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ABSOLUTE CONTINUITY AND RADON-NIKODYM DERIVATIVES
FOR CERTAIN MEASURES RELATIVE TO WIENER MEASURE!

By THOMAS KAILATH? AND MOSHE ZAKAI®
Bell Telephone Laboratories

We give sufficient conditions for the absolute continuity relative to
Wiener measure, P, of a measure, P,, induced by the sum, y(¢), of a
Wiener process and a non-anticipating and differentiable “signal”’ process.
When the signal process is a measurable tunction of y, we also give
expressions for dP,/dP,, and dP,/dP;.

1. Introduction. In this note we shall present some results on the absolute con-
tinuity with respect to Wiener measure of certain measures induced by the sum of a
“signal” process and a Wiener process. Our interest in these measures arises from
certain signal detection problems [7], [8].

To describe the measures involved it will be convenient to begin with a proba-
bility space (Q, 4, #) with three random functions on it related by the equation

§)) y(t, @) = [ 2(s, w) ds+w(t, w), 0stsT

The functions y(-,), z(+,-) and w(-,-) will be assumed to be each jointly measur-
able processes. Furthermore, we shall denote by 4, a monotone increasing family
of subsigma-fields of & such that for all 1€ [0, T'], the paths z,' = {z(s, w), 0 < s S 1}
are measurable with respect to %,. We further assume that

(i) w(t, ) is a Wiener process with
@) E[wt,w)] =0, E[WwW t,o)]=1
(ii) z(¢, w) is a not necessarily Gaussian process such that

3) w(t,w)—w(s,w) 1| 8,, u

I\
A

sSt=T.

where, following K. It6, the symbol || is used to denote independence. All sigma-
fields will be assumed to be complete relative to £. An important family of sigma-
fields is the one generated by the random variables {y(¢, w)},

F,=0{y(s,0), 0<s <t 0Zt<T

Let 2, denote the restriction of the measure 2 to the field # ;. The measure induced
by 2, on the space of continuous functions (in the [0, 7] interval) will be denoted
by P,. P,, will denote the Wiener measure on the space of continuous functions.
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Our proofs in this paper will rely heavily on a fundamental theorem of Girsanov
[3, Theorem 1}. For convenience, this theorem is restated (and somewhat amplified)
in the Appendix. Another result that we have often used below is that a stochastic
integral can be transformed to a Wiener process by means of a random time
substitution (cf. McKean [4, section 2.5]). With these preliminary remarks, we can
begin to state our results.

THEOREM 1. If
@) [§2(t,w)dt <0 as. 2,

then P, < P, i.e. P, is absolutely continuous with respect to P,

Our proof of this result is based on the theorem of Girsanov [restated in
Appendix I] and on two simple lemmas (Lemma 1 and Lemma 2), which may have
some independent interest. From these lemmas, it in fact follows easily (Proposi-
tion 1 and Proposition 2) that the measures P, and P, are mutually absolutely
continuous (P, ~ P,) if (a) z(-,-) is completely independent of w(-,-) or (b) z(-,")
is uniformly bounded in amplitude,* i.e.

5) Supo<,sr|2(bw)|Sk<ow as. 2
or, more generally, (c) z(-,-) is uniformly bounded in energy, i.e.

(6) Izt w)Pdt<s K< as. 2.

THEOREM 2. If, in addition to the assumptions of Theorem 1, z(t, ) is measurable
with respect to & ,, say®

@) 2(t, w) = ¢(t, »)
then we can write
dP T T
(8) == exp{f (1, w) dy(t, w)—*}J~ (1, w) dt}, on A
de 0 0
=0, on A4

where A is the set in function space defined by
A = {po™: [T 67, ) di < o).

REMARK 1. By the measurability assumption on z we may write z(t, ) = @(yo', ©)
and (1) becomes a functional equation in y,T:

®) y(t, @) = [o (yo’, ) ds +w().

The statement of Theorem 2 assumes the existence of a solution to this functional
equation. Necessary and sufficient conditions for the existence of a solution to (9)

* This result is due to Girsanov ([4] Lemma 1) and Dynkin ([2] Theorem 7.3).
$ ¢ will be used for z whenever z(t, -) is &, measurable.
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are unknown (even in the special case where (9) is a stochastic differential equation).
However, various sufficient conditions are known for the general case ([5]) and for
the particular case where y(¢) is Markovian ([10], page 121, also [9], page 77). Note
that Theorem 2 does not require the solution of (9) to be unique and if (9) has more
than one solution, Theorem 2 may be applied separately to each of the solutions.

REMARK 2. Theorem 2, taken together with the innovations theorem of [7] and
[3], can be used to give an alternative proof of the general L.R. formula of [7]-[8].
Conversely, of course, Theorem 2 could have been inferred from the results of [8].

Our final result is Theorem 3, which states that if, as in Theorem 2

9 W1, @) = [o d(yo’, ) ds+w(t, )
then (note the argument of @)
[e (W', w)dt <0 as. =P,<P,,

and

dp,

— = exp{—JT¢(t, w)dy(t, w)+%IT¢2(t, ) dt}, on A
dPy 0 0

=0, on A

where A is as defined above in Theorem 1.

Finally, we may remark that the conditions on ¢(-,-) in Theorem 2 and
Theorem 3 can also be shown to be necessary but the proofs seem to demand a
different collection of ideas and therefore will not be given here (however, see [8]).

Relations to previous work. Our results on absolute continuity were partly motiv-
ated by a preprint of a paper by Kadota and Shepp [6] in which they gave a
different proof of Theorem 1 and Proposition 1 and also establish the discrete-time
analogues of the absolute continuity parts of Theorem 2 and Theorem 3. The result
of Theorem 1 under the stronger assumption E [z*df < oo had been conjectured
by one of us in [7], where it has been suggested that the entropy criteria of Hajek,
Perez and others could be used for a proof. In fact, the proof of Kadota and Shepp
starts with discrete-time approximations and shows via the entropy that P, < P,
if Efz*(t)dt < oo; a “truncation” argument is then used to obtain the weaker
condition [z%(r)dr < oo a.s. Our proof avoids the discrete-time approximation and
uses instead a theorem of Girsanov (see Appendix) and the truncation argument
is reused to directly obtain the result under the weaker condition. We should note
also that under the assumption that z(-) was uniformly bounded, Girsanov [4]
implicitly proved not only absolute continuity but also equivalence (cf. our Pro-
position 1). Girsanov also remarked ([4] page 296) that it would be important to
be able to prove his main theorem, as described in our Appendix I, with the
condition (A.3) replaced by the condition that z(-) be square-integrable almost
surely. But it is known that this is impossible (cf. McKean [9] page 67): the difficulty
is that the a.s. square-integrability of z( ) suffices for absolute continuity (as shown
by Theorem 1) but not for equivalence.
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2. Derivations. For the convenience of the reader we shall first restate our basic
assumptions.

Let (Q, 4, ) be a probability space, w(z, ) a Wiener process on (Q, 4, ),
z(t, o) a random function on (Q, &, #), both measurable on [0, 7] x #. Let %, be
a monotone increasing family of sub-o-fields of # such that for all z€[0, T], the
paths z,', wy' are measurable on %, and 4, is independent of future increments
{w(t)—w(t), w(ty)—w(t), -, t; = t} of w(t). We also assume that

[E22(tw)dt <0 as. 2.

These assumptions will be kept throughout this note. Unless otherwise specified
all a.s. statements will refer to 2. The o-fields %,, # will be assumed to be complete
relative to 2.

In the proofs of Theorem 1 and Theorem 2, we first “truncate’ the process z( )
so that its energy is a.s. uniformly bounded. This truncation enables us, via the
result in Lemma 1 below, to apply a theorem of Girsanov; the reader will find it
helpful before proceeding to review the presentation of this theorem in the
Appendix.

LemMA 1. If for some K
[§22(t,w)dt <K as. 2.
then
(10) E{exp [[5 z(t, w) dw(t, w)—} [§ 2(t, w) ds]} = 1.

Proor: This result is well known for the case where supg<,<r|2(, w)| <c
(Dynkin [2] Theorem 7.3; Girsanov [4] Lemma 1). We shall use a random time
substitution to reduce the present problem to this case. For this, let

(11) (¢, ) = (4 2%(s, w) ds
and define
W(t, @) = [hz(s, ) dw(s,w) 1if 7= [§2%(s, w)ds;
= [Tz(s,w)dw(s,0) if > [§Z%(s,w)ds.

Then (McKean [9] Section 2.5), W(t, ) is a Wiener process (Brownian motion)
stopped at the time

(12) t(w) = [§ 2%(s,w)ds £ K-

Let W( -, w) be an appropriate extension of W( -, ) to a nonstopped Wiener process.
With this time change, we can write

(13) exp [[§ z(s, w) dw(s, ) — 1 [T z*(s, w) ds]
= €Xp Ug xs(z, @) aw(t,w)—3% _fg sz(T’ w)dt]
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where
1t 0) =1 if 151,
=0 otherwise.

Since sup | x(z, w)] < 1, our desired result now follows from the previously quoted
result for uniformly bounded z(-).

LEMMA 2. If the process z(:) is completely independent of w(:), then
{6 22(t, w)dt < oo a.s. P implies that

E{exp [[§ z(t, ) dw(t,w)— } [T 2%(t, w) df]} = 1.

PrROOF. We note first that if z(-, w) were deterministic, then our result follows
easily from Lemma 1. (It is also well known in detection theory.) Now we shall
reduce the case of random z(-), independent of w(-), to the known z(-) case by
conditioning.

Let &, be the sub-o-field of # induced by z,T and let

a(w) = exp [§ z(t, ) dw(t, ) —} |7 2%(t, w) dt.

It follows directly from Fubini’s theorem and the definition of conditional expecta-
tions that at the point zy7 = x,T

E{x(w)| B.}(xo") = E{exp [ x(t) dw(t,w) -} [T x*(1)dt} = 1
by the deterministic z(-) result just quoted. Therefore
Efa(@)) = E{E{x()| #.}} = E{1} = 1.
PROPOSITION 1. Let
Ya(t, @) = [ zy(s, w) ds+ w(t, w)
where
[Szy’(tb,w)dt <N as. 2

and let P, denote the measure induced by yy( -, ") on the space of continuous functions.
Then P, ~P,,ie,P, <P, ,and P, <P,.

PrOOF. Let
B(w) = exp [ — 7 2y(s, @) dw(s, ) — 4 [T 2*(s, w) ds]
and
d2(w) = f(w) - dP(w).

Since by Lemma 1, E[f(w)] = 1, 2,(w) is a probability measure and we can apply
Girsanov’s theorem (set ¥ = —zy = —¢ and ® =1 in the form shown in the
Appendix) to obtain the result that

W(t, (D)+jg ZN(S’ (IJ) dS = YN(t»w)
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is Wiener under 2,. Furthermore, part (c) of Girsanov’s theorem shows that
2o ~ 2. But the restriction of 2, to # ;" (the o-field induced by yy(s), 0 < s < T)
is just the Wiener measure on (Q, # ;¥) and, by definition, 2, 1s the restriction of
2 to (Q, F;"). Consequently the measures that these restrictions induce on
function space are P, and P, respectively. Therefore it follows immediately that
Py ~ &P implies P, ~ P,

PROPOSITION 2. Let {z(t, w)} be statistically independent of {wl(t, w)}. Then
P,~ P, if [§zX(t,w)dt < 0 a.s. 2.

PRrooF. This follows immediately from Lemma 2 and Girsanov’s theorem. (Note
that no truncation, as in Proposition 1, is necessary.)
With these preliminary results, we are ready to prove

THEOREM 1. Let
y(t, @) = {4 z(s, w) ds +w(t, w).
Then,
[§z%(s,w)ds < 0 as. 2.
implies that P, < P,
Proor. We begin with a “stopped” or “truncated” process yy(t, w) defined by
yn(t, @) = [ za(s, ) ds+w(t)
where
Zy(t,w) = z(t,w), if [yz%(s,w)ds < N;
=0, otherwise.

Let 2,, denote the restriction to (Q, # V) of 2. Then by Proposition 1 we have
Py, ~ P,. From this fact we shall now show, by contradiction, that under our
hypothesis on z(-), we must have P, < P,,. For if not, there must be a set Bin
function space such that P,(B) =0 but P(B)=¢>0. Let B be the set in the
original probability space Q that is the inverse image under yy(-,-) of the set B in
function space. The existence of B will lead to a contradiction. To establish this,
first note that since [§ z(t, w)dt < oo a.s. 2, there must exist a number N so large

that the set
C = {w:[§z%(t,w)dt < N}
satisfies 2(BNC) = 1e.

However, we note that on the set B the processes z(*) and y(-) coincide with the
truncated processes zy(*) and yy(-). Therefore on the set BNC, it is true since
Py(B) = P,(B) = 0 that

0 = 2o(BNC) = P(BAC) < }e.

This is the desired contradiction.
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THEOREM 2. If, in addition to the assumptions of Theorem 1, {z(t, w)} is measurable
with respect to {F,}, say z(t, w) = ¢(t, ), then we can write

(14a) 5}7 = exp{f o(t, ) dy(t, w)— .[ P3(t, ) dt} on A

=0 on A
where A is the set in function space defined by
(15 A={y": [§ (1, w)dt < 0}.

The set A satisfies P(A)=1, P,(A) 2 0. (Note: By our assumption on z(t, w),
¢(t, w) is a function of y,’ and therefore the right-hand side of (14a) and (15) are
well defined on function space.)

Proor. We shall first obtain the Radon-Nikodym derivative for a suitably stopped
version of the problem and then use the martingale convergence theorem to deduce
(14). Let

(16) t(w) =inf{H(0 <t < T): [ $*(s, w)ds = K}
and let
15, 0) =1, s<7t
=0, $>T.

Now define y(t, ) by the relation
y{t,w) = 5" 2(s, w) ds+ [5* dw(s, w)
= [0 15, 0)z(s, @) ds + [ x5, @) dw(s, ).

[Note that the definition of y, differs from that of y, in the proof of Theorem 1,

since here w(-) is also stopped. We choose this stopping rule so as to obtain a

nested (with ) family of sigma-fields generated by the stopped variables {y (¢, w)}. ]
We now apply Girsanov’s theorem to the stopped process y,. By setting

Y(t, ) = (1, 0)z(t, w) = — ¢(t, w), D(t, w) = x(t, o)

in Girsanov’s theorem as stated in the Appendix, we can deduce that, under a
measure P, as defined in the theorem, y.(¢, w) is a stopped Wiener process
v(t, ) = 0+ Ww(¢, w) and

(17a) a(w)™ ! = a'iﬁf = exp{J o(t, ) dw(t, w)+% J dA(t, w)dt}

(17b) =exp{j Mgb(t,co)dy(t,w)—%J Arq,')z(t,co)dt}.
0 0
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Now, let 2, = the restriction of 2 to #, = 0{y (s, w),0 < s < T} and 2y,_ = the
restriction of 2, to #, and let P, and Py,_denote the measures induced on the
space of continuous functions by 2, and 2, _respectively.

dP,, _E{d@

dPy,._ d2,

f} - exp{r”w, o) dy(t, w)—%r”qﬂt, o) dt}
0 0

since d?[dP, as given by (16) is already measurable with respect to %, and by
our assumption on ¢, the right-hand side of (17b) is defined on function space.
Finally, since the Borel fields &, are nested and limg., &, = %, (recall the
definition of K in (16), and by Theorem 1, P, < P,, we can apply a martingale
convergence theorem (Doob [1] Theorem e.w., page 331] and Appendix, page 632)
to obtain dP,/dP,, = limg_,, dP, [dP,_ . But some more care is needed before the
exponential formula (14) can be written down.

Let A be as defined by (15). By hypothesis, P,(4) = 1, and on 4, under P, we will
have

(18a) limg_, ,, 57 (2, w) dy(t, w) = [§ $(t, w) dy(t, w)
(18b) limg . o [T 2(t, ) dt = [T (1, ) dt.

Therefore we can write, under P,.

dP T T
(19a) ‘#= exp{f o(t, co)dy(t,co)—-%f o2, co)dt} on A
w 0 0
and we shall define
(19b) ;17{)’ = on A.

Since 4 has measure zero under Py, this completely specifies dP,/dP,, under P,.
But it is necessary to specify dP,/dP, a.e. P,. First, since dP,/dP,, is a derivative
it integrates to 1 under P, and therefore it must be finite a.s. P,. On the set 4,
dP,/dP,, as given by (19) is finite under P,, as may be seen by transforming the
stochastic integral to a Wiener process by the random time change used above in
Lemma 1 and Theorem 1. Therefore (19) completely describes dpP,/dP,, (up to
equivalence under P,). This completes the proof.

THEOREM 3. Let
W(t, 0) = [ (s, ) ds + w(t, w)

where, §(s, w) is a measurable function of {y(1,»),0 <t < s}, say, P(s, w) =

F(yo’(w), 5). If
(20) [ X (we', dt < o0 as.
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then
(21a) P, <P,
dP,,
(21b) dP exp{ J o(t, w)dy(t, w)+%J d(t, w)dt} on A
=0 on A.

PROOF. Let 7 be a stopping time defined exactly as in the proof of Theorem 2.
Then, as in Theorem 2, we can conclude (cf. (16a)) that

—exp{ j o(t, ) dy(t, w)+ % J P, w)dt}

ap,

Let f be a generic point in function space. By the previously noted martingale
theorem of Doob, we can conclude that limg_, ., dP,, [dP, , say A(f), exists and
satisfies the relation

where N = {f: A(f) = 0}. Now, if P,(N) = 0 then clearly P, < P, and A(w) can be
ibentified with dP, /dP,. Following the discussion in the proof of Theorem 2, and
by our hypothesis (20), it follows that P,(N) = 0. The fact that A can be expressed
as in (21) now follows as in the discussion at the end of the proof of Theorem 2.

Notke. If the conditions of Theorem 2 and Theorem 3 are satisfied we have
P, ~ P,. However, the following examples, derived by L. A. Shepp, (private
communication) show that the conditions of any of these theorems without the
conditions of the other are not sufficient for equivalence. Let

dy(t) = ¢(t)dt+dw(t), 0t
where
ot)=—-1-=0"", if infys)>—1, O0=s<t

=0, otherwise.

Then under measure P, y(-) is certain to dip below —1 in the interval [0 < ¢ < 1],
but this is not necessarily so under P,,. Therefore, P, < P, but not vice versa. Note
also that ¢?(+) is a.s. integrable on [0, 1] under P, but not under P,

Acknowledgment. We are grateful to T. Kadota and L. Shepp for several useful
discussions.

APPENDIX

Girsanov’s Theorem. A basic tool in our paper is a theorem of Girsanov [4]
Theorem 1. For convenience, we restate it here along with a useful adjunct to it
(part (c) of the statement below).

Let (Q, 4, ) be a probability space and let #,, te[0, T], denote a monotone
family of sub-g-algebras of 4. The paths w,' are assumed to be measurable on %,
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for all tin [0, T}, and @, is assumed to be independent of future increments of w(t).
Let f(¢, ) be a random function on the probability space and let 4,, 4,, A5 denote
the following properties:

A, f(t, ») is measurable in both variables and for fixed ¢, f(1, w) is X, measurable
A [§lf(w)|dt <o as.
Ay [Tlf(Lo)dt< o as.

GIRSANOV’S THEOREM. Let

(A.1) ¥(t, @) = [ ¥(s, w) ds+ [, &s, 0) dw(s, w)
where Y(s, w) satisfies A, and A, and O(s, w) satisfies A, and A,. Let
(A2) a(e) = exp [§ (s, ) dw(s, @) — 4 [T $*(s, w) ds
. where §(s, ) satisfies A, and A,. Assume that
(A3) Jw)dP(w) =1
and let '
(A.4) - Po) = dw)dP(w).

Then, under 2,
(a) W(t) = w(t)—f §(s, w)ds is Wiener, and
(b) YO = [6(¥(s, 0) + (s, w)(s, w)) ds + [, &(s, w) dW(s, ). Furthermore,
(c) The measures @ and P, on (Q, B) are equivalent.

~ REMARKS. (a) and (b) are direct restatements of Girsanov’s theorem. To prove
(c) note that by (A.4), 2, < 2.

To prove # <€ 2, assume first that this is false. Then there exists a set 4 # such
htat 2#y(A) = 0, #(A) = ¢ > 0. Therefore by (A 4) we must have a(w) =0,we A4.
Let 1(t, ») be defined by

t = [o¢*(s,w)ds
and set
W(r, @) = [3°" §(s, w) dw(s, w).

Then yY(r, w) is a Brownian motion stopped at to(w) = [§ $*(s,w)ds (McKean
[8] Section 2.5) and since ¢(s, w) satisfies 43, 1, is finite,

A(w) = exp [wy(to(@)) — 310%(®)]

where w, is a Brownian motion on (Q, #, 2). By the continuity of the Brownian
motion #(w: a(w) = 0). Hence #(A4) = 0, which proves (c) by contradiction.
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