STATISTICAL MODELS AND INVARIANCE
By D. A. S. I'RASER

Unaversity of Toronto

0. Summary. Brillinger [2] gives necessary and sufficient conditions for a
model to be invariant under a Lie group of transformations. The problems that
can be handled by his conditions are surveyed, and found effectively to be re-
stricted to one-dimensional problems amendable to Lindley’s [8] method and to
problems connected with conflicts between Bayes’ and fiducial theory.

The problem of finding the general model invariant under a given group is
proposed. Brillinger’s theorem produces differential equations for the model. A
general solution can be obtained by direct methods.

1. Introduction. Statistical models invariant under a transformation group
enter prominently into many areas of statistical theory: in hypothesis testing
and decision theory, Lehmann [7] and Blackwell and Girshick [2]; in estimation
theory, Pitman [9]; in fiducial theory, Fraser [3] and Hora and Buehler [6]; in
Bayesian theory, Stone [10]; in structural theory, Fraser [5]. The problem of
determining whether a model is invariant under a transformation group seems
then of general importance. Brillinger [2] examines this problem and notes that
it has received negligible attention in the literature. He then develops necessary
and sufficient conditions for invariance under some Lie group of transformations.

Brillinger’s necessary condition can be applied with a given Lie group of trans-
formations on sample space and on parameter space. For thisit operates typically
by contradiction if the condition is not fulfilled then the model is not invariant
with respect to the given Lie group.

Brillinger expresses the necessary condition in terms of differential operators,
the infinitesimal generators that can generate a Lie transformation group. The
use of differential operators in this context is notationally rather elaborate. As a
simplification the condition can be expressed in terms of Jacobian matrices, the
basic ingredient of any differential analysis of transformations. In this alternative
form the condition can be applied more generally to a differentiable class of trans-
formations that need not be a group. And in this alternative form if used with a
gwen connected differentiable class having an identity transformation, it becomes
both necessary and sufficient. See Section 2.

In the special case that the class of transformations is a group, the Jacobian
matrices in the condition simplify and are independent of the parameters of the
group. See Section 3.

Brillinger’s necessary condition can also be used to investigate whether a given
model is invariant with respect to some Lie group of transformations. For this
also, it operates by contradiction: if the model is such that the condition cannot
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1062 D. A. S. FRASER

be fulfilled using matrices of the simplified form involving no parameter, then the
model is not invariant with respect to any Lie group of transformations. Bril-
linger’s Examples 2, 3 illustrate this kind of application.

Brillinger’s sufficient condition for a model to be invariant under some Lie
group is of the following two-fold nature: the necessary condition must be satisfied
by some matrices of the simplified form involving no parameter; and these mat-
rices must integrate to form a Lie group on the sample space and on the param-
eter space. Brillinger notes that the sufficient condition is somewhat tautological.
In effect it says the model is invariant with respect to some Lie group if a Lie
group can be found satisfying the earlier mentioned necessary condition (group
connectedness needed).

The essential content of Brillinger’s theorem thus relates to a given group of
transformations. It is given in this restricted form in Section 3, only rephrased
in terms of matrices. The tautological nature of the sufficient condition is then
avoided. And the range of applications is in no way restricted—rather the ex-
ploratory aspect of finding matrices of the simplified form is removed from the
theorem and attached to the application, where in essence it belongs.

There is however one context in which the general version of the theorem has
additional substance. This context involves a Lie group on a one-dimensional
sample space and one-dimensional parameter space. Group theory shows that
such a group produces translations on the two spaces appropriately expressed.
Brillinger isolates this case as a corollary to the theorem. He notes that the
corollary is inherent in Lindley [8]. The corollary, however, can be proved di-
rectly with elementary calculus: see Lindley [8] and Fraser [4].

Brillinger gives one example to illustrate his sufficiency condition; it is however
an example with the one-dimensional form covered by the corollary. Let F(x | 6)
be the Pareto distribution F(x |8) = 1 — 2™° with z = 1, § > 0. The distribution
satisfies the condition in the corollary:

F,/Fy = 68/xlnzx

a function of = times a function of 6. Brillinger uses infinitesimal operators to
generate the group, but the elementary calculus in Lindley [8] as abstracted in
Fraser [4] gives the group directly : for fixed F the condition becomes

90/9x = 6/xnx, Inz = C6;
accordingly, the distribution function can be written
F(x|8) = G(Inz/9),

giving the multiplicative group on Inz and on 6.

Brillinger’s material has been surveyed here with intent to delineate the kinds
of problem that can be handled by his theorem. These are indicated by the
following:

(i) a criterion by which some models can be shown not to be invariant with
respect to any group.
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(ii) a method for finding a group with respect to which a given model is in-
variant.

(iii) the one-dimensional problems covered by Lindley’s result.

Brillinger’s examples illustrate the first and the third. The second, if not of the
one-dimensional form covered by the third, seems relatively inaccessible.

The first and second kinds of problem are concerned with whether a given
model is invariant with respect to some group—or freely, can a model be struc-
tured by a group of transformations? Brillinger expresses interest in this as it bears
on the relationship between fiducial theory and Bayes’ theory, in effect on the
pathologies existing in an area of overlap of two theories. But is there more posi-
tive interest in the question of invariance with respect to some Lie group? I feel
that the question is in the wrong direction. Rather, in many applications the
transformation structure is primary and the model derives from it; for example,
in regression analysis a response vector is obtained from a vector of errors by re-
location with respect to given structural vectors. This alternative view is basic to
structural theory: the transformations are primary and of physical significance, the
frequency model f(x | 8) is derivative.

It is natural then to draw back to the question of invariance with respect to a
given group of transformations; in fact, to questions directly treated by the alter-
native form of Brillinger’s theorem as given in Section 3;

First: Is a model f(z | 8) invariant with respect to a group G? In essence, this
is not a differential question. For example, if y is multivariate normal withun-
restricted mean and covariance matrix and ¢ is the affine group, then one can
check directly: gy is multivariate normal; does it have parameter given by g?
In unusual circumstances one might check by differential methods in thesame
way that one might investigate whether i(z) = h(0) by checking whether
1'(z) = 0 along connected paths.

Second: What is the general form of a model invariant under a specified group?
The alternative form of Brillinger’s theorem seems directly applicable: differ-
ential equations can be obtained and, subject to difficulties of integration, the
general model can be found by solution. But again the question is essentially not a
differential question. In fact, the general solution can be obtained explicitly by
direct analysis. This is examined in Section 4.

2. Invariance and a class of transformations. Let x be a vector variable with
open sample space X C R”, 8 be a vector parameter with open parameter space
Q C R*, and f(x | 8) be a statistical model giving probability density with respect
to Euclidean volume. Let T = {(g)} be a class of transformations applicable on
X and on @ with indexing parameter g taking values in an open arc-wise con-
nected space G C R’. And suppose the maps x — (g)x and 8 — (g)0 are 1-1 with
non-singular Jacobian matrices

a(g)x/ox',  a(g)e/a0’

that have derivatives with respect to g continuous in x and g.
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A statistical model is invariant with respect to the class of transformations T if
a variable x with distribution 6 transforms to a variable (g)x with distribution
(g)0 for all g and 0. In terms of the density function, this invariance is described
by
(1) 1(9)z1(9)0)|0(g)x/0x| = f(x|6) Vg, x,6.
Both the definition and the density description provide direct methods for check-

ing for invariance.
Consider now the use of differential methods. For this suppose that In f(x | 0)
has first derivatives with respect to x and 6:

alnf(x|0)/9x’,  dlnf(x|6)/00".
The value of a derivative at a point (g)x will be designated in the manner
(2) dInf(y|6)/3y ly-ws = 9 Inf((g)x|0)/3(g)x’.
This notational form has convenience for calculation of the derivative of a
Jacobian determinant:
(9/3h")](h)x/3(g)x [n—g = (8/0h") 22 [8(h)%/8(8)x'|” ln-s ,
where the superseript (%) is to denote that the derivative is to be applied only to
the 7th row;
(3) (9/0h")[8(h)x/8(g)X |n—g = (8/0h") 2 : 3(h):/3(8): [u-sg
= (8/8(g)x')(3(g)x/3g")

where the row vector of partial derivatives is applied to the Jacobian matrix by

matrix multiplication.
Consider now the logarithmic derivative of equation (1) with respect to the

parameter g:
(3/0g") Inf((g)x| (g)0)
+ (8/0h") In {[a(h)x/3(g)x'|- |3(g)x/0X |n-g} = 0,

(4) (8/8(g)x) Inf((g)x |(g)0)(d(g)x/3g")
+ (8/3(g)0") In f(g)x)|(g)0)((g)6/0g")
+ (8/8(g)x')(d(g)x/9g’) = 0 Vg, x, 0.

The derivative being zero along connected g-paths is a necessary and sufficient
condition for equation (1) to hold:

TraEoREM 1. The statistical model f(x|0) with first logarithmic derivatives with
respect to X and 0 is invariant with respect to the class of transformations T if and
only if (4) holds.

Equation (4) has simple form; it is a vector equation that is linear in the
logarithmic derivatives of f with respect to variable and parameter.
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The extension to differentiable manifolds containing X, Q, @@ is immediate:
derivatives and Jacobian matrices are in terms of local coordinates.

3. Invariance and a group of transformations. Suppose now that the trans-
formations T form a group, and that the coordinates of gareessential. The group
of transformations is then conveniently designated by G = {g}; let g, h,abe
elements. Some Jacobian matrices at the identity e are

(5) - dag/da’ |u-e = Alg),
0ax/da’ |ae = B(x); 0a60/9a’ |,—e = C(0).
Some general Jacobian matrices can then be written
agh/og’ = A(gh)A™\(g);
dgx/og = B(gx)A7'(g);  9g6/og = C(gd)A™(g);

and the necessary and sufficient condition (4) for invariance can be multiplied
on the right by A(g) giving

(8/0gx") Inf(gx | g0)-B(gx) + (8/3g6’) In f(gx | g8)-C(go)

+ (3/0gx’)-B(gx) = 0 Ygxo0.
This can be rewritten as
(6) (9/0x) Inf(x|0)-B(x) 4 (/06') Inf(x|0)-C(6)

+ (8/8x')-B(x) = 0, Yz, 6.

Tueorem 2 (Brillinger). The statistical model f(x|8) with first logarithinic
derivatives with respect to x and © is invariant with respect to the connected group
G = T if and only if (6) holds.

Again the theorem extends to differentiable manifolds by expressing derivatives
and Jacobians with respect to local coordinates.

4. The invariant models of a group. Consider a group G that gives trans-
formations on a sample space X and transformations on a parameter space €.
The general invariant model for such a group can be given explicit form.

Let T(6) be the orbit of 6 under the group G.

T(6) = {g0]geG}.

The orbits form a partition of Q.

On each orbit T(6) choose a parameter value 6,(6) as a reference value. The
orbits and the reference values are then in 1-1 correspondence 7(8) <> 60(8).

For any reference value 6, let H(6,) be the stabilizer subgroup: H(8,) =
{h|h6y = 6, heG}. And for a general point 8 on the orbit T(8) let
6] = {g]g8 = 6, g ¢ G}; the sets [6] are the left cosets gH (8,) of the stabilizer
subgroup. And let [6]« be an arbitrary element in the coset [6].

Let x(6y) be any variable with distribution invariant under the group H(6,);
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i.e. z(8,) and hx(6;) have the same distribution, h ¢ H(6,). Then the general in-
variant model for the group G has the generic representation

The general invariant model has, for each 6, an arbitrary distribution x(8,) that is
symmetric under H(6y); the general distribution is then generated by action of the
group.

Now, let x be a variable with sample space R”, let 8 be a parameter with param-
eter space Q, and let G be a group such that the transformations on z are differ-
entiable and the stabilizer subgroups H(6,) have invariant differentials

(8) m(x|6) dx = m(hx | 8) dhx, heH(6,)
Let f(x | 8) be any density with respect to (8) that has the symmetry property:
f(x]60) = f(hx|6,), h e H(8y).
The general invariant model for the group G has then the form
(9) F(16157'% | 80(6) )ym([6]4"x | 60(8) ) [9[6]+ %/ %] dx.

ExampLE. Consider a variable x with sample space X = R” and let the group
@ be the positive affine group on p-space. Suppose the application of G to X gives
the positive affine transformations; these can be represented in matrix form by
using augmented variables and matrices:

l’ 1 1 0 0

T ay an e Aip

X = : g = : : : i l gl > O'
Zp Tp Gpr "' Qpp

Let 6 = (7, \) where 7 is a positive definite symmetric matrix having the form

| T

T e Ty
r = I:‘-l .11 lp
Mp Tpt " Tpp

and suppose the application of G to Q has the form
g0 = g(,N\) = (grg’, N).

. The group @ is transitive on the matrices 7. Thus the orbits are indexed by \;
a convenient reference point on the \ orbit is 6 = (I, ). The stabilizer subgroup
for 6, is the group 0 of positive rotations:

1 O [P O
h — (:) 011 Olp , |h| — +1.
0 0n 0pp

The sets [6] are the left cosets of 0 in the positive affine group.
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Let f(x|\) be any rotationally symmetric density:
flhx | N) = f(x|N\) heO.

The general invariant model has then the form f([6]« x| ) dx.

For a sufficiently large sample from the variable x, the group G is unitary on
the product sample space. Structural inference for this case has been submitted
to the Journal of the Royal Statistical Society by D. A. S. Fraser and S. Hag.
Structural inference when the group is not unitary has been examined by J.

Bondar.
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