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Bayesian Analysis of Exponential Random
Graph Models Using Stochastic Gradient

Markov Chain Monte Carlo∗†

Qian Zhang‡ and Faming Liang§

Abstract. The exponential random graph model (ERGM) is a popular model for
social networks, which is known to have an intractable likelihood function. Sam-
pling from the posterior for such a model is a long-standing problem in statistical
research. We analyze the performance of the stochastic gradient Langevin dynam-
ics (SGLD) algorithm (also known as noisy Longevin Monte Carlo) in tackling this
problem, where the stochastic gradient is calculated via running a short Markov
chain (the so-called inner Markov chain in this paper) at each iteration. We show
that if the model size grows with the network size slowly enough, then SGLD
converges to the true posterior in 2-Wasserstein distance as the network size and
iteration number become large regardless of the length of the inner Markov chain
performed at each iteration. Our study provides a scalable algorithm for analyzing
large-scale social networks with possibly high-dimensional ERGMs.
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1 Introduction
The exponential random graph model (ERGM) (Robins et al., 2007a,b), as a popular
model for social networks, has the capacity to describe a wide range of dependence
structures among the actors within a social network and support statistical inference
of social networks from various backgrounds. Consider an N -actor social network with
adjacency matrix y ∈ Y, where

Y := {y : y ∈ {0, 1}N×N ,y = yT , yii = 0, 1 ≤ i ≤ N}.

The ERGM defines the probability mass function (or likelihood) of y via an exponential
family distribution as

p(y|θ) = P(Y = y|θ) = eθ
TS(y)

Z(θ) , (1.1)
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where θ ∈ R
p is the vector of parameters, S(y) ∈ R

p is the vector of sufficient statistics,
and Z(θ) =

∑
ỹ∈Y eθ

TS(ỹ) is the normalizing constant which is intractable even for a
moderate value of N . Let π(θ) denote the prior distribution of θ. Then the posterior
distribution of θ is given by π(θ|y) = c(y)π(θ)eθTS(y)/Z(θ), where c(y) is the inverse
of the normalizing constant of the posterior distribution, while Z(θ) is still intractable.

The existence of the intractable normalizing constant Z(θ) has brought a great
challenge to statistical inference of the ERGM. For example, the maximum likelihood
estimator (MLE) of θ cannot be directly computed, and the posterior π(θ|y) cannot
be directly sampled from, either. To tackle this difficulty, a variety of methods have
been proposed in the literature. The existing methods can be roughly classified into two
categories according to the strategies employed by them, namely, approximation-based
methods and auxiliary sample-based methods. See also Park and Haran (2018) for a
comparative review of the existing methods from Bayesian perspective.

The methods in the first category are to approximate the intractable normaliz-
ing constant Z(θ), the gradient ∇θ logZ(θ), or the ratio Z(θ)/Z(θ′). For example,
Geyer and Thompson (1992) proposed the Monte Carlo maximum likelihood estima-
tion (MCMLE) method for estimating θ, where Z(θ) is approximated using importance
sampling based on the samples drawn from a trial distribution p(y|θ0) for a pre-specified
point θ0. It is known that this method can converge to a suboptimal solution, if θ0 is
not close to the true MLE.

Liang (2007) and Atchade et al. (2013) proposed to approximate Z(θ) using an adap-
tive kernel smoothing method, where Z(θ) is viewed as a marginal density function of the
unnormalized distribution eθ

TS(y). Toward sampling from the posterior π(θ|y), Liang
and Jin (2013) proposed the Monte Carlo Metropolis-Hastings (MCMH) algorithm,
where Z(θ)/Z(θ′) is approximated at each iteration using auxiliary samples simulated
from either p(y|θ) or p(y|θ′) through an inner Markov chain. Alquier et al. (2016)
called the MCMH algorithm a noisy exchange algorithm and established its approxima-
tion rate with respect to the length of the inner Markov chain. The Bayesian stochastic
approximation Monte Carlo (SAMC) algorithm (Jin and Liang, 2014) and the marginal
MCMC algorithm (Everitt, 2012) also belong to the class of noisy exchange algorithms,
which, in general, require to simulate a large number of auxiliary samples at each it-
eration for ensuring their convergence. Quite recently, Alquier et al. (2016) proposed
the noisy Langevin algorithm, where auxiliary samples generated by an inner Markov
chain are used to approximate the gradient ∇θ logZ(θ) at each iteration. While the
noisy Hamiltonian Monte Carlo (HMC) algorithm (Stoehr et al., 2019) approximates
both ∇θ logZ(θ) and Z(θ)/Z(θ′) using the auxiliary samples at each iteration.

The methods in the second category aim to cancel the normalizing constant ra-
tio Z(θ)/Z(θ′) by augmenting appropriate auxiliary samples to the target distribution
and/or the proposal distribution. The early works include Møller et al. (2006) and
Murray et al. (2006), which are limited to spin systems only as they require a perfect
sampler (Propp and Wilson, 1996) for drawing auxiliary samples. To tackle this limi-
tation, Liang (2010) proposed the double Metropolis-Hastings (DMH) sampler, where
auxiliary samples are drawn through an inner Markov chain induced by the Metropolis-
Hastings algorithm. Similar algorithms have been proposed in Caimo and Friel (2011)
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and Everitt (2012) for social network analysis. Since in these algorithms a short inner
Markov chain is used for generating auxiliary samples at each iteration, the resulting
estimates are only approximately correct. To overcome this issue, Liang et al. (2016)
proposed an adaptive exchange (AEX) algorithm, where auxiliary samples are drawn
via an importance sampling procedure running in parallel to the target Markov chain.

The literature review shows that use of a short inner Markov chain for generating
auxiliary samples has been adopted by many Bayesian methods in dealing with the issue
of intractable normalizing constants, see e.g., Liang and Jin (2013), Alquier et al. (2016),
and Stoehr et al. (2019). Unfortunately, by the theory of Alquier et al. (2016), those
methods often fail to converge to the true posterior π(θ|y) unless the inner Markov
chain has been run long enough at each iteration. In particular, for the noisy Langevin
Monte Carlo algorithm, their theory implies that to ensure the convergence to the true
posterior, the length of the inner Markov chain at iteration t should grow with the
dimension of the ERGM and the reciprocal of the learning rate of the Langevin Monte
Carlo algorithm.1 Therefore, if a decreasing learning rate is used for the Langevin Monte
Carlo algorithm, the length of the inner Markov chain should grow with iterations,
making the algorithm impractical.

In this paper, we re-analyzed the convergence of the noisy Langevin Monte Carlo
algorithm based on the convergence theory of the stochastic gradient Langevin Monte
Carlo (SGLD) algorithm (Welling and Teh, 2011), see e.g., Dalalyan and Karagulyan
(2019), Bhatia et al. (2019), and Song et al. (2020). We show that for an ERGM, if
p = o(Nκ) holds for some constant κ, then the noisy Langevin Monte Carlo algorithm
converges to the true posterior distribution in 2-Wasserstein distance as N → ∞ and t →
∞ regardless of the length of the inner Markov chain performed at each iteration. This
result implies that the noisy Langevin Monte Carlo algorithm is scalable with respect
to the network size. Further, since the posterior π(θ|y) is strongly log-concave (with
an appropriate prior) as shown in Section 3, it follows from Dalalyan and Karagulyan
(2019) and Durmus et al. (2019) that noisy Langevin Monte Carlo can converge to the
true posterior very fast, whose computational complexity increases only linearly with
respect to the dimension p.

We note that the existing exact methods can be very inefficient for large-scale net-
works and high-dimensional ERGMS. For example, to generate auxiliary samples used
for canceling the normalizing constant ratio Z(θ)/Z(θ′), the AEX algorithm (Liang
et al., 2016) learns a mixture trial distribution for which the number of components is
required to increase exponentially with the dimension of θ. Therefore, AEX can be very
inefficient for high-dimensional problems. Similarly, the methods by Liang (2007) and
Atchade et al. (2013) also suffer from the curse of dimensionality.

The remaining part of this paper is organized as follows. Section 2 describes the
proposed method. Section 3 proves the convergence of noisy Langevin Monte Carlo to
the true posterior distribution under the large network regime. Sections 4 and 5 illustrate

1By Theorem 2.2 and Lemma 3 of Alquier et al. (2016), it is easy to get a lower bound for the length
of the inner Markov chain at iteration t: mt ≥ cp/[Nκ(ε(t))2] for some constants c and κ in notations
of this paper.
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the performance of noisy Langevin Monte Carlo. Section 6 concludes the paper with a
brief discussion.

2 Noisy Langevin Monte Carlo for Bayesian Analysis of
ERGMs

2.1 The Noisy Langevin Monte Carlo Algorithm

Consider the ERGM (1.1). A straightforward calculation shows that

∇θ log π(θ|y) = S(y) − Eθ[S(Y )] + ∇θ log π(θ), (2.1)

where Eθ[S(Y )] = ∇θ logZ(θ) =
∑

ỹ∈Y S(ỹ)eθTS(ỹ)/Z(θ). Since an exhaustive evalu-
ation for all possible configurations of ỹ ∈ Y is impossible even for a moderate value of
N , we estimate Eθ[S(Y )] by averaging over the samples simulated by an inner Markov
chain. As in DMH (Liang, 2010), the Markov chain is initialized at the observed net-
work y and leaves p(y|θ) as the invariant distribution. Let ỹ1, ỹ2, . . . , ỹm denote the
auxiliary samples collected from a single inner Markov chain. Then Eθ[S(Y )] can be
estimated by

Êθ[S(Y )] = 1
m

m∑
i=1

S(ỹi), (2.2)

which is known to be biased due to the finiteness of m. In this paper we always use m to
denote the number of auxiliary samples used in estimating Eθ[S(Y )] at each iteration.
Plugging this estimator into (2.1), we get

∇̂θ log π(θ|y) = S(y) − Êθ[S(Y )] + ∇θ log π(θ).

The posterior π(θ|y) can then be simulated using the stochastic gradient Langevin dy-
namics (SGLD) algorithm (Welling and Teh, 2011) by iterating the following equation:

θ(t+1) = θ(t) + ε(t)

2 D∇̂θ log π(θ(t)|y) + N (0, ε(t)D), (2.3)

where ε(t) is a positive scalar and D ∈ R
d×d is a diagonal matrix, which together give

component-specific learning rates for θ. For some experiments in this paper, we set

D = diag
{ 1
S1(y) ,

1
S2(y) , . . . ,

1
Sp(y)

}
,

where Sk(y) denotes the k-th component of S(y). How to run the inner Markov chain at
each iteration is described in Section 2.2, and the convergence of the algorithm is studied
in Section 3. In what follows, we call (2.3) a noisy Langevin Monte Carlo algorithm,
which is exchangeable with SGLD in this paper.
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2.2 On Inner Markov Chain Simulations

For small networks, we simulate each auxiliary network by running the Gibbs sampler
(Geman and Geman, 1984) in a full sweep, where each dyad of the network undergoes
an update according to its conditional distribution. For large networks, we simulate aux-
iliary networks using the tie-no-tie (TNT) sampler (Morris et al., 2008) which updates
only a subset of dyads of the network according to the Metropolis-Hastings rule. Typi-
cally, half of the dyads in the subset are randomly selected from the set of ties/edges of
the network and the other half are randomly selected from the set of non-ties/non-edges
of the network. Since the network is usually very sparse, the TNT sampler avoids the
time wasted in updating the dyads with low probability to be edges and is thus effi-
cient. Specifically, for a dyad with a tie, we propose to delete the tie with the acceptance
probability given by

rd = min
{

1, p(y
′|θ)

p(y|θ)
|Edge(y)|(

N
2
)
− |Edge(y)| + 1

P (adding)
P (deleting)

}
,

where y′ is the proposed network, |Edge(y)| is the number of ties in y, and P (adding) =
P (deleting) = 1/2 according to our strategy. For a dyad without a tie, we propose to
add the tie with the acceptance probability given by

ra = min
{

1, p(y
′|θ)

p(y|θ)

(
N
2
)
− |Edge(y)|

|Edge(y)| + 1
P (deleting)
P (adding)

}
.

For both the Gibbs sampler and the TNT sampler, the likelihood ratio

p(y′|θ)/p(y|θ) = exp
{
θT (S(y′) − S(y))

}
,

needs to be evaluated in each dyad update, where y′ differs from y for only one edge.
Let Δi,jS(y) := S(y′) − S(y), where y′ differs from y only at the (i, j)-th element.
For some commonly used sufficient statistics of the ERGM (1.1), we provide recursive
formulas for calculating Δi,jS(y) in the Appendix B of the Supplementary Material
(Zhang and Liang, 2023).

3 Convergence Analysis
In this section, we rewrite a social network by yN , where the subscript indicates its
size. Let π∗

N = π(θ|yN ) denote the posterior density function of θ, let π(t)
N = π(θ(t)|yN )

denote the density of θ(t) generated by the SGLD algorithm at iteration t, and let Θ
denote the space of θ. We are interested in studying the discrepancy between π∗

N and
π

(t)
N in 2-Wasserstein distance. Refer to Gibbs and Su (2002) for discussions on the

relation between the Wasserstein distance and other probability metrics. To study the
convergence of the proposed method, the following conditions are assumed:
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(A.1) The posterior π∗
N is strongly log-concave and gradient-Lipschitz:

U(θ) − U(θ′) −∇U(θ′)T (θ − θ′) ≥ qN
2 ‖θ − θ′‖2

2, ∀ θ,θ′ ∈ Θ, (3.1)

‖∇U(θ) −∇U(θ′)‖2 ≤ QN‖θ − θ′‖2, ∀ θ,θ′ ∈ Θ, (3.2)

where U(θ) = − log π(θ|yN ), and c0N
κ ≤ qN ≤ QN ≤ c1N

κ holds for some
positive constants c0, c1 and κ.

(A.2) The posterior π∗
N has bounded second moment, i.e.,

∫
Θ θTθπ(θ|yN )dθ = O(p),

where p denotes the dimension of θ.

(A.3) Eθ‖∇θU(θ)‖2 = O(Nκ(‖θ‖2 + p)), where Eθ denotes expectation with respect to
the distribution p(yN |θ), and κ denotes a positive constant as defined in (A.1).

Regarding these assumptions, we have the following justifications. For the ERGM
(1.1), it is easy to derive that (see e.g., Fellows and Handcock (2017)),

∂ log p(yN |θ)
∂θ

= S(yN ) − Eθ(S(yN )), −∂2 log p(yN |θ)
∂θiθj

= Covθ(Si(yN ), Sj(yN )),

(3.3)
where the expectation Eθ(·) and covariance Covθ(·) are taken with respect to the dis-
tribution p(yN |θ). By (3.3), condition (A.1) is satisfied as long as the prior π(θ) is
also strongly log-concave and gradient-Lipschitz. For example, we can set π(θ) ∝ 1 or
π(θ) ∝ exp{−‖θ‖2/(2σ2)} for some σ2 > 0. If the former is used, then we can set
qN = λmin(Σ) and QN = λmax(Σ), where Σ denotes the covariance matrix of S(yN ),
and λmin(Σ) and λmax(Σ) denote the smallest and largest eigenvalues of Σ, respectively.
When the network size is large, since Si(yN )’s generally increase with N , the eigenvalues
of Σ also increases with N and becomes large. Further, since the space Y is finite and the
same for any θ ∈ Θ, the inequality c0N

κ ≤ qN ≤ QN ≤ c1N
κ can hold uniformly over

the parameter space Θ. However, we do note that the value of κ is model dependent,
i.e., depending on the statistics Si(yN )’s used in the model. If a Gaussian prior is used
for θ, we can slightly adjust the values of qN and QN by adding 1/σ2. A non-strongly
log-concave prior density can also be applied to θ, while ensuring condition (A.1) holds.

Further, by (3.3) and with an appropriate prior of θ, we have

Eθ‖∇θU(θ)‖2 � trace(Σ) ≤ pQN ,

which implies condition (A.3) is satisfied.

Theorem 3.1 concerns convergence of the noisy Langevin Monte Carlo algorithm for
the ERGM, where p is allowed to increase with N , the learning rate ε is allowed to
decrease with N , and m denotes the number of auxiliary samples used in estimation of
∇θ logZ(θ) as in (2.2). The proof of Theorem 3.1 is given in the Appendix A of the
Supplementary Material (Zhang and Liang, 2023), where the bias of the estimator (2.2)
has been taken into account.

Theorem 3.1. Assume that the conditions (A.1)–(A.3) hold.
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(i) Let π(t)
N denote the distribution of θ(t), and let π∗

N = π(θ|yN ). Then

W2(π(t)
N , π∗

N ) = (1 − ω)tW2(π(0)
N , π∗

N ) + O
( √

p

mNκ/2

)
+ O(√εp) + O

(√εp

m

)
, (3.4)

for some ω ∈ (0, 1), where W2(·, ·) denotes the second order Wasserstein distance
between two distributions.

(ii) If ρ(θ) is integrable and α-Lipschitz for some constant α > 0, then
T∑

t=1
ρ(θ(t))/T − π∗

N (ρ) = α(1 − ω)
Tω

W2(π(0)
N , π∗

N )[1 − (1 − ω)T ] + Op(T−1/2)

+ O
( √

p

mNκ/2

)
+ O(√εp) + O

(√εp

m

)
,

(3.5)

where π∗
N (ρ) =

∫
Θ ρ(θ)π(θ|yN )dθ.

In what follows, we give some remarks on the theorem. In the remarks, we allow the
network size N to increase, while treating the dimension p, the learning rate ε, and the
inner Markov chain length m as a function of N . However, for notational simplicity,
we depressed their dependency on N in the notation. In the simplified notations, a ≺
( or �) b mean that both a and b depend on N and a

b

(
or b

a

)
→ 0 as N → ∞.

Remark 3.1. Under the high-dimensional setting, i.e., the learning rate ε decreases
with N and p such that ε ≺ min{ 1

Nκ ,
1
p}, and m increases with p such that m �

√
p

Nκ/2

(or p ≺ Nκ and m = O(1)), we have W2(π(t)
N , π∗

N ) → 0 and
∑T

t=1 ρ(θ
(t))/T−π∗

N (ρ) p→ 0
as T → ∞ and N → ∞, where p→ 0 denotes convergence in probability.

Remark 3.2. By Appendix A.2 of the Supplementary Material (Zhang and Liang,
2023), an approximate expression of ω is given by

ω �
(
Nκ − Nκ/2

m
−
√

2N
κ/2

√
m

)
ε, (3.6)

which implies that a large value of m can lead to a faster convergence rate of the al-
gorithm. On the other hand, as implied by (3.4), m is not necessarily very large to
counter the bias introduced by the estimator (2.2) especially when N is large. This
seemly counterintuitive setting of m can be justified by equation (3.3), which implies
that the posterior distribution is more and more concentrated as N increases (see also
condition A.1). In theory, we need to set m � √

p/Nκ/2. If p is held constant or has a
low growth rate with N such that p ≺ Nκ holds, then we can set m = O(1). That is, in
this case, we have W2(π(t)

N , π∗
N ) → 0 holds as N → ∞ and t → ∞ for any choice of m.

We note that the convergence of the noisy Langevin Monte Carlo algorithm has also
been established in Alquier et al. (2016) (Theorem 3.2, page 36), but without giving an
explicit convergence rate. By the theory of Alquier et al. (2016), the length of the inner
Markov chain should satisfy the condition m ≥ cp/(Nκε2) for some constant c, which
represents a much larger number than √

p/Nκ/2 established above.
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Remark 3.3. As shown in (3.5), the estimation error consists of two components,
variation and bias. If the computational budget is fixed, then we expect that m is in-
versely proportional to the total number of iterations T , i.e., T = B/m for some con-
stant B representing the fixed computational budget. In this case, we can set m =

O

((
B2ε2α4NκW 4

2 (π(0)
N , π∗

N )
) 1

3
)

, which approximately minimizes the mean squared er-

ror of the estimate
∑T

t=1 ρ(θ
(t))/T under the assumptions ε ≺ N−κ and p ≺ Nκ.

Theorem 3.1 is established with a constant learning rate. In practice, one may use
a decaying learning rate, see e.g. Teh et al. (2016), where εt = O(1/tκ) is suggested
for some 0 < κ ≤ 1. For the decaying learning rate, Teh et al. (2016) established
the consistency of some weighted averaging estimators for π∗

N (ρ). Similar to Theorem
2 of Song et al. (2020), it is easy to show that the unweighted averaging estimator∑T

t=1 ρ(θ
(t))/T still forms a consistent estimator of π∗

N (ρ) if the learning rate slowly
decays at a rate of εt = O(1/tγ) for 0 < γ < 1. However, if γ = 1, a weighted averaging
estimator is needed.

4 Experimental Results
This section presents five examples. A Gaussian prior or uniform prior π(θ) ∝ 1 on Θ
is employed for each of them. The detailed parameter settings are given in Appendix C
of the Supplementary Material (Zhang and Liang, 2023).

4.1 A Simulation Study of Spatial Autologistic Models

To validate the proposed method, we first applied it to estimate the parameters of a
spatial autologistic model with simulated data. In the spatial autologistic model, the
graph is denoted by y ∈ {−1, 1}d1×d2 , where each element yij is called a spin. Let D
denote the set of indices of the spins, and let n(i, j) denote the set of indices of the
neighboring spins of yij . The likelihood function of the graph y is given by

p(y|α, β) = 1
Z(α, β) exp

⎧⎨⎩α
∑

(i,j)∈D
yij + β

∑
(i,j)∈D

yij

⎛⎝ ∑
(k,l)∈n(i,j)

ykl

⎞⎠⎫⎬⎭ ,

where the parameter α determines the overall proportion of yij = ±1, and the parameter
β determines the intensity of interaction between yij and its neighbors. Let θ = (α, β)
denote the parameter vector. In this example, we set D to a United States cancer
mortality map compiled by Riggan et al. (1987) based on the case counts of liver and
gallbladder (including bile ducts) cancers in white males during the decade 1950–1959.
The mortality map consists of 2293 spins, each representing a county of the United
States. Different values of (α, β) have been considered in the simulation, which are
given in Table 1. For each value of (α, β), 50 independent graphs were simulated using
a perfect sampler developed by Childs et al. (2001) for spin models. The free boundary
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method α β α̂− α β̂ − β average CPU time (s)
SGLD 0 0.1 0.0003 (0.0026) 0.0018 (0.0022) 27.251

0 0.2 0.0022 (0.0020) 0.0008 (0.0020) 35.230
0 0.3 0.0023 (0.0015) −0.0027 (0.0016) 32.217
0 0.4 −0.0009 (0.0007) −0.0025 (0.0011) 29.214

0.1 0.1 0.0000 (0.0025) −0.0009 (0.0023) 33.915
0.3 0.3 0.0025 (0.0083) 0.0025 (0.0034) 31.841
0.5 0.5 0.0017 (0.0206) 0.0072 (0.0091) 35.292

DMH 0 0.1 0.0007 (0.0027) 0.0014 (0.0023) 24.103
0 0.2 0.0026 (0.0021) 0.0010 (0.0020) 22.081
0 0.3 0.0018 (0.0017) −0.0024 (0.0016) 21.348
0 0.4 −0.0006 (0.0007) −0.0034 (0.0013) 29.313

0.1 0.1 −0.0005 (0.0025) −0.010 (0.0023) 23.107
0.3 0.3 0.0019 (0.0080) 0.0029 (0.0034) 35.136
0.5 0.5 0.0713 (0.0252) −0.0138 (0.0106) 31.461

AUEX 0 0.1 0.0001 (0.0026) 0.0017 (0.0022) 431.990
0 0.2 0.0023 (0.0019) 0.0008 (0.0020) 1080.252
0 0.3 0.0026 (0.0016) −0.0022 (0.0016) 2886.858

0.1 0.1 0.0002 (0.0024) −0.0007 (0.0022) 472.623
0.3 0.3 0.0015 (0.0081) 0.0029 (0.0035) 1251.778

Table 1: Parameter estimates and their standard deviations (reported in parentheses)
for the simulated spatial autologistic model, where “SGLD” represents the proposed
method.

condition was used in simulations. Similar simulation studies have been considered in
the literature, see e.g. Liang (2010) and Liang et al. (2016).

We have applied the proposed method, DMH (Liang, 2010) and exchange algorithm
(Murray et al., 2006) (denoted by AUEX) to this example with the improper prior
π(θ) ∝ 1. The detailed parameter settings are given in Appendix C of the Supplementary
Material (Zhang and Liang, 2023). Note that AUEX is exact, where the perfect sampler
(Childs et al., 2001) was used for generating the auxiliary sample at each iteration. Since
the perfect sampler can be extremely slow when β is close or greater than the critical
value of the model, the estimates for the cases β = 0.4 and 0.5 cannot be obtained.

The results are summarized in Table 1, where the CPU time was measured on a
computer of Intel(R) Xeon(R) Gold 6126 CPU@2.60GHz. All computations reported in
this paper were done on the same computer. The comparison shows that the proposed
method (denoted by SGLD) produced about the same accurate estimates as AUEX,
while costing much less CPU time than AUEX; SGLD cost about the same CPU time
as DMH, while producing more accurate estimates for strongly interaction models, e.g.,
the model with (α, β) = (0.5, 0.5).

Figure 1 compares the density plots of posterior samples generated by different
methods, where AUEX is only available for the weak interaction cases. The comparison
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Figure 1: Density plots of posterior samples generated by AUEX, DMH and SGLD
under different settings of (α, β) for the spatial autologistic model.

shows that SGLD is able to converge to the true posterior and is thus a valid method
for Bayesian analysis of the models with intractable normalizing constants.
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4.2 A Simulation Study of ERGM
To assess the effect of the network size N on the performance of the proposed algo-
rithm, we conduct a series of experiments on ERGMs with different values of N . In
our experiments, we simulated networks of size N = 20, 50, 75, and 100 from the fixed
ERGM

p(y|θ) = 1
Z(θ) exp

{ 2∑
k=1

θkEk(y)
}
, (4.1)

with θ1 = −2 and θ2 = 0.0042. For each value of N , 50 networks were simulated using
the Gibbs sampler. Specifically, we collected one network after every 10,000 sweeps of
the Gibbs sampler, where each dyad undergoes a Metropolis-Hastings update in one
sweep of the Gibbs sampler.

The SGLD, DMH, and noisy HMC (Stoehr et al., 2019) algorithms were applied to
the simulated networks with a uniform prior π(θ) ∝ 1 on the parameter space Θ, where
Θ is given in the Appendix C of the Supplementary Material (Zhang and Liang, 2023).
Detailed parameter settings were also given there. We note particularly that for each
algorithm and for each value of N , we run the inner Markov chain for 10 sweeps. For
SGLD, this corresponds to fix m = 10 for all values of N . The numerical results are
summarized in Table 2.

Table 2 shows that the bias of the SGLD estimates decreases as the network size
increases, although m is kept as a constant. This is consistent with our theory. In
contrast, the estimates of DMH and noisy HMC do not follow this pattern. We suspect
that this is due to the acceptance-rejection step involved in DMH and noisy HMC. As
the network size increases, the length of the inner Markov chain needs to be extended

method N θ̂1 − θ1 θ̂2 − θ2 average CPU time (min)
SGLD 20 −0.1557 (0.0361) 0.0115 (0.0013) 0.1785

50 0.0986 (0.0413) −0.0082 (0.0031) 1.1404
75 −0.0233 (0.0371) 0.0008 (0.0020) 2.7139
100 0.0044 (0.0417) 0.0003 (0.0016) 4.5732

DMH 20 −0.1568 (0.0364) 0.0121 (0.0012) 0.2010
50 0.1054 (0.0353) −0.0084 (0.0026) 1.5187
75 0.2271 (0.0520) −0.0122 (0.0027) 3.6809
100 0.1757 (0.0436) −0.0069 (0.0017) 6.2842

noisy HMC 20 −0.1299 (0.0415) 0.0134 (0.0019) 10.0616
50 0.0248 (0.0510) −0.0015 (0.0040) 19.0405
75 0.2004 (0.0440) −0.0109 (0.0022) 8.8749
100 0.1615 (0.0407) −0.0063 (0.0016) 10.0393

Table 2: Means and standard deviations (reported in parentheses) of the parameter
estimation bias for the networks simulated from the ERGM (4.1) with different values
of N .
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substantially; otherwise, the resulting auxiliary samples might be more correlated and
pre-converged. For noisy HMC, this will lead to a less accurate estimator for the ratio
Z(θ)/Z(θ′) and thus the corresponding Metropolis-Hastings ratio. This is similar for
DMH, whose estimator for the Metropolis-Hastings ratio also becomes less accurate if
the length of the inner Markov chain is not substantially extended as N increases.

Finally, we note that for SGLD, if all samples generated by the inner Markov chain,
instead of only those generated at the end of each sweep, are used in estimation of
Eθ[S(y)], the resulting estimates of θ can have a smaller variance but about the same
bias compared to those reported in Table 2. Also, we note that SGLD and DMH cost
about the same CPU time, while they both are faster than noisy HMC.

4.3 Florentine Business Network
The Florentine families’ business network represents the business relations among the 16
prominent Florentine families in early 15th century Europe. The network was originally
constructed by Padgett (1994) based on the data from historic documents. We modeled
the network using the following ERGM:

p(y|θ) = 1
Z(θ) exp

{ 2∑
k=1

θkEk(y)
}
,

where Ek(y) denotes the k-star count.

The SGLD, DMH, noisy Hamiltonian Monte Carlo (noisy HMC) (Stoehr et al.,
2019), and AEX (Liang et al., 2016) were applied to this example with the improper
prior π(θ) ∝ 1. Each method was run for 5 times independently with detailed param-
eter settings given in Appendix C of the Supplementary Material (Zhang and Liang,
2023). These independent runs have exactly the same parameter settings but different
random seeds. For SGLD and DMH, we set m = 4. The resulting estimates are shown
in Table 3. The goodness-of-fit (GOF) plot for the averaged estimate is shown in Fig-
ure 2, which was generated using the R package “ergm” (Hunter et al., 2008). In the

method Edges(θ1) k2-star(θ2) CPU time (s)
SGLD −2.2370 (0.1508) 0.0653 (0.0302) 1.956
AEX −2.2549 (0.0414) 0.0627 (0.0135) 89.218
DMH −2.5104 (0.2164) 0.1427 (0.0471) 1.954
noisy HMC −2.4854 (0.0280) 0.1186 (0.0073) 108.866a

a This number counts only the CPU time used for running noisy HMC with the
maximum a posteriori (MAP) estimate as the initial value; finding the MAP estimate
by the stochastic approximation algorithm Robbins and Monro (1951) took 1953.3
seconds.
Table 3: Parameters estimates for Florentine Business Network, where the estimates
and standard deviations (reported in parentheses) were obtained by averaging over 5
independent runs.
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Figure 2: Goodness-of-fit plots for Florentine business network.

GOF plot, each boxplot depicts the distribution of a statistic of the networks simulated
from the estimated model, and the line links the values of the statistics of the observed
network. In particular, the panel of model statistics shows the reproducibility of the
sufficient statistics of the observed network by the fitted ERGM, and we often treat
it as an indicator for the adequacy of the fitted ERGM. Refer to Appendix B of the
Supplementary Material (Zhang and Liang, 2023) for the definitions of the statistics
used in the GOF plot and some other basic network statistics.
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Figure 3: Density plots of posterior samples generated by AEX, DMH, noisy HMC and
SGLD, where m = 100 for DMH and SGLD.

The numerical results are summarized in Table 3 and Figure 2. For this example, we
treat the results of AEX as the standard, as AEX is known to be exact. The comparison
shows that SGLD produced about the same estimates as AEX, while costing much less
CPU time than the latter; SGLD cost about the same CPU time as DMH, while their
estimates are much different; noisy HMC is much expensive under its default setting,
while its estimate is reasonably close to that of DMH.

The results in Table 3 are understandable. We note that noisy HMC includes an
acceptance-rejection step, where the normalizing constant ratio Z(θ)/Z(θ′) is estimated
based on the auxiliary samples simulated by the HMC algorithm. This is somewhat
similar to DMH, where the ratio Z(θ)/Z(θ′) is estimated based on a single auxiliary
sample simulated by the MH algorithm. In contrast, SGLD does not include such an
acceptance-rejection step, for which the auxiliary samples are used for estimating the
gradient ∇θ log π(θ|yN ) only. As a result, noisy HMC performs more similarly to DMH
instead of SGLD. This phenomenon is also evidenced by Table 2.

For a thorough comparison of the four methods, Figure 3 compares the density plots
of the posterior samples generated by them. To make the comparison more fair, we have
re-run DMH and SGLD with m = 100 such that they have comparable (although still
shorter) CPU time as AEX and noisy HMC. In terms of posterior densities, SGLD
performs more similar to AEX than DMH and noisy HMC.

4.4 Kapferer’s Tailor Shop Network

Kapferer’s tailor shop network (Kapferer, 1972) describes interactions in a tailor shop
in Zambia (Northern Rhodesia) over a period of 10 months, which consists of 39 nodes
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method Edges(θ1) k2-star(θ2) GWESP CPU time (min)
SGLD −4.0721

(0.1128)
0.0209 (0.0004) 1.0946 (0.0454) 6.019

AEX −4.1198
(0.1254)

0.0359 (0.0046) 1.0089 (0.0828) 54.044

DMH −4.1898
(0.2501)

0.0699 (0.0008) 0.7172 (0.1003) 6.863

Table 4: Parameter estimates for Kapferer’s Tailor Shop Network, where the estimates
and standard deviations (reported in the parentheses) were obtained by averaging over
5 independent runs.

and 223 edges. We modeled the network using the following ERGM:

p(y|θ) = 1
Z(θ) exp

{ 2∑
k=1

θkEk(y) + θ3v(y|τ)
}

where τ = log 2, and v(y|τ) is the geometrically weighted edgewise shared partnership
(GWESP) whose definition is given in Appendix B of the Supplementary Material
(Zhang and Liang, 2023).

The SGLD, AEX and DMH were applied to this example with the improper prior
π(θ) ∝ 1. The noisy HMC was not applied to this example as its R package (Stoehr
et al., 2019) does not implement the GWESP statistic. Each method was run for 5
times independently with detailed settings given in Appendix C of the Supplementary
Material (Zhang and Liang, 2023). The resulting parameter estimates are shown in
Table 4 and the GOF plots are shown in Figure 4. Since the true parameter values are
unknown, we treat the AEX estimates as the standard. The comparison indicates that
SGLD outperforms DMH; SGLD led to more accurate parameter estimates and better
GOF fitting than DMH for this example. Again, SGLD cost much less CPU time than
AEX, although their estimates are similar. In summary, SGLD method is as fast as
DMH, while providing similar accurate estimates as AEX.

4.5 Student Friendship Network

To investigate the performance of the proposed SGLD method on higher dimensional
models, we consider the student friendship network which was collected in the first
wave (1994–1995) of the National Longitudinal Study of Adolescent to Adult Health
(Add Health). The detailed description of the study and the dataset can be found at
https://addhealth.cpc.unc.edu. The entire dataset was collected from 86 schools
with 90,118 students. In this paper, we focused on the data from school 10 with 205
students. Therefore, the network consists of 205 nodes. There are three factors for each
node: grade, race, and sex. To include nodal covariates in the ERGM of this network,

https://addhealth.cpc.unc.edu
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Figure 4: GOF plots for the Kapferer’s Tailor Shop Network.

we consider the model:

p(y|θ) = 1
Z(θ) exp

{ 3∑
k=1

θkEk(y) + θ4T (y) +
8∑

k=2

θk+3Dk(y) + θ12u((y|τ)

+
10∑
k=1

θk+12hNF,k(y,X) +
3∑

k=1
θk+22hAD,k(y,X)

+
11∑
k=1

θk+25hDNF,k(y,X) + θ37hUHF,1(y,X)
}
, (4.2)
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where y denotes the adjacency matrix of the network, X denotes the matrix of factors
of all nodes, Dk(y) denotes the number of nodes in y whose degree is k, u(y|τ) denotes
the geometrically weighted degree (GWD) statistic of y, hAD,k(y,X) denotes the nodal
factor effect of the network, hAD,k(y,X) denotes the absolute difference factor effect
of the network, hDNF,k(y,X) denotes the differential homophily factor effect of the
network, and hUHF,1(y,X) denotes the uniform homophily factor effect of the network.
The definitions of those statistics and nodal covariates can be found in Jin and Liang
(2013).

Grade is an ordinal factor with six levels indicating the grade (7–12) of a student. For
grade, we include the nodal factor effect for grade 8–12, the differential homophily factor
effect for grade 7–12, and the absolute different effects with C = 1, 2, 3 in the model.
Race is a nominal factor with five levels indicating the race (white, black, Hispanic,
native American, and others) of a student. For race, we include the nodal factor effect
for all levels but others and the differential homophily factor effect for all levels in the
model. Sex is a nominal factor with two levels indicating the gender (male, and female)
of a student. For sex, we include the nodal factor effect for female and the uniform
homophily factor effect in the model.

SGLD and DMH were applied to this example with a multivariate Gaussian prior
π(θ) ∝ exp

(
−1

2‖θ‖2
2
)

imposed on θ. The Gibbs sampler was used to generate auxil-
iary networks at each iteration. Refer to Appendix C of the Supplementary Material
(Zhang and Liang, 2023) for the settings of other hyperparameters. Table 5 shows the
parameter estimates produced by the two methods. Figure 5 shows the GOF plots of
their estimates. Figure 5 indicates that the estimates produced by SGLD fit the network
much better than those produced by DMH, while Table 5 indicates that most of the
estimates produced by the two methods have the same sign.

Figure 5: GOF plots for the Student Friendship Network.
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Coefficient DMH SGLD
Edge counts −1.0789 (0.0918) −4.3493 (0.0673)
k2-star −0.3024 (0.0439) −0.1264 (0.0216)
k3-star 0.0276 (0.0093) 0.0012 (0.0030)
Triangle 2.0004 (0.0681) 1.6922 (0.0151)
Degree (2) −0.5255 (0.0696) −0.3924 (0.0238)
Degree (3) −0.3112 (0.1248) −0.2250 (0.0470)
Degree (4) −0.3994 (0.1024) −0.2956 (0.0552)
Degree (5) −0.3091 (0.1293) −0.4355 (0.0603)
Degree (6) −0.7418 (0.1538) −1.1688 (0.0474)
Degree (7) −0.2040 (0.1828) −0.2621 (0.0387)
Degree (8) −0.2557 (0.1393) −0.7213 (0.0475)
GWD (τ = 0.25) −1.1459 (0.1525) −0.9131 (0.0709)
NF (grade: 8) −0.4021 (0.1015) −0.0053 (0.0438)
NF (grade: 9) −0.0973 (0.0541) 0.6661 (0.0250)
NF (grade: 10) 0.2500 (0.1442) 0.9473 (0.0292)
NF (grade: 11) −0.1670 (0.0805) 0.6462 (0.0323)
NF (grade: 12) 0.2386 (0.1308) 1.1464 (0.0166)
NF (race: white) −0.8079 (0.0353) −0.3115 (0.0373)
NF (race: black) −0.0257 (0.0802) 0.3568 (0.0405)
NF (race: Hispanic) −1.3333 (0.0770) −0.8695 (0.0352)
NF (race: native American) −1.3399 (0.1222) −0.8631 (0.0412)
NF (sex: female) 0.0708 (0.0458) 0.0896 (0.0043)
AD (grade, C = 1) −1.1932 (0.0587) −0.7964 (0.0198)
AD (grade, C = 2) −1.1378 (0.1723) −0.7057 (0.0114)
AD (grade, C = 3) −1.3530 (0.0690) −0.9116 (0.0093)
DHF (grade: 7) 0.8620 (0.0629) 2.5629 (0.0348)
DHF (grade: 8) 1.3197 (0.0376) 2.2915 (0.0517)
DHF (grade: 9) 0.6922 (0.0694) 1.0148 (0.0103)
DHF (grade: 10) 0.2927 (0.0450) 0.5750 (0.0233)
DHF (grade: 11) 1.2738 (0.0441) 1.5025 (0.0350)
DHF (grade: 12) 0.7811 (0.2581) 1.0333 (0.0276)
DHF (race: white) 0.1777 (0.1570) 0.0873 (0.0085)
DHF (race: black) −0.2814 (0.0832) −0.5023 (0.0558)
DHF (race: Hispanic) 0.5389 (0.0477) 0.5317 (0.0060)
DHF (race: native American) 1.0661 (0.3765) 1.0832 (0.0142)
DHF (race: others) 0.0288 (0.1493) −0.2888 (0.0844)
UHF (sex) 0.4408 (0.0388) 0.5113 (0.0017)
CPU time (min) 616.484 626.285

Table 5: Parameters estimates for the student friendship network, where the estimates
and standard deviations (reported in the parentheses) were obtained by averaging over
5 independent runs.
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5 LastFM Asia Social Network
This section explores the performance of the SGLD method on very large networks.
The LastFM Asia social network is a network of the Asian users of LastFM, a music
website, collected from the public API in March 2020 (Rozemberczki and Sarkar, 2020).
The network consists of 7,624 nodes and 27,806 edges, where the node represent users
and the edges represent mutual follower relationships between the users. We modeled
the network using an ERGM with 4 parameters:

p(y|θ) = 1
Z(θ) exp

{ 2∑
k=1

θkEk(y) + θ3T (y) + θ4u(y|τ)
}
, (5.1)

where Ek(y) denotes k-star counts, T (y) denotes triangle counts, τ = log(2), and u(y|τ)
denotes the geometrically weighted degree (GWD) statistic whose definition is given in
Appendix B of the Supplementary Material (Zhang and Liang, 2023).

For the model (5.1), we let θ be subject to a multivariate Gaussian prior π(θ) ∝
exp

(
−1

2‖θ‖2
2
)
. Since the network is large, the TNT sampler was used to generate auxil-

iary networks. At each iteration, the TNT sampler proceeds by updating m̃ dyads with
edges and m̃ dyads without edges, and the last network was used in estimating the
expectation EθS(Y ).

To explore the effect of m̃ on the convergence of SGLD, we tried three different values
of m̃ = 500, 1000 and 2000. Figure 6 shows the trace plots of posterior samples produced
by SGLD with different values of m̃. It indicates that the choice of m̃ affects the speed
of convergence; a larger value of m̃ can significantly accelerates the convergence of the
simulation (in terms of iterations). However, SGLD is able to converge to the same
estimate with different values of m̃ if the run is sufficiently long. This is consistent with
Remark 3.2.

Next, we re-ran SGLD with the settings m̃ = 500, 1000 and 2000 for this exam-
ple. Correspondingly, we set the total numbers of iterations T = 250, 000, 150,000 and
100,000 such that each run cost about the same CPU time under each setting. Table 6
summarizes the resulting parameter estimates, where SGLD were run 5 times indepen-
dently under each setting and the parameters were estimated by averaging over the
last 50,000 iterations in each run. Figure 7 shows the GOF plots obtained under each
setting of m̃. The comparison shows that a larger value of m̃ tends to produce more
stable parameter estimates. This is consistent with Remark 3.3: the best choice of m̃
might depend on the network size.

Finally, we explore the importance of each component of the sufficient statistics in
(5.1) in modeling the network. We imposed a shrinkage prior on θ = (θ1, θ2, θ3, θ4),
where θk’s are a priori independent and each follows a mixture Gaussian prior

π(θk) = λN (0, σ2
1) + (1 − λ)N (0, σ2

0), (5.2)

where σ2
0 is very small, σ2

1 is relatively large, and λ specifies the mixture probability
of the two components. Since the log-prior log π(θ) is differentiable with respect to θ
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Figure 6: Trace plots of SGLD produced with different values of m̃ in the TNT sampler,
where plot i corresponds to the parameter θi of the model (5.1).

terms SGLD
(m̃ = 500)

SGLD
(m̃ = 1000)

SGLD
(m̃ = 2000)

SGLD
(m̃ = 500,
three-parameter
model: θ1, θ3, θ4)

Edges (θ1) −8.8886 (0.0396) −9.0905 (0.0255) −9.0889 (0.0175) −8.2744 (0.0335)
k2-star (θ2) 0.0229 (0.0003) 0.0262 (0.0004) 0.0261 (0.0003) –
Triangles (θ3) 3.2966 (0.1291) 3.4597 (0.0751) 3.4433 (0.0679) 3.2166 (0.0312)
GWD (θ4) 0.8640 (0.0659) 1.0533 (0.0437) 1.0312 (0.0236) 0.3043 (0.0814)
CPU time 526.245 min 486.999 min 516.831 min 504.908 min

Table 6: Parameter estimates produced by SGLD for the LastFM Asia Social Network,
where the estimates and standard errors (reported in the parentheses) were obtained
by averaging over 5 independent runs.

and the network is large, the conditions (A.1)–(A.3) can still be satisfied as discussed
in Section 3. For this example, we set λ = 0.5, σ1 = 10 and tried three different values
of σ0 = 0.01, 0.001, and 0.0001.
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Figure 7: GOF plots produced by SGLD for the LastFM Asia network with different
choices of m̃ in the TNT sampler.

With such a shrinkage prior, variable selection can be done for the model (5.1) using
the marginal inclusion probability approach, see e.g. Barbieri and Berger (2004) and
Liang et al. (2013). In this approach, variable selection can proceeds as follows. Let
θ(1),θ(2), . . . ,θ(T ) denote T samples from the posterior distribution π(θ|y). Let θ

(i)
k

denotes the k-th component of θ(i), which corresponds to the component Sk(y) of the
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sufficient statistics. Let δ
(i)
k = I

(
|θ(i)

k | >
√

2σ0σ1√
σ2
1−σ2

0

√
log

(
1−λ
λ

σ1
σ0

))
be the indicator that

θ
(i)
k more likely belongs to the component N(0, σ2

1) than the component N(0, σ2
0). Then

p̂k =
∑T

i=1 δ
(i)
k /T provides a consistent estimator for the marginal inclusion probability

of the statistic Sk(y), and variable selection for the model (5.1) can be made accordingly.
Alternatively, we can first average θ(i)’s to get a consistent estimator of θ and then select

variables for the model based on the indicators δk = I

(
|θ̂k| >

√
2σ0σ1√
σ2
1−σ2

0

√
log

(
1−λ
λ

σ1
σ0

))
,

where θ̂k =
∑T

i=1 θ
(i)
k /T .

By the alternative approach described above, a 3-component model (E1(y), T (y),
u(y|τ)) was selected if we set σ0 = 0.01 in the prior (5.2), and the full model was
selected if we set σ = 0.001 and 0.0001. The resulting parameter estimates are shown in
Table 6 and GOF plot is shown in Figure 7. A comparison with the GOF plots of the
full model indicates that the reduced model fits the network even better, particularly
in minimum geodesic distance.

It is interesting to note that the model statistics panels of the GOF plots (Fig-
ure 7(a)–(c)) indicates that the statistic kstar2 (E2(y)) is poorly reproduced by the
fitted full model. Then, with regularization, this statistic was dropped off as shown in
Figure 7(d). In general, if the model statistics panel shows a poor fit, then we might
need to modify the model by adding to or deleting from the model some statistics.

6 Conclusion
In this paper, we have proposed to use the SGLD algorithm for Bayesian analysis of
ERGMs. We proved that SGLD converges to the true posterior in 2-Wasserstein distance
as the network size N → ∞ and the iteration number t → ∞ regardless of the length
of the inner Markov chain performed at each iteration, provided the model size p grows
at a rate of o(Nκ). The SGLD algorithm also enjoys its scalability with respect to the
model size p as a nice property carried over from stochastic gradient MCMC algorithms.
We tested the performance of the proposed algorithm on simulated and real networks.

Compared with the existing exact algorithms such as auxiliary variable MCMC
(Møller et al., 2006), the exchange algorithm (Murray et al., 2006), and AEX (Liang
et al., 2016), the proposed algorithm is much more efficient for large-scale networks.
Compared to the existing inexact algorithms like DMH, the proposed method is more
stable and accurate while costing about the same CPU time.

Further efforts can be made on developing more efficient algorithms for auxiliary net-
work simulations, the most time consuming part of the SGLD algorithm. Parallel com-
puting could be a good direction to follow. We will also consider to apply the proposed
algorithm to more general network models such as mixture ERGMs (Salter-Townshend
and Brendan Murphy, 2015) and more sophisticated dynamic network models (Kim
et al., 2018), and many other models with intractable normalizing constants, such as
spatial autologistic models (Besag, 1974), Gaussian Markov random fields (Besag and
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Moran, 1975), and spatial interaction point process models (Goldstein et al., 2015).
For the spatial interaction point process model, we particularly note that although
∇θ logZ(θ) cannot be written in the form Eθ[S(Y )] as in equation (2.1) and the sam-
ple space for the point process is continuous, the SGLD algorithm can still be directly
applied. For example, let’s consider a pairwise interaction point process model with

the density function p(x|θ) =
exp

(
−

∑n
i=1

∑n
j=i+1 φ(‖xi−xj‖;θ)

)
Z(θ) , where x = (x1, x2, . . . , xn)

and n denotes the number of points. For this model, we have

∇θ log(Z(θ)) = −
n∑

i=1

n∑
j=i+1

Eθ[∇θφ(|xi − xj‖,θ)],

and, therefore, ∇θ log(Z(θ)) can still be estimated using the auxiliary samples simulated
from the point process at the parameter point θ.

Supplementary Material
Supplement to “Bayesian Analysis of Exponential Random Graph Models Using Stochas-
tic Gradient Markov Chain Monte Carlo” (DOI: 10.1214/23-BA1364SUPP; .pdf). Ap-
pendix A: Proof of theorems. Appendix B: Recursive formulas for sufficient statistics
calculation. Appendix C: Experimental settings.
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