemma 4.1 below that the function
v* (s, z) defined by (85), (86) and (93) satisfies the conditions (i), (ii) and (iii)
of Remark 3.1. Assuming this lemma for the moment, by Corollary 3.1 read with
Remark 3.1 the set E of Ry on which at each point, both the inequalities in (96)
hold for at least one’s ¢ S, must be a null (uy) set. This establishes the contradic-
tion and proves that our original assumption, that the subset Ex_ of Qy_ , de-
fined by (78), has positive measure (uy—;) must be false.

LeMMa 4.1. The function v* (s, x) defined by (85), (86) and (93) satisfies con-
ditions (1), (i) and (iii) of Remark 3.1.

Proor. We prove the lemma by obtaining an explicit expression for v* (s, ) in

terms of the coordinates of the point z. Let s ¢ Sy, and let " £ Q§_; be the point,
which corresponds by (80) to the point z ¢ Qy—. . We then have, by (80),

97) z, =a,+a, for res, r <N — k.
Also by (83) and (84),
= [n (8)]_1{ Zies,ié}v—k 131', + Z:'V=N—k+l a,,}

(98) = G Diesign—kx’ + [n(s) — kl-a + ka'}
=, + a,

and

(99) & — i =a—4.

Hence by (86), (6) and (5),
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[v* (s, &) = (s, )
(100) = [k'/n ()] { Dienizvt (@ — &) + Diewoisr (o — %)%
= [k /() Dienigi-t @ — &) + D lwoins (i — a)*
+k @ — )}
after a little reduction, using (97), (98) and (99). Now,
(101) [o(s, 2 ) = [kS/n ()] { Xicossn—r (& — &)’
+ Dlvoin @ — &) + k@ — &)}
Combining (100) and (101), we get
(102) [*(s, 2 ) = [o(s, 2" )" 4 [k*/n(s)]
A v ( — @) — Lleyinn (@ — @)7.

In the right hand side of (102), the first term in the curly bracket is a known
constant. The second term depends on z” only through «;’ , i.e. only through those
x; for which 7 & 5. v™ (s, ) is thus an estimate. It is also necessarily non-negative
asv*(s, 2') = v(s, ). Further under the assumed prior distribution on Ry, the
term Y i-ny_s (@i — @&)® is distributed independently of ¢ and &, and since
its distribution is independent of z;’ for all i £ N — k, it is distributed inde-
pendently of Z,” also. As these conditions are obviously satisfied by the first term
[v(s, )]’ in the right hand side of (102), it follows that the function v*(s, z)
for s ¢ S, satisfies all the conditions (i), (i) and (iii) of Remark 3.1. Also for
se (8 — Si), these conditions are obviously satisfied since for such s, v* (s, ) =
v(s, z) for all z € Ry . Thus the Lemma 4.1 is proved.

6. Strict admissibility. We now come to the final part of the argument. The
argument here is similar to that in the proof of Theorem 5.1 of a previous paper
[(1965), III]. The proof was however given there for a fixed sample size design,
while here we have a varying sample size design. The proof being rather long,
we shall first outline its main steps.

OUTLINE OF THE PRrOOF. Suppose the set of confidence intervals [ei(s, z),
ex(s, z)], defined by (6), is not strictly admissible. Then there exists a set of con-
fidence intervals [e) (s, z), €. (s, z)], satisfying Definition 2.2. We define &;” (s, z),
e (s, z) and &(s, ) as in (9). The strict ienquality in (13) must now hold at
least at one point of Ry . Let E be the set of all those points z ¢ Ry, at which
h(s, z) = é(s, x) — &, ## O for at least one s ¢ S. We have to show that the set
E must be empty. We first show, using the definition of strict admissibility, that
if at a point a, for a particular sample so, h(so, a) 5 0, then v(sy, a) cannot be
= 0. Hence if E is not empty, there exists at least one point a € Ry , and a sample
so€ S, such that (a) h(sy, @) # 0 and (b) v(so, @) > 0. Let m be the sample
size of so. Then starting from the point a, we determine a set Ey_,, of infinite
measure (uy—m), such that at each point of Ey_, , both the inequalities, (a)
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h(s, z) # 0 and (b) v(s, z) > 0 hold for at least one s ¢ S, such that s s, .
By partitioning the set Ey_, according to samples s £ S, we obtain a set L%,
with positive measure (uv—n), such that for each x & Ly, | the inequalities (a)
and (b) hold for a particular sample s, . Then for each point z & L%, , we deter-
mine as before a set on which both inequalities (a) and (b) hold for at least one
seS, s # s . All these sets together determine a set Ey_;, with k < m, such
that Ey_, has infinite measure (uy_), and both the 1nequaht1es (a) and (b)
hold for each z ¢ Ey_; , for at least one s ¢ S. The set E%_, is again partitioned
by samples s, and the same process repeated It is shown that the process can
terminate only when we reach, either (A4’) a set Ey of infinite measure (un),
such that the inequalities (a) and (b) hold for at least one s ¢ S, for each z ¢ E ¥
or, (B') we reach a subset Ey_; of a hyperplane Py_;, such that Ej_; has in-
finite measure (ux—;), and the inequalities (a) and (b) hold for each z ¢ Ex_;,
for at least one s S. But (A’) contradicts Theorem 3.1 and (B") contradlcts
Theorem 4.1. The set £ must therefore be empty. Strict admissibility follows
from this.

We shall now state and give the detailed proof of our main result, viz.

THEOREM 5.1. The set of confidence intervals [ei(s, x), e:(s, )], defined by 6),
18 strictly admissible.

Proor. Suppose it is not strictly admissible; then by Definition 2.2 there exists
another set of confidence 1ntervals ler (s, a;), o "(s, z)], satlsfylng (i) and (ii) of
Definition 2.2. Then defining e,” (s, ) and e,” (s, z) asin (9), and proceeding as
from (9) to (13), we obtain in place of (13),

(103) Zsesc;,c;,z p (8) g Z”Sel,ez,z p (8)

where the strict inequality holds for at least one z ¢ Ry .
Let E be the subset of Ry defined by

(104) ze¢E, ifandonlyif, h(s, z)
= é(s,z) — T < 0, foratleast one se S.

Here &(s, ) is as in (9). We prove the theorem by showing that the set £ must
be empty. Suppose it is not empty. Then, there exists at least one point z = a =
(a1, @z, ---, ay), and a sample s, ¢ S, such that k(so, a) = ho 3 0. We first
show that v (s, a) must be >0. For suppose v(so, a) = 0. Then, since v(so, a)
is a multiple of v’ (so, @) defined in (5), we must have,

a; = some constant ¢ forall 7¢es.

Let o’ be the point obtained by equating all the remammg variates i, 128,
to ¢, ie., a’ is the point such that x; = ¢, 7 = 1, 2, ,N.Then ata’, Xy = ¢
and &, = ¢ for every sample s. Hence for every sample sef se Sel,ez o - Now
by the definition of an estimate (Definition 2.1), and by (9),

v(s0,a’) = v(so, a) = 0;
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e(s0,0d) = &(s0,a) = Tsy(@) + h(so,a) = ¢+ ho;
e (so,d) = é(s0,0a) — v(so, d)=c+ ho;
e (s0,a) = é(s0,0a) + v(so, d)=c¢c+ho.

Since at a’, Xy = ¢, and he # 0, {el (s0,0') £ Xy = e (so, a’)} does not hold
Hence s Se .0’ - But since so & S, p(se) > 0. Therefore at the point z = a,
the right hand side of (103) would exceed its left hand side. The supposition
that v (se, @) = 0 thus leads to a contradiction. Hence we must have v(so,a) > 0.

The result may be stated more generally as: if at any point z’ ¢ Ry, for a par-
ticular sample so & S, h(so, x) # 0, then (13) implies that,

(105) v(s0, ") > 0.

Thus if E is non-empty, there exists at least one point @ = (a1, ---, av) and
a sample s, such that

(a) h(so,a) = ho #0 and (b) v(so,a) > 0.

Without loss of generality we may suppose the sample so to consist of the first

m units u, Uz, - - , Um . Consider the (N — m) dimensional hyperplane Py_n
as defined by,
(106) xePy_n if,andonlyif, z;=ai, ¢=1,2,---,m
For every « € Py—m,
Ty = m D imai = G, say;
6-(80, Z) = @ + ho;

v(s0, z) = v(s0, a);
XN mdo/N + N_lzljsm.'.l Ts.

Hence for z & Py_m, Tsy — v(s0, 7) < Xy £ &, + v(s0, ¥), holds, if and only
if,

(107) @(l — m/N) — v(s0,a) = N>z £ @l — m/N) 4+ v(s, a).

Similarly for x & Py—m , e (s,z) = é(s,z) —v(s,z) < Xw S 8(s,2) +v(s,0) =
e’ (s, ) holds, if and only if,

(108) d@(l — m/N) — v(so, a) + ho < N 2 iemir @
< @(l — m/N) + v(so,a) + ho.

We now determine a subset T%_n of Py_m such that, for &€ Ty—m, (107)
holds, but (108) does not, as follows: @ ¢ Tx—n , if and only if, z ¢ Py—m, and,
if hg > 0,

a0(1 - m/N) - 1)(80, a) N_lz i=m+41 Ts
(109) < min {[@(1 — m/N) + v(so, @), [Go(1 —m/N) — v(s0, @) + hol} ;

lIA
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if hy < 0,
max {[@ (1 — m/N) 4+ v(so, a) + ko], [@(1 — m/N) — v(so, a)]}

< N'Ylanai £ ad — m/N) + v(so, a).

Since ho # 0, and v(sy, a) > 0, Ty_n is always determined and has infinite
measure (uy—n). Then by (109), for every point z & Ty_m, So& Sel,ez',, and
S0 Z S’,;,,;,, ; and hence at every such point, there must be at least one other
sample s ¢ S, for which & (s, ) = é(s, &) — &, ¥ 0 as otherwise at this point the
right hand side of (103) will exceed its left hand side. Furthermore, by (105),
for the sample s for which A (s, z) # 0, we must have v(s, ) > 0.

Let Ey_n be the subset of all the points x ¢ Py_.. , for which & (s, z) # 0 for
at least one s £ S. Obviously.

(110) Ty-m C Ey—m .

Since T'y_n is of infinite measure (uy_mn), Ey—n is also of infinite measure (uy—_m).
We now partitim_l the set Ey_., into (not necessarily) disjoint subsets indexed by
the samples s ¢ S. Let for a specified sample s, LyZ,, be the subset consisting of

all those points « ¢ Ey_» for which A(s, 2) # 0, i.e., x ¢ Ly>, if, and only if,
x & Ey_mand k(s, 2) # 0. Then from the definition of Ey_,, it follows that,

(111) Eyvem = Usus Ly, .

Since Ey_» has infinite measure (uy_n), there must be at least one non-null
(un—m) set in the right hand side of (111).

Now there are two possible cases:

(A) For every non-null (uy_.) set LyZ,, in the right hand side of (111), the
sample s # so, contains all the units u;, us, -+, um, with in addition some
other units;

(B) There exists at least one non-null (uy—n) set LyZ, in the right hand side
of (111), for which the sample s, contains only some k, (0 < k < m) out of the
first m units.

We shall first consider case (B), in which there exist one or more non-null
sets Ly~ in the right hand side of (111), for which the sample s does not contain
all the first m units; if there are more than one such set we select one of them
arbitrarily. Let LyZ, be the set selected, and suppose the sample s, is of sample
size my, and that it contains k, (0 < &k < m) out of the first m units, the re-
maining (m; — k) units being from the last (N — m) units wmq1, Umqy2, * -+ ,

a,sy

. ’ . ’
uy . Then take any point a ¢ Ly2%, , Since a & Py_n , we have,

(112) a,= (alra27"'7af,n+ly a,,,,+2,-~,aN').
Then for the point a’ we define, as in (106), an (N — m,) dimensional hyperplane
Py—m, by:
»
(113) zi=a; for 7e81, 7= m,

’ . .
=a; for 7e8, 7> m.
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Next putting
@ = my [ D ieeizm @i + D icsy ivm ail,

we define as in (109) a subset Ty—m, © Py—m, by,
(114) xveTy-m if,andonlyif, e Py—m,
and; if by = h(s1,d) > 0,
a(l — m/N) — v(si, a)

= N—lzim Ts

< min {[&(1 — m/N) + v(s1, )], (@l — m/N) — v(s, a) + hl ;
if by <0,
max {[@ (1 — m/N) + v(st, ) + hal, (@ (1 — ma/N) — (s, a)]}

< N 'Y Yapnai 2@l —m/N) + (s, a).

Furthermore, assign to all co-ordinates z; in (114) for i1z and 7 > m, fixed

values equal to the corresponding co-ordinates of the point a’, ie.., for ¢ satisfying
1g28,1> mMIT; = ;. Thus in the inequalities in (114), we replace the middle

term by
(115) N i iom@ s + D itsrizm il

Since s; contains & out of the first units, there are (m — k) values of ¢ for which
iz s, and i < m. Hence the inequalities in (114) on replacing the middle term
by (115), define an (m — k) dimensional subset T @ . C Pi_ . Since by (105),
v(s1,a’) > 0theset T%_, has infinite measure (un—x). The hyperplane P2 is de-
fined by, .

116 x; = a; for 1es, ©=m;
b b
’ .
z; = a; for 7> m.

The hyperplane P%_, is orthogonal to Py_n, and hence the set L¥>, , with the
set T%_, defined for each a’ & Ly%, , by substituting ( 115) for the middle term in
(114), determine a set Dy_x C Py, where, Pg_, is the hyperplane defined by
z: = a; for each ¢, such that ¢ £ s, ¢ < m. Combining (114) and (115), the ex-
plicit definition of the set Dy is

a,51

. . ’ !’
= (¥, %2, , %) € Dy if, and only if, x & Tm— forsome a & Lyon.

a,81

Since L%, is of positive measure (uy—m), and for each a & L&, , the set Ty has
infinite measure (um ), the set Dy_; has infinite measure (un—r). Here 0 = k < m.

Now let E%_: be the set consisting of all those points z ¢ Py_;, for which
h(s, z) # 0 for at least one s ¢ S. Then, *

(117) Dy—x C Ey—;



CONFIDENCE INTERVALS FOR THE MEAN OF A FINITE POPULATION 1203

hence the set Ey_; is of infinite measure (uy_x). We now again partition the set
Ej_; into subsets by,

(118) By = Uss LY,

where the subsets Ly, are defined for each specified s ¢ S by = ¢ LyZ,, if and
ounly if, x ¢ Ey_ and h(s, ) 5 0. Again at least one of the subsets in the right
hand side of (118) must be non-null (uy_x). If there is only one non-null (uy_¢)
set LyZ; , such that s does not include each of the k units u; with &5, 7 < m,
we select it; if there are more than one such subset, we select one of them arbi-
trarily. Let Ly2% be the subset selected and suppose the sample s, contains 7,
(0 £ 7 < k) out of the k units u, , given by 7 £ 81, ¢ < m. Then again proceeding
as from (114) to (117) we reach a set Ey_; of infinite measure (un_;) such that
for every x ¢ Ex_j, h(s, ) # 0, and hence by (105), v(s, ) > 0, for at least
one se¢ S.

Clearly the process can end only when, we either

(A") reach a set Ey C Ry, such that Ey has infinite measure (uy), and for
everyz ¢ Ey, (a) h(s,z) # 0, and (b) v(s, z) > 0 for some s ¢ S; or

(B’) we reach a hyperplane Py_; , defined by some j, (0 < j < m) out of the
first m variates having fixed values equal to the corresponding co-ordinates of
the point ¢, i.e., . = a, ;forr = 4 ; 4, -+, ¢; where ¢, %2, --- , 2; < m, and
a set Ey_; C Py_; such that Ey_; has infinite measure (uy_;), and for every
zeEy_;, (a) h(s,z) # 0and (b) v(s, z) > 0 for some s ¢ S, and further such
that for any sample s ¢ S, which does not include each of the j units i, , ui,,
“++, ui;, h(s, z) = 0 for almost all (uv—;)x & Py—;.

Here we note that the case (A), (below (111)) is included in the case (B'),
the corresponding value of j is equal to m.

Now case (A") is void because Ey = E is a null (uy) set by Theorem 3.1. Case
(B") also leads to a contradiction. To show this let S; be the subset of S, consist-
ing of all those samples s ¢ S, which include each of the units w, , %, «- -,
u;; . Then for every s ¢ (S — §;), the set of points & Py_; for which h(s, z) # 0
forms a null (ux—;) set. Consequently introducing intersection sets as previously
in (72), we have,

(119) 2 0e85-8,70 P(8) = Doses-5,)-50,.000 P (5)
for almost all (uy—;), v &€ Py—;. (119) combined with (103) gives then,
Z“sj'se’;.e;.z p(s) g Zsesj'sel.ez.z p('g)

for almost all (unv_;), x & Py_j.

But then, by Theorem 4.1, the set of points x ¢ Py_; for which (a) h(s, z) # 0,
and (b) v(s, ) > 0 must be a null (uy—;) set, while according to (B') Ex_; is
of infinite measure (uy—;).

Thus neither (4") nor (B) is possible. Hence no point a ¢ E exists such that
h(s, @) # 0 for some s ¢ S and thus the set E is empty.
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Consequently the sign of strict inequality in (103) does not hold for any point
z¢Ry.

We shall here dispose of a case which was initially left out.It was assumed that
for the initial sample s, , the sample size n(sq) < N — 1. Now suppose the only
pair (a, so), for which h(sy, a) 5 0 is such that n(sy) = N. Then for all x ¢
Ry &, = Xn. Hence sy & Se, ¢,z . Also for every other sample s ¢ S, e,” (s, x) =
er(s, ), e (s,2) = es(s, 2), and therefore s ¢ S,J;,e;,, , if, and only if s & Sy e,z -
Hence the left hand side of (103) cannot exceed its right hand side for any z ¢ Ry .
Thus the conclusion holds good for this case also.

Thus no set of confidence intervals [e, (s, ), e (s, z)] satisfying (i) and (ii)
of Definition 2.2 exists. The set of confidence intervals [e; (s, ), es(s, )] is there-
fore strictly admissible. This completes the proof.

REMARKS 5.1. The above proof holds only subject to a measurability restric-
tion viz. that the function &(s, ) must be measurable in z. This is in contrast
with the result in a previous paper [(1965), II] where the admissibility of the
sample mean as an esimator of the population mean, with the squared error as
loss function, was proved without any measurability restrictions. However the
measurability restrictions are not practically important as discussed in a previ-
ous paper [(1966), IV, Section 2].

The whole argument holds good also for the confidence intervals of fixed length
[z, — ks, & + k). These confidence intervals though, are not of much practical
use.

6. Confidence intervals based on ratio estimate. The whole of the foregoing
argument can be easily generalized and shown to hold for confidence intervals
based on a ratio estimate and a generalized version of the sample standard devia-
tion.

Lety: > 0,2 = 1,2, ---, N, be arbitrary positive numbers. We replace the
definitions in (1), (4), (5) and (17) by more general definitions as follows: Let,

Y(s) = Dies v
Y = Yy
o= O e
Xy = V',
Xyonw = 1Y — y ()] Diea s
(s, 2) = [y Diee yias/ys — &)

Then e (s, 2), e2(s, z) are defined as in (6). Note that for convenience we have
retained the same symbols &, , Xx, etc. as in (1), (4), (5) and (17) to denote
the more general functions defined in (120). In the following the above definitions
should be deemed to apply in all the equations in Sections 3 to 5.

In place of the prior distribution on R assumed in Section 3, we now assume
that 2;, ¢ = 1, 2, ---, N, are distributed independently, and normally with

(120)



CONFIDENCE INTERVALS FOR THE MEAN OF A FINITE POPULATION 1205

mean 6y, , and variance y; . It is easily verified that &, Xw_n(s as defined in
(120) are sufficient for 6, under this prior distribution, so that in place of (18)
we get,

(121) f(x, 0) = Llzi,ies| &) p@ — 0) LT, i 25| Xvnwl ¢ Xnn — ),
where,
p@E — 8) = [y(s)/2n] exp [— 3y(s) (T — 6)°];
R vni — ) £ 1Y — y(s))/20} exp {03[Y — y () (Xvonr — 0)°].
In place of (25) we put
(122) g=14+ "7,  g=1+kE"T"

Then proceeding as from (18) to (27), we obtain in place of the formulae in
(27),

(2mg.) "7 exp (— &°/20.);
(Y — y())/2nYgd y(s)g) -exp {— HIY — y()]-y(s)gs/Yg)
(X ony — Ts/95)"}
Fs = (Yg/2n) exp [ — 3Ygl0 — ()& + [¥ — y(8)|Xn_nwl(Yg) T}
Similarly in place of (30), we get,
(124) Xy =Y =y Xyon + y()Y % -

It is seen in short, that with the revised definitions in (120), all the equations
in Sections 3 to Section 5, remains valid simply on substituting everywhere,

(125) y(s) for mn(s),
Y for N

Fy
(123) F»

and consequently, ¥ — y(s) for N — n(s).

Obviously the substitution for N is made only where N occurs as an independ-
ent term, and not as a suffix or a summation limit.

The whole argument in Section 3 (I) remains unchanged and we get in place
of (45),

(126) B(s,v) < als, v)-[1 + 1/2y(s)7’]
< a(s,v)-[1 + 1/2wr)
where w = min [y:,7 = 1,2, ---, N]. By assumption w > 0. Thus in place of

(48), we get 1/2wr’ as the upper bound for the improvement in the inclusion
probability. The whole subsequent argument in Section 3 (II), leading to The-
orem 3.1, Corollary 3.1 and Remark 3.1, remains valid.

Next in the proof of Theorem 4.1, theonly change is that the 1-1 correspondence
is now fixed in place of (80), by
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(127) f,s =2, + ay,,

a being fixed (uniquely) so as to satisfy (81). As shown in a previous paper
[(1966), IV, Section 5]
’

(128) a=a —a,

wher €, a = ley-=)v——k+1 01’/ Zx—ku yi,and & = E?Y=N—k+1 Oli/ Z§=N—k+l Yi.
The remaining argument in Section 4, then remains applicable. By a calcula-
tion similar to that in Lemma 4.1, (102) is also seen to remain valid with &
and & as in (128) and n(s) replaced by % (s). Thus Lemma 4.1 and Theorem 4.1
remain valid.
Next in Section 5, (105) remains valid. For by (120), if at the pomt a,
V' (s0, @) = 0, we have z;/y; = ¢ for all 7 ¢ so . Then by taking the point a’ to bé

such that z;/y; = ¢, fori = 1, 2, , N, the whole argument underlying (105)
holds. Then in (106), we put
(129) Gy = [y (30)]—1 Zics a;,

where by (120), y(s0) = ZZ-';I y: . Bach formula from (107) to (109) then re-
mains valid simply on replacing the factor (1 — m/N) by (1 — y(s) /Y). The
whole subsequent proof of Theorem 5.1 thus remains valid except for obvious
modifications. The set of confidence intervals [e; (s, ), ex(s, z)] defined by (6)
with (120), is thus strictly admissible for Xy which is the welghted population
mean, as in (120). The population arithmetic mean is YN X, .

Hence putting,

e (s, 2) = YN 'z, — v(s, r),
e (s,2) = YNz, + v(s, z),
v(s, 2) = kev' (s, ),

whexe T, ' (s, ¥) are as in (120), the set of confidence intervals le* (s, ),
e (s, )] is strictly admissible f01 the population mean.

ReMARK 6.1. The function »' (s, 2') in (120) has a significance. The ratio esti-
mate I, in (120) is superior to the sample mean as estimate of the population
mean, if prior knowledge about the distribution of the z; exists that,

(130) x; is N(Oyi,o*y:), ¢=1,2 --- N,
all z; being distributed independently

Then (Xy—ny — &) isN (0,0 Y/[Y — y(s)]-y(s)). Hence the best confidence
intervals, for Xy_n , le equivalently for Xy , are bascd on a function which
gives an estimate of ¢°- It is seen that the estnnate of ¢’ is given, not by the

sample standard deviation but by the function v’ (s, z) in (120), as Eefv’ (s, x))*-
ao” for all 6.
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