The Annals of Mathematical Statistics
1968, Vol. 39, No. 5, 1381-1390

CONVOLUTIONS OF DISTRIBUTIONS ATTRACTED TO STABLE LAWS'

By Howarp G. Tucker?

Unaiversity of California, Riverside

0. Summary. This paper deals with the domains of attraction of the stable
distributions and the normalizing coefficients associated with distributions in
those domains of attraction. Using the notation F ¢ D(a) and F ¢ Dy(a) to
mean that the distribution funection F is in the domain of attraction and the
domain of normal attraction respectively of a stable law of characteristic ex-
ponent a, the following result is obtained: if F ¢ D(a) and G e D(B), where
0< a=8=2 andif {B,} and {C,} are normalizing coefficients respectively of
F and G, then F * G £ D(a) and its normalizing coefficients are { (B,* + C,*)"*}.
Two more specialized results are obtained on convolutions of distribution func-
tionsin D(2), namely: (1) if F £ Dy (2) and G e D(2)\Dy(2),then F « G ¢ D(2)\
Dy (2), and (i) if F and G are distribution functions, and if the four tail prob-
abilities vary regularly with exponent —2 and involve possibly four different
slowly varying functions, then F, G and F * G are in D(2). These latter two
results hold only for D(2) and not for D(a) for 0 < a < 2, thus adding two
exceptional properties to the normal law within the family of stable laws.

1. Introduction and lemmas. The probabilistic terminology used here is fairly
standard and can be found, for example, in [3]. However, for the sake of com-
pleteness, certain definitions and known results should be included here along
with the lemmas subsequently needed. Since much of what will be done concerns
slowly varying functions, a discussion of these is needed first.

DerFIiNITION. A real-valued function L(-) defined over some terminal in-
terval (a, «) is said to be slowly varying if (i) L(z) > 0 for all z £ (a, »),
(ii) L(xy)/L(y) — 1 as y — o« for every z > 0, and (iii) L is bounded over
every bounded subinterval of some terminal subinterval of (a, «). A function
¢ defined over some terminal interval (a, «) is said to vary regularly with ex-
ponent p if there is a slowly varying function L such that ¢(z) ~ 2°L(z) (as
T — ©).

If L is a slowly varying function, then a result frequently used states that
zL(z) — « asx — « ([4], page 59); this result is not necessarily true if (iii)
in the above definition were omitted. If now requirement (iii) in the definition
is replaced by (iii") which states that L is measurable, then it is known [2] that
(iii) also holds (but that (iii) and (iii) are not equivalent). Under requirements
(i), (i), (iii"), i.e., that L be a measurable slowly varying function, Karamata’s
representation theorem ([4], page 59) holds; namely,

(1) L(z) = c(z) exp [2(6(8)/¢) dt,
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where c¢(x) is a measurable function satisfying ¢(x) — (some constant)c > 0
ags ¢ — o, and where 6(¢) is Lebesgue-integrable over (a, z) for all z > a and
6(¢) — 0 ast — . For a complete development of this theory, see Karamata’s
basic paper [4] and Feller’s recent book [1].

In view of the definition given above, if L; and L, are two slowly varying
functions, then their produect is also. If, in addition, I, and L. are measurable
slowly varying funections (i.e., if (iii) is replaced by the stronger requirement
(iii")), then the quotient is also slowly varying; this is not necessarily true if
(iii) holds, but (iii’) does not hold [2]. When a proof requires the use of Kara-
mata’s representation theorem or requires somewhere that a quotient of slowly
varying functions be slowly varying, then the slowly varying funetions involved
must be and will be assumed to be measurable if they are not so already.

Lemma 1. If L, and L, are measurable slowly varying functions, then Ly + L.
s also a measurable slowly varying function.

(I do not know whether this lemma is true without the word “measurable”.)

Proof of this lemma follows from Karamata’s representation (1) and routine
computation.

LemMA 2. If L, and L. are measurable slowly varying functions, and if § > 0,
then

e La(z) + Lo(z) ~ La(z).

Proor. Since quotients of measurable slowly varying functions are also slowly
varying, we need only observe that by Karamata’s result quoted immediately
after the definition that 2 °Ly(z)/La(z) — 0 as ¢ — «, and thus

Ly (2) + Lo(z) = La(z){a ’Ly(z)/Lo(z) + 1} ~ Ly(z). Q.E.D.

LemmA 3. Let Fy, -+, Fp,be m = 2 distribution functions such that
1 — Fi(x) ~ Li(z)/x", 1=7=<m,
where, for some fized k ¢ {1, --- , m},
0<pm="=m<pppn=- = pn,
and where Ly, ---, L, are measurable slowly wvarying functions. Then
1 — Fy# .- % F, varies reqularly with exponent —py and

1 —Fix-oe xFpz) ~2 Y 5 Li(z).

Proor. This lemma is an extension of a result due to Feller ([1], page 271).
Its proof is similar to Feller’s and needs only Lemmas 1 and 2 in addition to the
arguments given.

LemMA 4. If ¢ is a measurable slowly varying function, then there is a differen-
tiable slowly varying function ¢ (over some terminal interval) such that o(x) ~ o1 (z)
and xe1(x) s strictly increasing.

This lemma follows from Karamata’s representation (1).

It should be recalled that F being in the domain of attraction of a stable dis-
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tribution of characteristic exponent o (denoted here by F ¢ D(a)) means that
if {X.} is a sequence of independent identically distributed random variables
with common distribution function F, then there is a sequence of positive con-
stants {B.}, called normalizing coefficients, and a sequence of real numbers {4.},
called centering constants such that the limiting distribution of

Bn_l(Xl + ce + Xn) - An

is a stable distribution with characteristic exponent a. Now necessary and suf-
ficient conditions are obtained for a sequence of positive numbers to be normaliz-
ing coefficients for some distribution function F ¢ D(a), 0 < a = 2. The direct
statement is used in Section 2. An interesting by-product of the converse is dis-
cussed after the proof is given.

LemMa 5. If F e D(a), 0 < a = 2, and if {B.} 7s a sequence of normalizing
coefficients for F, then there is a measurable slowly varying function ¢ defined over
(0, ), which must be asymptotic to a nondecreasing function when a = 2, such
that B, ~ n"°p(n). Conversely, if ¢ is a measurable slowly varying function over
(0, ®),andif0 < a < 2, or if & = 2 and ¢ is a measurable slowly varying function
asymptotic to a nondecreasing function, then thereis an F & D (o) such that {n"%p(n))
is a sequence of mormalizing coefficients for F.

Proor. The proof of the direct statement of this lemma follows from a theorem
and an example due to J. Lamperti in [5]. From Theorem 2 on page 64 of [5],
if {X,} are independent, identically distributed random variables with common
distribution function F ¢ D(a), 0 < a = 2, and if we define X, = Zlékész ,
then there is a measurable slowly varying function ¢(t), a constant 3 > 0 and a
function w(¢) such that the limit distribution of the process {f *X./o(t) + w(t)}
is that of a stable process of characteristic exponent a. The value of 8 is computed
to be 1/a by Example 1 on page 65 of [5]. We need only prove the converse. We
first do so for o < 2. Accordingly, let ¢ be any measurable slowly varying func-
tion over (0, »),let 0 < a < 2, and define B(t) = t/%(¢). Now by Lemma 4
there is a slowly varying function ¢* such that o(z) ~ ¢*(z) and %" (t) is
strictly increasing and continuous. We need only find an F ¢ ©(a) such that
{n*0*(n)} are normalizing coefficients for F. Define F by

(2) 1= F(""%"(0) = 1/t

for sufficiently large ¢, and F(¢{) = 0 otherwise. Clearly {n'°0*(n)} are nor-
malizing coefficients for F if we can show F ¢ D(a). In order to do this we first
observe that for large ¢ there exists a strictly increasing continuous function
n(t) such that

(3) ()" (n(1)) = ¢
Thus for any « > 0,
1 — F(xt) = 1 — F(x(n(t))"e*(n(t))).
Since o™ is slowly varying, then for fixed ¢, 0 < € < «, and all large ¢,
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" ()" ((x = ()] 'k(xk — )7 > 1.
Hence
1—F(t) =1 = F(k(x — ¢)7((xk = )n(1))""™((k — )"n(t))
2" ()" (k — €)"n())]™)
21— F(((x = ()" " ((x — &)™n(1)))
~ 1/(x — €)n(?).

By a similar argument one can replace x — € by k + € to obtain the inequality in
the other direction, and then by an argument involving lim sup and lim inf, one
obtains

(4) 1 — F(xt) ~ 1/*n(t).
By (2) and (3) one obtains
(5) 1 — F(t) ~ 1/n(t).

Thus, by (4) and (5), 1 — F is a function which varies regularly with exponent
—a, i.e., F ¢ D(a). In the case where @ = 2, B(f) = (1), where ¢(¢) is a non-
decreasing slowly varying function. In order that {B(n)} be normalizing co-
efficients for some F ¢ D(2), it is known ([1], pp. 304-305) that they must satisfy
nU(B,)/B.’ — (some) C > 0 asn — o, where U(z) = [, <.t dF(t). Hence
it is sufficient to find an F such that U(z)/¢’ () — C > 0 as z — . Clearly, if
such an F exists, it is in D(2) since this last relation implies that U(z) is slowly
varying. To prove that such an F exists, let us use the Karamata representation

o(z) = c(x) exp { [10(t)¢ dt}

wherec(z) — ¢ > 0asz— » and 6(t) > 0ast— . Asin one proof of Lemma 4,
since ¢(z) and ¢(zx) are not necessarily differentiable, we first define

ei(x) = cexp [T (6(t)/t) dt.

Hence ¢(z) ~ ¢1(x), where ¢; is now obviously continuous. However, (¢) is not
necessarily continuous. However, as in a proof of Lemma 4, we may re-represent

e1(z) = au(z) exp [1 (8u(t)/2) dt,

where ¢;(x) — ¢ > 0, and now ¢;(z) and 6,(¢) are continuous. Now let
u(z) = max {6(z), 0} and ¢(z) = c¢1 exp ff (u(t)/t) dt. It is easily verified that
@9 is nondecreasing and differentiable, and ¢2(z) ~ ¢1(x) ~ ¢(z). Now set

(d/dz) (eo(2))* = ar’fexp [T (2u(t) /1) d)2u(z)/x = C2f(2),

where f(x) is defined by the equality. Easily, f(x) as defined over, say, (1, «) is
nonnegative and integrable; adjust the value of C such that ff f(z) dz = 1 and
let f(z) = 0 if « £ 1. Then, if the distribution function F is defined by
F(z) = [Z.f(t) dt, we have

C [l dF () = @’(z) — @'(1).
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If [ <ot dF(t) is bounded, then F is in the domain of normal attraction of the
normal distribution; if it is unbounded, then

Sl dF (@) /0’ (x) > C or [yt dF(t)/¢'(x) > C.F QE.D.

Of side interest here is the following remark. In [7], S. N. Nagaev proved that
if { B,} is a sequence of normalizing coefficients for F ¢ D(a), where 0 < a < 2,
then B, = n'%(n), where ¢(n) is a function defined over the positive integers
which satisfies

(6) e(mn)/e(n) -1 as n— o, m=1,2---.

However, the conclusion of the direct assertion of Lemma 6 is stronger than the
conclusion obtained by Nagaev in that it is possible to find a positive function ¢
defined over the integers which is not a restriction to the positive integers of a
measurable slowly varying function and yet satisfies (6). The following example
of such is due to J. Sroka [8]. Let » be represented as a product of powers of
primes, n = [] p*, and define y(n) = 1/ kap. . Clearly ¢ satisfies (6). How-
ever, if L is a slowly varying function (satisfying (i), (ii) and (iii) ), we know (as
was pointed out immediately after the definition) that zL(z) — « asz — .
However, when 7 is a prime, then ny(n) = 1, thus showing that ¢ is not even a
restriction to the positive integers of a slowly varying function.

As remarked above, the direct statement of Lemma 5 will be applied a number
of times in the next section. The following observation gives an application of the
converse. We shall show that although two sequences of normalizing coefficients
for the same distribution are asymptotic to each other, nevertheless, if { B.} and
{C,} are normalizing coefficients for two different distribution functions in the
same D(a), 0 < a = 2, then there need be no asymptotic relation between the
two sequences. In order to demonstrate this, let ¢; and ¢, be two nondecreasing
slowly varying functions such that lim supz.. (¢1(x)/e2(z)) = o and
liminf,.e (01(x)/e2(x)) = 0. [These can be constructed as follows. Let
1 =6 <t <--- <t <--- beintegers which satisfy the following. Let 6,(¢)
be defined by 6,(¢) = 1 fortelt, &), 61(t) = % for teltz, 1), and in general
0.(¢) = 1/(2n — 1) for ¢ & [tan , tan), and 6,(¢) = 0if t &€ Uy [fen, tenr). Let

6:(t) = 1/2n for telton, tons1)
=0 for te Unai[ton, ton).

We can require {t,} to satisfy oi(f) = 2, @) = 1, oi(ts) = e(te),
e(ts) = 2a(h), a(t) = 2%e(h), e(ts) = eu(t), ete, where pi(z) =
exp [T (0:(2)/t) dt, i = 1, 2. Clearly t, — », 6:(t) > 0 as t > =, s0 ¢1(z) and
¢2(x) are nondecreasing slowly varying functions which obviously satisfy
lim sup ¢1(x)/e2(x) = oo, and liminf ¢1(x) /@2(x) = 0.] For any fixed « ¢ (0, 2],
let B, = n'e1(n), and let C, = n%ps(n). Now it follows by the converse in
Lemma 6 that there exist distribution functions F, G in D(«) such that { B,} and
{C,} are normalizing coefficients for F and @ respectively. However, B,/C, oscil-
lates arbitrarily close to 0 and 4+ « as n gets large. This completes the demon-
stration.
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2. Properties of convolutions and their normalizing coefficients. In this
section we investigate the following problem: If F ¢ D(a) and G e D(B), where
0 < a =<8 <2 andif {B,} and {C,} are their respective normalizing coefficients,
then what can be said about the domain of attraction and the normalizing co-
efficients for F * G?

THEOREM 1. Let F ¢ D(a) and G ¢ D(B), where 0 < a < B = 2, and let { B,} be
normalizing coefficients for F. Then F G ¢ D(a), and {B,} are normalizing co-
efficients for F x G.

Proor. Let {X;,Y:, X,,Y,, - - -} be independent random variables such that
F is the distribution function for each X, and G correspondingly for each Y,.
Let {B,} and {C.} be sequences of normalizing coefficients for F and G respec-
tively. There exist centering constants {b.} and {c,} such that the limiting dis-
tributions of random variables U, and V, defined by

Un = Bn—l(Xl + A + Xn) - bn a'nd
Vn = Cn—1<Yl + R = Yn) — Cn

are stable distributions with characteristic exponents a and B respectively.
Further, the limiting joint distribution of {(U., V,)} is that of two independent
random variables. Let Z, = X, + Y., D, = b, + ¢.C./B, . Then

Bn'—l(zl + s + Zn) - Dn = Un + (Cn/Bn)Vn

By Lemma 5 there exist measurable slowly varying functions ¢ and ¢ over
(0, ) such that B, ~ n"%(n) and C,, ~ 1"y (n). Hence

Bn/Cn ~ n“’"‘)_“’mqa(n)/\lx(n).

From the discussion preceding Lemma 1, it follows that ¢/¢ is a measurable
slowly varying function over (0, «). This fact is needed in order to be able to
conclude, by a lemma due to Karamata mentioned earlier, that B,/C, — « or
C./B. — 0 asn — . Then by an easy argument it follows that the limit dis-
tribution of {U, + (C./B.)Va.} is the same as the limit distribution of {U.,},
which proves the theorem. Q.E.D.

Theorem 1 serves mostly as a lemma for the following theorem, although
it does have its independent interest.

THEOREM 2. If F ¢ D(a) and G ¢ D(B), where 0 < a = B = 2, and if {B.} and
{C,} are normalizing coefficients for F and G respectively, then F G ¢ D(a) and
{(B.* 4+ )"} are normalizing coefficients for F  G.

Proor. Case (i) 0 < a < 8 £ 2. The above theorem readily follows in this
case from Theorem 1, since by Lemmas 2 and 5, B, + C.* ~ B,". Case (ii)
0 < a = B £ 2. In this case the characteristic function that we use for the stable
distribution is

(6)  flu)

exp {iau — clu|*{1 + 28(u/|u|) tan (ra/2),}} if « # 1
exp {tau — clul{l + B(w/|u|)2(log |u|)/7}} If « =1,
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where @ is any real number, —1 < 8
verify that if ¢ = 0, then for p > 0,
satisfies
(7 F@"Wf(¢" ) = f((p + 9" u) = f(u) i a1

= f(u)e™™ if a=1,
where v = —2¢B(p log p + qlog q)/=. Now by Lemma 5, there exist measurable
slowly varying functions U(z), V(z) such that B, ~n'/°U(n) and
Cn ~ n"*V(n). We may select the centering constants {b,} and {c,} so that the

limiting distributions of {S,} and {7} are stable with characteristic exponent a
with characteristic function given by (6), where @ = 0 in (6), where

Sn = 2 ks Xu/n*U(n) — b,
Tp = 20 Yi/n'*V(n) — ca,

and where {X;, Y;, X;, Y;, -} are as in the proof of Theorem 1. Let us
define

=<1,0 < a = 2andc¢ = 0. One can easily
g > 0and p + ¢ = 1, the function f(u)

W(z) = (U*(z) + V()"

A simple argument and Lemma 1 imply that W(z) is a slowly varying function.
Let us define

Zn = 2 pt (X + Vi) [n'*W (0)]
— (U)W @)) ™ + eV () (W(n)™ + h(a)),

where h(a) = —2¢8(plogp + qlogq)/wif & = 1 and = 0 otherwise. If we de-
note p, = U)/Wn), g» = V(n)/W(n), then Z, = puSn + ¢.T» — h(a),
where p,” + ¢.° = 1. Notice that for each n, S, and T, are independent. In what
follows, let us denote the characteristic function of a random variable X evalu-
ated at u by fx(u). Let {p.} be any convergent subsequence of {p,} and {g.}
the corresponding subsequence of {¢.}. Then p, — (some) p = 0, g.» — ¢q 20,
and p* + ¢ = 1. It follows that f, s, (4) = fs,.(pau) — f(pu) and
Soprrn () = fr,.(gnu) — f(qu), where f is as defined in (6). Hence

(8) Faar (W) = f(pu)f(qu) = f((p* + ¢*)""%) = f(u).

Since for every convergent sequence of {p.}, (8) holds, it follows that
fz, (u) = f(u), i.e., F *+ G ¢ D(a) with normalizing coefficients { (B.* + C.*)"%}.
Q.E.D.

3. On the domain of attraction of the normal distribution. So far results have
been established which determine the domain of attraction of the convolutions
of two distribution functions, each of which is attracted to a stable law; in ad-
dition, the sequence of normalizing coefficients of the convolution is obtained.
In this section the finer structure of the domain of attraction of the normal dis-
tribution is examined, and two theorems on convolutions of distributions in
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D(2) are obtained. Each of these two theorems add to the exceptional nature of
the normal distribution within the family of stable laws.

In what follows the symbol Dg () will denote the domain of normal attraction
for the stable distribution with characteristic exponent «. If both F and G are in
Dy (2), then trivially so is F * G. A first case beyond this is the following.

TurorEM 3. If F and G are in D(2), if F £ Dg(2), and if G € D(2) \ Dx(2),
then F * G € D(2)\Dg(2).

Norte. This theorem is not necessarily true when ©(2) and Dy (2) are replaced
by (&) and Dg(a) respectively, when 0 < @ < 2. As an example, consider F
and G defined by 1 — F(z) = 27 %ifx =2 land = 1ifz < 1,and 1 — G(z) =
2z %/logz if z = 2 and =1 if x < 2. Thus by Theorem 5 on page 181 of [3],
F e Dq(a) and G e D(a) \ Dg(a). Now by Lemma 3, 1 — F x G(x)
~ z7%(1 4 1/log z), which by this last reference implies that F * G ¢ Dy (a).

Proor oF THEOREM 3. Let {B,} and {C,} be normalizing coefficients for F and
G respectively. We may take B, = n’. Following the proof of Theorem 1, we
need only show that Cn/B, — © asn— ». Let usdenote U(z) = [|4 <. dG(2).
Then {C,} must satisfy nU(C,)/C.> — (some) K» > 0 as n — . In order to
prove C,/B, — « we must prove that for arbitrary (large) K > 0, C, = KB, for
for all large n. Let us suppose the contrary. Then there is a Ko > 0 such that

Cn < KOBn = Ko"}

for infinitely many values of n. Hence,
1/C) > 1/K¢B." = 1/K¢'m,  or 1 ~nU(C,)/KCdk > U(C) /KKy

for infinitely many values of n. But C, — « so U(C,) — « since G £Dg(2)
(See Theorem 4 on page 181 of [3]). This involves a contradiction, and hence
Cu/B, — x© asn — «. QE.D.

We now consider distribution functions in ©(2) whose tail probabilities vary
regularly with exponent —2. It should be noted that it is possible to have some
distribution functions in D(2)\Dyx(2) which do not have tails which vary regu-
larly with exponent —2 and some that do. An example of an F & D(2)\Dg(2)
and such that neither 1 — F(z) nor F(—z — 0) varies regularly is given in [1],
page 279, problem 29. The following such example seems easier. Let F be discrete,
taking jumps only at points 2"'* of size 1/2",n = 1,2, --- . We now prove that
U(z) = [ dF(t) is slowly varying. Indeed, if z > 1, then there is an integer r
such that 277" < z < 2% and

1=U)/U(y) = Uly)/U(y) = (Uy) +1)/U(y) -1

as y — =, since clearly U(y) — « as y — . A similar argument holds for
0 <z < 1.ThusF £ D(2)\Dg(2) by Theorem 1 on page 303 of [1] and Theorem 4
on page 181 of [3]. In order to show that 1 — F does not vary regularly with
exponent —2, we only need show that if we let

o(z) = (1 — F(2"%))/(1 — F(x)),
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then ¢(z) does not converge to 27 as £ — «. One easily sees that for
x = 2" theno(z) = 1, whileforz = 22799 then o(x) = 3, which con-
firms what was last asserted.

An example of a distribution function with a tail that varies regularly with
exponent —2 and is in D(2)\Dg(2) is not given here. All one needs is any dis-
tribution with such a tail probability and infinite variance, and it will turn out,
because of Theorem 4, that it is in D(2)\Dyx(2).

THEOREM 4. Let F and G be distribution functions such that each tail probability,
i.e., each function 1 — F(x), F(—z), 1 — G(z), G(—x) defined for x > 0 varies
regularly with exponent —2, but allowing each of the four to be associated with
possibly a different slowly varying function. Then F, G and F * G are in ©(2). In
particular, if F and G are in D(2)\Dgx(2), then so is F * G.

Proor. By Lemma 3,1 — F «G(z) and F * G(—zx) each vary regularly with
exponent —2. If F and G are both in D(2)\Dy(2), then Theorem 4 on page 181
of [3] implies that F * G ¢ Dy (2). It remains then only to prove that F, G and
F G ¢D(2). By Lemma 3 we know that each of the six tail probability func-
tions of F, G and F * G varies regularly with exponent —2, with each of the two
tails of the same distribution being associated with possibly different slowly
varying functions. We therefore need only prove if H is a distribution function,
and if 1 — H(z) and H(—z) each vary regularly with exponent —2, then H ¢ D
(2). One way of proving this is to use Theorem 1 on page 172 of [3] which states:
H & D(2) if and only if

(9) ®(x) = 2 [ dH(t)/ [ )51 <o £ dH(t) — 0.

By Lemma 1 it follows that fm>, dH(t) = 2 °L(z), where L(z) is a measurable,
slowly varying function. Integrating the denominator of (9) by parts and taking
reciprocals, we get

1/®(x) = 2[5 (L(t)/t) dt/L(z) — 1.

Applying Theorem 1 on page 273 of [1] and by taking, in that Theorem, p = —1,
8 = 0, we have 0 < L(x)/[5 (L(t)/t) dt — 0 or 1/®(z) — = or ®(z) — 0 as
x— «.QE.D.

An interesting by-product of this last theorem adds to the exceptional character
of the normal distribution within the realm of stable distributions. If F ¢ D(a),
0 < a < 2,if the ratio (1 — F(x))/F(—z) does not converge to either 0 or «,
and if beth 1 — F(z) and F(—z) vary regularly with exponent —«, then for
some constants ¢; > 0, ¢; > 0, both ¢,z(1 — F(z)) and ¢,z®F(—z) are asymp-
totically the same slowly varying function, i.e.,

ax®(1 — F(x)) ~ cx"F(—2z) ~ L(z),

where L(z) is a measurable slowly varying function. However, if I, and L, are
any two measurable slowly varying functions, and if H is a distribution funection
satisfying 1 — H(z) ~ 2 °Ly(z), H(—z) ~ 2 °Ls(z), then H £ D(2).
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