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ON A THEOREM OF DE FINETTI, ODDSMAKING,
AND GAME THEORY

By DAviD C. HEATH! AND WILLIAM D. SUDDERTH?

University of Minnesota

A theorem of de Finetti states that if odds are posted on each set in a
finite partition of a probability space, then either the odds are consistent
with a finitely additive probability measure or a sure win is possible. A
generalization of this result is proved which in turn implies a generalization
of Von Neumann’s theorem on the existence of the value of a game. Also,
two horse race examples are considered.

0. Introduction and summary. Suppose odds are posted on some collection &
of subsets of the set S of all possible outcomes of some experiment of chance,
and bets are accepted on or against the sets in any finite subcollection of &. A
typical result of this note is that there is either a betting scheme which guarantees
a positive return or the odds posted are consistent with some finitely additive
probability measure defined on all subsets of S. This theorem specializes to give
a theorem of Bruno de Finetti if & is a finite partition of S.

In Section 1, a separating hyperplane argument is used to prove a generaliza-
tion of the above result to the case of an arbitrary collection of bounded payoff
functions, and a connection with game theory is pointed out. Section 2 is an
interpretation of the theorem of Section 1 for the special case when the payoff
functions are those available when bets are accepted on certain events at given
odds. Section 3 is a study of two examples from horse racing.

1. Basicresults. Let Sand T be sets and let {f,: ¢ € T} be a family of bounded,
real-valued functions on S. We regard the f, as payoff functions available.

By a probability P on a set S is meant a finitely additive probability measure
defined on all subsets of S. If f is a bounded function on S, E,(f) or E,(f(s))
denotes the expectation of f under P.

THEOREM 1. Either (i) there exist t,, ---,t, €T and c,, ---, ¢, € R* such that
P=1¢:fi,(s) > O forall s € S, or(ii) there is a probability P on S such that E (f,) < 0
forall teT, or both.

Proo¥. In the space of bounded functions on S (with supremum norm) con-
sider the sets K, = {f: f= Y1, ¢;f,, c;eR*, t,eT,i=1,...,n} and K, =
{f: f(s) > O for all s e S}. Then, if (i) is false, K, N K, = @. Clearly K, and K,
are convex and the constant function 1 belongs to the interior of K,. Hence
(see Dunford and Schwartz, [3] page 417, Theorem 8) there exists a nonzero,
continuous linear functional = separating K, and K,. Without loss of generality
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we may assume 7 < ¢ on K, and 7 = ¢ on K,. Since 0 is a limit point of K, and
of K,, we must have ¢ = 0. Since # is not identically zero, z(1) > 0. Normalize
= so that #(1) = 1. But then, as is easily seen, there is a probability P on S such
that E (f) = =(f) for all bounded functions f on S. Therefore, E (f;,) < 0 for
all teT, since f,e K, forall te T. J

An argument similar to the above was used by Purves and Freedman to prove
Theorem 4 of [5], which contains interesting extensions of de Finetti’s theorem
different from those given here.

The following example shows that (i) and (ii) can occur simultaneously.

ExAMPLE. LetS = {1,2,-..},T = {1},and f(n) = 1/nforallne S. Certainly
(i) holds and any P such that P({n}) = O, for all n, satisfies (ii).

COROLLARY 1. For every b e R, either (i) there exist t,, ---,t,€T and ¢, - - -,
¢, €RY such that 337 yc; =1 and 37 ¢ f,(s) > b forall se S, or (ii) there is a
probability P on S such that E (f,) < b for all t€ T, or both.

Proor. Apply the previous theorem to the family {g,: t € T}, where g,(s) =
fus) —b. [

COROLLARY 2. Either (i) there exist t, ---,t,€T and ¢}, - - -, ¢, € R such that
2ii¢ifi () > Oforalls e S, or(ii) there is a probability P on S such that E,(f,) = 0
forall teT, or both.

ProofF. Let T =T X {+, —} and define g,(s) = +f,(s) if ¢ = (¢, +) and
—f(s) if ¢ = (¢, —). Then apply Theorem 1 to the family {g,.: ' € T'}. []

Now write f{(s, ) for f,(s), and consider a game in which Player 1 has pure
strategies T and Player 2 has pure strategies S, with payoff function f. Theorem 1
asserts that either Player 1 has a mixed strategy which achieves a positive expected
payoff or Player 2 has a mixed strategy which assures a non-positive expected
payoff. The next two theorems, which are not used in the remainder of this
paper, show that if finitely additive mixed strategies are allowed, every zero-sum
two person game with a suitably bounded payoff function has a value (but this
value depends, in general, upon the order in which the expectations are taken).

Let .>“and 7" be the collections of probabilities on S and T respectively, and
let 77° ={Qe 7 : Q(F) = 1 for some finite set F < T}.

THEOREM 2. inf,  sup,. . Eo(Ex(f(5, 1)) = supge . infp. . EQ(EL(f(s, 1)))-

Proor. Clearly we have =. Suppose that the right-hand side is <b. Then,
forevery Q € .77 °, there is a P € & such that E(E.(f(s, t))) < b. But then there
must be an s € S for which E,(f(s, +)) < b. So (i) of Corollary 1 is false. Hence,
by (ii), there isa P, € & with E, (f(+, 1)) < bforallte T. Thus E(E, (f(s, 1)) =
b for all Q € 77 ° and so inf,. . sup,. . Eo(Ex(f(s, 1)) < b. [J

For the next theorem, we suppose that, for every P € &/, E,(f(+, 1)) is a bounded
function of ¢.
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THEOREM 3. inf,. . sup,. . Eo(Ep(f(s, 1)) = supy. - inf,. . E((E(f(5, 1)))-

PrROOF. As before, > is clear. To show <, suppose the right-hand side is
<b. Butthensup,, .inf,. . E(E(f(s, t))) < b. So, asin the proof of Theorem
2, wecanfind P e S with E, (f(+, t)) < bfor all t e T. Hence, E(E,(f(s, 1)) =
b for every Q € 7 and the result follows. []

For Pe &, Qe 7 °, we have E E, = E,E, so that in Theorem 2 the order
of the expectations may be interchanged. In general, however, E E, + E,E,
for Pe.%, Q € 7. Nevertheless, the result of Theorem 3 is correct if expecta-
tions are reversed on both sides (provided that, for every Q € 77, Ey(f(s, +)) is
bounded as a function of s). This can be derived by applying Theorem 3 with
the roles of P and Q (i.e., & and .77) reversed and using the functions —f{s, t).

Further applications of finitely additive probabilities to game theory are in
[7]-

2. Oddsmaking. Let & be a collection of subsets of S. In this section, we
assume that a bookie posts odds on each event in &. More formally, we assume
there is a function ¢ from & to the unit interval. If E € &, then p(E): 1 — u(E)
are the odds posted on E. A gambler may bet a nonnegative amount b on E and
his net return is b[1,(s) — u(E)] if s occurs. (Our terminology differs from popu-
lar gambling language, where bu(E) would be called the stake or amount bet.)
A betting scheme is a finite collection of nonnegative bets b, - - -, b, placed on
events E,, - .., E, respectively. Such a betting scheme is called a sure win iff
2t bi(1g(s) — p(E;)) > 0 for all seS.

THEOREM 4. Either (i) there is a sure win or (ii) there is a probability P on S such
that P(E) < p(E) for all E € &, or both.

Proor. Apply Theorem 1 to the family {f,: E e &}, where fy(s) = 1,(s) —
HE). [

In his original result ([2] pages 102-104), de Finetti allowed the gambler to
make negative as well as positive bets. Now, if y(E) = 1 — p(E°), then a bet
of —b on E has the same return as a bet of b on E°. Also, if p(E) # 1 — pu(E°),

a gambler can easily construct a sure win by placing postive or negative bets on
E and E°. Thus the next theorem extends de Finetti’s theorem.

THEOREM 5. Assume that if E € &, then E° € & and p(E°) = 1 — p(E). Then
either (i) there is a sure win or (ii) there is a probability P on S such that P(E) = p(E)
forall E€ &, or both.

Proor. Apply the previous theorem. []

The final result of this section is a countably additive analogue of de Finetti’s
theorem.

THEOREM 6. Assume & is an algebra and p(E) = 1 — p(E°) forall Ee &. Then
either (i) there existb, e R*, E, € &, fori = 1,2, ... with total stake 3 3, b, n(E;) <
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+ oo and payoff 3152, b(1;(s) — #(E;)) > O forall se S, or (ii) p is a countably
additive probability measure on &. It is not possible that both (i) and (ii) occur.

PrOOF. Assume (i) is false. Then, certainly, there is no sure win. So, by the
previous theorem, 4 is a finitely additive probability on &. If 4 is not countably
additive, then there is a sequence E; of disjoint sets in & such that UE; = S and
21 ME;) < 1. Take b, = 1, for all i. Then (i) holds, a contradiction.

Now assume (i) and (ii) both hold. By (i), there exist b, ¢ R* and E; € &,
such that

(1) 2 bilg(s) = X bi(15,(5) — w(E)) + X b p(E) > X by p(Ey)
for all se S. But, by the monotone convergence theorem,

§$ (2 bily) dp = 2 b;i(E))
which, together with (1) and (ii), gives a contradiction. []

3. Two examples from horse racing. Consider a race of n horses and suppose
n = 3. Since only the positions of the first three horses are of interest in the

sequel, we set

S = {5 = (51, 53, 83): 5, 85, 53 are distinct integers between 1 and n}.

The events 4;, B;, or C; that horse i wins, places (i.e., finishes first or second),
or shows (i.e., finishes first, second, or third) are given by

Ai={SZS1=i},
B, ={s:5, =i or s,=1i},

C,={s:s,=i or s,=1i or s;=1i},

fori=1,2, ..., n (Outside of North America, “place” means to finish among
the first three or what is meant here by “show.”)

Our first example deals with the standard pari-mutuel system outside of North
America (cf. [4] page 723). Bets are accepted on the events 4; and C; for i =
I, ..., n. Money in the win pool, after the track’s fee is deducted, is divided
among those who backed the winner, and money in the show pool, after deduc-
tion of the fee, is divided into three equal parts and each third is divided among
backers of the horses which showed. For our analysis, we make the simplifying
assumptions that no fee is deducted and that we know ahead of time the amounts
to be bet on each event. (The second assumption is almost true if we place our
bets at the last moment.) Suppose a; and ¢, are the total amounts wagered on
horse i to win and show, respectively. Let

pi=a;/);a; and 9 =3¢/ 255 ¢

where both denominators are assumed positive. Then, under our assumptions,
the track is effectively posting odds of p,: 1 — p, on 4, and ¢,: 1 — ¢, on C, for
everyi. Also,0<p, <1,0<¢, <3, > p,=1, Y ¢, =3.
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THEOREM 7. Either (i) there is a sure win, or (ii)p, < q, < 1 fori=1,...,n,
but not both.

Proor. If (ii) is false, then either p;, > ¢, for some i or ¢; > 1 for some i. If
p: > q;, then the betting scheme which bets 1 on each 4,, k + i, and 1 on C;
has return

Dikwi [lAk =P+ e, — 41> 21y, — Pl = 0.

Thus the scheme is a sure win. Similarly, if g, > 1, then the scheme which
bets 1 on each C,, k # i is a sure win.

Now assume (ii) is true. To prove (i) is false, it is enough to show there is a
probability P on Ssuch that P(4;) = p;and P(C;) = ¢;foralli. LetD; = C; — 4;
and r; = ¢, — p,. It then suffices to find a probability P on S such that P(4;) = p;
and P(D,) = r; for all i.

To this end, consider the convex set

C={x=(x, -+, X,)€R™: x;, 2 0, all

X+ X, =1i=1--n Trax, =1, X ax =2},

For i, j, k distinct integers between 1 and n, let e;;, be that point in C which
has its ith, j + nth, and k + nth coordinates equal to 1 and all other coordinates
equal to 0. It can be seen by a straightforward, but tedious argument that the
collection of e;;, is the set of extreme points of C. Now the point (p, r) =
(Pi» s Pus 11y +++» 1) is in C. Therefore, there exist numbers a;;, for i, j, k
distinct integers between 1 and n such that 0 < «a;;, <1, 3 a;;, = 1, and
(P, 1) = X asueiii’

If we define P({(i, j, k)}) = «;;,, then P is the desired probability. []

The pari-mutuel systems at U.S. tracks are more complicated (cf. [4] pages
723-724). Let a;, b;, and ¢, be the total amounts wagered on horse i to win,
place, and show respectively. The payoff functions corresponding to a $1 ticket
on horse i to win, place, or show are (assuming no cut for the track) respectively:

£ = (o Boa Lus()ay + 1) 1) — 1

1
0:9) = (55 Zimr Loty + 1) 15 (9) = 1

hi(s) = <3lc

e Tos()es + 1) L () = 1,

for se S.

The latter two payoff functions do not correspond to simple oddsmaking. Of
course, Theorem 1 still applies and, in fact, the value of the game corresponding
to Theorem 2 and the optimal bets can be computed by the simplex method for
given values of the a,’s, b,’s, and ¢;’s. Willis [6] presents a linear programming
method for obtaining “nearly optimal” bets in a similar situation.
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