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OPTIMAL CONTROL AND REPLACEMENT WITH
STATE-DEPENDENT FAILURE RATE:
DYNAMIC PROGRAMMING!

By ARTHUR C. HEINRICHER AND RICHARD H. STOCKBRIDGE
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A class of stochastic control problems where the payoff depends on the
running maximum of a diffusion process is described. The controller must
make two kinds of decision: first, he must choose a work rate (this decision
determines the rate of profit as well as the proximity of failure), and
second, he must decide when to replace a deteriorated system with a new
one. Preventive replacement is a realistic option if the cost for replace-
ment after failure is larger than the cost of a preventive replacement.

We focus on the profit and replacement cost for a single work cycle and
solve the problem in two stages. First, the optimal feedback control (work
rate) is determined by maximizing the payoff during a single excursion of
a controlled diffusion away from the running maximum. This step in-
volves the solution of the Hamilton—-Jacobi-Bellman (HJB) partial differ-
ential equation. The second step is to determine the optimal replacement
set. The assumption that failure occurs only on the set where the state is
increasing implies that replacement is optimal only on this set. This leads
to a simple formula for the optimal replacement level in terms of the value
function.

1. Introduction. This paper is devoted to stochastic control problems
motivated by optimal control and replacement problems for deteriorating
systems. The models are constructed from diffusions but are nonstandard
because one component (the “wear”) is required to be continuous and mono-
tone. Working policies affect the rate of wear which in turn affects the rate of
failure. The system is assumed to fail at a rate 2 which depends on the state.
If replacement at or after failure is more expensive than a planned replace-
ment, then it may be optimal to replace the system while it is still in working
condition.

We focus here on a single working cycle and maximize the revenue
collected minus the replacement /failure cost. We use dynamic programming
techniques to give sufficient conditions for optimality. The solution for the
dynamic programming partial differential equation leads to the optimal
control policy (in feedback form) as well as the formula for the optimal value
and a means of determining the optimal replacement level. This work can be
viewed as one step toward maximizing the long-run average profit for the
system when it is renewed at each failure or replacement. We describe briefly
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this extension in Section 5. A more powerful approach to the long-run
average problem will be studied in a companion paper [Heinricher and
Stockbridge (1993)].

One of the fundamental works on optimal replacement for deteriorating
systems (without control between replacements) is Taylor (1975). Anderson
(1988, 1990) analyzes the variational and quasivariational inequalities that
arise in optimal replacement problems for general (monotone) Markov
processes (again without control between replacements). Conrad and
McClamroch (1987) describe an application in automated manufacturing
where the rate of work controls the rate of deterioration for a drilling
machine. The recent survey article by Valdez-Flores and Feldman (1989)
contains a wealth of additional references.

One important application which requires a continuous and monotone
stochastic process model is the optimal control of wear; automobile tires and
drill bits do not “unwear.” Cinlar (1972) has analyzed perhaps the most
general class of stochastic processes suitable for modeling wear [see also
Cinlar (1977, 1984)]. In these Markov additive processes, one coordinate of a
multidimensional Markov process is monotone but not a Markov process
when considered alone. The monotone component is the model for wear and
the remaining coordinates model the environmental influences that cause
wear.

In this paper, the Markov process in the background is a one-dimensional
(controlled) diffusion. The monotone component is the running maximum of
this diffusion. Throughout the paper, the state is given by the pair (x,, y,)
satisfying

dx, = f(x;, y;u;) dt + o(x,,5,) dw,, Xo =X,

(1)

y,=max{x,:0<s <t} Vy, Yo =y = X.

Here w = (w,, 0 <t < ») denotes a standard, one-dimensional Brownian
motion and u = (u,, 0 < ¢t < ») is a control process. Stochastic control prob-
lems involving the running max y = (y,, 0 < ¢ < ») are studied in Heinricher
and Stockbridge (1991) [see also Barron (1991)].

Assume that the controller has complete observations of the pair (x,, y,)
and that the system fails at a random time ¢{. The failure time is defined via a
random threshold Y:

(2) (=inf{¢ > 0:y, > Y}.

We assume that Y is a nonnegative random variable independent of ((x,, y,),
0 < ¢t < ) with distribution

G(y)=1—exp(—/;)yk(z)dz) y=>0,

where k(-) is a nonnegative, right-continuous and nondecreasing function.
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This implies

P ({>tly<Y)= Exy[eXP(—fy(t)k(Z) dz)]
y

= Exy[exp(—j:k(y(s)) dy(s))]’

where we use the pathwise continuity of the running max and the right-con-
tinuity of £(-). [Here and throughout the paper, a subscript on a probability
or expectation of the form “xy” indicates conditioning on the initial state
being (x, ). If there is no subscript, the initial condition is (x, y) = (0, 0).]
Notice that

(3) P,(y(£) > A) =exp(—fy“k(z)dz), y<A.

Our definition of ¢ is motivated by the assumption that failure can occur
only while the running max is increasing. In particular, if the system is
working at level y, it will fail as the state increases from y to y + §y with
probability k£(y) 8y + o(8y). It is important to notice that this is not a
standard state-dependent failure mechanism; we have a failure rate that is
per unit wear and not per unit time.

The controller has the option to perform a preventive replacement, at a
cost R, which may depend on the present state y, and return the system to
the new state y = 0. We shall consider only replacement times which are
first-passage times. That is, for a replacement level A > 0, the replacement
time 7 is
4) 7=17(A) =inf{t > 0: y, > A},
where 7 = + if the set is empty (which will happen if and only if A = + ).

There is a cost R, > R, for replacement at or after failure and so the cost
associated with a replacement level A is

R(A) =R,(y( 5))1“57) + RZ(y(T))]‘{{>‘r}
=Ry(y(£))1y<a + Ba(B)1y )5 o)

If the controller chooses to work, then revenue is accumulated at rate
h = h(x,, y,,u,). For an initial state (x, y), control policy u = (u,, 0 < ¢t < ©),
and replacement level A > y, the total profit for the cycle is

(5 Ix38) - B8 = B[ [ he,, ) e - B(8)|

The special structure of the failure rate implies that it is always optimal to
work if x <y [assuming that A(x,y,u) > 0 for some admissible control],
because y is constant in this region and failure cannot occur while y is
constant. This simplifies and separates the optimal replacement decision
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from the optimal control decision:

1. The optimal replacement set is restricted to the main diagonal {(x, ¥):
x =y}

2. The optimal control policy maximizes the profit accrued up to the first
time that x, = y,.

1.1. Summary. We use dynamic programming methods to obtain suffi-
cient conditions for optimality and to determine optimal control policies as
well as optimal replacement levels. The optimal feedback control is character-
ized for all (x, y) with x < y by solving a simpler “auxiliary” control problem:
maximize the revenue collected up to the first time that x, = y,. This involves
the solution of a (simpler) HJB equation on each excursion of the controlled
diffusion (below the running maximum). Our assumptions concerning the
failure-rate restrict the optimal replacement set to the main diagonal (x = y)
and so the optimal replacement level is determined by a simple one-dimen-
sional maximization problem.

We give sufficient conditions for optimality via the Hamilton-Jacobi-
Bellman equation in Section 3. The special form of the failure mechanism
introduces an oblique derivative condition along the boundary of the state
space (x = y). Theorem 3.4 connects the auxiliary problems with the original
control problem and represents the optimal value in terms of the auxiliary
value functions.

Section 4 is devoted to the replacement level A. The explicit formula for
the optimal value in Theorem 3.4 leads to an explicit formula for the
replacement level. We include simple examples to illustrate our approach.

We describe briefly in Section 5 how these methods can be adapted to the
long-term average control problem. This extension is considered in detail in
Heinricher and Stockbridge (1993) where we take an invariant measure
approach to the optimization problem.

The approaches here and in the companion paper Heinricher and
Stockbridge (1993) are complementary. The dynamic programming approach
gives explicit formulae for an optimal feedback control when the HJB equa-
tion has a sufficiently smooth solution. The invariant measure approach does
not require any regularity of the value function, but it does not lead directly
to the optimal control policies.

2. Formulation of the problem. The technical formulation of our con-
trol problem follows the standard approach to controlled diffusions described,
for instance, in the text by Fleming and Rishel (1975).

For the admissible controls, take the collection of nonanticipative controls

. as defined in Chapter VI, page 162 of Fleming and Rishel (1975), and let &
denote the collection of admissible controls. We assume that control processes
u=(u,, 0 <t <) take values in a compact subset U of the real numbers
and that the coefficients of the problem satisfy conditions sufficient to provide
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polynomial growth for the value function and guarantee existence of solutions
to ().
We assume that:

CoNDITION 1. A is continuous and bounded on {(x,y,u): x <y, y >0,
u e U}

CONDITION 2. f is a bounded C! function on {(x,y,u): x <y, y >0,
u € U} and o is a bounded C! function on {(x, y): x <y, y > 0} with

|fo(2, y,u)| +|Fy(x, y,u)| +|f(x,y,u)| <K, x<y,y=20,uecl,
lo (%, )| +|oy(x,9)| <K, x<y,y=>0,
for a suitable constant K.

As noted in Heinricher and Stockbridge (1991a), the problem may be
ill-posed (because the expected failure time is infinite) without a positive
lower bound on f(x, ¥, u), so we require that:

CONDITION 3. There is a constant a such that

0<ax<f(x,y,u), x<y,y=0,uel.

REMARK 2.1. These conditions are sufficient to guarantee the existence
and pathwise uniqueness of solutions. Condition 3 guarantees that E, [7(A)]
< oif A < oo,

We make the following assumption concerning the failure rate & = k().

CONDITION 4. k(y) > O for y > 0, k(-) is nondecreasing and right-continu-
ous (possibly infinite) with

f:k(z) dz = 4o,

Recalling (3), this condition implies that
P({ =) =0.
REMARK 2.2. Conditions 3 and 4 combine to give the following estimate.
There is an ¢ > 0 such that
k,=min{y > 0: k(y) > &}
is ﬁnite. Define
6, = inf{t > 0: y, > &,},
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which has finite expectation by Condition 3. We have then

E[exp(— [Tk dyt)] < E[exp(— JIED dyt)]
< E[exp(—(yr — k.))].

As described in the introduction, we will consider only replacement policies
specified by a threshold A >y, =y, which, with our assumptions on the
failure time ¢, implies that the expected replacement cost takes the form

(6) I_Bxy(A) =Exy[R(A)] _ /ARl(z)k(z)e—fy‘k(s)ds dz +R2(A)e_fyAk(s)ds.
y

We make the following assumptions concerning the replacement and failure
costs:

ConDITION 5. R,(y) and R,(y) are nonnegative, nondecreasing, bounded
functions with

Ri(y) 2Ry(y) (y=0).

When the replacement level A is not a control decision, this problem is
related to the problems solved in Heinricher and Stockbridge (1991b,¢). In
fact, the problems solved in those papers are special cases of the problem
considered here if we take the failure rate k(y) to be identically O for
0 <y < A and identically +« for y > A, where A is a fixed (deterministic)
failure level.

3. Solve the control problem: Determine u*. We describe now suf-
ficient conditions for optimality for the single-cycle problems. These are
dynamic programming conditions and involve the Hamilton—Jacobi—Bellman
(HJB) partial differential equation. Throughout this section, the replacement
level A is fixed.

The objective is to choose an admissible control process u = (u,, 0 < ¢t < )
to maximize

LwIAT(A)
(7) J(x,y;u,A) =Exyf0 A%,y 3,5 u,) dt,

where the state is the pair (x,, y,) defined in (1), { = {(u) is the failure time,
and 7 = 7(A) is the replacement time.

Our assumptions on the failure time ¢ allow us to reformulate the control
problem as one for the system (1) but with an exponential discount factor in
the integrand:

(8) J(x,y;u,d) =E,, OT(A)e_fék(ys)dySh( Xyy ¥y, Uy) dE.
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The following theorem is an extension of the standard sufficient conditions
for optimality as presented in Chapter VI of Fleming Rishel (1975) [see also
Heinricher and Stockbridge (1991a)].

THEOREM 3.1. Let V(x,y) be a solution of the dynamic programming
equation

9) ineag’({éa-(x, y)szx(x, y) +f(x,y,u)V,(x,y) + h(x,y, u)} =0,
in the region x <y, 0 <y < A, satisfying the boundary condition

(10) V(y,9) —k(y)V(y,y) =0, 0<y<A,
as well as the terminal condition
(11) V(A,A) =0.

(If A = 4+, the terminal condition is not enforced.) In addition, suppose
V(x,y) is continuous, twice continuously differentiable with respect to x, and
satisfies a polynomial growth condition

(12) V(x,y)| <C(1+ xl” + lyl’), x<y,0<y<A,
for appropriate constants C and p. Then:
(@) V(x,y) = J(x, y;u,A) for any admissible control u and any x < y.

(b) If u* is an admissible control which attains the maximum in (9), then
u* is optimal and V(x, y) = J(x, y; u*, A) is the value function.

REMARK 3.2. Note that our assumption that failure can occur only when
¥, is increasing has put the “killing term” —%(y)V(y, y) into the boundary
condition (10). This is in contrast to the usual sort of killing which would
surface as a zeroeth order term in the HJB equation (9).

ProoF. Consider first the case A = +o. Let v = (u,, 0 <¢ < ©) be an
admissible control process and let (x,, y,) denote the associated state pair.
For T > 0 and N > 0, define

T(N):=inf{¢ >0:x,< —N,y, >N} AT.
Let V(x, y) satisfy the smoothness and growth conditions in the statement of
the theorem. The generalized It6 formula provides

T(N) _ ¢
V(x,y) = __/; e fok(y")dys[f(xt’yt»ut)Vx(xt’ Ye)
+30%(x,, yt)Vx_x(xt’ yt)] dt

T(N) _:
[T e 0BV (2, 3) — R(9)V (%0 3)]

T(N) _
_fo e fék(ys)dysa-(xt, ¥ )V.(%,,y,) dw,

+ e_foT(N)k(ys)dysV( xT(N), yT(N)) 4
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where dy is the measure associated with the monotone increasing process y.
Since the process (y,, 0 < ¢ < ) increases only on the set {¢: x, = y,}, the
measure dy assigns mass only on this set. Hence the boundary condition (10)
implies that the second integral is 0. Taking expectations, using (9) and the
fact that the stochastic integral has zero expectation (because the integrand
is bounded on the truncated region), we obtain

T(N)e_fé

V(ix,y) = -E,, A

k(ys)dys[f( Xis Yes ut)Vx( Xis yt)

+%02(xt7 V) Ve (x4, yt)] dt
+ Exye_fg(N)k(Ys)dysV( xT(N)’yT(N))

T(N)e_fé

>E,, A koDdysh(x,, y,,u,) dt

+ Exye—fo“”’k(ys)dysv( Xr Ny yT(N))'

First let N — . Using the continuity of V(x, y) and the monotone conver-
gence theorem, we obtain

T
V(x,y) > Exyfo e*/ék(ys)dysh( X, ¥, u,) dt + Exye—foTk(ys)dysV(xT, yr).

Remark 2.2 and Condition 3, combined with the polynomial growth of V(x, ),
show that the final term vanishes in the limit as 7' — «. The monotone
convergence theorem allows us to conclude that V(x, y) is an upper bound on
the maximum value.

If the replacement level A is finite, the argument is the same except in the
last step, where we use the terminal condition (11) to conclude that

71,1_1330 V(%A Ay YT A ’T(A)) =V( LEINE yT(A)) =0.
If a control u* = u*(x, y) achieves equality in (9), then equality holds
throughout the above argument and u* achieves the value V(x, y). Hence

V(x,y) = maxJ(x,y;u)
ues
and u* is an optimal control. O

The key to the actual solution of the control problem is the realization that
the value function can be constructed from a family of auxiliary prob-
lems where y is a fixed parameter. This decomposition was introduced in
Heinricher and Stockbridge (1991a) for a simpler problem (without failure or
replacement) and we summarize it here.

Fix y, let x <y, and define

(13) 0=0(x,y;u) =inf{t > 0: x, = y}.
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We seek an admissible control z to maximize
6
(14) I(x,y;u) =Exyf0 h(x,,y,u,) dt.

Observe that the failure term does not enter this objective function because
x, <y, =y for 0 <t < 6. Let W(x,y) denote the value function for this
auxiliary problem:

W(x,y) = sup I(x,y;u).
uey

The HJB equation satisfied by W(x, y) is of the standard form:
(15) magf:{%a-(x, YW, (x, y)+ f(x, y, W (x, y) + h(x, y,u)} =0
ue

on the half line x < y with the terminal condition

(16) W(y,y) =0.

There is a simple relationship between the value functions for the auxil-
iary problem and the original, single-cycle control problem. The proof is based
on the dynamic programming principle [see Lions (1983)].

PropoOSITION 3.3. The value functions for the single-cycle control problem
and the auxiliary problem satisfy

(17) V(x,y) =W(x,y) +V(y,y), x<y.

We can go one step further and represent the optimal value V(y, y) on the
diagonal in terms of the auxiliary value W(x, y). In this way, the value
function V(x, y) is determined entirely in terms of the auxiliary value
W(x, y).

THEOREM 3.4. For each 0 <y < A, let W(x, y) be a solution of the dy-

namic programming equation (15) on the half line x < y satisfying the termi-
nal condition (16). Then the single-cycle value function is given by

(18) V(x,y) =W(x,y) + j;'Ae‘ffk(s)dsWy(z, z)dz, x<y,0<y<A.

This is valid as long as W(x, y) is continuous with re.épect to (x, y), differen-
tiable along x = y and twice continuously differentiable with respect to x and
-satisfies the polynomial growth condition

W(x,y)| <C(1+ IxlP + [yP), x <y,

for appropriate constants C and p.
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In addition, if u*(x, y) is an admissible control which attains the maxi-
mum in (15), then u*(x, y) is an optimal control for the auxiliary problem as
well as the running max problem (7).

Proor. Defining V(x, y) as in (18), V(x, y) inherits exactly the smooth-
ness of W(x, y); in particular, we have

Vx(x’y)=Wx(x’y)’ Vxx(x’y)=Wxx(x’y)'

Since W(x, y) satisfies (15), V(x, y) satisfies (9) as well as the boundary
condition (10); differentiating (18) with respect to y provides

Vi(x,5) —k(y)V(x,y) =W, (x,5) = W,(y,5) — k(y)W(x,y)

and the right-hand side vanishes along the diagonal x =y. Theorem 3.1
identifies V(x, y) as the value function and u*(x, y) as the optimal control
policy for the running max problem. O

REMARK 3.5. For initial data (x,y) with y > A, the representation in
Theorem 3.4 is extended by

V(ix,y) =W(x,y), x<y,y=A.

In particular, the process is stopped as soon as the diffusion returns to the
main diagonal.

One application of the previous theorem provides a simple formula for the
expected failure /replacement time when the system is replaced at level A
and the control policy is constant.

LEMMA 3.6. Assume that the drift is given by f(x, y,u) = f(w), withu € U
constant, and that the diffusion coefficient o(x,y) = o is constant. If the
system starts in the initial state (x, y) with x <y, a constant control policy is
used, and the preventive replacement threshold is A > y, then

(19) E,[¢(u) A7(D)] = (jfl(;;) + f(lu) /;Aexp(—/:k(s) ds)dz.

ProoF. The representation (19) is obtained by solving a boundary value
problem. The problem of interest is the dynamic programming partial differ-
ential equation (9) with the boundary condition (10) when the control set is
the singleton U = {u} and the coefficients f and o are defined as in the
lemma.

Begin by solving the auxiliary problem

0% (%,9) + f(W) i (x,y) +1=0, x<y,
with the terminal condition
¥(y,y) =0.
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(The solution is the expected time to return to the diagonal.) The unique

solution for this problem (satisfying a polynomial growth condition as x —

—) is

(y==%)
fu) ’

The representation (18) in Theorem 3.4 provides the formula we seek:

W(x,y) = x<y.

o(x,y) =y(x,y) + j;Aexp(—j;'zk(s) ds)z/:y(z,z) dz

(y —x) 1 4 ( z

= + exp|— | k(s)ds|dz.
f(u) f(u) fy /y

It is an application of the generalized It6 formula to verify that

E.,[¢(u) A 1(A)] = é(x, ),

and the proof is complete. O

4. Solution of the replacement problem: Determination of A*.
Theorem 3.4 provides a representation for the optimal revenue for a fixed
replacement level A (18). We now bring in the replacement cost and optimize
over A > 0. For this section, assume that the system starts in the new state
(x,y) =(0,0). _

Combining the representation (18) with the formula (6) for R(A) and
integrating, we have the following expression for the total profit accrued
during a life cycle:

J(0,0;u*,4) — B(8) = [“e  [4W, (2, 2) dz — B(A)
0

= [Fe k0N, (2,2) = (Ri2) — Ro(8)R(2)] d
- R,(A).

This function of one real variable is maximized at the optimal replacement
level A*.

When the replacement costs R; > R, are constants, the solution to this
optimization problem is simple if we know something about the monotonicity
of W, on the diagonal.

THEOREM 4.1. Assume that R, and R, are constant and let W = W(x, y)
satisfying the hypotheses of Theorem 3.4 be the auxiliary value function.
Assume that

(20) 2z~ W,(z,2) isnonincreasing forz > 0.
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Then the optimal replacement level is given by
(21) A* = inf{z > 0: W,(2,2) — (R, — R,)k(z) <0},
with A* = +o if the set is empty.

ProoF. When R; and R, are constants, the function to be maximized
reduces to

A fOAe—fjkwds[Wy(z,z,) — (R, - Ry)k(2)] dz — R,.

Because k(z) is nondecreasing and R; — R, > 0, the integrand is nonincreas-
ing and it is optimal to stop as soon as the integrand is less than or equal to
0. O

If the drift f and profit rate & satisfy reasonable conditions, then (20) will
hold.

LEMMA 4.2. Assume that the state equation (1) admits a unique, strong
solution for any admissible control policy u. Assume also that, in addition to
Conditions 1 and 2, h and f satisfy:

@) h = h(x, y, u) is nonincreasing in x and y for fixed u.
(i) f = f(x, y,u) is nondecreasing in x and y for fixed u.

Then
z — W,(z,2) isnonincreasing.

Proor. It is sufficient to show that
(22) W(zy,2, +6) —W(z5,2,+8) =0

for all 0 <z, <z, and 8> 0. Let u? = (u?, 0 <t <) be an admissible
control and let (x2, y2) denote the corresponding state if the initial conditions
are (xg, ¥o) = (24,25 + 8). Use the same control process when the initial
conditions are (x,, y,) = (21, 2; + 8) and denote the state by (x!, y1).

The monotonicity assumption (ii) implies that

f(x+z,2z,+6,u) <f(x+2y,29+ 8,u) forall x and u.

A comparison theorem for stochastic differential equations [see, e.g., Section
5.2C in Karatzas and Shreve (1988)] implies that

(23) P(x; —2; <x} —zyforallt > 0) =1
and hence _
. 0, = inf{t > 0; x; — 2z, = 8} > 0, = inf{t > 0; x7 — 2, = §}.
The monotonicity of ~ then implies that
I(zy,2, + 8;u”) —I(2y, 25 + 8;u%) 2 0.
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The control process u? was arbitrary, so we have shown that the original
auxiliary value starting at (z,, z; + §) is at least as large as the auxiliary
value starting at (z,, z, + 8). This implies (22) and completes the proof. O

REMARK 4.3. The assumptions on f and A& have natural interpretations
for applications in controlled wear. Assumption (i) says that the revenue rate
decreases as the system ages while assumption (ii) says that an older system
has a higher wear rate.

4.1. Examples. We present two simple examples to illustrate our ap-
proach. In the first example, we assume in addition to Conditions 1-5 that:

1. the profit rate h(x, y,u) = h > 0;

2. the failure rate k(y) = & > 0;

3. the failure cost R,(y) =R, > 0;

4. the drift rate f(x, y,u) = u € [Uy;,, Upmax ), With w ;> 0;
5. the constant diffusion coefficient o = 1.

It follows from the results in Section 3 that the optimal control z* is in fact
constant for this case. We will show that the optimal replacement level A* is
either 0 or +, so it may be optimal to work the system until it fails.

For this special example, the single-cycle payoff with replacement level A
and control u is

J(0,0;u,A) =h-E[{(u) A 7(A)].
Thus it is optimal to simply maximize the survival time by choosing u* = u ;,
[because (A > 0)].
The optimal replacement level A* is determined by
J(0,0; u*, A*) — R(A¥)
= max [A-E[{(umn) A 7(A)] — R,
+(Ry = Ry(A))P(y(¢) > b))

(1= em)(Ry — Ry(A))(1 - e~+) - Rzm)]

max
A>0 | kB Ui

‘U

mas - Rl)(l - e'“) - RZ(A)e'k‘A].

= max (

min
We used Lemma 3.6 to compute the expected failure‘/ replacement time. So, if
h satisfies

il > k 'umin'Rl,
then A* = +o and the optimal policy is to always work at the slowest rate

possible and always work until the system fails. If, on the other hand, 4 is too
small, then A* = 0 and it is optimal to stop immediately.
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In a second example, we obtain a finite (nonzero) preventive replacement
level. Let U = [ pin, Umax] With w ;> 0 be the control set. Assume, in
addition to Conditions 1-5, that:

1. the profit rate A(x,y,u) = h(y,u) = a(u) — b(y), where a and b are
positive, increasing functions;

2. the drift rate f(x, y, u) = f(u), where f is a strictly positive, increasing
function,;

3. the ratio a(u)/f(u) is increasing on U;

4. the replacement costs R; and R, are constants;

5. the diffusion coefficient o = 1.

This is an example of a “pure” running max problem described in Heinricher
and Stockbridge (1991a). When the running profit and the drift and diffusion
coefficients depend on only « and y, the optimal control policy is constant on
excursions and the auxiliary problems are particularly easy to solve.

For this special example, it is not difficult to show that the function

(y —x)
W(x,y) = |a(u*) — b(y)| ———,
(x,9) = [a(w*) = b)) 2r2m
satisfies (15) when the feedback control u* maximizes
a(u) —b(y) _a(x) b(y)
f(u) f(u)  f(w)
with respect to u € [u,;,, Upa)- Our assumptions imply that this ratio is
increasing for each y, and hence the maximum occurs at u*(y) = u,,, (for
all y).
By Theorem 3.4, this provides a formula for the full value function V(x, y).
In this case, we are interested in the value with x = y = 0, which gives us

J(0,0;u*, A) = V(0,0)
_ j‘Ae_j:k(s)ds(a(umax) - b(Z) )dz
0

f(Umax)

The optimal replacement threshold is obtained by maximizing
A~ J(0,0;u*,A) — R(A)

_ Ae_ “k(s)ds a(umax) —b(Z) _ _ 2 ] y —
/ ; [ T (R, — Ry)k(2)|dz — R,

over A > 0. The integrand is decreasing with z and, as in Theorem 4.1, the

optimal replacement policy stops as soon as the integrand is negative. That

is,

a(umax) - b(z)
f(%max)

So it is always optimal to work at the maximum rate and it is optimal to
replace at A* defined in (24).

' (24) A = inf{t > 0: - (R — Ry)k(2) < 0} .
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5. Long-run average problem. We close with a brief discussion of how
to use the results of the previous sections to solve the problem where the
objective is to maximize the long-run average profit. This problem will be
studied in greater detail, and with different tools, in the second part of this
work [Heinricher and Stockbridge (1993)].

Assume that the control process is renewed with the state. If one has a
control in feedback form, this is automatic. The long-run average payoff can
be represented, using the theory of renewal processes, as the reward per cycle
divided by the cycle length. Let {(u) denote the failure time if the initial state
is (x, ¥) = (0,0) and the control policy is u. The long-run average payoff for a
policy u and replacement level A takes the form

E[fg(u)AT(A)h(xt’ Ve uy) dt — R(A)]

25 A(u,A) = ,

29 () E[2(u) A 7(A)]

and we denote the optimal value for the long-run average problem by
26 A* = A(u, ).

( ) u er;}? AX >0 ( “ )

As in Heinricher and Stockbridge (1991b) [see also Taylor (1975) and Aven
and Bergman (1986)], we transform the long-run average problem into a
parametrized family of single-cycle problems. For any admissible pair (z, A),
we have

E[fé(u)AT(A)h(xt’ Yer Uy) dt — R(A)]

@0 AlwA) = E[Z(u) A 7(A)] =X
and thus
(28) E[[“““’(A)(h(xt, Yo uy) — A) dt] - R(A) <.

0

A long-run optimal pair (u*, A*) satisfies both (27) and (28) with equality.
Thus (u*, A*) is also optimal for the problem:

.. LA T(A) 5
29 M E h(x,,y,, — M) dt — R(A)],
(29)  Maximize | B[ (h(x,, 300) - ) dt ~ R()|
and the optimal value is 0.

The obvious difficulty is that A* is not known a priori, so we work with a
family of control problems parametrized by A and determine the optimal
value X* iteratively. For A € R, define a single-cycle control problem

J(Au,A) —R(A) = E[f()‘f”’““”(h( KesVerg) — A)dt — R(A)].

Thus for each A, we have a single-cycle problem which can be solved using
the results in Theorem 3.4 to determine u* = u*(A) and Theorem 4.1 to
determine A* = A*(A). The optimal value A*, as well as the long-run optimal
control and replacement level can be determined iteratively.
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