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SIMPLE PROOFS OF SOME THEOREMS ON
POINT PROCESSES

By R. K. MILNE

The Australian National University

0. Summary. For stationary point processes in R" a (proper) distribution of
group size is shown to exist and a simple proof of the result:

intensity = parameter x mean group size

is given. A generalization of this result to higher order moments is proved by
similar methods.

1. Introduction. We shall be concerned throughout with an n-dimensional,
perhaps non-orderly point process (see Khinchin [5] and Goldman [4] for the
terminology). Let N(S), a random variable, denote the number of points of the
process in the set S< R". The sets S we consider will always be half-open intervals
in R" i.e. sets of the form [a,, b,) x *-* x[a,, b,). We shall assume that our process
is stationary in the sense that for all nonnegative integers k, P{N(S+7t) =k} =
P{N(S) =k} for all reR" and all bounded sets S R" where S+7 = {x+7:x€S}.
This just expresses a property of invariance under translations for the one-
dimensional distributions of the process. We can then let S, (x) = [x;, x; +¢) x -
x [x,, x,+1), (xeR"),S,=5,0), p(t) =P{N(S,) =k} (k=1,2,---), and the
intensity m =&N(S;)= Y i 1kpi(1). Finally, we remark that a reasonable finite-
ness condition will always be necessary but we introduce such conditions later as

required.
For point processes in R it is well known that, when the process is orderly
1) lim, o t™'[1~po(t)] = m

(“Koroliuk’s theorem’: see Khinchin [5] page 41-42, also Zitek [10] and Lead-
better [6]). Extensions of this result for point processes in R' with ancillary
variables are implicit in the work of Matthes [7]. This case includes that of a non-
orderly point process in R'. Here the result analogous to (1), namely

) lim, ot [1=py()]-a=4a=m

where a is the mean group size (we show later that the distribution of group size
exists and is proper) has been proved independently by Beutler and Leneman [1],
Fieger [3], and Slivnyak [8], [9]. Slivnyak’s methods were measure theoretic making
heavy use of his fundamental formula ([8] Equation 8, [9] Equation 13). Fieger,
who was also interested in analogues of (2) for non-stationary processes, employed
theorems from the theory of the Burkhill integral. The arguments of Beutler and
Leneman [1] depended on extension of the elementary convexity properties noticed
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by Khinchin [5]. The results of Beutler and Leneman [1] also imply, for point
processes in R!, that the limit

3) lim, ot~ V(1) = Ma*+1v)

where V() = Var N(S,) and v is the variance of the group size, with similar results
for the higher order moments. It is the purpose of this note to provide simple proofs
of these results using extensions of a technique suggested by Leadbetter [6]. The
proofs are given for point processes in R"; in this case we are not even aware of a
previous proof of the result analogous to (1).

2. Intensity related to parameter and group size. We first adopt some suitable
notation. If we write N, for the number of groups of size k (k =1, 2, ---) in the
unit cube S, and N* for the total number of groups in S, then N* = 2| N, and
N =Y, kN, is the total number of events in this cube.

A finiteness condition is imposed on the process by assuming that with probability
one the random variable N* is finite. Where necessary later the stronger assumption
EN* <oo will be employed. In the last theorem the still stronger assumption
EN* < oo (e =1) will be needed.

We shall now prove the first of our results which extends the results of Theorem
1 of Leadbetter [6].

THEOREM 1. The limit lim, ot ~"[1 —po(t)] exists and is always equal to EN*. Also,
Sfor k =1,2,--- the limit lim, ot ~"p,(t) exists (whenever & N* < o) and is equal to
EN,.

In R! the existence of the limits can be deduced from elementary convexity
properties as was originally done by Khinchin [5] Section 7, Section 8 for a
specialized class of stationary point processes. However, our methods (cf. Lead-
better [6]) enable the existence of these limits, and their values, to be determined
concurrently even for stationary point processes in R". None of the approaches of
previous authors have seemed capable of such easy extension to R".

ProoF. Consider a subdivision of the unit cube .S, into m" equal small cubes and
define indicator functions by

WmPD =1 if N(Sy0) =k,
=0 otherwise;
for iel where I = {ieR":i;€ {0, 1/m, -+ .(m—1)/m}, j=1,---, n}. Then
Vit =1 if N(SymD)zr
=0 otherwise;

and Y,0 =Y, Y, xm™(i) =the number of cubes of the subdivision containing
at least r events.

We now prove that as m —» oo, Y,,” — Y ., N, with probability one. Indeed, since
with probability one there are only a finite number of points in the unit cube S,
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at which groups of events occur, each of these must be an isolated point, and hence,
with probability on¢, there exists an m, such that Y, = Y2 N, for all m = my,.

In the case when &§N* < o, since Y, < N* for all m, r, it follows by dominated
convergence that as m -, 6Y,” - &Y 2, N, .But& Y, =3, P{N(S,,,(i)) =
r} = m"P{N(S,,,) 2r} by stationarity. Thus we have lim,,_, ,m"P{N(S,,,) 2 r} =
&Y, N,.

Now from the monotonicity of P{N(S,) =r} as a function of + we deduce the
inequalities

@ ( I ) PING-nen-) 27} _ PINS) 2 1)
[ 1]+1 1+ "
LA

(where [u] =the greatest integer less than u). It then follows that

lim, ot 7"P{N(S) = r} = €Y, N, r=1,2---
and hence that
&) lim, ot ™ "p(t) = €N, k=1,2---
and
(6) lim, o 17"[1—po(t)] = EN*.

The latter result (6) can be easily proved when § N* =co by an application of
Fatou’s lemma. The theorem is thus proved.

By Theorem 1 we are able for a stationary point process in R”", to define the
parameter ). by

(M A =lim, o t7"[1=po(1)]
and, for k = 1, 2, - -+, the clearly nonnegative quantities r, by
(®) e = lim, o p(O[1 = po(D] ™"

The case A =0 is trivial, for, by subadditivity, we have 0 < 1—py(z) £ At" for
all ¢+ and hence py(t) =1 if A =0, which implies that with probability one no
events occur, a case we may readily exclude. We therefore assume A > 0. From
L=po() = Y.F pu(t) £ Y ¥ kp(t) = mt" it is clear that 2 < m. Since the quantities
PO =po(1)]” 'k =1, 2, -+ obviously form a proper probability distribution for
every t > 0, their limits 7, form a possibly improper distribution {r,}. On the
basis of the relation (8) we shall refer to m, as the probability that a group is of size
k (cf. Fieger [2] in R'); we shall shortly show that in fact the m, form a proper
distribution, whose mean is equal to m/A (A4 < o).

THEOREM 2. The parameter 1 defined in (7) is equal to the overall mean rate of
occurrence and, when this latter quantity is finite, the mean rate of occurrence of
groups of size k is equal to Am,, where m, is defined in (8).
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Proor. From Theorem 1 we have immediately, using the definitions (7) and (8)
that A = §N* £ o0 and &N, = An, when EN* < 0.

When £§N* < oo this theorem also implies (since the terms in the sums are non-
negative) that A = §N* =Y &N, = 1) ' m,, whence Y m =1 (since A>0)
and

) m=6EN=)Y7kéN, =AY P km, =2 x mean group size.

Also, we may remark that the property of orderliness, defined to mean ) 3p,(t) =
o(t") as t | 0 (cf. Khinchin [5] for the case n = 1), is now clearly seen to be equivalent
(when &N* < o0) to the assertion that m, =0 (kK =2) and hence to the more
intuitive notion that events occur singly with probability one (Dobrushin’s lemma
and its converse).

3. Higher order moments. We now consider the moments Z,;”:l k*p(2) = p(2)
say, where « is fixed. Since N(S,) is nonnegative and non-decreasing in ¢ we
obviously have u,(t) monotonic non-decreasing in ¢ for all « = 1. In fact we can
readily prove the stronger property

(10) Ba(t1 1) 2 po(81) + p,(22).
The next theorem proves an easy generalization of the result (9).

THEOREM 3. For a =1 the limit lim, ot ~"pu,(t) exists whenever §N* < co and is
then equal to A ;> k*r, .

ProoF. Using the same notation as before we see that Y ;2 ; kx,, (i) = N(Sy/n(i))-
In this case we start from the result

Zi el (Zf 2 1 k(@) - Zi» =1 k*N,

which can be proved as earlier the two sides again being equal, for sufficiently
large m, with probability one. If we assume §N* < oo, then it follows from a
generalization of (10) that we can apply the dominated convergence theorem and
take expectations in this limit relationship. But, by stationarity, the left-hand side
has expectation m"u,(1/m) while the right-hand side (since all terms are nonnegative)
has expectation ) ;2 k*¢N, = 1) %, k*m, by Theorem 2. The monotonicity of
u,(t) then facilitates the use of inequalities analogous to (4) thus yielding
(11) lim, o t ™" (1) = A ) 3%, k*my
and completing the proof.

In particular, we consider V(r) = Var N(S,) = u,(1)— 1 «(®1? and find

lim, o t7"V(f) = lim, ot ""py() = AD % k’m, = A X mean square group size.

REMARK. At the expense of a more complicated notation all the above results
could be proved for sets S(x, t) = [x,, x; +¢;) x - x [x,, x,+1,) instead of just
for the special case ¢; = ¢. e.g. The first result of Theorem 1 would then read: the
limit

lim, o (JT#= 1 8) ™ '[1 = po(®)], I =maxX;g;<pt;

exists and is equal to §N*.
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Finally, we mention that the results of our three theorems are already known (or
at least implied by known results) for the special case of stationary point processes
which are also completely random i.e. which are such that, for all finite collections
of disjoint subsets of R" the numbers of events in these subsets are independent
random variables (for R' see Khinchin [5] Section 8, Section 11; for R" the
generalization is obvious).

Acknowledgments. The author is especially grateful to Dr. D. Vere-Jones and
Dr. M. Westcott for helpful discussions and to the referee for his comments.

REFERENCES

[1] BEUTLER, F. J. and LENEMAN, O. A. Z. (1966). The theory of stationary point processes.
Acta Math. 116 159-197.

[2] FieGer, W. (1964). Zwei Verallgemeinerungen der Palmschen Formeln. Trans. 3rd Prague
Conference on Information Theory, 107-122.

[3] Fieger, W. (1965). Eine fiir beliebige Call-Prozesse geltende Verallgemeinerung der Palm-
schen Formeln. Math. Scand. 16 121-147.

[4] GoLpmaN, J. R. (1967). Stochastic point processes: limit theorems. Ann. Math. Statist. 38
771-779.

[5] KHINCHIN, A. YA (1955). Mathematical methods in the theory of queueing. Moscow, Izdat.
Akad. Nauk. (English translation, Griffin, 2nd ed., 1969).

[6] LEADBETTER, M. R. (1968). On three basic results in the theory ot stationary point processes.
Proc. Amer. Math. Soc. 19 115-117.

[7] MatThEs, K. (1963). Stationdre zufallige Punktfolgen 1. Jber. Deutsch. Math.-Verein. 66
66-79.

[8] SLivNYAK, 1. M. (1962). Some properties of stationary flows of homogeneous random events.
Theor. Probability Appl. 7 336-341.

[9] SLivNyak, 1. M. (1966). Stationary flows of homogeneous random events (in Russian).
Vestnik Har’kov Gos. Univ. 14 73-116.

[10] Zitex, F. (1957). A note on a theorem of Koroliuk (in Russian). Czechoslovak Math. J. 7

318-319.



