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APPROXIMATE CONFIDENCE LIMITS FOR COMPLEX
SYSTEMS WITH EXPONENTIAL COMPONENT LIVES

By J. M. MYHRE AND SAM C. SAUNDERS
Claremont Men’s College and Boeing Scientific Research Laboratories

The asymptotic distribution of the log-likelihood ratio is shown to
provide a method of determining approximate confidence bounds for the
reliability function of any coherent system when each component has an
exponential life with unknown failure rate and component performance
data are provided in the form: number of failures (minimum of one) and
total operating time. Thus the method applies under all general types of
censoring. This extends the results of the authors, Ann. Math. Statist.
(1968), on confidence limits for coherent structures with binomial data on
the component’s reliability. Methods similar to those previously utilized
are combined with some special properties of the exponential distribution to
obtain the results.

0. Introduction. The problem of establishing confidence limits for the reliability
of systems has now extended over a decade. The first results were those of Buehler
[2] in 1957. The problem he considered was equivalent with finding exact confidence
limits for two components in series with binomial data on each component. The
construction of tables of exact bounds for up to three component series systems
with binomial data of various sample sizes for the components was done by Lipow
and Riley [7]. This work in two volumes was published by the Defense Documen-
tation Center.

However, the bulk of the tables for even such small numbers of components
made the use of simpler approximate confidence limits quite appealing. Madansky
in [9] utilized the asymptotic distribution of the likelihood ratio and the usual
practice of inverting a test to obtain a confidence bound, to yield approximate
confidence bounds for series, parallel and series-parallel systems.

Lentner and Buehler [6] used the Lehmann-Scheffé theory of exponential
families to find exact confidence limits for the specific case of components in series.
Due to the difficulty in computing these limits, El Mawaziny and Buehler [4] give
an approximation to this exact solution for the case where the sample sizes for all
components are large and the failure law for each component is exponential.

Approximate confidence intervals for the reliability of any system (or structure)
which can be represented by a monotone Boolean function of Bernoulli variates
were obtained by Myhre and Saunders [11]. There the component failure data were
the outcome of a number of Bernoulli trials for performance or nonperformance.
That paper was an extension of the results of Madansky loc. cit., for series systems
and it depended upon the adequacy of the asymptotic distribution of the likelihood
ratio. Here we will follow the same general lines of argument used in [11] to obtain
approximate confidence intervals for system reliability from samples of component
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life lengths but the assumption of binomial data on performance of each component
is replaced by the assumption of component life length being exponentially
distributed.

This work also is closely related to the paper by Madansky and Olkin [10], but
we concentrate here on the problems special to confidence intervals for reliability
of systems, while they are concerned with other constraint parameters.

1. The general coherent system and the likelihood ratio. Let the number of com-
ponents in a given system be m. The state of components, at any given time ¢ > 0,
is the random vector Y(#) = (Y,(t), -*+, ,,(1)) where Y,(r), a Bernoulli random
variable, is the indicator of performance for the jth component at that time. It is
assumed that the system has a unique representation as a nondecreasing Boolean
function ®, the functional value of which, ®(Y(?)), is the indicator of the state of
the system. We assume without loss of generality that each component of ® is
essential, [1], page 64.

The reliability of the jth component is EY () and similarly the reliability of the
system is E®(Y(¢)) at any time ¢ > 0.

If the life length of the jth component X; = sup {¢ > 0: Y(r) = 1} is exponentially
distributed for j = 1, - - -, m, then the density of X ; is

(L.1) Si(8) = A;exp(—4;t) for t > 0.
Let A = (44, -, 4,) be a point in the parameter space
H = {1, An):0<4;<00,j=1,",m}.

Since we are primarily interested in the system reliability at a prescribed time
(in certain cases called the mission length) we can without loss of generality take
it to be unity. We now set h(1) = E®[Y(1)]. One sees that

(L.2) h(2) = Y, @) [17=1 {yyexp (=2 +(1 =y [ —exp (= 1)1}

where y = (y,, -+, »,) is a vertex of the m-dimensional unit hypercube and the
summation is over all such vertices.

Suppose that n; > 1 identical replications of the jth component are tested for
J=1,---,m. Consequently, observations are made on independent random
variables identically distributed as X ;» which by our convention are life lengths
expressed as multiples (possibly less than one) of the given mission length.

If we let t; denote the total observed test time for the jth component and
/(1 = s; £ n)) denote the observed number of failures during the time ¢ ;> then it is
known that the log-likelihood, except for some constant not depending upon 4, is
merely

The s; and #; may both be random and censoring may also be random independent
of the life distributions. This fact for exponential distributions was first given by
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Herd [5] and Sampford [13]. Also in this connection, see the discussion by Cohen
in [3]. The logarithm of the likelihood ratio, say L(r), is given by

L(r) = SUP(2: h(ay=r) L*(A)—sup; ¢ » L*(4).

We now follow the usual method of inverting a test, in this case the likelihood
ratio test, in order to obtain a confidence interval.

Proceeding as we have done in [11] we utilize Wilks’ theorem [14] on the
asymptotic behavior of the logarithm of the likelihood ratio to obtain a confidence
set of level y for the system reliability at the mission length. This is {r: —2L(r) <
%,2(1)} where x,%(1) is the yth quantile of the Chi-square distribution with one
degree of freedom.

Since the maximum likelihood estimate of 4; is yi j=(s/tpforj=1,-+, mwesee

L¥(A) = sup, e  L*(A) = Y7 [s;1ns;—s;(Int;+ 1)].
To maximize L*(A) subject to the restriction A(1) = r, we proceed as in [11] and

use a Lagrange multiplier J, take partial derivatives, and equate to zero. This yields
the system of equations

(1.3) %—t,:aa,.h(x) (G=1,-+,m)
J

where 0; h is the partial derivative of 4 with respect to its jth argument. The existence

of d;h follows from the definition of h. For given 6 denote the vector solution of

(1.3) by A(5), assuming presently that it exists and is unique within 2, which we

shall later prove in Theorem 3. Note that A(0) = 1.

Since Lagrange multipliers are being used, the confidence set may conveniently
be written in terms of the multiplier § rather than in terms of the reliability r. If
we define

A@®) = LTI - LX)
for those values of & for which A(6) exists, then we can obtain

THEOREM 1. If hA(-) is monotone decreasing across an interval [6~, 5% ] where
8~ <0< 8" are two values of S for which A(8) = —4y,%(1) then
(1.4) {rihd(37) > r>hi(6%)} = {r: —2L(r) < %2 (D}
The proof is analogous to the corresponding result of Theorem (1.7) given in [11]
and so will not be given here.
3 To complete this argument we must show that there exists values of § for which
A(d) exists uniquely, and hopefully can be easily found, and also that there exists
values of § in an interval about zero for which AA( - ) is decreasing. We turn to these
tasks now.

2. The contractive operator and the iterative procedure. The transformation A
from 4 into J# for fixed & we define by setting its jth component for j =1, -+, m

Sj

A[238) = —
A0 = 50, b
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This is suggested by solving (1.3) as if 9; & were constant. It is clear that 4;(4; )
is continuous in J, where defined. Since 0;h(4) <0, see equation (1.7) below,
A(4; ) is an increasing function of ¢ for t; > —09; (). We will now show that
A is a contractive map of the complete metric space # into itself and hence has a
unique fixed point, A(5).

For a given structure ® define the criticality of the jth component in the structure
by

¢j= Zy,,i;ejq)(,"lj: 1)—(1)(}’“:0)

where (y]j:x) = Yim1 X Yiwrs s Ym) for x =0, 1.
We now have

THEOREM 2. For each ® (or h) and all § such that

noos;c 1

2.1 min (¢y,***,t,)>06>0 and I <z

( ) (1 ) jgl(tj_a)z S
mose. 1
2.2) 5<0 and ¥ YP<
=T

the transformation A(- ; 8) is a contractive map of the complete metric space (H#, d)
into itself where d(4, p) = 1/mY 7 lllj—,ujlfor A ue .

ProoF. It must be shown that there exists pe[0, 1) such that d[A4(1), A(w)] =
pd(2, ) for all A, ue #. We shall omit showing the dependence of both 4 and p
upon ¢ in order to simplify the notation, thus
[t;+60; h(A)][t;+00; h(w)]

Following in turn the steps of the corresponding Theorem (2.4) proved in [11],
which carry over directly to this case we obtain the inequalities

10, (1) — 0, ()] < me; (G )

A j('l) -4 j(#) =

and

” s;¢;0d(A, )
d(A(A), A(n) = T .
(AOL AU = 2, 53, WL+ 505 )
Now from known properties of coherent systems, see [1], each component of
which is essential it follows that

(2.3) 0;h(2) = e % [h(A|j:0)=h(A]j:1)] <O.

It also follows from (2.3) that 8;h(2) = —e™* = —1. Thus it is sufficient to require
that (2.1) hold for § > 0 and (2.2) hold for § < 0. []

For any A°e # we define the sequence A"(8) = A(A""1(8); §) n =1, 2, - - - where
2°(8) = 2°.
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THEOREM 3. For every ¢ in the neighborhood of zero defined by the inequalities
(2.1) and (2.2), a unique solution to the system of equations (1.3) exists, call it ().
It can be found for any initial point 1°e # as lim,_, , A"(8) = 1(9).

Proor. That A(-; §) for § within the prescribed neighborhood of zero has a
unique fixed point

2(8) = lim A%(8) = A(A(5): 6)

follows from the known behavior of contractive maps, e.g. see [8], page 27. [

Thus we have established the first claim which was made, namely that A(5) exists
uniquely. The proof of Theorem 1 was based on the fact that the existence of 1 1(6)
implies the existence of 1;(§). We now prove a stronger result which will be used
later.

THEOREM 4. The function A(-) is a continuously differentiable function within the
neighborhood of zero prescribed by (2.1) and (2.2).

Proor. Fix ¢ within the prescribed neighborhood and let B be the vector valued
function with its jth coordinate defined by

S
Bj(4:6) = 56,-h(l)+t,-—f .
J
By Theorem 3 the equation B(4:8) =0 has a unique solution, call it . Thus the
Jacobian is not zero, i.e. det d; Bj(/T; 6) # 0. From the implicit function theorem the
continuous differentiability of the function B is inherited by A. Thus if 1 exists it is
continuously differentiable. []

In view of Theorem 3 and Theorem 4 it remains only to show that 4#1(d) is a
decreasing function of 4. We then have the result that for any coherent structure ®
an approximate confidence interval for the reliability function 4 is given by (1.4)
in Theorem 1.

THEOREM 5. For any coherent structure ® with reliability function h and any
Jailure data such that s; = 1, there exists a neighborhood of zero in & across which
hA(d) is decreasing in d.

Proor. Take the derivative of both sides of (1.3) with respect to &, primes
denoting such differentiation. We obtain for j =1, -+, m

(2.4) G =0 hI 48 Y 0y k()Y
i=1

(zj)z ’ J

where we have omitted the argument §. Multiply by 1 ;" on both sides of (2.4) and
sum to obtain

d . mS mom
(2.5) —%h[/l(é)]=j§1 (zj)z(lf )2+5i=zlj§1 3, h(A;
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For § = 0, the left side of (2.5) is positive and from its continuity it follows that
there exists a neighborhood of § about zero such that 4(5) is a decreasing function
of 6. [J

3. Concluding remarks. An alternate method that may suggest itself for con-
struction of confidence limits uses the theory of asymptotic normality of maximum
likelihood estimates. Such intervals would be of the form 4(1)+ cé where 82 is the
maximum likelihood estimate of the variance of #(2). This method seems deceptively
simple and direct. We suggest the likelihood ratio method, however, for two
reasons.

Firstly, in many of the current applications, e.g., space launch vehicles, the
reliability is calculated at such short times relative to the test data that the maximum
likelihood upper bounds, because of their symmetry, may exceed unity. Such
behavior has been observed in [12]. This tends to reduce our assurance in its
accuracy. The likelihood ratio bounds are not symmetric when the reliability is
close to unity and do not suffer from this defect.

Secondly, we feel that the computation necessary to use the maximum likelihood
method for general systems of large order, as defined in (1.2), presents greater
computational difficulty than does the likelihood ratio method in many instances.
For example, if one can use the fact that the sample size for each component is
large and equal, say to n, then the assumption 4(1) is normal with mean A(1) and
variance 1/nY 7o, 6;*[0;h(1)]*, where o,*/n is the asymptotic variance of Z,, might
well be preferable.

However, the usual case is that the sample sizes for each component are unequal
and small, while the order of the system is large. In this case EA(L) may not be close
to h(A), the asymptotic variance is not applicable, and computing the exact variance
involving Eh*(1) would require machine computation in the form of Bessel functions
and would still contain the unknown A; and other parameters depending upon
random censoring.

Although the likelihood ratio procedure does require some analysis, it seems to
result in a method which is practical, even for large complex systems under general
censoring conditions, since iteration by contractive operators converges so rapidly.

Lastly, we have continually used the phrase, “number of failures (minimum of
one),” because contrary to the supposition that the asymptotic results require the
number of failures for each component to be large, we conjecture that under certain
conditions it is sufficient to have only the order of the system large for the asymp-
totic theory to apply. Although the investigation of the conditions necessary for
asymptotic convergence is not complete in either case, some results of this nature
are known at present and will be reported subsequently.
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