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A phase transition for preferential attachment models
with additive fitness
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Abstract

Preferential attachment models form a popular class of growing networks, where
incoming vertices are preferably connected to vertices with high degree. We consider
a variant of this process, where vertices are equipped with a random initial fitness
representing initial inhomogeneities among vertices and the fitness influences the
attractiveness of a vertex in an additive way. We consider a heavy-tailed fitness
distribution and show that the model exhibits a phase transition depending on the
tail exponent of the fitness distribution. In the weak disorder regime, one of the old
vertices has maximal degree irrespective of fitness, while for strong disorder the
vertex with maximal degree has to satisfy the right balance between fitness and age.
Our methods use martingale methods to show concentration of degree evolutions as
well as extreme value theory to control the fitness landscape.

Keywords: network models; preferential attachment model; additive fitness; scale-free property;
maximum degree.
MSC2020 subject classifications: Primary 05C80, Secondary 60G42.
Submitted to EJP on March 20, 2020, final version accepted on November 11, 2020.
Supersedes arXiv:2002.12863.

1 Introduction

A distinctive feature of real-world networks is their inhomogeneity, characterized in
particular through the presence of hubs. These are nodes with a number of connections
that greatly exceeds the average and thus have a great impact on the overall network
topology. The existence of hubs in a network is closely linked to the scale-free property,
that is, the proportion of nodes in the network with degree (number of connections) k
scales as a power law k−τ for some τ > 1.

Preferential attachment models, as popularized by Barabási and Albert [2], form a
class of random graphs that shows this behaviour ‘naturally’, that is, as a result of the
dynamics and not because it is imposed otherwise, see also [6] for a first mathematical
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derivation of this fact. In these evolving random graph models new vertices are intro-
duced to the network over time and they connect to earlier introduced vertices with a
probability proportional to their degree. This leads to the so-called rich-get-richer effect,
which means that vertices with a high degree are more likely to increase their degree. It
is exactly this effect that yields the power-law degree distributions and the existence of
hubs in the graph.

The study of the emergence of hubs in random graph models such as the preferential
model is often focused on the behaviour of the maximum degree in the graph. Móri first
showed that for the Barabási-Albert model the maximum degree is of the same order
as the degree of the first vertex [20], which was later generalised by Athreya et al. to
affine preferential attachment models (with random out-degree) and to a larger class of
preferential attachment models by Bhamidi in [1] and [3], respectively. A consequence
of the way in which preferential attachment graphs evolve, is that the rich-get-richer
effect should really be interpreted as an old-get-richer effect: it is the old vertices, who
are introduced at the beginning of the evolution of the graph, that are able to attract the
most connections [15].

However, when compared to real-life networks, it is clearly desirable to have a model
where younger vertices can compete with the old ones. One way to achieve this is
by assigning to each vertex a random fitness representing its intrinsic attractiveness
and then to let the connection probability of a newly incoming vertex be proportional
to either the product of the fitness and degree or the sum. These two models were
introduced by Barabási and Bianconi in [4] and Ergün and Rodgers in [13], respectively.

Most previous results on preferential attachment models with fitness deal with the
multiplicative case for bounded fitness. One of the reasons is that under certain condi-
tions on the fitness distribution, these models exhibit the phenomenon of condensation,
where a positive proportion of incoming vertices connects to vertices with fitness closer
and closer to the maximal fitness in the system. This phenomenon was first shown in
the mathematical literature in [7], later extended in [12] for a wide range of models, by
looking at the empirical fitness and degree distribution. A full dynamic description of the
condensation is a challenging problem, however see [9] for a very detailed analysis in a
slightly modified model. [10] considers a continuous-time embedding of the process into
a reinforced branching process, which allows them to control the maximal degree (in the
continuous-time setting), which in the non-condensation case can be translated back to
the random graph model. Also, under certain assumption on the fitness distribution, they
show that condensation is non-extensive in the sense that there is not a single vertex that
acquires a positive fraction of the incoming edges. These results are extended by [19]
to a larger class of (bounded) fitness distributions (as a special case of a more general
set-up).

Here, we consider the model with additive fitness, where a vertex is chosen with
probability proportional to the sum of its degree and its intrinsic fitness. Both models of
multiplicative and additive fitness can be seen as a way to understand how a random
perturbation of the attractiveness of a vertex (due to natural inhomogeneities in the
system) changes the behavior of a standard preferential attachment model. As we have
just discussed, in the multiplicative model we observe condensation which is quite a
drastic change of the behavior. This effect is already present for certain cases of bounded
fitness, due to the fact that a small perturbation can have a large effect when multiplied
by a large degree. For the additive model, we will see that the change in behavior due to
random perturbations is of a very different nature. Indeed, the effect of large fitness
values is not as immediate and it turns out that we need larger variability in the fitness
values (and in particular we need to assume unbounded fitness) to observe a qualitative
different behavior compared to the standard model.
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To best of our knowledge the only mathematical result have been [3] and [23], who
confirmed the non-rigorous results in [13]. [3] showed that when the fitness is bounded,
the degree distribution follows a power law with the same exponent as for the model
with an additive constant equal to the expected value of the fitness. Moreover, [3]
gives the asymptotics for the maximum degree and shows that it agrees again with
the asymptotics for the model with additive constant. [23] considers the case of a
deterministic additive sequence and shows that there is an equivalence between the
preferential attachment (tree) model and a weighted recursive tree. From this, the
author deduces `p-convergence of the renormalized degree sequence under a growth
condition on the additive sequence. Furthermore, he considers geometric properties of
the weighted recursive trees. Somewhat related is a model of preferential attachment
with random (possibly heavy-tailed) initial degree, for which [8] show convergence of
empirical fitness distributions, but the structure of these networks is very different from
the additive fitness case due to large out-degrees.

In our work we consider the case of unbounded fitness and show that when the fitness
distribution follows a power law, a more complex phase diagram arises. Our first result
shows convergence for the empirical degree and fitness distribution. From this we can in
particular deduce that if the fitness distribution is sufficiently light-tailed, then we are in
a weak disorder regime, where the same result as in [3] still holds for both tail exponent
of the degree distribution and the asymptotics of the maximum. However, if the tail
exponent of the fitness distribution is sufficiently small (but so that the fitness still has a
finite first moment), then we are in a strong disorder regime, where the tail exponent of
the degree distribution is the same as for the fitness distribution. Moreover, the maximal
degree grows of the same order as the largest fitness in the system. However, the vertex
that maximizes the degree has to satisfy a delicate balance between arriving early and
having a large fitness. In the limit this competition is expressed as an optimization of a
functional of a Poisson point process.

Finally, we can also consider the extreme disorder regime when the fitness does not
have a finite first moment. In that case, we show that a uniformly selected vertex has
in-degree zero with high probability. Moreover, the maximal degree now scales as order
n and the maximising vertex again satisfies the right balance between arriving early
and large fitness. We note that our results for the degree distribution improve on those
by Ergün and Rodgers [13], where these different regimes are overlooked and only the
weak disorder regime is covered.

Our proof for the empirical degree/fitness distributions uses a stochastic approxima-
tion argument, which was also used in [12] for the multiplicative case. The analysis of
the maximal degree is split into two steps: First we show concentration of the degrees
when compared to the expected degree (conditional on the fitness values) adapting the
martingale arguments of Móri [20] (see also [15] for an exposition with more general
attachment rules). For the weak disorder case, similar arguments as in [15] are sufficient
to control the maximal degree. However, in the strong and extreme disorder case, we
have to control the conditional expectation of the degrees, which are a function of the
fitness only. We then show that these functionals simplify and converge to a functional of
a Poisson point process, so that with the concentration we can deduce convergence of
the maximal degree. Finally, our analysis is robust and covers essentially three variants
of preferential attachment models: a model with possibly random out-degree as in [11]
(and at most one edge between vertices) and two variations where the out-degree of
each new vertex is fixed and then the connection probabilities are either updated after
each edge is drawn or are kept fixed.

Notation. Throughout we will use the following notation. We let N = {1, 2, 3, . . .}
be the natural numbers, we write N0 = {0, 1, 2, . . .} if we want to include 0 and let
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[n] := {1, . . . , n}. Moreover, for any sequence an and bn of positive real numbers, we say
an = Θ(bn) if there exists a constant C > 0 such that an ≤ Cbn and bn ≤ Can. Moreover,
we say an ∼ bn if limn→∞

an
bn

= 1. Also, we use the conditional probability measure
PF (·) := P(· | (Fi)i∈N) and expectation EF [·] := E[· | (Fi)i∈N].

2 Definitions and main results

The preferential attachment model is an evolving random graph model, where vertices
are added to the graph consecutively and then connected to older vertices. We denote
by Gn the resulting directed graph at the stage when the vertex set is [n]. Moreover, we
take edges to be directed from the vertex with high index to the one with lower index.
Throughout, we will use the following notation,

Zn(i) := in-degree of vertex i in Gn.

We now introduce three different preferential attachment with fitness models (PAF), the
first one which allows for a random out-degree in the spirit of Dereich and Mörters [11],
the second one where the out-degree of a new vertex is fixed and we connect edges
while keeping the degrees fixed and the last one with a fixed out-degree, but where we
update degrees in between connections (where the later is the fitness modification of a
model closer to [6]).

Definition 2.1 (Preferential attachment with fitness). Let (Fi)i≥1 be a sequence of i.i.d.
copies of a random variable F taking values in (0,∞) with distribution µ. For any n ∈ N,
define

Sn :=

n∑
i=1

Fi. (2.1)

Let n0,m0 ∈ N. We say that a sequence of random graphs (Gn)n≥n0 is a preferential
attachment model with (additive) fitness if Gn is a directed and weighted graph on
the vertex set [n] with edges directed from larger to smaller indices. Moreover, we
assume that Gn0 has m0 edges and we assign fitness values F1,F2, . . . ,Fn0 to the vertices
1, 2, . . . , n0 respectively.

To obtain Gn+1 from Gn for some n ≥ n0, add vertex n+ 1 to the vertex set and attach
fitness Fn+1 to n+ 1. Furthermore, we assume that the updating rule satisfies one of the
following three assumptions for some fixed m ∈ N:

(PAFRO) Preferential attachment with fitness and random out-degree. Here m = 1

and conditionally on Gn, vertex n+ 1 is connected to each vertex in [n] by
at most one edge and the probability to connect to a given i ∈ [n] is

Zn(i) + Fi
m0 + (n− n0) + Sn

. (2.2)

Furthermore, conditionally on Gn the degree increments
(∆Zn(i) := Zn+1(i)−Zn(i), i ∈ [n]) are pairwise non-positively correlated.

(PAFFD) Preferential attachment with fitness and fixed degree. To vertex n + 1

we assign m half-edges. Conditionally on Gn, connect each half-edge
independently to some i ∈ [n] with probability

Zn(i) + Fi
m0 +m(n− n0) + Sn

.

(PAFUD) Preferential attachment with fitness and updating degree. To vertex n+ 1

we assign m half-edges. Let Zn,j(i) denote the in-degree of vertex i when

EJP 25 (2020), paper 146.
Page 4/54

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP550
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A phase transition for preferential attachment models with additive fitness

n + 1 has attached j of its half-edges, j = 1, . . . ,m. For j = 1, . . . ,m,
conditionally on the graph of size n including the first j− 1 half-edges from
n+ 1, connect the jth half-edge to i ∈ [n] with probability

Zn,j−1(i) + Fi
m0 +m(n− n0) + (j − 1) + Sn

.

Remark 2.2. The quantity in (2.2) is always less than 1, since
∑n0

i=1Zn0
(i) = m0 and

at each step Zn(i) increases by at most one. Note also that for the PAFRO assumption,
the exact distribution of (∆Zn(i), i ∈ [n]) is not specified. For example, for m = 1, the
PAFFD and the PAFUD model are identical and both satisfy PAFRO. Another possibility
is to consider a model with a random out-degree, where (∆Zn(i), i ∈ [n]) is a vector of
independent Bernoulli variables with success probability as given in (2.2).

We have defined our random graph model for an arbitrary fitness distribution. How-
ever, for the analysis the most interesting case occurs when we are dealing with heavy-
tailed distributions. In this case the fitness can have a significant effect on the behaviour
of the system as a whole, whereas the ‘fitness effect’ is smoothed out when its tail
behaviour is too light. In the latter case, one sees no differences in the mean-field
behaviour when changing from a deterministic, fixed fitness to random i.i.d. fitness
values. Therefore, in the following, we will frequently consider the following assumption:

Assumption 2.3. The fitness distribution is a power law with exponent α > 1, i.e.

P(F ≥ x) = µ(x,∞) = `(x)x−(α−1), for x > 0,

where ` is a slowly-varying function at infinity, i.e. for all c > 0 limx→∞ `(cx)/`(x) = 1.

We continue by stating our first main result. We define the following measures,

Γn :=
1

n

n∑
i=1

Zn(i)δFi , Γ(k)
n :=

1

n

n∑
i=1

1{Zn(i)=k}δFi , pn(k) := Γ(k)
n ([0,∞)), (2.3)

which correspond to the the empirical fitness distribution of a vertex sampled with
weight given by its in-degree, then the joint empirical fitness-in-degree distribution and
finally the empirical degree distribution.

Theorem 2.4 (Degree distributions in PAF models). Consider the three PAF models as in
Definition 2.1 and suppose the fitness satisfies E[F ] <∞. Let θm := 1 + E[F ] /m. Then,
almost surely, for any k ∈ N0, as n→∞,

Γn → Γ, Γ(k)
n → Γ(k), and pn(k)→ p(k), (2.4)

where the first two statements hold with respect to the weak∗ topology and the limits
are given as

Γ(dx) =
x

θm − 1
µ(dx), Γ(k)(dx) =

θm
x+ θm

k∏
`=1

(`− 1) + x

`+ x+ θm
µ(dx), (2.5)

and

p(k) =

∫ ∞
0

θm
x+ θm

k∏
`=1

(`− 1) + x

`+ x+ θm
µ(dx). (2.6)

Remark 2.5. Throughout this article we work with Definition 2.1. However, Theorem 2.4
also holds under the following slightly weaker conditions. Set

F̄n :=
1

n

n∑
i=1

(Zn(i) + Fi),
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and define the degree increment at step n+ 1 of vertex i by ∆Zn(i) := Zn+1(i)−Zn(i).
We assume the graph Gn0

is given deterministically such that m0 :=
∑
i∈[n0]Zn0

(i) ≥ 1.
Furthermore, we assume for n ≥ n0,

(A1) E[∆Zn(i) | Gn] = (Zn(i) + Fi)/(nF̄n)1{i≤n}.

(A2) ∃ Cvar > 0 : Var(∆Zn(i) | Gn) ≤ CvarE[∆Zn(i) | Gn].

(A3) supi=1,...,n n
∣∣P(∆Zn(i) = 1 | Gn)− E[∆Zn(i) | Gn]

∣∣ a.s.−→ 0.

(A4) Conditionally on Gn, {∆Zn(i)}i∈[n] is negatively quadrant dependent in the sense
that for any i 6= j and k, l ∈ Z+,

P(∆Zn(i) ≤ k,∆Zn(j) ≤ l | Gn) ≤ P(∆Zn(i) ≤ k | Gn)P(∆Zn(j) ≤ l | Gn) . (2.7)

As can be seen from the proof, Theorem 2.4 holds for any evolving random graph model
that satisfies these assumptions. See also Lemma 4.3 below, where we show that the
PAFFD and the PAFUD model satisfy the negative quadrant dependency as in (A4).

By comparing with the case where the fitness is constant, we can interpret Theo-
rem 2.4 such that the degree of a typical vertex can be found via a two-step process,
where first the fitness is chosen according to µ and then the degree evolves as in the
case with an additive constant equal to the fitness.

However, while at first our result looks similar to the constant fitness case, by looking
at the tail exponent of the degree distribution we can see that this is only the case when
the fitness is not too heavy-tailed. Indeed, suppose that the fitness distribution follows
a power law, then we can distinguish three different regimes. As the next theorem
shows, if the fitness distribution has finite moments of order θm = 1 + E[F ] /m, then the
degree distribution has power law exponent 1 + θm, which is the same as in the model
with constant fitness equal to E[F ]. Using the terminology used in the field of random
media, we refer to this situation as the weak disorder regime. However, if the fitness
distribution is more heavy-tailed, but still with finite first moment, then the degree
distribution follows the same power law as the fitness distribution, a situation which we
will refer to as the strong disorder regime. Finally, we can also consider the extreme
disorder case when the fitness distribution does not have a finite first moment. In this
case we show that with high probability, a uniformly chosen vertex has not received any
incoming edges (since most connections are made to vertices with very high fitness).

Theorem 2.6. Suppose p(k), k ∈ N0, is as in (2.6) and θm = 1 + E[F ] /m.

(i) Weak disorder. If E[Fθm ] <∞, then for k →∞,

p(k) ∼ Ck−(1+θm), where C := θm

∫ ∞
0

Γ(x+ θm)

Γ(x)
µ(dx),

and where Γ is the Gamma function.

(ii) Strong disorder. Suppose F has a power law distribution as in Assumption 2.3.
Then, if α = 1 + θm and E[Fθm ] =∞, we have as k →∞

p(k) = Θ(`?(k)k−(1+θm)),

where `?(k) :=
∫ k

1
`(x)/x dx.

If α ∈ (2, 1 + θm), then as k →∞,

p(k) = Θ(`(k)k−α).
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(iii) Extreme disorder. Suppose F has a power law distribution as in Assumption 2.3
with α ∈ (1, 2) and consider the three PAF models as in Definition 2.1. Let Un be
a uniformly chosen vertex in Gn, let ε > 0 and let En := {Zn(Un) = Zn0

(Un)}, be
the event that Un has not increased its degree with respect to the initialisation Gn0

.
Then, for n sufficiently large,

P(En) ≥ 1− Cn−((2−α)∧(α−1))/α+ε,

for some constant C > 0.

Our next main result provides a more detailed analysis of the dynamic behaviour of
the system by describing the asymptotics of the maximal degree. As might be expected
from the different phases observed for the tail of the degree distribution, there are also
three distinct phases for the maximal degree. Again under the assumption that the
fitness has a power law, we observe that in the weak disorder regime, where the fitness
has relatively light tails, the vertex with maximal degree is one of the old vertices, similar
to the system with constant fitness. This first result (parts (i) and (iii) in the theorem
below) in the special case of the PAFUD/PAFFD model with m = 1 is also contained
in [23].

However, if the fitness is more heavy-tailed (but still with finite first moment), i.e. in
the strong disorder regime, the maximal degree grows at the same rate as the maximal
fitness in the system (i.e. approximately like n1/(α−1)). In this case, the maximal degree
satisfies a delicate balance between arriving early enough and having large fitness.
Finally, in the extreme disorder regime, where the fitness does not have a first moment,
the maximal degree grows of order n, again satisfying a non-trivial optimisation between
large fitness value and arriving early. The main difference compared to the strong
disorder regime is that now the sum of the fitness values in the normalization, e.g.
in (2.2), is random to first order and depends on the extreme values of the fitness
landscape. As is common in extreme value theory, the limiting variables in the strong
and extreme disorder regime are described in terms of a functional of a Poisson point
process capturing the extremes of the fitness (in competition with the advantage of
arriving early).

Theorem 2.7 ((Maximum) degree behaviour in PAFs). Consider the three PAF models as
in Definition 2.1. First, the following results hold for fixed degrees:

(i) Suppose E[F1+ε] <∞ for some ε > 0, then for all fixed i ∈ N,

Zn(i)n−1/θm a.s.−→ ξi, (2.8)

where ξi is an almost surely finite random variable with no atom at 0 and θm :=

1 + E[F ] /m.

(ii) When the fitness distribution satisfies Assumption 2.3 with α ∈ (1, 2), for all fixed
i ∈ N,

Zn(i)
a.s.−→ Z∞(i), (2.9)

for some almost surely finite random variable Z∞(i).

In the following let In := arg maxi∈[n]Zn(i) (resolving any ties by taking the smaller
index).

(iii) Weak disorder: If E[Fθm+ε] <∞ for some ε > 0, then we have

In
a.s.−→ I, max

i∈[n]
Zn(i)n−1/θm a.s.−→ sup

i≥1
ξi, (2.10)

for some almost surely finite random variable I.
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Additionally, assume that the fitness distribution is a power law with parameter α as in
Assumption 2.3 and define un := sup{t ∈ R : P(F ≥ t) ≥ 1/n}. Let Π be a Poisson point
process on (0, 1) × (0,∞) with intensity measure ν(dt,dx) := dt × (α − 1)x−αdx. Then,
the following results hold:

(iv) Strong disorder: When α ∈ (2, 1 + θm),

(In/n,max
i∈[n]
Zn(i)/un)

d−→ (I, sup
(t,f)∈Π

f(t−1/θm − 1)), (2.11)

where I
d
= Bθm, with B ∼ Beta(θm − (α− 1), α) and where max(t,f)∈Π f(t−1/θm − 1)

has a Fréchet distribution with shape parameter α−1 and scale parameter θ1/(α−1)
m .

(v) Extreme disorder: When α ∈ (1, 2), let Π be a Poisson point process on E :=

(0, 1)× (0,∞) with intensity measure ν(dt, dx) := dt× (α− 1)x−αdx. Then,

(In/n,max
i∈[n]
Zn(i)/n)

d−→
(
I ′,m sup

(t,f)∈Π

f

∫ 1

t

(∫
E

g1{u≤s}dΠ(u, g)

)−1

ds

)
, (2.12)

for some random variable I ′ with values in (0, 1).

3 Overview of the proofs

In this section, we give a short overview of the proofs of the main theorems and the
structure of the remaining paper.

In Section 4 we prove Theorems 2.4 and 2.6. In order to prove Theorem 2.4, we use
the theory of stochastic approximation in a similar setup as in [12], where it was used
for models with multiplicative fitness.

The main idea is to consider, for 0 ≤ f < f ′ <∞, the quantities

Γn((f, f ′]) =
1

n

n∑
i=1

Zn(i)1{Fi∈(f,f ′]}, Γ(k)
n ((f, f ′]) =

1

n

n∑
i=1

1{Zn(i)=k,Fi∈(f,f ′]}, k ≥ 0,

where 0 ≤ f < f ′ < ∞. Then, by considering the conditional increment and using the
preferential attachment dynamics, we show that

Γn+1((f, f ′])− Γn((f, f ′]) ≤ 1

n+ 1
(An −BnΓn((f, f ′])) + (Rn+1 −Rn),

and also a similar lower bound with slightly different sequences An, Bn. This should be
interpreted as a time-discretisation of a differential inequality. Then, a basic stochastic
approximation argument (see also Lemma 4.1 below) shows that if An, Bn and Rn
converge almost surely, then we obtain an upper bound on the lim sup of Γn((f, f ′]) (and
similarly a lower bound). By an approximation argument this yields convergence of
Γn. We obtain similar bounds for Γ

(k)
n ((f, f ′]) (involving Γ

(k−1)
n ((f, f ′])) so that with an

induction argument we also can deduce convergence of Γ
(k)
n .

In the last part of Section 4 we prove Theorem 2.6 using standard arguments.
The remainder of the paper deals with the asymptotics of the degree of a fixed vertex,

as well as the maximal degree, as stated in Theorem 2.7. In the following we only discuss
the proof for the PAFUD model, but the proofs for the PAFRO model and PAFFD model
follow with minor modifications.

A central tool in the analysis of the degree evolutions is the following martingale
introduced by [20] in the context of classical preferential attachment (see also [15]). For
k ≥ −min{Fi, 1}, define a sequence

Mk
n(i) := ckn

(
Zn(i) + Fi + (k − 1)

k

)
,
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where ckn is a carefully chosen normalisation sequence and(
a

b

)
=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
, for a, b > −1 such that a− b > −1,

is the generalized binomial coefficient defined in terms of the Gamma function Γ. Next,
we write

PF and EF

for the (regular) conditional probability measure (and its expectation respectively) when
conditioning on the fitness values F1,F2, . . .. Then, as for the standard preferential
model, one can show that (Mk

n(i), n ≥ i) is a martingale under the conditional measure
PF .

Note also that with k = 1,

Zn(i) = (c1n)−1M1
n(i)−Fi,

and M1
n(i) converges being a non-negative martingale. So for fixed i, the asymptotics

are determined by c1n. Indeed, we will see that

ckn ≈
n−1∏
j=1

(
1− k

mj + Sj

)m
≈ exp

{
−
n−1∑
j=1

k

j + Sj/m

}
, (3.1)

where Sj =
∑j
`=1 F`. In Lemma 6.4, we will prove that if E[F ] <∞, then by the law of

large numbers the sequence ckn rescaled by nk/θm converges almost surely. Moreover, if
α ∈ (1, 2) (for a power law fitness distribution), then ckn converges almost surely without
rescaling. This proves the first two statements (2.8) and (2.9) of Theorem 2.7.

To prove the statements about the maximal degree, we first consider the conditional
expectation of Zn(i) which using the martingale M1

n(i) can be written as

EF [Zn(i)] = Fi
( c1i
c1n
− 1
)
, (3.2)

at least for i > n0, otherwise a small correction is necessary. From this point, the proofs
in the three different regimes deviate from each other.

First, if we assume that E[F ] <∞, then by (3.2) and the asymptotics of c1n from above
we can deduce that

EF [Zn(i)] ≈ Fi
((n

i

)1/θm
− 1
)
. (3.3)

Now, suppose that E
[
Fθm+ε

]
<∞ for some ε > 0. Then, in Lemma 6.6, we show that

lim
i→∞

sup
n≥n0∨i

M1
n(i) = 0.

Intuitively, this follows from (3.3), since under the assumption the maximum of the fitness
values satisfies maxi∈[n] Fi = o(n1/θm) (with high probability), so that the term (ni )1/θm

dominates for i small. We then use the following result (roughly) for triangular arrays
ai,n: if limn→∞ ai,n = ai for all i ∈ N, and if supn≥i ai,n = bi and limi→∞ bi = 0, we obtain
limn→∞maxi∈[n] ai,n = supi≥1 ai. Using this result on ai,n = c1n(Zn(i) + Fi) = M1

n(i)

yields, together with (3.3), the weak disorder result in (2.10).
Next, we consider the strong disorder regime, where the fitness distribution is a

power law with parameter α with α ∈ (2, 1 + θm). Extreme value theory tell us that in
this case maxi∈[n] Fi ≈ n1/(α−1) so that (3.3) suggests that in this regime vertices with
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high fitness have a chance to compete with the old vertices. To capture the asymptotics
of the peaks of the fitness landscape more precisely, we consider the point process

Πn :=

n∑
i=1

δ(i/n,Fi/un), (3.4)

where un := sup{t ≥ 0 : P(F ≥ t) ≥ 1/n}. Then, classical extreme value theory (see e.g.
the exposition in [21]) tells us that

Πn ⇒ Π,

where Π is a Poisson point process on (0, 1)× (0,∞) with intensity measure ν(dt,dx) :=

dt× (α− 1)x−αdx (see also Section 5 below for more details). From this convergence,
we can then deduce using (3.3) that

max
i∈[n]

EF [Zn(i)/un]
d−→ sup

(t,f)∈Π

f(t−1/θm − 1),

see the first part of Proposition 6.1 for details. A non-trivial part of the proof is showing
that the approximation in (3.3) works sufficiently well for the relevant range of i. The
proof of Theorem 2.7 is then completed by showing concentration of Zn(i) around its
conditional mean, so that

max
i∈[n]
Zn(i)/un −max

i∈[n]
EF [Zn(i)/un]

P−→ 0.

The concentration argument relies on the martingale Mk
n(i) for carefully chosen k (which

correspond approximately to kth moments of Zn(i)), see the first part of Proposition 6.2.
Finally, we consider the extreme disorder regime, where α ∈ (1, 2) so that the fitness

does not have finite first moments. In particular, the law of large numbers no longer
applies to the sum Sn =

∑n
i=1 Fi appearing in the normalizing constant in the attachment

probabilities. In this case, we obtain from (3.1) that for i of order n

c1i
c1n
− 1 ≈ exp

{
m

n−1∑
j=i

1

Sj

}
− 1 ≈ m

n−1∑
j=i

1

Sj
.

Then, it follows from (3.2) with the same Πn as in (3.4) that

EF [Zn(i)]

n
≈ mFi

un

( 1

n

n∑
j=i

un
Sj

)
= m

Fi
un

∫ 1

i/n

(∫
E

f1{t≤s}dΠn(f, t)
)−1

ds

=: m
Fi
un
T i/n(Πn),

(3.5)

where E := (0, 1)× (0,∞). From this we can eventually deduce that

max
i∈[n]

EF [Zn(i)/n]
d−→ m sup

(t,f)∈Π

f

∫ 1

t

(∫
E

g1{u≤s}dΠ(u, g)

)−1

ds.

Unfortunately, the corresponding functionals are not directly continuous in Πn, so that
the arguments involve careful cut-off arguments (see Section 5).

Then, the final step is to show concentration

max
i∈[n]
Zn(i)/n−max

i∈[n]
EF [Zn(i)/n]

P−→ 0,

which again uses the martingale M1
n(i), but in this case is slightly easier than for α > 2.
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Overall, the proof of Theorem 2.7 is structured in the following way. In Section 5, we
will first show convergence of the functional T i/n(Πn) introduced in (3.5). Here, we take
the opportunity to recap some of the basics of convergence of point process convergence
and we will also carry out the technical cut-off arguments. Then, in Section 6 we
introduce the martingales Mk

n(i) more formally and prove some of their properties. In
particular, we then use those to show concentration in all three cases and also we show
the point process convergence in the strong disorder case, where we can then refer back
to the technical details dealt with in Section 5 for the extreme disorder case. Finally, in
Section 7 we prove Theorem 2.7 by gathering together all the necessary results from
the previous two sections.

4 Degree and fitness distributions

This section is devoted to first proving Theorem 2.4 using the ideas of stochastic
approximation and then at the end we prove Theorem 2.6. However, before we prove
Theorem 2.4, we introduce several lemmas that are required for the proof. The first
lemma comes from [12, Lemma 3.1], which is the main ingredient in the proof of
Theorem 2.4:

Lemma 4.1. Let (Xn)n≥0 be a non-negative stochastic process. We suppose that the
following estimate holds:

Xn+1 −Xn ≤
1

n+ 1
(An −BnXn) +Rn+1 −Rn,

where

(i) (An)n≥0 and (Bn)n≥0 are almost surely convergent stochastic processes with de-
terministic limits A,B > 0.

(ii) (Rn)n≥0 is an almost surely convergent stochastic process.

Then, almost surely,

lim sup
n→∞

Xn ≤
A

B
.

Similarly, if instead, under the same conditions (i) and (ii),

Xn+1 −Xn ≥
1

n+ 1
(An −BnXn) +Rn+1 −Rn,

then almost surely,

lim inf
n→∞

Xn ≥
A

B
.

In the next lemma, we discuss two specific examples of the stochastic process Rn as
introduced in Lemma 4.1, which are used in the proof of Theorem 2.4:

Lemma 4.2. Recall Γn and Γ
(k)
n from (2.3) and let 0 ≤ f < f ′ <∞, k ∈ N0 and assume

the fitness distribution has a finite mean. We then have the two following results:

(i) Set Xn := Γ
(k)
n ((f, f ′]), ∆Rn := Xn+1 − E[Xn+1 | Gn] and Rn :=

∑n
j=n0

∆Rj . Then
Rn converges almost surely.

(ii) Set Xn := Γn((f, f ′]), ∆Rn := Xn+1 −E[Xn+1 | Gn] and Rn :=
∑n
j=n0

∆Rj . Then Rn
converges almost surely.

Before proving Lemma 4.2, we recall the concept of negative quadrant dependence
(NQD) as introduced in (2.7). We note that the PAFRO model has been defined with an
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additional assumption of non-positively correlated degree increments. Note that, since
the degree increments in this model are Bernoulli random variables, NQD is equivalent
to non-positive correlation. For the PAFFD and PAFUD models, NQD follows directly
from the definition of the model, as we show in the following lemma:

Lemma 4.3. Recall the degree increments ∆Zn(i) := Zn+1(i)− Zn(i). For the PAFUD
and PAFFD model, the (∆Zn(i))i∈[n] are negative quadrant dependent, in the sense
of (2.7).

Proof. The NQD of the PAFFD model directly follows from [17], as (∆Zn(i))i∈[n] forms a
multinomial distribution, for which NQD is known. For the PAFUD model, (∆Zn(i))i∈[n]

is a convolution of unlike multinomial distributions (the probabilities of the multinomial
distribution change at each step/sampling), for which NQD is proved in [17] as well.
However, since the changes in the probabilities are dependent on the previous samplings
(where previous edges are attached), we require a slightly more careful argument. Let us
write ∆Zn(i) := X1 + . . .+Xm,∆Zn(j) := Z1 + . . .+ Zm, where the Xk, Zk are Bernoulli
random variables which take value 1 if the kth edge of vertex n + 1 connects to i, j,
respectively, k ∈ [m]. Since X1, Z1 are part of a multinomial vector with one trial, (2.7)
holds for these random variables. Then, we investigate X1 + X2, Z1 + Z2, where we
prove (2.7) for X1 + X2, Z1 + Z2, but with ≥ rather than ≤ in the event, which is an
equivalent definition of NQD. We write, for k, ` ≥ 0,

P(X1 +X2 ≥ k, Z1 + Z2 ≥ ` | Gn) = E[P(X2 ≥ k −X1, Z2 ≥ `− Z1 | Gn, X1, Z1) | Gn] .

Since conditional on Gn and (X1, Z1), the random variables (X2, Z2) are part of a multi-
nomial vector with a single trial, by the same argument we used for X1, Z1, we obtain
the upper bound

E[P(X2 ≥ k −X1 | Gn, X1, Z1)P(Z2 ≥ `− Z1 | Gn, X1, Z1) | Gn] . (4.1)

It follows from the definition of the PAFUD model that X2, conditional on X1, is indepen-
dent of Z1 and Z2, conditional on Z1, is independent of X1. Then, as the probabilities
in (4.1) are increasing functions of X1, Z1, respectively, it follows from the definition of
negative association in [17], which is equivalent to NQD, that

E[P(X2 ≥ k −X1 | Gn, X1, Z1)P(Z2 ≥ `− Z1 | Gn, X1, Z1) | Gn]

≤ E[P(X2 ≥ k −X1 | Gn, X1) | Gn]E[P(Z2 ≥ `− Z1 | Gn, Z1) | Gn]

= P(X1 +X2 ≥ k | Gn)P(Z1 + Z2 ≥ ` | Gn) .

We can continue the same argument to obtain the same inequality for the m terms in
∆Zn(i) = X1 + . . . + Xm,∆Zn(j) = Z1 + . . . + Zm. We then recall that this result is
equivalent to (2.7), as required.

We now prove Lemma 4.2.

Proof of Lemma 4.2. We first note that, in both cases, Rn is a zero-mean martingale
with respect to Gn. The convergence of Rn can be proved by showing its martingale
increments ∆Rn = Rn+1 − Rn have summable conditional second moments, or have
summable second moments. We first deal with case (i). We write ∆Rn as the difference
of two martingales. For k ≥ 1,

∆Rn =
1

n+ 1

∑
i∈In

(
1{Zn+1(i)=k} − P(Zn+1(i) = k | Gn)

)
= ∆M (1)

n −∆M (2)
n ,
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where ∆M
(i)
n is a martingale difference, i.e. ∆M

(i)
n = M

(i)
n+1 −M

(i)
n , i ∈ {1, 2}, and

∆M (1)
n =

1

n+ 1

(∑
i∈In

1{Zn(i)<k,Zn+1(i)≥k} − E
[∑
i∈In

1{Zn(i)<k,Zn+1(i)≥k}

∣∣∣∣Gn]),
∆M (2)

n =
1

n+ 1

(∑
i∈In

1{Zn(i)≤k,Zn+1(i)>k} − E
[∑
i∈In

1{Zn(i)≤k,Zn+1(i)>k}

∣∣∣∣Gn]). (4.2)

Here, we use that

1{Zn+1(i)=k} = 1{Zn+1(i)=k,Zn(i)≤k} = 1{Zn+1(i)≥k,Zn(i)≤k} − 1{Zn+1(i)>k,Zn(i)≤k}

= 1{Zn(i)=k} + 1{Zn+1(i)≥k,Zn(i)<k} − 1{Zn+1(i)>k,Zn(i)≤k}.

We note that, as the indicators in M (1)
n ,M

(2)
n only differ by one index k, it is sufficient to

prove the summability of the conditional second moment of ∆M
(2)
n for all fixed k ≥ 1. So,

we write

E
[
(∆M (2)

n )2
∣∣∣Gn]

=
1

(n+ 1)2
E

[(∑
i∈In

(
1{Zn(i)≤k,Zn+1(i)>k} − P(Zn(i) ≤ k,Zn+1(i) > k|Gn)

))2
∣∣∣∣Gn]. (4.3)

Using the non-positive correlation of the degree increments for the PAFRO model and
Lemma 4.3 for the PAFFD and PAFUD models, we can bound this from above by,

1

(n+ 1)2

∑
i∈In

E
[(

1{Zn(i)≤k,Zn+1(i)>k} − P(Zn(i) ≤ k,Zn+1(i) > k | Gn)
)2 ∣∣∣Gn]

≤ 1

(n+ 1)2

∑
i∈In

1{Zn(i)≤k}P(∆Zn(i) ≥ 1 | Gn)

≤ 1

(n+ 1)2

n∑
i=1

E[∆Zn(i) | Gn] =
m

(n+ 1)2
,

(4.4)

where we use Markov’s inequality in the final step and use that the increments of all
in-degrees is exactly m by the definition of the PAFFD and PAFUD models. Hence, the
final statement is summable almost surely, which proves the almost sure convergence
of Rn. For the PAFRO model, we use the same steps as in (4.3) and (4.4), but take the
expected value on the left- and right-hand-side. Then, using the definition of the PAFRO
model, we arrive at

E
[
(∆M (2)

n )2
]
≤ 1

(n+ 1)2

n∑
i=1

E[∆Zn(i)] ≤ 1

(n+ 1)2

n∑
i=1

E[Zn(i) + Fi]
m0 + (n− n0)

. (4.5)

By using the tower rule and conditioning on Gn−1, we find

E[Zn(i) + Fi] = E[E[Zn(i) + Fi | Gn−1]] ≤ E[Zn−1(i) + Fi]
(

1 +
1

m0 + (n− 1− n0)

)
.

Continuing this recursion yields

E[Zn(i) + Fi] ≤ E[Zi∨n0(i)+Fi]
n−1∏

j=i∨n0

(
1+

1

m0 + (j − n0)

)
≤ (m0 + E[F ])(m0 + (n− n0))

m0 + (i ∨ n0 − n0)
.

Using this upper bound in (4.5), we obtain

E
[
(∆M (2)

n )2
]
≤ 1

(n+ 1)2

(
C1 +

n∑
i=n0+1

m0 + E[F ]

m0 + (i− n0)

)
≤ C1 + C2 log n

(n+ 1)2
, (4.6)

for some constants C1, C2 > 0, which is indeed summable.
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For k = 0, we can write ∆Rn as

∆Rn := ∆M (1)
n + ∆M (2)

n + (1{Fn+1∈(f,f ′]} − µ((f, f ′]))/(n+ 1),

where ∆M
(1)
n = 0 and ∆M

(2)
n is as in (4.2) with k = 0. We already proved the summability

of the second conditional moment of M (2)
n which follows for k = 0 as well, and the last

term has a second conditional moment bounded by µ((f, f ′])/(n+1)2, which is summable
too. This proves the almost sure convergence of Rn.

For (ii), we have

∆Rn =
1

n+ 1

∑
i∈In

(Zn+1(i)− E[Zn+1(i) | Gn]) =
1

n+ 1

∑
i∈In

(∆Zn(i)− E[∆Zn(i) | Gn]),

as Zn+1(i) = Zn(i) + ∆Zn(i). We now bound the conditional second moments of ∆Rn by

E
[
∆R2

n | Gn
]

=
1

(n+ 1)2
E
[(∑

i∈In

(∆Zn(i)− E[∆Zn(i) | Gn])
)2 ∣∣∣ Gn]

≤ 1

(n+ 1)2

∑
i∈In

Var(∆Zn(i) | Gn).

(4.7)

The second line follows from Lemma 4.3 for the PAFFD and PAFUD models and from
the conditional non-positive correlation of the Zn(i) for the PAFRO model. Then, for
the PAFUD and PAFFD models, we use that ∆Zn(i) is a sum of m indicator random
variables and hence that its variance can be bounded by m times its mean. Also noting
that the sum of all the increments of the in-degrees equals m, we obtain the upper bound
(m/(n + 1))2, which is summable almost surely. For the PAFRO model, we again take
the expected value on both sides of (4.7) to get rid of the conditional statement. Then,
as the variance of ∆Zn(i) is bounded by its mean for the PAFRO model, and the same
approach as used in (4.5) through (4.6) works here as well to arrive at a summable upper
bound.

With these lemmas at hand, we can prove Theorem 2.4:

Proof of Theorem 2.4. We provide a proof for the PAFFD and PAFUD models, the proof
for the PAFRO model follows by setting m = 1; the additional required adjustments are
all included in the proof of Lemma 4.2.

First, we show that Γn converges in the weak∗ topology to Γ, defined in (2.5). To this
end, we let 0 ≤ f < f ′ <∞, and set

In := {i ∈ [n] | Fi ∈ (f, f ′]}, Xn :=
1

n

∑
i∈In

Zn(i) = Γn((f, f ′]). (4.8)

We develop a recursion for Xn+1 − Xn. By writing Zn+1(i) = Zn(i) + ∆Zn(i) and
F̄n := (m0 +m(n− n0) + Sn)/n, we find

E[Xn+1 | Gn] =
1

n+ 1

(∑
i∈In

E[Zn+1(i) | Gn]
)

= Xn +
1

n+ 1

(∑
i∈In

Zn(i) + Fi
nF̄n/m

−Xn

)
,

where we note that this holds for both the PAFFD as well as the PAFUD model. Then,

Xn+1 −Xn =
1

n+ 1

(∑
i∈In

Zn(i) + Fi
nF̄n/m

−Xn

)
+ ∆Rn,
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with ∆Rn := Xn+1 − E[Xn+1 | Gn]. It is now possible to write the following two bounds:

Xn+1 −Xn ≥
1

n+ 1

(
−
(

1− m

F̄n

)
Xn +

|In|
n

mf

F̄n

)
+ ∆Rn,

Xn+1 −Xn ≤
1

n+ 1

(
−
(

1− m

F̄n

)
Xn +

|In|
n

mf ′

F̄n

)
+ ∆Rn.

We note that, by the strong law of large numbers, |In|/n converges almost surely to
µ((f, f ′]) and F̄n converges almost surely to mθm, where we recall that θm = 1 +E[F ] /m.
From Lemma 4.2 it follows that Rn :=

∑n
k=n0

∆Rn converges almost surely, so it follows
from Lemma 4.1 that almost surely

lim inf
n→∞

Xn ≥
f

θm − 1
µ((f, f ′]), lim sup

n→∞
Xn ≤

f ′

θm − 1
µ((f, f ′]). (4.9)

We now take a countable subset F ⊂ [0,∞) that is dense, such that for each f ∈ F,
µ({f}) = 0. As F is countable, there exists an almost sure event Ω0 on which both
statements in (4.9) hold for any pair f, f ′ ∈ F such that f < f ′. Take an arbitrary open
set U , and approximate U from below by a sequence of sets (Um)m∈N, where each Um
is a finite union of small disjoint intervals (f, f ′], with f, f ′ ∈ F. Then, for any m ∈ N,
applying a Riemann approximation to (4.9),

lim inf
n→∞

Γn(U) ≥ lim inf
n→∞

Γn(Um) ≥ Γ(Um) on Ω0. (4.10)

Hence, by the monotone convergence theorem, it follows that lim infn→∞ Γn(U) ≥ Γ(U).
Likewise, for any closed set C, a similar argument shows that lim supn→∞ Γn(C) ≤ Γ(C).
It hence follows from the Portmanteau lemma [18, Theorem 13.16] that Γn converges to
Γ a.s. in the weak∗ topology.

The approach to prove the other two parts in (2.4) is to apply induction on k to the
convergence of the measures Γ

(k)
n (and thus pn(k)). We prove the statements in (2.4)

hold for k = 0, the initialisation of the induction, below, and show the induction step first.
Let us assume that the last two statements in (2.4) hold for all 0 ≤ i < k, for some k ≥ 1.
We now advance the induction hypothesis.

Let us take 0 ≤ f < f ′ < ∞, and define Xn := Γ
(k)
n ((f, f ′]). Then, we can write the

following recurrence relation, using In as in (4.8):

E
[
Xn+1

∣∣Gn] =
1

n+ 1

n+1∑
i=1

P
(
Zn+1(i) = k,Fi ∈ (f, f ′]

∣∣ Gn)
=

1

n+ 1

∑
i∈In

k∑
`=0

1{Zn(i)=`}P
(
∆Zn(i) = k − `

∣∣ Gn)
=

1

n+ 1

(∑
i∈In

k−1∑
`=0

1{Zn(i)=`}P
(
∆Zn(i) = k − `

∣∣ Gn)
+
∑
i∈In

1{Zn(i)=k}
(
1− P

(
∆Zn(i) ≥ 1

∣∣ Gn)) ),

(4.11)

where in the second step we note that Zn+1(n+ 1) = 0 < k by definition and where we
isolated the Zn(i) = k case in the last step. We do this, as this will prove to be the only
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part that does not converge to zero almost surely. We can then write

E
[
Xn+1

∣∣Gn] = Xn +
1

n+ 1

(∑
i∈In

k−1∑
`=0

1{Zn(i)=`}P
(
∆Zn(i) = k − `

∣∣ Gn)
−
∑
i∈In

1{Zn(i)=k}P
(
∆Zn(i) ≥ 1

∣∣ Gn)−Xn

)

= Xn +
1

n+ 1

(∑
i∈In

k−1∑
`=0

1{Zn(i)=`}P
(
∆Zn(i) = k − `

∣∣ Gn)
−
∑
i∈In

1{Zn(i)=k}

(
P
(
∆Zn(i) ≥ 1

∣∣ Gn)− k + Fi
nF̄n/m

)
+
∑
i∈In

1{Zn(i)=k}

(
f ′ −Fi
nF̄n/m

)
−
(

1 +
k + f ′

F̄n/m

)
Xn

)
.

(4.12)

We can therefore write, using that f ′ −Fi ≥ 0 holds almost surely for all i ∈ In,

Xn+1 −Xn ≥
1

n+ 1
(An −BnXn) +Rn+1 −Rn, (4.13)

where

An :=
∑
i∈In

k−1∑
`=0

1{Zn(i)=`}P
(
∆Zn(i) = k − `

∣∣Gn)
−
∑
i∈In

1{Zn(i)=k}

(
P
(
∆Zn(i) ≥ 1

∣∣Gn)− k + Fi
nF̄n/m

)
,

Bn := 1 +
k + f ′

F̄n/m
,

∆Rn := Rn+1 −Rn = Xn+1 − E[Xn+1 | Gn] .

(4.14)

We now prove the convergence of all three terms. First, we prove the convergence of An
to

A :=
1

θm

∫
(f,f ′]

(k − 1 + x) Γ(k−1)(dx). (4.15)

We note that, by the induction hypothesis, almost surely,

lim
n→∞

∣∣∣ ∫
(f,f ′]

(k − 1 + x) Γ(k−1)(dx)−
∫

(f,f ′]

(k − 1 + x) Γ(k−1)
n (dx)

∣∣∣ = 0. (4.16)

We now deal with the two terms in An separately. We start with the second term. By
the definition of the PAFFD and PAFUD models in Definition 2.1, it follows that for both
models,

P(∆Zn(i) ≥ 1 | Gn) ≤ 1−
(

1− Zn(i) + Fi
nF̄n

)m
=

m∑
`=1

(
m

`

)
(−1)`+1

(Zn(i) + Fi
nF̄n

)`
.

Using this in the second term of An in (4.14), we obtain

∑
i∈In

1{Zn(i)=k}

m∑
`=2

(
m

`

)
(−1)`+1

(k + Fi
nF̄n

)`
≤ Cm

m∑
`=2

n1−`
(k + f ′

F̄n

)`
, (4.17)

where Cm > 0 is a constant. We note that this expression tends to zero almost surely as
n tends to infinity, and that a similar lower bound that tends to zero almost surely can be
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constructed as well. For the first term, we write,

lim
n→∞

∣∣∣∑
i∈In

k−1∑
`=0

1{Zn(i)=`}P
(
∆Zn(i) = k − `

∣∣Gn)− 1

θm

∫
(f,f ′]

(k − 1 + x) Γ(k−1)(dx)
∣∣∣

≤ lim
n→∞

[ ∣∣∣ 1

θm
− 1

F̄n/m

∣∣∣ ∫
(f,f ′]

(k − 1 + x) Γ(k−1)(dx)

+
1

F̄n/m

∣∣∣ ∫
(f,f ′]

(k − 1 + x) Γ(k−1)(dx)−
∫

(f,f ′]

(k − 1 + x) Γ(k−1)
n (dx)

∣∣∣
+
∣∣∣∑
i∈In

1{Zn(i)=k−1}P
(
∆Zn(i) = 1

∣∣Gn)− m

F̄n

∫
(f,f ′]

(k − 1 + x) Γ(k−1)
n (dx)

∣∣∣
+
∑
i∈In

k−2∑
`=0

1{Zn(i)=`}P
(
∆Zn(i) ≥ 2

∣∣Gn) ].

(4.18)

The first line converges to zero almost surely by the strong law of large numbers. By the
induction hypothesis as used in (4.16), the second line converges to zero almost surely
and by a similar argument as in (4.17) the last line converges to zero almost surely. For
the third line, we use the definition of Γ

(k−1)
n , as defined in (2.3), to find∑

i∈In

1{Zn(i)=k−1}P
(
∆Zn(i) = 1

∣∣Gn)− m

F̄n

∫
(f,f ′]

(k − 1 + x) Γ(k−1)
n (dx)

=
∑
i∈In

1{Zn(i)=k−1}

(
P
(
∆Zn(i) = 1

∣∣Gn)− k − 1 + Fi
nF̄n/m

)
,

and so, again using similar steps as in (4.17), the third line in (4.18) converges to zero
almost surely, which finishes the proof of the almost sure convergence of An to A, as
in (4.15). Now, for Bn we immediately conclude that

lim
n→∞

Bn = 1 +
k + f ′

θm
=: B,

almost surely. Finally, the almost sure convergence of Rn again follows from Lemma 4.2.
We thus obtain from Lemma 4.1,

lim inf
n→∞

Xn ≥
A

B
=

1

k + f ′ + θm

∫
(f,f ′]

(k − 1 + x) Γ(k−1)(dx). (4.19)

Likewise, the upper bound

lim sup
n→∞

Xn ≤
1

k + f + θm

∫
(f,f ′]

(k − 1 + x) Γ(k−1)(dx) (4.20)

can be established from (4.12), too, when we replace the f ′ by f in (4.12) and note that
f −Fi ≤ 0 holds almost surely for all i ∈ In.

We now again take a countable subset F ⊂ [0,∞) that is dense, such that for each
f ∈ F, µ({f}) = 0. As F is countable, there exists an almost sure event Ω0 on which
both (4.19) and (4.20) hold for any pair f, f ′ ∈ F such that f < f ′. A similar argument as
in (4.9) and (4.10) can be made, using Riemann approximations and the Portmanteau
lemma, which yields for any open set U ⊆ [0,∞) and any closed set C ⊆ [0,∞),

lim inf
n→∞

Γ(k)
n (U) ≥

∫
U

k − 1 + x

k + x+ θm
Γ(k−1)(dx),

lim sup
n→∞

Γ(k)
n (C) ≤

∫
C

k − 1 + x

k + x+ θm
Γ(k−1)(dx),

(4.21)
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and thus Γ
(k)
n converges in the weak∗ topology to Γ(k), given by

Γ(k)(dx) =
(k − 1) + x

k + x+ θm
Γ(k−1)(dx) = . . . =

k∏
`=1

(`− 1) + x

`+ x+ θm
Γ(0)(dx).

What remains is to perform the initialisation of the induction, regarding Γ
(0)
n . Analogous

to the steps in (4.11), we now set Xn := Γ
(0)
n ((f, f ′]), with 0 ≤ f < f ′ <∞, to obtain

E[Xn+1 | Gn] =
1

n+ 1

(∑
i∈In

P(Zn+1(i) = 0 | Gn) + P(Fn+1 ∈ (f, f ′])

)
=

1

n+ 1

(∑
i∈In

1{Zn(i)=0}P(∆Zn(i) = 0 | Gn) + µ((f, f ′])

)
= Xn +

1

n+ 1

(
−
∑
i∈In

1{Zn(i)=0}P(∆Zn(i) ≥ 1 | Gn)−Xn + µ((f, f ′])

)
.

Similar to (4.12), (4.13) and (4.14), we find

Xn+1 −Xn ≥
1

n+ 1
(An −BnXn) + ∆Rn, (4.22)

where An → µ((f, f ′]), Bn → (f ′ + θm)/θm a.s. as n → ∞, and ∆Rn = Rn+1 − Rn :=

Xn+1 − E[Xn+1 | Gn]. As before, the almost sure convergence of Rn follows from
Lemma 4.2. Analogously to (4.22),

Xn+1 −Xn ≤
1

n+ 1
(An −B′nXn) + ∆Rn

holds, with B′n → (1 + f + θm)/θm almost surely. Hence, using Lemma 4.1,

lim inf
n→∞

Xn ≥
θm

f ′ + θm
µ((f, f ′]), lim sup

n→∞
Xn ≤

θm
f + θm

µ((f, f ′]),

and thus, with a similar reasoning as in (4.21), almost surely Γ
(0)
n converges weakly in

the weak∗ topology to

Γ(0)(dx) :=
θm

x+ θm
µ(dx),

which yields

Γ(k)(dx) =
θm

x+ θm

k∏
`=1

(`− 1) + x

`+ x+ θm
µ(dx).

Then,

p(k) := lim
n→∞

pn(k) =

∫ ∞
0

θm
x+ θm

k∏
`=1

(`− 1) + x

`+ x+ θm
µ(dx),

which proves (2.4) and concludes the proof.

We now prove Theorem 2.6:

Proof of Theorem 2.6. We start by proving (i). The integrand of the integral in (2.6) can
be written as

θm
x+ θm

k∏
`=1

(`− 1) + x

`+ x+ θm
= θm

Γ(x+ θm)

Γ(k + x+ 1 + θm)

Γ(k + x)

Γ(x)
.
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From [16, Theorem 1] it follows that k1+θmΓ(k + x)/Γ(k + x+ 1 + θm) ≤ 1 for all x, k ≥ 0.
By also using that Γ(t+ a)/Γ(t) = ta(1 +O(1/t)) as t→∞ and a fixed, we find that the
dominated convergence theorem yields

lim
k→∞

p(k)k1+θm =

∫ ∞
0

θm
Γ(x+ θm)

Γ(x)
µ(dx),

which is finite since E[Fθm ] <∞.
We now prove (ii), so the fitness distribution satisfies Assumption 2.3. First, let

α ∈ (2, 1 + θm). We write the integral in (2.6) as two separate integrals by splitting the
domain into (0, k) and (k,∞). We first concentrate on an upper bound. We note that, by
symmetry, it also follows that x1+θmΓ(k + x)/Γ(k + x + 1 + θm) ≤ 1. Hence, we obtain
the upper bound

k−(1+θm)

∫ k

0

θm
Γ(x+ θm)

Γ(x)xθm
xθmµ(dx) +

∫ ∞
k

θm
Γ(x+ θm)

Γ(x)xθm
x−1µ(dx). (4.23)

We note that there exists a constant c > 1 such that Γ(x + θm)/(Γ(x)xθm) ∈ [1, c] when
x ≥ 1. Hence, using Assumption 2.3, we can bound (4.23) from above by

θmk
−(1+θm)

∫ 1

0

Γ(x+ θm)

Γ(x)
µ(dx) + cθmk

−(1+θm)

∫ k

1

xθmµ(dx) + cθmk
−1

∫ ∞
k

µ(dx)

= o(k−α) + cθmk
−(1+θm)E

[
Fθm1{1≤Fθm≤k}

]
+ cθm`(k)k−α

= o(k−α) + cθ2
mk
−(1+θm)

∫ k

1

xθm−1`(x)x−(α−1)dx+ cθm`(k)k−α,

(4.24)

where the first term follows from the fact that α < 1 + θm and that the integral from 0 to
1 is finite. Hence, by [5, Proposition 1.5.8], as k tends to infinity, this is asymptotically

cθm(2θm − (α− 1))

θm − (α− 1)
`(k)k−α.

For a lower bound, we bound the second integral in (4.23) from below by zero, and
bound the first integral, using similar steps as before, from below by

o(k−α) + θ2
mk
−(1+θm)

∫ k

1

xθm−1`(x)x−(α−1)dx, (4.25)

which is asymptotically, as k tends to infinity, (θ2
m/(θm − (α − 1))`(k)k−α. Finally, for

α = 1 + θm, we note that the first term of (4.24) is no longer o(k−α), but of the same
order as the other terms. Furthermore, since the argument of the integral in the last line
of (4.24) (as well as in (4.25)) now equals `(x)/x, the integral equals `?(k) and it follows
from [5, Proposition 1.5.9a] that either `? converges, in which case this falls under the
first case (i) as the θth

m moment exists, or that `? is slowly varying itself. Thus, in the
latter case, we obtain an upper and lower bound with asymptotics, respectively,(

θm

∫ 1

0

Γ(x+ θm)

Γ(x)
µ(dx) + cθm`(k) + cθ2

m`
?(k)

)
k−(1+θm) =: L(k)k−(1+θm),(

θm

∫ 1

0

Γ(x+ θm)

Γ(x)
µ(dx) + θ2

m`
?(k)

)
k−(1+θm) =: L(k)k−(1+θm).

We also have from [5, Proposition 1.5.9a] that, in the case that `? diverges as k tends to
infinity, `?(k)/`(k)→∞ as k →∞ as well, so that L(k), L(k) = Θ(`?(k)) as k →∞, which
finishes the proof of (ii).
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Finally, we tend to (iii). We provide a proof for the PAFFD and PAFUD models with
m ≥ 1 first, and then show how the results follows for the PAFRO model as well.

Recall that Un is a uniformly chosen vertex from [n]. We first condition on the size of
the fitness of Un. Let 0 < β < ((2− α)/(α− 1) ∧ 1). Note that when Un > n0, En denotes
the event that Zn(Un) = 0. Then,

P(En) ≥ P
(
En ∩ {FUn ≤ nβ}

)
= P

(
FUn ≤ nβ

)
− P

(
Ecn ∩ {FUn ≤ nβ}

)
. (4.26)

Clearly, for ε > 0 fixed and n large,

P
(
FUn ≤ nβ

)
= P

(
F ≤ nβ

)
= 1− `(nβ)n−(α−1)β ≥ 1− n−(α−1)β+ε, (4.27)

where we use Potter’s theorem [5, Theorem 1.5.6], which states that for any fixed ε > 0

and any function `, slowly-varying at infinity,

lim
x→∞

`(x)xε =∞, lim
x→∞

`(x)x−ε = 0. (4.28)

For the second probability on the right-hand-side of (4.26), we write

P
(
Ecn ∩ {FUn ≤ nβ}

)
= P

( n−1⋃
j=Un∨n0

{∆Zj(Un) ≥ 1} ∩ {FUn ≤ nβ}
)

=

n∑
k=1

1

n
P
( n−1⋃
j=k∨n0

{∆Zj(k) ≥ 1} ∩ {Fk ≤ nβ}
)

≤
n∑
k=1

n−1∑
j=k∨n0

1

n
P
(
{∆Zj(k) ≥ 1} ∩ {Fk ≤ nβ}

)
.

Now, using Markov’s inequality, applying the tower rule and switching the summations
yields the upper bound, writing F̄n = (m0 +m(n− n0) + Sn)/n,

1

n

n−1∑
j=n0

j∑
k=1

E
[
(Zj(k) + nβ)/(jF̄j)1{Fk≤nβ}

]
=

1

n

n−1∑
j=n0

j∑
k=1

(
E
[
Zj(k)/(jF̄j)1{Fk≤nβ}

]
+ nβE

[
(jF̄j)−11{Fk≤nβ}

] )

≤ 1

n

n−1∑
j=n0

j∑
k=1

(
E[Zj(k)/(m0 +Mj)] + nβE

[
(m0 +Mj)

−1
] )
,

(4.29)

where Mj := maxk≤j Fk, we bound jF̄j from below by m0 + Mj and we bound the
indicator variables from above by 1. We now bound the first moment from above. Note
that, for the PAFFD and PAFUD models,

j∑
k=1

E[Zj(k)] = m0 +m(j − n0), (4.30)

since every vertex i > n0 has out-degree m. Hence, combining (4.29) and (4.30), we
obtain the upper bound, by using the tower rule and conditioning on the fitness,

1

n

n−1∑
j=n0

(m+m0 + nβ)jE[1/(m0 +Mj)] ≤ Cnβ−1
n−1∑
j=n0

jE[1/(m0 +Mj)] , (4.31)
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when n is sufficiently large, for some constant C > 0. We now bound E[1/(m0 +Mj)]

from above.
E[1/(m0 +Mj)] = E

[
1/(m0 +Mj)1{Mj≤j1/(α−1)−ε}

]
+ E

[
1/(m0 +Mj)1{Mj≥j1/(α−1)−ε}

]
≤ P

(
Mj ≤ j1/(α−1)−ε

)
+ j−1/(α−1)+ε

(4.32)

where we boundMj from below by zero and j1/(α−1)−ε in the first and second expectation,
respectively. Then, using 1− x ≤ e−x, for j large,

P
(
Mj ≤ j1/(α−1)−ε

)
≤ exp{−`(j1/(α−1)−ε)j(α−1)ε} ≤ exp{−j(α−1)ε/2}, (4.33)

where we use Potter’s theorem, as in (4.28), in the last step. By combining (4.32)
and (4.33), it follows that for j sufficiently large (say j > j0 for some j0 ∈ N),

E[1/(m0 +Mj)] ≤ 2j−1/(α−1)+ε,

and E[1/(m0 +Mj)] ≤ 1 for j ≤ j0. Using this in (4.31) yields

P
(
Ecn ∩ {FUn ≤ nβ}

)
≤ Cj0nβ−1 + 4Cnβ−1

n−1∑
j=j0+1

j1−1/(α−1)+ε

≤ C̃nβ+((1−1/(α−1))∨−1)+ε

= C̃nβ−((2−α)/(α−1)∧1)+ε,

(4.34)

which, by the definition of β and the fact that ε is arbitrarily small, tends to zero as n
tends to infinity. Finally, we combine (4.34) and (4.27) in (4.26) to find

P(En) ≥ 1− n−(α−1)β+ε − C̃nβ−((2−α)/(α−1)∧1)+ε. (4.35)

We now finish the proof of Theorem 2.4 by choosing the optimal value of β ∈ (0, ((2 −
α)/(1− α) ∧ 1)), namely β = (2− α)/(α(α− 1)) ∧ (1/α), and setting C = 1 + C̃.

For the PAFRO model, set m to equal 1. Then, there is one adjustment required.
Namely, the equality in (4.30) does not hold. Rather, using (4.6) yields the upper bound

j∑
k=1

EF [Zj(k)] ≤ Cj(log j − 1) ≤ Cj1+ε,

for some large constant C > 0. This adds at most an extra ε in the exponent of the
final expression in (4.35) and since ε is arbitrarily small, the result still holds, which
concludes the proof.

5 Convergence of point process functionals

As mentioned in the proof overview in Section 3, in this section we complete an
important step in the proof of Theorem 2.7 and show convergence of a functional of
a point process as defined in (3.5) in the extreme disorder regime (α ∈ (1, 2)). At the
same time, we take the chance to discuss some of the required theory of point process
convergence, which will also be useful in the next section when we consider the strong
disorder case. A good reference for this theory is the book [21].

Recall un from Theorem 2.7 and let Mp(E) be the space of point measures (point
processes) on E := (0, 1)× (0,∞). Let us define the point process

Πn :=

n∑
i=1

δ(i/n,Fi/un), (5.1)
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with δ a Dirac measure. It follows from [21, Corollary 4.19] that, when the fitness
distribution satisfies Assumption 2.3 for any α > 1, Πn has a weak limit Π, which is a
Poisson point process (PPP) on E with intensity measure ν(dt,dx) := dt× (α− 1)x−αdx.
[21, Proposition 4.20] shows that an almost surely continuous functional T1 applied to
Πn converges in distribution to T1 applied to Π by the continuous mapping theorem. In
this section, we prove a similar result, though a slightly different approach is required.

Let ε, δ > 0, Eδ := (0, 1)× (δ,∞). For a point measure Π ∈Mp(E), define

T ε(Π) :=

∫ 1

ε

(∫
E

f1{t≤s}dΠ(t, f)
)−1

ds, T εδ (Π) :=

∫ 1

ε

(∫
Eδ

f1{t≤s}dΠ(t, f)
)−1

ds, (5.2)

whenever these are well-defined. That is, when Π((0, s) × (0,∞)) > 0 for all s ∈ (ε, 1)

and when Π((0, s)× (δ,∞)) > 0 for all s ∈ (ε, 1), respectively. As mentioned above, the
reason for studying the functional T ε is due to (3.5), where we see that the EF [Zn(i)/n]

is (well) approximated by m(Fi/un)T i/n(Πn) in the extreme disorder regime, since the
law of large numbers no longer applies to the fitness random variables in this regime.
As a result, studying the maximum conditional mean in-degree can be done via studying
this functional T ε. Therefore, the main goal in this section is to prove the following
proposition:

Proposition 5.1. Let (Fi)i∈N be i.i.d. copies of a random variable F , which follows a
power-law distribution as in Assumption 2.3 with α ∈ (1, 2). Consider the point measure
Πn in (5.1), its weak limit Π and the functional T ε in (5.2). Then,

max
i∈[n]

Fi
un
T i/n(Πn)

d−→ sup
(t,f)∈Π

fT t(Π).

In order to prove Proposition 5.1, one would normally prove the continuity of the
functional T ε and combine the weak convergence of Πn with the continuous mapping
theorem to yield the required result, as Resnick does in his proof of Proposition 4.20.
This does, however, not work in this case. Due to the specific form of the functional,
proving its continuity is not directly possible. Therefore, we investigate T εδ as defined
in (5.2) and show that this functional is indeed continuous and is ‘sufficiently close’ to
T ε. This is worked out in the following two lemmas:

Lemma 5.2. Consider, for ε ∈ (0, 1), δ > 0 fixed, the operator T εδ as in (5.2). Then, the
mapping Π 7→

∑
(t,f)∈Π:t>ε,f>δ δ(fT tδ (Π)) is continuous in the vague topology for measures

Π ∈Mp(E) satisfying the following conditions:

Π({s} × (0,∞)) = Π((s, t)× {0}) = Π((s, t)× {∞}) = 0, ∀s < t ∈ [0, 1],

Π((0, ε)× (δ,∞)) > 0, Π((s, t)× (x,∞)) <∞, ∀s < t ∈ [0, 1], x > 0.
(5.3)

Remark 5.3. We note that for a PPP Π with intensity measure ν as introduced above, all
the conditions in (5.3) are satisfied almost surely, except for Π((0, ε)× (δ,∞)) > 0, which
happens with positive probability only.

Proof of Lemma 5.2. We first prove that, for fixed ε ∈ (0, 1), δ > 0, the mapping
Π 7→

∑
(t,f)∈Π:t>ε,f>δ δ(T εδ (Π)) is continuous in the vague topology for measures Π ∈

Mp(E). We obtain this by taking Πn,Π ∈ Mp(E) such that Πn
v→ Π, and show that the

image of the mapping of Πn introduced above also converges vaguely to the mapping
of Π. Since the image is a point measure with only finitely many points, due to the last
condition in (5.3), we can label the points (t, f) in Π such that f > δ, by (ti, fi), 1 ≤ i ≤ p
for some p ∈ N, where we order the points such that ti is increasing in i. We can do the
same for the points of Πn, where we add a superscript n. Vague convergence is then
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equivalent to the convergence of (tni , f
n
i ) ∈ Πn to (ti, fi) ∈ Π for all 1 ≤ i ≤ p, since there

are only finitely many points.

By [21, Proposition 3.13], we can fix η > 0 and take n large enough such that the balls
Bi := B((ti, fi), η), centred around (ti, fi) with radii η, contain the points (tni , f

n
i ) and

Bi ∩Bj = ∅ for i 6= j. Thus, let us set q := Π((0, ε)× (δ,∞)) > 0 and take n large enough
such that Πn((0, ε)×(δ,∞)) = q as well. That is, points (ti, fi), (t

n
i , f

n
i ), i = 1, . . . , q, satisfy

tni < ε and points (ti, fi), (t
n
i , f

n
i ), i = q + 1, . . . , p, satisfy tni > ε (due to the first condition

in (5.3) there are no points (t, f) such that t = ε a.s.). We can now express T εδ (Π) in
terms of a sum. Namely,

T εδ (Π) =

∫ 1

ε

(∫
Eδ

f1{t≤s}dΠ(t, f)
)−1

ds =

p+1∑
i=q+1

[
(ti − ti−1 ∨ ε)

( i−1∑
j=1

fi

)−1]
, (5.4)

where we set tp+1 := 1. A similar expression follows for Πn, with tnp+1 := 1. Since the
sum contains a finite number of terms, the convergence of T εδ (Πn)→ T εδ (Π) immediately
follows from the convergence of the individual points. As Πn

v−→ Π, fni → fi as n tends

to infinity for all i = 1, . . . , p as well. What remains to prove, is that (T
tni
δ (Πn), 1 ≤ i ≤

p)→ (T tiδ (Π), 1 ≤ i ≤ p) as n→∞. Using the triangle inequality, we obtain

|T t
n
i

δ (Πn)− T tiδ (Π)| ≤ |T t
n
i

δ (Πn)− T tiδ (Πn)|+ |T tiδ (Πn)− T tiδ (Π)|.

Let us first consider 2 ≤ i ≤ p. The second term on the right-hand-side tends to zero
by the above, as for i ≥ 2, Πn((0, ti) × (δ,∞)) > 0 and thus the conditions in (5.3) are
satisfied with ε = ti. The first term can be rewritten using the definition of T εδ in (5.2) as

|T t
n
i

δ (Πn)− T tiδ (Πn)| =
∫ tni ∨ti

tni ∧ti

(∫
Eδ

f1{t≤s}dΠn(t, f)
)−1

ds

≤ |tni − ti|
(∫

Eδ

f1{t≤tni ∧ti}dΠn(t, f)
)−1

,

where we bound the integrand of the outer integral from above by replacing the inte-
gration variable s by tni ∧ ti in the integral’s argument. In the integral that remains, we
can bound f from below by δ and therefore, for n sufficiently large, we can bound the
integral from below by δ, as there is always at least one particle (t, f) such that t ≤ tni ∨ ti
since i ≥ 2 and the balls Bi introduced above are disjoint. We thus obtain the upper
bound |tni − ti|/δ, which tends to zero with n. For i = 1, we adapt our approach to find

|T t
n
1

δ (Πn)− T t1δ (Π)| ≤ min{|T t
n
1

δ (Πn)− T t1δ (Πn)|+ |T t1δ (Πn)− T t1δ (Π)|,

|T t
n
1

δ (Πn)− T t
n
1

δ (Π)|+ |T t
n
1

δ (Π)− T t1δ (Π)|}.

When t1 < tn1 , the first term is infinite and we use the second term, while the second
term is infinite when t1 > tn1 and we then use the first term. When the first term is finite
(t1 > tn1 ), its first term is bounded from above by (t1 − tn1 )δ−1 < η/δ and its second term
can be bounded by a constant times η, as follows when using (5.4). Similarly, when the
second term of the minimum is finite (t1 ≤ tn1 ), its second term is bounded from above
by (tn1 − t1)δ−1 < η/δ and its first term can be bounded by a constant times η. As η is
arbitrary, the required result holds.

We are also interested in how ‘close’ T ε(Π) and T εδ (Π) (resp. T ε(Πn) and T εδ (Πn)) are
when δ is small (resp. δ is small and n is large). We formalise this in the following lemma:
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Lemma 5.4. Consider the operator T εδ as in (5.2) and the point process Πn as in (5.1),
let Π be its weak limit and let Assumption 2.3 hold with α ∈ (1, 2). For ε ∈ (0, 1), η > 0

fixed,

T εδ (Π)
P−→ T ε(Π) as δ ↓ 0,

lim
δ↓0

lim
n→∞

P(|T εδ (Πn)− T ε(Πn)| ≥ η) = 0.
(5.5)

Proof. We start by proving the first statement. We fix η > 0 and define Eξδ := (0, ε) ×
(δ(2−α)/2(1 + δ−ξ),∞), where ξ ∈ (0, (2− α)/2). Then,

P(|T εδ (Π)− T ε(Π)| ≥ η) ≤ P(|T εδ (Π)− T ε(Π)| ≥ η |Π(Eξδ ) 6= 0) + P(Π(Eξδ ) = 0). (5.6)

We condition on {Π(Eξδ ) 6= 0} to ensure that T εδ (Π) is finite and show that on {Π(Eξδ ) 6= 0}
the difference in T εδ (Π) and T ε(Π) will tend to zero in probability as δ ↓ 0. We first
compute the second probability on the right-hand-side.

P
(

Π(Eξδ ) = 0
)

= exp

{
−
∫
Eξδ

(α− 1)y−αdydt

}
= exp

{
− εδ−(α−1)(2−α)/2(1 + δ−ξ)−(α−1)

}
.

(5.7)

Note that, by the choice of ξ, this probability tends to zero with δ. Now, we bound the
conditional probability in (5.6). Defining the event Fδ,ξ := {Π(Eξδ ) 6= 0}, we obtain,

P(|T εδ (Π)− T ε(Π)| ≥ η |Fδ,ξ)

= P

(∣∣∣∣ ∫ 1

ε

(∫
Eδ

f1{t≤s}dΠ(t, f)

)−1

−
(∫

E

f1{t≤s}dΠ(t, f)

)−1

ds

∣∣∣∣ ≥ η ∣∣∣∣Fδ,ξ
)

≤ P

(∫ 1

ε

(∫
E\Eδ

f1{t≤s}dΠ(t, f)

)/(∫
Eδ

f1{t≤s}dΠ(t, f)

)2

ds ≥ η
∣∣∣∣Fδ,ξ

)

≤ P

(∫
E\Eδ

fdΠ(t, f) ≥ η

1− ε

(∫
Eδ

f1{t≤ε}dΠ(t, f)

)2 ∣∣∣∣Fδ,ξ
)
,

(5.8)

where, in the last line, we replaced the integration variable s with 1 in the integral in
the numerator and with ε in the integral in the denominator. We now bound the integral
over Eδ on the right-hand-side from below using Π(Eξδ ) ≥ 1 and use Markov’s inequality
to find the upper bound

P

(∫
E\Eδ

fdΠ(t, f) ≥ η

1− ε
δ2−α(1 + δ−ξ)2

∣∣∣∣Fδ,ξ)
= P

(∫
E\Eδ

fdΠ(t, f) ≥ η

1− ε
δ2−α(1 + δ−ξ)2

)

≤ E

[∫
E\Eδ

fdΠ(t, f)

]
1− ε
η

δ−(2−α)(1 + δ−ξ)−2

=

∫
E\Eδ

(α− 1)x1−αdtdx
1− ε
η

δ−(2−α)(1 + δ−ξ)−2 =
(1− ε)(α− 1)

η(2− α)
(1 + δ−ξ)−2,

(5.9)

which tends to zero as δ ↓ 0. Note that we can omit the conditional statement in the
second line, as the integral is independent of Π(Eξδ ). Combining (5.7) and the upper

bound of (5.9) in (5.6), implies that T εδ (Π)
P−→ T ε(Π) as δ ↓ 0. We now prove the second
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statement in (5.5), which uses a similar approach. Namely, using analogous steps as
in (5.6), (5.8) and (5.9), we obtain

P(|T ε(Πn)− T εδ (Πn)| ≥ η)

≤ P

(∫
E\Eδ

fdΠn(t, f) ≥ η

1− ε
δ2−α(1 + δ−ξ)−2

)
+ P

(
Πn(Eξδ ) = 0

)
.

(5.10)

The second probability on the right-hand-side converges to P(Π(Eξδ ) = 0) as n tends to
infinity, and then to zero as δ tends to zero by (5.7). Using Markov’s inequality, we obtain
an upper bound for the first probability on the right-hand-side of the form

n∑
i=1

E
[
Fi/un1{Fi/un≤δ}

] 1− ε
η

δ−(2−α)(1 + δ−ξ)2

=
1− ε
η

δ−(2−α)(1 + δ−ξ)2 n

un

∫ δun

x`

`(x)x−(α−1)dx,

where x` := inf{x ∈ R : FF (x) > 0}. Using [5, Proposition 1.5.8], yields∫ δun

x`

`(x)x−(α−1)dx ∼ 1

2− α
(δun)2−α`(δun), as n→∞.

Thus, as n→∞, since ` is slowly-varying,

1− ε
η

δ−(2−α)(1 + δ−ξ)2 n

un

∫ δun

x`

`(x)x−(α−1)dx ∼ (1− ε)
η(2− α)

(1 + δ−ξ)−2n`(un)u−(α−1)
n .

Using [21, Corollary 4.19 and Proposition 3.21], we conclude that n`(un)u
−(α−1)
n con-

verges to 1 and so the right-hand-side tends to zero with δ. Thus,

lim
δ↓0

lim
n→∞

P(|T ε(Πn)− T εδ (Πn)| ≥ η) = 0, (5.11)

which finishes the proof.

We now prove Proposition 5.1.

Proof of Proposition 5.1. For a closed set C ⊆ R+ and η > 0, let Cη := {x ∈ R :

infy∈C |x− y| ≤ η} be the η-enlargement of C and let us define the events

En,ε,δ(η) :=
{∣∣∣max

i∈[n]

Fi
un
T i/n(Πn)− max

εn≤i≤n:Fi≥δun

Fi
un
T
i/n
δ (Πn)

∣∣∣ < η
}
,

Fn,ε,δ := {Πn((0, ε)× (δ,∞)) ≥ 1}.
(5.12)

We can then write

P
(

max
i∈[n]

Fi
un
T i/n(Πn) ∈ C

)
≤ P

({
max
i∈[n]

Fi
un
T i/n(Πn) ∈ C

}
∩ En,ε,δ(η) ∩ Fn,ε,δ

)
+ P(En,ε,δ(η)c) + P

(
F cn,ε,δ

)
.

(5.13)

Then, on En,ε,δ(η) and using Cη, we can bound the first probability on the right-hand-side
from above by

P

({
max

εn≤i≤n:Fi≥δun

Fi
un
T
i/n
δ (Πn) ∈ Cη

}
∩ Fn,ε,δ

)
.
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We note that every term in the maximum is bounded from above by 1. Then, since for
n large Πn((ε, 1) × (δ,∞)) = Π((ε, 1) × (δ,∞)) < ∞ and on Fn,ε,δ, it follows from the
continuous mapping theorem, Lemma 5.2 and Remark 5.3 that

lim
n→∞

P

({
max

εn≤i≤n:Fi≥δun

Fi
un
T
i/n
δ (Πn) ∈ Cη

}
∩ Fn,ε,δ

)
= P

({
sup

(t,f)∈Π:t≥ε,f≥δ
fT tδ (Π) ∈ Cη

}
∩ Fε,δ

)
,

(5.14)

where Fε,δ := {Π((0, ε)× (δ,∞)) ≥ 1}. We now claim that it is possible to remove the δ
in T εδ (Π) and the δ and ε constraints in the supremum in (5.14), as well as that the two
terms in the last line of (5.13) tend to zero when letting n tend to infinity, and then δ and
ε to zero. These two tasks require a very similar approach, as they are essentially the
same, one with Πn and the other with its weak limit Π. We start with the latter claim.
We want to show that∣∣∣ sup

(t,f)∈Π:t≥ε,f≥δ
fT tδ (Π)− sup

(t,f)∈Π

fT t(Π)
∣∣∣ P−→ 0 as first δ ↓ 0 and then ε ↓ 0. (5.15)

To this end, we write∣∣∣ sup
(t,f)∈Π:t≥ε,f≥δ

fT tδ (Π)− sup
(t,f)∈Π

fT t(Π)
∣∣∣ ≤ ∣∣∣ sup

(t,f)∈Π:t≥ε,f≥δ
fT tδ (Π)− sup

(t,f)∈Π:t≥ε
fT t(Π)

∣∣∣
+
∣∣∣ sup

(t,f)∈Π:t≥ε
fT t(Π)− sup

(t,f)∈Π

fT t(Π)
∣∣∣

=: D1 +D2.

We first prove D1 tends to zero in probability as δ ↓ 0. Namely, using the triangle
inequality and the definitions of T εδ and T ε in (5.2),

D1 ≤
∣∣∣ sup

(t,f)∈Π:t≥ε,f≥δ
fT tδ (Π)− sup

(t,f)∈Π:t≥ε,f≥δ
fT t(Π)

∣∣∣
+
∣∣∣ sup

(t,f)∈Π:t≥ε,f≥δ
fT t(Π)− sup

(t,f)∈Π:t≥ε
fT t(Π)

∣∣∣
≤ sup

(t,f)∈Π:t≥ε,f≥δ
f(T tδ (Π)− T t(Π)) + sup

(t,f)∈Π:t≥ε,f<δ
fT t(Π)

≤
(

sup
(t,f)∈Π

f
)

sup
(t,f)∈Π:t≥ε

(T tδ (Π)− T t(Π)) + δT ε(Π)

≤
(

sup
(t,f)∈Π

f
)

(T εδ (Π)− T ε(Π)) + δT ε(Π),

(5.16)

where the final inequality follows from the definitions of T ε and T εδ . Since α > 1,
sup(t,f)∈Π f < ∞ almost surely. Furthermore, for any ε > 0 fixed, T ε(Π) < ∞ almost

surely as well. Finally, by Lemma 5.4, (T εδ (Π)− T ε(Π))
P−→ 0 as δ ↓ 0. Thus, we obtain

that D1
P−→ 0 as δ ↓ 0. We now show that D2

a.s.−→ 0 as ε ↓ 0. We discretise the interval
(0, 1) into smaller sub-intervals [2−(k+1), 2−k), k ≥ 0. Then,

lim
ε↓0

D2 ≤ lim
ε↓0

sup
(t,f)∈Π:t<ε

fT t(Π) = lim
K→∞

sup
k≥K

sup
(t,f)∈Π:t∈[2−(k+1),2−k)

fT t(Π). (5.17)

We now bound the inner supremum, by controlling the size of the maximum fitness value
in these sub-intervals. That is, we define, for ξ > 0, k ∈ Z+,

`k := 2−(k+1)/(α−1) log((k + 2)1+ξ)−1/(α−1),

hk := 2−(k+1)/(α−1) log((1− (k + 2)−(1+ξ))−1)−1/(α−1).
(5.18)
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Now,

P
(

Π([2−(k+1), 2−k)× (hk,∞)) 6= 0
)

= 1− exp
{
−
∫ 2−k

2−(k+1)

∫ ∞
hk

(α− 1)x−αdxdt
}

= 1− exp{log((1− (k + 2)−(1+ξ))}

≤ k−(1+ξ),

P
(

Π([2−(k+1), 2−k)× (`k,∞)) = 0
)

= exp
{
−
∫ 2−k

2−(k+1)

∫ ∞
`k

(α− 1)x−αdxdt
}

≤ k−(1+ξ),

(5.19)

which are both summable. Therefore, by the Borel-Cantelli lemma, it follows that almost
surely there exist a random index L, such that for all k ≥ L,

sup
(t,f)∈Π:t∈[2−(k+1),2−k)

f ∈ (`k, hk). (5.20)

Now, on the event {t ≤ 2−L},

T t(Π) =

∫ 1

t

(∫
E

f1{u≤s}dΠ(u, f)
)−1

ds

=

∫ 2−L

t

(∫
E

f1{u≤s}dΠ(u, f)
)−1

ds+

∫ 1

2−L

(∫
E

f1{u≤s}dΠ(u, f)
)−1

ds

≤
∫ 2−L

t

( sup
(u,f)∈Π:u≤s

f)−1ds+
(∫

E

f1{u≤2−L}dΠ(u, f)
)−1

(5.21)

By applying (5.20) to the both integrals, we find an upper bound

dlog2(1/t)e∑
j=L

2−(j+2)`−1
j+1 + `−1

L .

Using the definition of `j in (5.18), for j large and some ζ ∈ (0, α− 1), we obtain

T t(Π) ≤ C
dlog2(1/t)e∑

j=L

2(j+1)((1+ζ)/(α−1)−1) + `−1
L

≤ C̃t1−(1+ζ)/(α−1) + `−1
L ,

(5.22)

for some constant C̃ > 0. Again using (5.20) and on {k > L} (similar to t ≤ 2−L), we find

sup
(t,f)∈Π:t∈[2−(k+1),2−k)

fT t(Π) ≤ hk(C̃2(k+1)((1+ζ)/(α−1)−1) + `−1
L )

≤ C̃2(k+1)(ζ/(α−1)−1)kγ + hk`
−1
L ,

for some γ > (1 + ξ)/(α− 1). We finish the argument by noting that L <∞ almost surely
and hence

lim
K→∞

sup
k≥K

sup
(t,f)∈Π:t∈[2−(k+1),2−k)

fT t(Π) ≤ lim
K→∞

sup
k≥K

C̃2(k+1)(ζ/(α−1)−1)kγ + hk`
−1
L

= lim
K→∞

C̃2(K+1)(ζ/(α−1)−1)Kγ + hK`
−1
L ,

(5.23)

which equals zero by the choice of ζ. Thus, D2
a.s.−→ 0 as ε ↓ 0. Together with the

convergence of D1 to zero in probability, we obtain (5.15). Recall Fn,ε,δ from (5.12)
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and Fε,δ = limn→∞ Fn,ε,δ under (5.14). Evidently, by a similar argument as in (5.7),
limδ↓0P(Fε,δ) = 1 for all ε ∈ (0, 1), which also shows the third probability in (5.13) tends
to zero as n→∞ and then δ ↓ 0. Combining this with (5.15) and (5.14) yields

lim
ε↓0

lim
δ↓0

lim
n→∞

P

({
max
εn≤i≤n
Fi≥δun

Fi
un
T
i/n
δ (Πn) ∈ Cη

}
∩Fn,ε,δ

)
= P

(
sup

(t,f)∈Π

fT t(Π) ∈ Cη
)
. (5.24)

Recall En,ε,δ(η) from (5.12). What remains to prove, is that for all η > 0 fixed,

lim
ε↓0

lim
δ↓0

lim
n→∞

P(En,ε,δ(η)c) = 0,

which is very similar to (5.15), though we now deal with Πn rather than Π. Again, we
use the triangle inequality to find

P(En,ε,δ(η)c) ≤ P
(∣∣∣ max

εn≤i≤n:Fi≥δun

Fi
un
T
i/n
δ (Πn)− max

εn≤i≤n

Fi
un
T i/n(Πn)

∣∣∣ ≥ η/2)
+ P

(∣∣∣ max
εn≤i≤n

Fi
un
T i/n(Πn)−max

i∈[n]

Fi
un
T i/n(Πn)

∣∣∣ ≥ η/2)
=: P1 + P2.

(5.25)

We first deal with P1. As in (5.16), we split this into two terms, namely

P1 ≤ P
(∣∣∣ max

εn≤i≤n:Fi≥δun

Fi
un
T
i/n
δ (Πn)− max

εn≤i≤n

Fi
un
T
i/n
δ (Πn)

∣∣∣ ≥ η/4)
+ P

(∣∣∣ max
εn≤i≤n

Fi
un
T
i/n
δ (Πn)− max

εn≤i≤n

Fi
un
T i/n(Πn)

∣∣∣ ≥ η/4) . (5.26)

To show the first probability tends to zero, we write∣∣∣ max
εn≤i≤n:Fi≥δun

Fi
un
T
i/n
δ (Πn)− max

εn≤i≤n

Fi
un
T
i/n
δ (Πn)

∣∣∣ ≤ δ max
εn≤i≤n

T
i/n
δ (Πn) ≤ δT εδ (Πn).

Then, on Fn,ε,δ, T εδ (Πn) converges in distribution to δT εδ (Π) by the continuous mapping
theorem and the fact that T εδ is continuous in Πn, as follows from the proof of Lemma 5.2

and Remark 5.3. So, as δ ↓ 0, T εδ (Π)
P−→ T ε(Π), as follows from the proof of Lemma 5.4,

which implies that δT εδ (Π)
P−→ 0 as δ ↓ 0. As before, P(Fn,ε,δ) → 1 as n → ∞ and

then δ ↓ 0, so by intersecting the first probability on the right-hand-side of (5.26) with
Fn,ε,δ, F

c
n,ε,δ, as in (5.13), yields that it tends to zero as n → ∞ and then δ ↓ 0. What

remains is to show that the second probability on the right-hand-side of (5.26) tends to
zero as n tends to infinity, then δ ↓ 0 and finally ε ↓ 0. We again use a similar argument
as in (5.16) to find∣∣∣ max

εn≤i≤n

Fi
un
T
i/n
δ (Πn)− max

εn≤i≤n

Fi
un
T i/n(Πn)

∣∣∣ ≤ (max
i∈[n]

Fi
un

)
(T εδ (Πn)− T ε(Πn)). (5.27)

We show that the product of the maximum and (T εδ (Πn)− T ε(Πn)) converges to zero in
probability as first n → ∞ and then δ ↓ 0. We can use the fact that (T εδ (Πn) − T ε(Πn))

tends to zero in probability as n → ∞ and then δ ↓ 0, as is shown in the proof of
Lemma 5.4. In order to extend this result to the product of these two random processes,
we introduce the events Bn,δ := {maxi∈[n] Fi/un ≤ δ−ξ}, for some ξ ∈ (0, (2 − α)/2).
Then, splitting the second probability on the right-hand-side of (5.26) into two parts by
using (5.27) and intersecting with the events Bn,δ and Bcn,δ, we obtain the upper bound

P

(∣∣∣ max
εn≤i≤n

Fi
un
T
i/n
δ (Πn)− max

εn≤i≤n

Fi
un
T i/n(Πn)

∣∣∣ ≥ η/4) ≤ P(T εδ (Πn)− T ε(Πn) ≥ ηδξ/4
)

+ P
(
Bcn,δ

)
.
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P(Bcn,δ) converges to P(Bcδ), where Bδ := {Y ≤ δ−ξ} and Y is the distributional limit of
maxi∈[n] Fi/un. Then, as δ ↓ 0, P(Bcδ) → 0, as Y is almost surely finite. Following the
steps of the argument in (5.10) through (5.11) with ηδξ/4 instead of η, we find

lim sup
n→∞

P(|T ε(Πn)− T εδ (Πn)| ≥ ηδξ/4) ≤ 4(1− ε)
η(α− 2)

δ−ξ(1 + δ−ξ)−2 + lim sup
n→∞

P(Πn(Eξδ ) = 0)

=
4(1− ε)
η(α− 2)

δ−ξ(1 + δ−ξ)−2 + P(Π(Eξδ ) = 0),

which tends to zero as δ ↓ 0. It thus follows that P1 → 0 as n→∞ and then δ ↓ 0.
What remains, is to show that P2 tends to zero as n→∞, ε ↓ 0. This follows from a

similar approach as in (5.17) through (5.23). Recall `k, hk from (5.18). We then divide
the set of indices i ∈ [n] into subsets Ak,n := {i ∈ [n] : i ∈ (2−(k+1)n, 2−kn]}, 0 ≤ k ≤
blog n/ log 2c, and define the events AFk,n :=

{
maxi∈Ak,n Fi/un ∈ (`k, hk)

}
. Using (5.19),

it readily follows that
lim inf
n→∞

P
(
AFk,n

)
≥ 1− 2k−(1+ξ).

Hence, when setting kn := blog n/ log 2c, and for any sufficiently large K ∈ N,

lim inf
n→∞

P

( ⋂
K≤k≤kn

AFk,n
)
≥ 1− CK−ξ, (5.28)

for some constant C > 0, independent of K. Similar to (5.17), we write

lim sup
ε↓0

lim sup
n→∞

P2 = lim sup
K→∞

lim sup
n→∞

P

(
sup
k≥K

sup
i∈Ak,n

Fi
un
T i/n(Πn) ≥ η/4

)
.

Again, the idea is to replace the limit of ε to 0 by the limit of K to∞ and the supremum
over k ≥ K. Now, by intersecting with a similar event to the one in (5.28), we find the
upper bound

lim sup
K→∞

lim sup
n→∞

P

({
sup
k≥K

sup
i∈Ak,n

Fi
un
T i/n(Πn) ≥ η/4

}
∩
( ⋂
√
K≤k≤kn

AFk,n

))

+ P

( ⋃
√
K≤k≤kn

(
AFk,n

)c)
.

(5.29)

By (5.28), it follows that the double limit of the second probability equals zero, so we
focus on the first probability. Following the approach in (5.21) and (5.22) and using a
Markov bound, we bound the first probability in (5.29) from above by

4

η
E
[

sup
k≥K

sup
i∈Ak,n

Fi
un
T i/n(Πn)1∩√K≤k≤knA

F
k,n

]

≤ 4

η
E

[
sup
k≥K

sup
i∈Ak,n

hk
n

( 2−
√
Kn∑

j=i

un/Mj +

n∑
j=2−

√
Kn

un/Mj

)
1∩√K≤k≤knA

F
k,n

]
,

(5.30)

where we recall that Mj := maxm≤j Fm. We then bound the maximum in the second

sum from below by considering only the indices m ≤ 2−
√
Kn and using the events in the

indicator to further bound the maximum from below by `√K . The terms of the second
sum then are independent of j, which yields the upper bound n(`√K)−1. We rewrite

the first sum, where we note that for i ∈ Ak,n, i ≥ 2−(k+1)n, and as before bound the
maximum from below to find

2−
√
Kn∑

j=i

(Mj/un)−1 ≤
k+1∑
j≥
√
K

∑
p∈Aj,n

(`j+1)−1 ≤ n
k+1∑
j≥
√
K

2−(j+1)(`j+1)−1.
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Since, for large j, we can bound (`j)
−1 from above by 2j(1/(α−1)+ζ) for some small ζ,

we obtain the upper bound Cn2(k+1)((2−α)/(α−1)+ζ), for some constant C > 0. Note that
this upper bound, as well as the upper bound stated above for the second sum in (5.30)
are deterministic. Hence, using both upper bounds and bounding the indicator in the
expectation in (5.30) from above by 1 yields the upper bound

Cη sup
k≥K

sup
i∈Ak,n

(hk2(k+1)((2−α)/(α−1)+ζ) + (`√K)−1hk) ≤ Cη sup
k≥K

2−(k+1)(1−ζ)kγ + `−1√
K
hk

= Cη2−(K+1)(1−ζ)Kγ + `−1√
K
hK ,

for some γ > 0 and where Cη = (4/η) max{C, 1}. This bound no longer depends on n,
and as we let K tend to infinity the bound tends to zero. This proves P2 tends to zero
with n → ∞ and then ε ↓ 0. Combining this result with the convergence of P1 to zero
with n→∞ and then δ ↓ 0, it follows that the upper bound in (5.25) tends to zero, and
therefore the two probabilities on the second line of the right-hand-side of (5.13) tend to
zero with n→∞, then δ ↓ 0 and finally ε ↓ 0. Together with (5.24), this yields

lim sup
n→∞

P

(
max
i∈[n]

Fi
un
T i/n(Πn) ∈ C

)
≤ P

(
sup

(t,f)∈Π

fT t(Π) ∈ Cη

)
.

Including the limit η ↓ 0 finally yields, by the continuity of the probability measure,

lim sup
n→∞

P

(
max
i∈[n]

Fi
un
T i/n(Πn) ∈ C

)
≤ P

(
sup

(t,f)∈Π

fT t(Π) ∈ C
)
,

and applying the Portmanteau lemma [18, Theorem 13.16] finishes the proof.

6 Martingales and concentration

In this section we state and prove several important results, required for the proof
of Theorem 2.7. As discussed in the overview of the proof of Theorem 2.7 in Section 3,
in order to study the degree evolution we use particular martingales. Understanding
the behaviour of these martingales is essential for describing the different phases in the
behaviour of the degrees (Zn(i))i∈N as stated in Theorem 2.7.

We devote this section to (i) proving several results regarding these martingales,
which is required for studying the behaviour of the evolution of the degrees (Zn(i))i∈N
(in the weak disorder regime), (ii) as well as proving other important results regarding
the behaviour of the maximum conditional mean degree, which determines the behaviour
of the maximum degree in the strong and extreme disorder regime, which we deal with
in two separate subsections. First, however, we formulate the following propositions
which outline the behaviour of the maximum degree in the strong and extreme disorder
regime:

Proposition 6.1 (Maximum mean degree in the strong and extreme disorder regime).
Consider the three PAF models as in Definition 2.1. Let Π be a Poisson Point Process
(PPP) on E := (0, 1)× (0,∞) with intensity measure ν(dt,dx) := dt× (α− 1)x−αdx, and
let θm := 1 + E[F ] /m. Then, for α ∈ (2, 1 + θm),

max
i∈[n]

EF [Zn(i)/un]
d−→ max

(t,f)∈Π
f(t−1/θm − 1), (6.1)

while for α ∈ (1, 2),

max
i∈[n]

EF [Zn(i)/n]
d−→ m max

(t,f)∈Π
f

∫ 1

t

(∫
E

g1{u≤s}dΠ(u, g)

)−1

ds. (6.2)
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Proposition 6.2 (Concentration in the strong and extreme disorder regime). Consider
the three PAF models as in Definition 2.1. When α ∈ (2, 1 + θm), for any η > 0,

lim
n→∞

P

(∣∣∣max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]

∣∣∣ > ηun

)
= 0. (6.3)

Similarly, when α ∈ (1, 2), for any η > 0,

lim
n→∞

P

(∣∣∣max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]

∣∣∣ > ηn

)
= 0. (6.4)

6.1 A family of martingales

In order to prove Propositions 6.1 and 6.2 and to understand the behaviour of the
maximum degree in the weak disorder regime, we introduce a family of martingales and
derive some of their properties. We define, for k ∈ R, n, n0,m,m0 ∈ N and a, b > −1 such
that a− b > −1,

ckn(m) :=

n−1∏
j=n0

m∏
`=1

(
1− k

m0 +m(j − n0) + k + (`− 1) + Sj

)
,

c̃kn(m) :=

n−1∏
j=n0

(
1− k

m0 +m(j − n0) + k + Sj

)m
,

(
a

b

)
:=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
,

(6.5)

where we recall Sj from (2.1). For ease of writing, we omit the (m) in ckn(m), c̃kn(m)

whenever there is no ambiguity. We can then formulate the following lemma:

Lemma 6.3 (Degree and fitness martingales). Let i ∈ N, k ≥ −min(Fi, 1). For the PAFRO
model (m = 1) and the PAFUD model with out-degree m ∈ N, the random variable

Mk
n(i) := ckn(m)

(
Zn(i) + Fi + (k − 1)

k

)
is a martingale with respect to Gn−1 for n ≥ i ∨ n0, under the conditional probability
measure PF (·). For the PAFFD model with out-degree m ∈ N, the random variable

M̃k
n(i) := c̃kn(m)

(
Zn(i) + Fi + (k − 1)

k

)
is a supermartingale (resp. submartingale) with respect to Gn−1 for n ≥ i ∨ n0, under the
conditional probability measure PF (·) when k ≥ 0 (resp. k ∈ (−min(Fi, 1), 0). Finally, for
the PAFFD model, M1

n(i) is a martingale with respect to Gn−1 for n ≥ i ∨ n0 under the
conditional probability measure PF (·).

Proof. For ease of writing, let us define Xn(i) := Zn(i) + Fi and ∆Xn(i) := Xn+1(i) −
Xn(i) = ∆Zn(i). For the PAFRO model, we use ckn(1), which, as defined in (6.5) for
general m ∈ N, is equal to

ckn(1) =

n−1∏
j=n0

(
1− k

m0 + (j − n0) + k + Sj

)
.

For the proof of for the PAFRO model, we omit the (1) in ckn(1). We can write

EF [Mk
n+1(i)

∣∣ Gn] = ckn+1EF

[(
Xn+1(i) + (k − 1)

k

) ∣∣∣∣ Gn]
= ckn+1EF

[(
Xn(i) + (k − 1)

k

)
Γ(Xn+1(i) + k)

Γ(Xn(i) + k)

Γ(Xn(i))

Γ(Xn+1(i))

∣∣∣∣ Gn]
= ckn+1

(
Xn(i) + (k − 1)

k

)
EF

[
1 + ∆Xn(i)

k

Xn(i)

∣∣∣ Gn],
(6.6)
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as ∆Xn(i) is either 0 or 1. Then, taking the expected value of ∆Xn(i) yields

EF [Mk
n+1(i)

∣∣ Gn] = ckn+1

(
Xn(i) + (k − 1)

k

)(
1 +

Xn(i)

m0 + (n− n0) + Sn

k

Xn(i)

)
= Mk

n(i),

as ckn+1(1 + k/(m0 + (n − n0) + Sn)) = ckn. Note that the conditional mean of Mk
n(i) is

finite almost surely as well. For the PAFFD model with out-degree m ∈ N, we can follow
the same steps to find

EF [M̃k
n+1(i)

∣∣ Gn] = c̃kn+1

(
Xn(i) + (k − 1)

k

)
EF

[
Γ(Xn+1(i) + k)

Γ(Xn(i) + k)

Γ(Xn(i))

Γ(Xn+1(i))

∣∣∣∣ Gn]

= c̃kn+1

(
Xn(i) + (k − 1)

k

)
EF

[∆Xn(i)−1∏
`=0

Xn(i) + k + `

Xn(i) + `

∣∣∣∣ Gn]

≤ c̃kn+1

(
Xn(i) + (k − 1)

k

)
EF

[(
Xn(i) + k

Xn(i)

)∆Xn(i) ∣∣∣∣ Gn],
(6.7)

where we use Gamma function’s properties in the second line and note that x 7→ (x+k)/x

is decreasing in x for k ≥ 0 in the last step. For k ∈ (−min(Fi, 1), 0) the upper bound
becomes a lower bound, as x 7→ (x+ k)/x is decreasing in x in that case. Conditional on
Gn, the number of edges vertex n+ 1 connects to i is a binomial random variable with m
trials and success probability Xn(i)/

∑n
j=1Xn(j), so

EF

[(
Xn(i) + k

Xn(i)

)∆Xn(i) ∣∣∣∣ Gn] =

(
1 +

k∑n
j=1Xn(j)

)m
,

where we use that a random variable X ∼ Bin(m, p) has probability generating function
E
[
zX
]

= (pz + (1− p))m, z ∈ R. Then, recalling that for the PAFFD model
∑n
i=1Xn(i) =

m0 + m(n − n0) + Sn yields the result. For the PAFUD model, we require a few more
steps. As the connection of the ith edge of vertex n+ 1 is dependent on the connection
of edges 1, . . . , i− 1, we iteratively condition on Gn,j , j = m− 1,m− 2, . . . , 0, the graph
with n vertices where the n+ 1st vertex has connected j of its half-edges to the vertices
1, . . . , n. More precisely, letting Xn,j := Zn,j(i) + Fi, we write

EF [Mk
n+1(i)

∣∣ Gn] = ckn+1EF

[
E

[(
Xn+1,0(i) + (k − 1)

k

) ∣∣∣∣ Gn,m−1

] ∣∣∣∣Gn]
= ckn+1EF

[
E

[(
Xn,m−1(i) + 1n+1,m,i + (k − 1)

k

) ∣∣∣∣ Gn,m−1

] ∣∣∣∣Gn],
where 1n+1,m,i is the indicator of the event that the mth half-edge of vertex n+1 connects
with vertex i. Now, as in (6.6), we write this as

EF [Mk
n+1(i)

∣∣ Gn] = ckn+1EF

[(
Xn,m−1(i) + (k − 1)

k

)(
1 + k

E[1n+1,m,i | Gn,m−1]

Xn,m−1(i)

)∣∣∣∣Gn].
By the definition of the PAFUD model, the mean of the indicator equals
Xn,m−1(i)/

∑n
j=1Xn,m−1(j) = Xn,m−1(i)/(m0 + m(n − n0) + (m − 1) + Sn). Hence, we

obtain

EF [Mk
n+1(i)

∣∣ Gn]

= ckn+1

(
1 +

k

m0 +m(n− n0) + (m− 1) + Sn

)
EF

[(
Xn,m−1(i) + (k − 1)

k

)∣∣∣∣Gn],
which, when iteratively following the same steps by conditioning on Gn,j for j = m −
2, . . . , 0, yields the required result. Finally, we prove that M1

n(i) is a martingale in the
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PAFFD model. We repeat the steps in (6.7), but note that as k = 1, we can omit the
inequality and obtain

EF [M1
n+1(i)

∣∣Gn] = c1n+1(m)Xn(i)(1 + EF [∆Xn(i)
∣∣Gn]/Xn(i)).

As before, we note that ∆Xn(i) is a binomial random variable with mean
mXn(i)/

∑n
j=1Xn(j). Thus,

EF [M1
n+1(i)

∣∣Gn] = c1n+1(m)Xn(i)
(

1 +
m

m0 +m(n− n0) + Sn

)
= cnn(m)Xn(i) = M1

n(i),

which finishes the proof.

From Lemma 6.3, we immediately conclude that the (super)martingales Mk
n(i), M̃k

n(i)

converge almost surely, as they are non-negative, to some random variables ξki , ξ̃
k
i , re-

spectively. In order to distill from this an understanding of the behaviour of the evolution
of the degrees (Zn(i))i∈N, we study the growth rate of the normalising sequences ckn, c̃

k
n:

Lemma 6.4. Consider the sequences ckn, c̃
k
n in (6.5) and recall θm := 1 + E[F ] /m. If

E
[
F1+ε

]
<∞ for some ε > 0, then for any k ∈ R,m ∈ N,

ckn(m)nk/θm
a.s.−→ ck(m), c̃kn(m)nk/θm

a.s.−→ c̃k(m), (6.8)

for some almost surely finite random variables ck(m), c̃k(m). When the fitness distribution
satisfies Assumption 2.3 with α ∈ (1, 2), for any k ∈ R,m ∈ N,

ckn
a.s.−→ ck(m), c̃kn

a.s.−→ c̃k(m), (6.9)

for some almost surely finite random variables ck(m), c̃k(m) (again omitting the (m)

whenever there is no ambiguity). Furthermore, the following upper and lower bounds
hold almost surely for ckn(m) when E

[
F1+ε

]
<∞ for some ε > 0 (they hold for c̃kn(m) as

well). For n0 + 1 ≤ i ≤ n,

cki (m)

ckn(m)

( i
n

)k/θm
≤ exp

{
k

θm
log
( i
n

n− (n0 + 1)

(i− (n0 + 1)) ∨ 1

)
+

mk

E[F ]

∞∑
j=i

|Sj/j − E[F ] |
m0 +m(j − n0) + Sj

}
,

cki (m)

ckn(m)

( i
n

)k/θm
≥ 1− mk

E[F ]

n−1∑
j=i

|Sj/j − E[F ] |
m0 +m(j − n0) + Sj

− m

2

n−1∑
j=i

( k
Sj

)2

− m0 + E[F ]n0 + (m− 1)

θ2
m

π2

6i
− 1

θm((i− (n0 + 1)) ∨ 1)
.

(6.10)

Proof. We only prove the results for ckn(1), as the proofs for m > 1 and c̃kn(m) follow
similarly. For ease of writing, let θ := θ1. We start by proving (6.8). We can write

cknn
k/θ = exp

{
−

n−1∑
j=n0

log

(
1 +

k

m0 + j − n0 + Sj

)
+
k

θ
log n

}

= exp

{
−
n0+d2|k|e∑
j=n0

log

(
1 +

k

m0 + j − n0 + Sj

)
−

n−1∑
j=n0+d2|k|e+1

k

jθ

−
n−1∑

j=n0+d2|k|e+1

k

jθ

(E[F ]− Sj/j)− (m0 − n0)/j

(m0 − n0)/j + 1 + Sj/j

+

n−1∑
j=n0+d2|k|e+1

∞∑
`=2

(−1)`
1

`

( k

m0 + j − n0 + Sj

)`
+
k

θ
log n

}
,

(6.11)
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where we apply a Taylor expansion on the logarithmic terms in the sum for j ≥ n0 +

d2|k|e+ 1. The second sum and the last term balance, their sum converges to some finite
value depending on k and γ, where γ is the Euler-Mascheroni constant. We now show
the almost sure absolute convergence of the third sum in the second line of (6.11). This
is implied by the almost sure convergence of

n∑
j=1

1

j2
|Sj − jE[F ] |.

We prove this by showing that the mean of this sum converges. Let ε > 0 such that the
(1 + ε)th moment of the Fi exists. Using Hölder’s inequality, we obtain

n∑
j=1

E
[
|Sj − jE[F ] |/j2

]
≤

n∑
j=1

1

j2
E
[
|Sj − jE[F ] |1+ε

]1/(1+ε)
.

Now, we use a specific case of the Marcinkiewicz-Zygmund inequality [14, Proposition
3.8.2], which states that for q ∈ [1, 2] and i.i.d. Xi with E[X1] = 0,E[|X1|q] < ∞, there
exists a constant cq such that

E

[∣∣∣ j∑
i=1

Xi

∣∣∣q] ≤ cqjE[|X1|q] . (6.12)

Thus, if we set Xi := Fi − E[F ], it follows that

n∑
j=1

1

j2
E
[
|Sj − jE[F ] |1+ε

]1/(1+ε) ≤ c1+εE
[
|F − E[F ] |1+ε

]1/(1+ε)
n∑
j=1

j−(2−1/(1+ε)),

which converges, as ε > 0. Finally, taking the absolute value of the double sum in (6.11)
yields the upper bound

n−1∑
j=n0+d2|k|e+1

∞∑
`=2

1

`

( |k|
m0 + j − n0 + Sj

)`
≤
∞∑
`=2

∞∑
j=d2|k|e+1

|k|`

j`
≤ |k|

∞∑
`=2

∞∑
i=2

i−`.

In the first step, we first bound m0 + j − n0 + Sj from below by j − n0 and then take all
terms where ik < j ≤ (i+ 1)k, i ≥ 2, and bound them from below by i|k|, which yields
the same upper bound |k| times in the third step. The right-hand-side equals

|k|
∞∑
`=2

(ζ(`)− 1) = |k|,

where ζ is the Riemann zeta function, which thus proves the almost sure convergence
of the double sum. This proves (6.8). For proving (6.9) we use a different approach.
Namely, we prove that − log ckn converges almost surely, which yields the desired result
as well. To that end, let Mj := maxi≤j Fi. Then, we write

− log ckn =

n−1∑
j=n0

log
(

1 +
k

m0 + j − n0 + Sj

)
≤

J∑
j=1

k

Mj
+ k

n∑
j=J+1

j−1/(α−1)+ε, (6.13)

where we use (4.33) in the last step to conclude that, by the Borel-Cantelli lemma, there
exists an almost surely finite random index J such that for all j ≥ J , Mj ≥ j1/(α−1)−ε,
for some small ε ∈ (0, (2 − α)/(α − 1)), as well as that log(1 + x) ≤ x for all x > −1. It
therefore follows that the upper bound on the right-hand-side of (6.13) converges as n
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tends to infinity almost surely, and therefore so does ckn, since − log ckn is non-negative and
increasing. We now turn to the bounds in (6.10). Rather than using a Taylor expansion
as in (6.11), we simply use that log(1 + x) ≤ x, to obtain

cki
ckn

( i
n

)k/θ
≤ exp

{
k(E(n)− E(i)) + k

n−1∑
j=i

Sj − jE[F ]

(m0 + jθ − n0)(m0 + j − n0 + Sj)

}
, (6.14)

where

E(n) :=

n−1∑
j=n0

1

m0 + jθ − n0
− 1

θ
log n.

We rewrite E(n) to find

E(n) =

( n−(n0+1)∑
j=0

1

m0 + E[F ]n0 + jθ
−
n−(n0+1)∑

j=1

1

jθ

)

+

( n−(n0+1)∑
j=1

1

jθ
− 1

θ
log(n− (n0 + 1))

)
+

1

θ
log(1− (n0 + 1)/n),

(6.15)

where we note that the first and second term are decreasing and the final term is
increasing in n. Hence, we obtain the upper bound for all n0 + 1 ≤ i ≤ n,

E(n)− E(i) ≤ 1

θ
log
( i
n

n− (n0 + 1)

(i− (n0 + 1)) ∨ 1

)
.

Using this inequality and taking the absolute value of the terms in the sum in (6.14),
yields the upper bound

exp

{
k

θ
log
( i
n

n− (n0 + 1)

(i− (n0 + 1)) ∨ 1

)
+

k

E[F ]

∞∑
j=i

|Sj/j − E[F ] |
m0 + j − n0 + Sj

}
,

as required. Similarly, we find a lower bound of the same form. As log(1 + x) ≥ x− x2/2

for x ≥ 0, exp{−x} ≥ 1− x for x ∈ R, we find

cki
ckn

( i
n

)k/θ
≥ exp

{
− k

n−1∑
j=i

|Sj/j − E[F ] |
E[F ] (m0 + j − n0 + Sj)

− 1

2

n−1∑
j=i

( k

m0 + j − n0 + Sj

)2

+ k(E(n)− E(i))

}
≥ 1− k

n−1∑
j=i

|Sj/j − E[F ] |
E[F ] (m0 + j − n0 + Sj)

− 1

2

n−1∑
j=i

( k

m0 + j − n0 + Sj

)2

+ k(E(n)− E(i)).

(6.16)

Using (6.15) and the fact that
∑n−1
j=1

1
j − log n is non-decreasing, we obtain the lower

bound

1− k
n−1∑
j=i

|Sj/j − E[F ] |
E[F ] (m0 + j − n0 + Sj)

− 1

2

n−1∑
j=i

( k
Sj

)2

− m0 + E[F ]n0

θ2

n−(n0+1)∑
j=i−n0

1

j2

+
1

θ(n− (n0 + 1))
− 1

θ((i− (n0 + 1)) ∨ 1)

≥ 1− k
n−1∑
j=i

|Sj/j − E[F ] |
E[F ] (m0 + j − n0 + Sj)

− 1

2

n−1∑
j=i

( k
Sj

)2

− m0 + E[F ]n0

θ2

π2

6i

− 1

θ((i− (n0 + 1)) ∨ 1)
,

which finishes the proof.
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We now prove two results which are used later on to prove parts of Theorem 2.7
(in the weak disorder regime). First, we show that the almost sure limits of certain
(super)martingales in Lemma 6.3 do not have an atom at zero:

Lemma 6.5. For k ≥ 1, consider the martingales Mk
n(i) for the PAFRO and PAFUD

models and M̃k
n(i) for the PAFFD model as in Lemma 6.3 and their almost sure limits

ξki , ξ̃
k
i , respectively. Then, the ξki , ξ̃

k
i do not have an atom at zero.

Proof. We first focus on the martingales Mk
n for the PAFRO and PAFUD models. Let

ε > 0. We can write,

PF
(
ξki < ε

)
= lim
n→∞

PF

(
ckn

(
Zn(i) + Fi + (k − 1)

k

)
< ε

)
≤ lim
n→∞

PF
(
ckn(Zn(i) + Fi)k < εΓ(k + 1)

)
,

(6.17)

since xk ≤ Γ(x + k)/Γ(x) for k ≥ 1, x > 0, by [16, Theorem 1]. Now, take p ∈
(−min(Fi, 1)/k, 0). The goal is to raise both sides to the power p and use a Markov
bound. We first, however, need some other inequalities to obtain useful expressions.
Using the concavity of log x and noting that x+ pk is a weighted average of x and x+ k

when p ∈ (0, 1) and x+ k is a weighted average of x and x+ pk when p ≥ 1, we obtain,
for all x, k ≥ 0,(

1− k

x+ k

)p
≥ 1− pk

x+ pk
when p ∈ (0, 1),

(
1− k

x+ k

)p
≤ 1− pk

x+ pk
when p ≥ 1. (6.18)

From the first inequality, we also immediately obtain, for p ∈ (−1, 0), k ≥ 0, x ≥ k|p|,(
1− k

x+ k

)p
≤ 1− pk

x+ pk
. (6.19)

It thus follows that, when p ∈ (−min(Fi, 1)/k, 0), (ckn)p ≤ ckpn , as Fi > k|p|. Also, from
[25] it follows that for all x ≥ 0, s ∈ (0, 1),

xs ≥ Γ(x+ s)

Γ(x)
.

Hence, since Γ(x)/Γ(x+ s) is decreasing in x for s ≥ 0, when p ∈ (−1, 0), x ≥ |p|,

xp ≤ Γ(x+ p)

Γ(x)
, (6.20)

so that, combining both (6.19) and (6.20) in (6.17) with p ∈ (−min(Fi/k, 1/k), 0), yields

PF
(
ckn(Zn(i) + Fi)k < εΓ(k + 1)

)
≤ PF

(
Mkp
n (i) ≥ εpΓ(k + 1)p/Γ(kp+ 1)

)
≤ EF [Mkp

n (i)](εΓ(k + 1))|p|Γ(kp+ 1)

= Mkp
i∨n0

(i)ε|p|Γ(k + 1)|p|Γ(pk + 1),

(6.21)

which is finite almost surely and tends to zero with ε almost surely. We can thus first
take the limit of n to infinity, and then let ε tend to zero. Hence, almost surely,

PF
(
ξki = 0

)
= lim

ε↓0
PF
(
ξki < ε

)
= 0,

and thus P(ξ1
i = 0) = 0, by the dominated convergence theorem. For the PAFFD model,

an altered argument is required, since M̃k
n(i) is a submartingale for negative k, as

follows from Lemma 6.3 so that the final steps in (6.21) no longer work. Rather, we
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only follow the same steps for ξ̃ki in (6.17). Then, let us define, for a large constant
C > 0, η ∈ (0,E[F ] /(E[F ] + m)) and a large integer N ≥ i ∨ n0, the stopping time
TN := inf{n ≥ N : Zn(i) ≥ Cn1−η}. We aim to show that we can construct a sequence ĉkn,
to be defined later, such that

M̂k
TN∧n(i) := ĉkTN∧n

(
ZTN∧n(i) + Fi + (k − 1)

k

)
is a supermartingale for k ∈ (−min(Fi, 1), 0) for the PAFFD model. First, recall the
computations in (6.7). We notice that the product in the second line contains terms
which are positive but less than 1 when k ∈ (−min(Fi, 1), 0). Therefore, the product
decreases as the number of terms increases, so that we can bound the expected value
from above by 1 + kP(∆Zn(i) ≥ 1 | Gn) /(Zn(i) + Fi). If we define

ĉkn :=

n−1∏
j=n0

(
1− kmaj

m0 +m(j − n0) + Sj + kmaj

)
, an := 1−m− 1

2

Cn−η + Fi/n
(m0 +m(n− n0) + Sn)/n

,

we obtain

EF
[
M̂k
TN∧(n+1)(i)1{TN≥n+1}

∣∣Gn]
≤ M̂k

n(i)
(

1− kman
m0 +m(n− n0) + Sn + kman

)(
1 + k

P(∆Zn(i) ≥ 1 | Gn)

Zn(i) + Fi

)
1{TN≥n+1}.

We now bound P(∆Zn(i) ≥ 1 | Gn) from below, using that 1−(1−x)m ≥ mx−m(m−1)x2/2

for all x ∈ (0, 1),m ∈ N. Then, on {TN ≥ n + 1}, we can bound Zn(i) from above by
Cn1−η, which yields the upper bound

M̂k
n(i)

(
1− kman

m0 +m(n− n0) + Sn + kman

)(
1 +

kman
m0 +m(n− n0) + Sn

)
1{TN≥n+1}

= M̂k
n(i)1{TN≥n+1} = M̂k

T∧n(i)1{TN≥n+1}.

Finally, as the event {TN ≤ n} is Gn measurable,

EF
[
Mk
TN∧(n+1)(i)1{TN≤n}

∣∣Gn] = M̂k
TN (i)1{TN≤n} = M̂k

TN∧n(i)1{TN≤n}.

Together with the computations above, this yields

EF
[
M̂k
TN∧(n+1)(i)

∣∣Gn] ≤ M̂k
TN∧n(i),

which shows indeed that M̂k
TN∧n(i) is a supermartingale for k ∈ (−min(Fi, 1), 0). It

also follows relatively easily, following similar steps as in the proof of Lemma 6.4, that
ĉknn

k/θm a.s.−→ ĉk for some random variable ĉk as n tends to infinity. So, we can then
write, for k ≥ 1, p ∈ (−min(Fi/k, 1/k), 0), continuing the steps in (6.17) and using (6.19)
and (6.20) as in (6.21),

PF (ξ̃ki < ε) ≤ lim
n→∞

PF ((ckpn /ĉ
kp
n )M̂kp

n (i) ≥ εpΓ(k + 1)p/Γ(kp+ 1)).

We now intersect with the event {TN ≥ n+ 1} and its complement to obtain the upper
bound

lim
n→∞

PF

(
{(ckpn /ĉkpn )M̂kp

n (i) > εpΓ(k + 1)p/Γ(kp+ 1)} ∩ {TN ≥ n+ 1}
)

+ PF (TN ≤ n)

≤ lim
n→∞

PF

(
(ckpn /ĉ

kp
n )M̂kp

TN∧n(i) > εpΓ(k + 1)p/Γ(kp+ 1)
)

+ PF (TN ≤ n) .
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Using the Markov inequality for the first probability and because M̂kp
TN∧n(i) is a super-

martingale since kp ∈ (−min(Fi, 1), 0), we find the upper bound

lim
n→∞

(ckpn /ĉ
kp
n )ε|p|EF [M̂kp

TN∧n(i)]Γ(k + 1)|p|Γ(kp+ 1) + PF (TN ≤ n)

≤ (ckp/ĉkp)ε
|p|EF [M̂kp

N (i)]Γ(k + 1)|p|Γ(kp+ 1) + lim
n→∞

PF (TN ≤ n) .
(6.22)

We note that the first term tends to zero with ε. For the second probability we write, for
some sth moment bound, with s > (E[F ] /(E[F ] +m)− η)−1,

PF (TN ≤ n) ≤
n∑

j=N

PF
(
(Zj(i) + Fi)s ≥ Csjs(1−η)

)
≤ Γ(k + 1)

Cs

n∑
j=N

(c̃sj)
−1j−s(1−η)EF [M̃s

j (i)].

Using the upper bound for csn0
/csn = 1/csn in (6.10), we find the upper bound

Ck,sAM̃
s
i∨n0

(i)

n∑
j=N

js(1/θm−(1−ε)) ≤ C̃k,sAM̃s
i∨n0

(i)N1−s(E[F ]/(E[F ]+m)−ε),

where A equals the upper bound in (6.10) with i = n0. This upper bound is independent
of n, so we find, combining this with (6.22),

lim
ε↓0
PF (ξ̃ki < ε) ≤ C̃k,sAM̃s

i∨n0
(i)N1−s(E[F ]/(E[F ]+m)−η),

where the right-hand-side tends to zero almost surely as N tends to infinity, by the choice
of s. Thus, it follows that limε↓0PF (ξ̃ki < ε) = 0 for all k ≥ 1. Again, using the dominated
convergence theorem finally yields the required result.

As a final result describing the behaviour of the martingales Mk
n(i), we show that, for

particular values of k, these martingales are small when i is large.

Lemma 6.6. Consider the martingales (resp. supermartingales) Mk
n(i) (resp. M̃k

n(i)) as
in Lemma 6.3. Let M := sup{s ≥ 1 : E[Fs] <∞} and assume that M > θm. Then, for all
m ∈ N, k ∈ (θm,M), almost surely

lim
i→∞

sup
n≥n0∨i

Mk
n(i) = 0, lim

i→∞
sup

n≥n0∨i
M̃k
n(i) = 0. (6.23)

Proof. We note that the first result is implied if, for any ε > 0,

P

(
sup

n≥i∨n0

Mk
n(i) ≥ ε for infinitely many i

)
= 0,

and similarly for M̃k
n(i). We now use the ‘good’ event E`(δ) := {|Sj/j−E[F ] | ≤ δ ∀j ≥ `},

where we take δ > 0 sufficiently small such that k ∈ (θm(1 + δ),M). That is, we intersect
with E`(δ) and E`(δ)c. By writing i.o. for ‘infinitely often’, we find

P

(
sup

n≥i∨n0

Mk
n(i) ≥ ε i.o.

)
≤ P

({
sup

n≥i∨n0

Mk
n(i) ≥ ε i.o.

}
∩ E`(δ)

)
+ P(E`(δ)

c)

= P
(
1E`(δ)

∞∑
i=1

1Ai =∞
)

+ P(E`(δ)
c) ,

(6.24)
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where Ai := {supn≥i∨n0
Mk
n(i) ≥ ε}. We now show that the first probability on the

right-hand-side equals 0 for every ` ∈ N, by showing the sum of indicators has a finite
mean. We write

E

[
1E`(δ)

∞∑
i=1

1Ai

]
= E

[
1E`(δ)EF

[ ∞∑
i=1

1Ai
]]
, (6.25)

and first deal with the conditional expectation. We apply Doob’s martingale inequality
[22, Theorem II 1.7] to the events Ai to find

PF (Ai) = lim
N→∞

PF

(
sup

i∨n0≤n≤N
Mk
n(i) ≥ ε

)
≤ lim
N→∞

1

ε
EF [Mk

N (i)] =
1

ε
EF [Mk

i∨n0
(i)], (6.26)

where the first step holds by the monotonicity of the events {supi∨n0≤n≤N M
k
n(i) ≥ ε}.

Doob’s martingale inequality holds for submartingales only, though. However, we can
still prove the same upper bound for M̃k

n(i), but a different technique is required. We
define the stopping time τε := inf{n ≥ i ∨ n0 | M̃k

n(i) ≥ ε}. Then, for any N ∈ N,

PF

(
sup

i∨n0≤n≤N
M̃k
n(i) ≥ ε

)
= PF (τε ≤ N) = PF

(
1{τε≤N}M̃

k
τε(i) ≥ ε

)
,

so that using Markov’s inequality yields the upper bound

1

ε
EF [1{τε≤N}M̃

k
τε(i)] ≤

1

ε

(
EF [1{τε≤N}M̃

k
τε(i)] + EF [1{τε>N}M̃

k
N (i)]

)
=

1

ε
EF [M̃k

τε∧N (i)],

see also [22, Exercise 1.25, Chapter II]. We now use the optional sampling theorem [26,
Theorem 10.10], which yields the required upper bound. Again, by monotonicity and
taking N to infinity we obtain the same result. Using (6.26) in (6.25) and recalling Mk

n(i)

from Lemma 6.3 yields the upper bound

E

[
1E`(δ)

∞∑
i=1

ε−1cki∨n0

(
Zi∨n0

(i) + Fi + (k − 1)

k

)]
.

Note that, for i > n0, Zi∨n0
(i) = 0 and for i ∈ [n0], Zi∨n0

(i) = Zn0
(i) ≤

∑n0

j=1Zn0
(i) = m0.

Also, for i ≥ ` ∨ n0 and on E`(δ), we can bound cki∨n0
from above by Ci−k/(θm(1+δ)) for

some large constant C > 0. For i ∈ [(` ∨ n0)− 1], we can just bound cki∨n0
(i) from above

by 1. This yields the upper bound

C

∞∑
i=`∨n0

E

[
1E`(δ)i

−k/(θm(1+δ))

(
Fi + (k − 1) +m0

k

)]
+

(`∨n0)−1∑
i=1

E

[(
Fi + (k − 1) +m0

k

)]

≤ C̃(1 + E
[
Fk
]
)

∞∑
i=`∨n0

i−k/(θm(1+δ)) + C̃(1 + E
[
Fk
]
)(` ∨ n0),

which is finite by the choice of k and δ. We note that we can indeed bound the mean
of
(F+(k−1)+m0

k

)
by a constant times 1 plus the kth moment of F . Namely, using the

asymptotics of the Gamma function,

E

[(
F + (k − 1) +m0

k

)]
=

∫ ∞
0

(
x+ (k − 1) +m0

k

)
µ(dx)

≤
∫ x∗

0

(
x+ (k − 1) +m0

k

)
µ(dx) + C1

∫ ∞
x∗

xkµ(dx)

≤ C2(1 + E
[
Fk
]
),
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with C2 := max{C1,
∫ x∗

0

(
x+(k−1)+m0

k

)
µ(dx)} and x∗ such that for x ≥ x∗,

(
x+(k−1)+m0

k

)
≤

C1x
k. It follows that the mean in (6.25) is finite and thus that the first probability on the

right-hand-side of (6.24) equals 0. Hence,

P

(
sup

n≥i∨n0

Mk
n(i) ≥ ε i.o.

)
≤ P(E`(δ)

c) ,

which tends to 0 as `→∞ by the strong law of large numbers, and so we obtain (6.23).

6.2 The maximum conditional mean degree in the strong and extreme disorder
regime

We now use the martingales studied in the previous subsection, specifically Lem-
mas 6.3 and 6.4, as well as the results attained in Section 5 to prove Propositions 6.1
and 6.2.

First, though, we state a final result from [1], which provides conditions such that
the maximum of a double array converges to a certain limit:

Proposition 6.7 ([1, Proposition 3.1]). Let {an,i : i ∈ [n]}n≥1 be a double array of
non-negative numbers such that

1. For all i ≥ 1, limn→∞ an,i = ai <∞,

2. supn≥1 an,i ≤ bi <∞,

3. limi→∞ bi = 0,

4. For i 6= j, ai 6= aj .

Then,

• maxi∈[n] an,i → maxi≥1 ai, as n→∞.

• In addition, there exist I0 and N0 such that maxi∈[n] an,i = an,I0 for all n ≥ N0.

We now prove Proposition 6.1:

Proof of Proposition 6.1. The focus of the proof is on the PAFUD model. The proof for
the PAFRO model follows by setting m = 1, the proof for the PAFFD model follows in the
same way, as we only look at the mean of M1

n(i), which by Lemma 6.3 is a martingale for
both the PAFUD and PAFFD model.

We start by proving (6.1). Take α ∈ (2, 1 + θm). Using Lemma 6.3, it directly follows
that

EF [Zn(i)] = (c1n(m))−1EF [M1
n(i)]−Fi =

c1i∨n0
(m)

c1n(m)
Zi∨n0(i) + Fi

(c1i∨n0
(m)

c1n(m)
− 1
)
. (6.27)

Note that for i ≥ n0 the first term on the right-hand-side equals zero. We can then
construct the inequalities

max
i∈[n]

Fi
un

(c1i∨n0

c1n
− 1
)
≤ max

i∈[n]
EF [Zn(i)/un] ≤ max

i∈[n]

Fi
un

(c1i∨n0

c1n
− 1
)

+
m0

unc1n
.

By Lemma 6.4, the last term on the right-hand-side tends to zero almost surely, as
α − 1 < θm. That is, since un = ˜̀(n)n1/(α−1) for some slowly-varying function ˜̀, and
c1n(m)n1/θm converges almost surely, the fact that α− 1 < θm yields that unc1n diverges
to∞ almost surely.

By the reverse triangle inequality, it follows that for x, y ∈ Rn+,

|max
i∈[n]

xi −max
i∈[n]

yi| = |‖x‖∞ − ‖y‖∞| ≤ ‖x− y‖∞ = max
i∈[n]
|xi − yi|. (6.28)
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So, as c1i∨n0
= c1i for all i ≥ n0,∣∣∣max

i∈[n]

Fi
un

(c1i∨n0

c1n
− 1
)
−max
i∈[n]

Fi
un

( c1i
c1n
− 1
)∣∣∣ ≤ max

i∈[n]

Fi
un

c1i − c1i∨n0

c1n
= max

i<n0

Fi
un

c1i − c1n0

c1n
,

which again tends to zero almost surely by Lemma 6.4, as it is a maximum over a finite
number of terms. Therefore, assuming the limits exist, it follows that

lim
n→∞

max
i∈[n]

EF [Zn(i)/un] = lim
n→∞

max
i∈[n]

Fi
un

( c1i
c1n
− 1
)

(6.29)

almost surely. We now show that∣∣∣max
i∈[n]

Fi
un

( c1i
c1n
− 1
)
−max
i∈[n]

Fi
un

(( i
n

)−1/θm
− 1
)∣∣∣ P−→ 0. (6.30)

Using (6.28) we find∣∣∣∣max
i∈[n]

Fi
un

( c1i
c1n
− 1
)
−max
i∈[n]

Fi
un

(( i
n

)−1/θm
− 1
)∣∣∣∣ ≤ max

i∈[n]

Fi
un

(n
i

)1/θm
∣∣∣∣ c1ic1n
( i
n

)−1/θm
− 1

∣∣∣∣.
Then, let η ∈ (1, (α − 2) ∧ 2) and let (εn)n∈N be a sequence such that εn := n−β, with
β ∈ (0, θmη/(1 + (1 + θm)η)). We split the maximum into two parts: indices i which are
at most εnn and at least εnn and deal with these separately. (Note that β < 1 and thus
εnn→∞.) We first define, for A ⊆ [n] and δ > 0,

EA :=
{

max
i∈A

Fi
un

(n
i

)1/θm
∣∣∣∣ c1ic1n
( i
n

)1/θm
− 1

∣∣∣∣ > δ
}
. (6.31)

This yields
P
(
E[n]

)
≤ P

(
E[εnn]

)
+ P

(
E[n]\[εnn]

)
. (6.32)

We first investigate the latter probability. We write,

P
(
E[n]\[εnn]

)
≤ P

((
max
i>εnn

Fi
un

)
ε−1/θm
n max

i>εnn

∣∣∣∣ c1ic1n
( i
n

)1/θm
− 1

∣∣∣∣ > δ

)
, (6.33)

where we bound the (n/i)1/θm , as in the definition of EA in (6.31), from above by ε−1/θm
n

and take the maximum over the fitness variables and the absolute value separately.
Since the number of terms in maxi>εnn Fi/un is asymptotically n, that is, (n− εnn)/n =

1− εn = 1− o(1), it follows that the first maximum on the right-hand-side converges in
distribution. For the second maximum in (6.33), when i ≥ εnn, the terms in the absolute
value should be small due to the almost sure convergence of c1nn

1/θm and c1i i
1/θm because

of Lemma 6.4 (note that i > εnn so that i tends to infinity with n). We show a slightly
stronger result, namely that

ε−1/θm
n max

i>εnn

∣∣∣ c1i
c1n

( i
n

)1/θm
− 1
∣∣∣ P−→ 0.

In order to prove this, we use the upper and lower bound in (6.10). The upper bound,
when considering εnn ≤ i ≤ n, is largest for i = εnn. Thus, we have a uniform upper
bound for all εnn ≤ i ≤ n,

c1i
c1n

( i
n

)1/θm
≤ exp

{
k

θm
log
(
εn

n− (n0 + 1)

εnn− (n0 + 1)

)
+

mk

E[F ]

∞∑
j=εnn

|Sj/j − E[F ] |
m0 +m(j − n0) + Sj

}
.

For n large, the denominator in the sum can be bounded from below by mj/2 and the
term in the logarithm can be bounded from above by 1 + 2(n0 + 1)/(εnn). Hence, we
obtain the upper bound

c1i
c1n

( i
n

)1/θm
≤ exp

{
k

θm
log
(

1 +
2(n0 + 1)

εnn

)
+

2k

E[F ]

∞∑
j=εnn

|Sj/j − E[F ] |
j

}
.
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Similarly, the lower bound in (6.16) is largest when i = n − 1 (note that the second
maximum in (6.33) is never attained at i = n, so we can ignore this case), from which we
obtain

max
i≥εnn

( c1i
c1n

( i
n

)1/θm
− 1
)
≥ −m0 + E[F ]n0 + (m− 1)

θ2
m

π2

6(n− 1)
− 1

θm(n− (n0 + 2))
≥ −C

n
,

for some constant C > 0. It then follows that, as ε−1/θm
n = nβ/θm ≥ 1, a(ex − 1) ≤ eax − 1

for all x ∈ R when a ≥ 1,

ε−1/θm
n max

i≥εnn

∣∣∣∣ c1ic1n
( i
n

)1/θm
− 1

∣∣∣∣
≤ max

{
C

n1−β/θm
, exp

{
k

θm
log
((

1 +
2(n0 + 1)

n1−β

)nβ/θm)
+

2k

E[F ]
nβ/θm

∞∑
j=εnn

|Sj/j − E[F ] |
j

}
− 1

}
.

(6.34)

Clearly, the first argument tends to zero, as β < θm. What remains to prove is that the
second argument of the maximum on the right-hand-side of (6.34) converges to zero in
probability. The first term in the exponent tends to zero, as 1− β > β/θm by the choice
of β. For the second term, using Markov’s inequality, for any δ > 0,

P

(
nβ/θm

∞∑
j=εnn

|Sj/j − E[F ] |
j

> δ

)
≤ δ−1nβ/θm

∞∑
j=εnn

j−2E[|Sj − jE[F ] |]

≤ δ−1nβ/θm
∞∑

j=εnn

j−2E
[
|Sj − jE[F ] |1+η

]1/(1+η)
,

where we note that η ∈ (0, (α−2)∧2), such that we can apply the Marcinkiewicz-Zygmund
inequality as in (6.12). This yields, for some constant C > 0, the upper bound

Cnβ/θm
∞∑

j=εnn

j−2+1/(1+η) ≤ C̃nβ(η/(1+η)+1/θm)−η/(1+η),

which tends to zero by the choice of β. It now follows that the right-hand-side of (6.34)
tends to zero in probability. This implies, using Slutsky’s theorem [24], that for any δ > 0,

lim
n→∞

P
(
E[n]\[εnn]

)
= 0. (6.35)

For the first probability on the right-hand-side of (6.32), we show that
maxi≤εnn(Fi/un)(n/i)1/θm tends to zero in probability when n tends to infinity and that
maxi≤εnn |(c1i /c1n)(i/n)1/θm − 1| converges almost surely. We focus on the former first.
The claim is proved by using the Poisson Point Process (PPP) weak limit. Recall Πn

in (5.1) and its weak limit Π. We write

Πn =

n∑
i=1

δ(i/n,Fi/un) ⇒
∑
i≥1

δ(ti,fi) =: Π in Mp(E), (6.36)

where δ is a Dirac measure, and Π is a PPP on (0, 1) × (0,∞) with intensity measure
ν(dt, dx) := dt× (α− 1)x−αdx [21, Corollary 4.19]. We now define Π′ to be the PPP on
R+ obtained from mapping points (t, f) ∈ Π to ft−1/θm and let Π′ε be the restriction of
Π′ to points (t, f) such that t ≤ ε. More formally,

Π′ :=
∑

(t,f)∈Π

δ(ft−1/θm ), Π′ε :=
∑

(t,f)∈Π

1{t≤ε}δ(ft−1/θm ).
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Now, we fix an arbitrary δ, η > 0. Then, we can find an ε > 0 sufficiently small, such that

P

(
max

(t,f)∈Π:t≤ε
ft−1/θm > δ

)
= 1− P(Π′ε((δ,∞)) = 0)

= 1− exp
{∫ ε

0

∫ ∞
δt1/θm

(α− 1)f−αdfdt
}

= 1− exp
{
− θm
θm − (α− 1)

δ−(α−1)ε(θm−(α−1))/θm
} (6.37)

is at most η/2. Due to (6.36) and the continuous mapping theorem, any continuous
functional T of Πn converges in distribution to T (Π). We use this to compare the law of
maxi≤εn(Fi/un)(i/n)−1/θm and max(t,f)∈Π:t≤ε ft

−1/θm by defining, for ε ∈ (0, 1], the func-
tional Tε, such that Tε(Π) := max(t,f)∈Π:t≤ε ft

−1/θm . Let Mk := {Π ∈ Mp(E) | Tε(Π) <

k}, k ∈ N. Then, on Mk, Tε is continuous, and thus Tε is continuous on ∪k∈NMk. Since
the point processes Π with intensity measure ν as described above are such that Tε(Π)

is finite almost surely, as follows from (6.37), Π ∈ Mk for some k ∈ N and thus Tε is
continuous with respect to Π almost surely for any ε ∈ (0, 1]. It follows that, for δ, η fixed,
ε chosen such that (6.37) holds and n sufficiently large,

P

(
max
i∈[εn]

Fi
un

(i/n)−1/θm > δ

)
≤ P

(
max

(t,f)∈Π:t≤ε
ft−1/θm > δ

)
+ η/2 < η.

As εn decreases monotonically, εn < ε for n sufficiently large. Hence, it follows that for n
large,

P

(
max
i∈[εnn]

Fi
un

(i/n)−1/θm > δ

)
≤ P

(
max
i≤εn

Fi
un

(i/n)−1/θm > δ

)
< η. (6.38)

We therefore can conclude that maxi∈[εnn](Fi/un)(i/n)1/θm P−→ 0 as n → ∞, as η is
arbitrary. We now show that maxi≤εnn |(c1i /c1n)(i/n)1/θm − 1| converges almost surely.
Because of Lemma 6.4, cknn

k/θm a.s.−→ ck, so that for each fixed i ∈ N, |(c1i /c1n)(i/n)1/θm −
1| a.s.−→ |c1i i1/θm/c1 − 1| =: Ai. Note that it follows from the proof of Lemma 6.4 that ck > 0

almost surely (and thus for c1 in particular), so that Ai <∞ almost surely for all i ∈ N.
Also, Ai 6= Aj almost surely for all i 6= j. Using the lower and upper bound in (6.10), we
obtain for every i ≥ n0 + 1 fixed and n ≥ i,

sup
n≥i

∣∣∣∣ c1ic1n
( i
n

)1/θm
− 1

∣∣∣∣
≤ max

{
mk

E[F ]

∞∑
j=i

|Sj/j − E[F ] |
m0 +m(j − n0) + Sj

+
m

2

∞∑
j=i

( k
Sj

)2

+
m0 + E[F ]n0 + (m− 1)

θ2
m

π2

6i

+
1

θm((i− (n0 + 1)) ∨ 1)
,

exp

{
k

θm
log
( i

(i− (n0 + 1)) ∨ 1

)
+

mk

E[F ]

∞∑
j=i

|Sj/j − E[F ] |
m0 + j − n0 + Sj

}
− 1

}
=: Bi.

As the sums in the maximum are almost surely finite for all i ∈ N, as follows from the
proof of Lemma 6.4 and the strong law of large numbers, limi→∞Bi = 0 almost surely.
Thus, combining the above steps with Lemma 6.7, we conclude that as n→∞,

max
i∈[n]

∣∣∣∣ c1ic1n
( i
n

)1/θm
− 1

∣∣∣∣ a.s.−→ sup
i≥1

Ai,
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and there exist almost surely finite random variables I,N , such that the maximum is
almost surely attained at index i = I for all n ≥ N . It thus follows that the maximum
converges almost surely to an almost surely finite limit AI . We can now conclude that,
as εnn→∞,

max
i≤εnn

∣∣∣∣ c1ic1n
( i
n

)1/θm
− 1

∣∣∣∣ a.s.−→ sup
i≥1

Ai = AI ,

which, together with (6.38), yields

max
i≤εnn

Fi
un

( i
n

)−1/θm
max
i≤εnn

∣∣∣∣ c1ic1n
( i
n

)1/θm
− 1

∣∣∣∣ P−→ 0.

Combining this with (6.32) and (6.35), we obtain (6.30). By a similar argument as before,
we find,

max
i∈[n]

Fi
un

(( i
n

)−1/θm
− 1
)

d−→ max
(t,f)∈Π

f(t−1/θm − 1). (6.39)

Thus, combining (6.29), (6.30) and (6.39) and applying Slutsky’s theorem [24], we arrive
at the desired result.

We now prove (6.2) and so we let α ∈ (1, 2). An important result is stated in Propo-
sition 5.1. By the construction of Πn in (5.1) and the definition of T ε in (5.2), it follows
that

Fi
un
T i/n(Πn) =

Fi
un

∫ 1

i/n

(∫
E

f1{t≤s}dΠn(t, f)
)−1

ds =
Fi
un

1

n

n∑
j=i

un
Sj

=
Fi
n

n∑
j=i

1

Sj
,

as for s ∈ [j/n, (j + 1)/n) the integrand is constant. Hence, by Proposition 5.1, what
remains is to prove that∣∣∣∣max

i∈[n]
EF [Zn(i)/n]−max

i∈[n]

Fi
n

n∑
j=i

m/Sj

∣∣∣∣ P−→ 0. (6.40)

Recall the result in (6.29) regarding the limit of the maximum conditional mean. The
above is therefore implied by the following two statements:∣∣∣∣max

i∈[n]

Fi
n

( c1i
c1n
− 1
)
−max
i∈[n]

Fi
n

n∑
j=i

m/(m0 +m(j − n0) + Sj)

∣∣∣∣ P−→ 0,

∣∣∣∣max
i∈[n]

Fi
n

n∑
j=i

m/(m0 +m(j − n0) + Sj)−max
i∈[n]

Fi
n

n∑
j=i

m/Sj

∣∣∣∣ P−→ 0.

(6.41)

We start by proving the first line of (6.41). Let us write Zj := m0 + m(j − n0) + Sj .
By (6.28), it follows that∣∣∣∣max

i∈[n]

Fi
n

(c1i /c
1
n − 1)−max

i∈[n]

Fi
n

n∑
j=i

m/Zj

∣∣∣∣ ≤ max
i∈[n]

Fi
n

(
(c1i /c

1
n − 1)−

n∑
j=i

m/Zj

)
,

as the terms within the brackets on the right-hand-side are a.s. positive. Then, we further
bound the expression on the right-hand-side from above by splitting the maximum into
two parts, as

max
i∈[n]

Fi
n

(
(c1i /c

1
n − 1)−

n∑
j=i

m/Zj

)
≤ max

i∈[in]

Fi
n

(
(c1i /c

1
n − 1)−

n∑
j=i

m/Zj

)

+ max
in≤i≤n

Fi
n

(
(c1i /c

1
n − 1)−

n∑
j=i

m/Zj

)
,

(6.42)
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where in is strictly increasing and tends to infinity with n. We first investigate the second
maximum, by bounding the terms within the brackets. Namely, recalling the definition
of c1n in (6.5) and applying the inequality 1− x ≤ e−x for all x ∈ R to c1i /c

1
n yields

(c1i /c
1
n − 1)−

n∑
j=i

m/Zj ≤ exp

{ n∑
j=i

m/Zj

}
− 1−

n∑
j=i

m/Zj =

∞∑
k=2

( n∑
j=i

m/Zj

)k
.

Now, fix ε > 0. By (4.33) there exists an almost surely finite random variable J such that
for all j ≥ J , Mj ≥ j1/(α−1)−ε, with Mj = maxk≤j Fk. So, on {i ≥ J}, Zj ≥ j1/(α−1)−ε for
all j ≥ i. This yields the upper bound

∞∑
k=2

mi−k((2−α)/(α−1)−ε) ≤ Ci−2((2−α)/(α−1)−ε), (6.43)

for some constant C > 0, as we can bound an exponentially decaying sum by a constant
times its first term. It follows, on in ≥ J , which holds with high probability, and by (6.43),
that

max
in≤i≤n

Fi
n

(
(c1i /c

1
n − 1)−

n∑
j=i

m/Zj

)
≤ Ci−2((2−α)/(α−1)−ε)

n

un
n

max
in≤i≤n

Fi
un
, (6.44)

which tends to zero in probability when i
−2((2−α)/(α−1)−ε)
n un/n = o(1), that is, when

in = nρ, with ρ ∈ (1/2, 1). On the other hand, when considering the first maximum
in (6.42), we find

max
i∈[in]

Fi
n

(
(c1i /c

1
n − 1)−

n∑
j=i

m/Zj

)
≤ (1/c1n)

uin
n

max
i≤in

Fi
uin

, (6.45)

where we bound the terms inside the brackets on the left-hand-side by omitting all
negative terms and by noting that c1i ≤ 1 for all i. The right-hand-side of (6.45) converges
to zero in probability when uin/n = o(1), that is, when in = nρ with ρ < α− 1, since c1n
converges almost surely for α ∈ (1, 2) by Lemma 6.4. We conclude that for α ∈ (3/2, 2)

we can find a ρ ∈ (1/2, α− 1) such that both maxima tend to zero in probability. When
α ∈ (1, 3/2], however, such a ρ cannot be found and more work is required to prove
the desired result. In this case, we split the maximum into K = K(α) <∞ maxima, as
follows: Let Ai,n := Fi/n,Bi,n := (c1i /c

1
n − 1) −

∑n
j=im/Zj . Then, we define ikn := nρk ,

k = 0, 1, . . . ,K, with ρ0 = 0, ρK = 1, and

ρk :=
α− 1

2

ck − 1

c− 1
, k ∈ {1, 2, . . . ,K − 1},

where c := 2(2− α)− 2ε(α− 1) 6= 1. Note that ρk is strictly increasing in k, independent
of c < 1 or c > 1. We now write

max
i∈[n]

Ai,nBi,n ≤
K−1∑
k=0

max
ikn≤i≤i

k+1
n

Ai,n max
ikn≤i≤i

k+1
n

Bi,n. (6.46)

We first deal with the k = 0 term. As in (6.45), since ρ1 < α − 1, maxi0n≤i≤i1n Ai,n×
maxi0n≤i≤i1n Bi,n tends to zero in probability. For k = 1, . . . ,K − 2, following the same
steps that lead to the bound in (6.44), we obtain

max
ikn≤i≤i

k+1
n

Ai,n max
ikn≤i≤i

k+1
n

Bi,n ≤ Ck(ikn)−2((2−α)/(α−1)−ε)uik+1
n

n
max

ikn≤i≤i
k+1
n

Fi
uik+1
n

,

EJP 25 (2020), paper 146.
Page 45/54

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP550
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A phase transition for preferential attachment models with additive fitness

for some constant Ck > 0. This upper bound tends to zero in probability when

ρk+1 < α− 1 + (2(2− α)− 2ε(α− 1))ρk = (α− 1) + cρk (6.47)

is satisfied. By the definition of ρk, this holds when

ck+1 − 1

c− 1
− 2 < c

ck − 1

c− 1
⇔ −1 +

k∑
j=1

cj <

k∑
j=1

cj ,

which is indeed the case. Finally, for k = K−1, again using the similar bound as in (6.44),
we find that the final term of the sum in (6.46) converges to zero in probability when
ρK−1 ∈ (1/2, 1). What remains to show, is that for all α ∈ (1, 3/2] there does exist a finite
K such that ρK−1 ∈ (1/2, 1). We distinguish two cases: α = 3/2 and α ∈ (1, 3/2). For the
first case, c < 1 for any choice of ε. This implies that ρk → 1/(2ε) as k tends to infinity,
so taking ε < 1 suffices. For α ∈ (1, 3/2), we can choose ε sufficiently small, such that
c > 1, so that ρk diverges. In both cases there therefore exists a K such that ρk > 1/2

for all k ≥ K − 1. Thus, in both cases, we can define K := inf{k ∈ N | ρk > 1/2}+ 1. The
only issue left to address regarding K, is that it is possible that ρK−1 > 1. However, in
that case we can simply choose ρK−1 = a, for any a ∈ (1/2, 1), since ρK−2 ≤ 1/2 < a by
the definition of K, and decreasing ρK−1 does not violate the constraint in (6.47) for
k = K − 2. We hence obtain the first line in (6.41).

The proof for the second line in (6.41) follows similarly. First, by letting i = i(n) tend
to infinity with n, we bound, conditional on {i ≥ J},∣∣∣∣ n∑

j=i

m

Sj
−

n∑
j=i

m

Zj

∣∣∣∣ ≤ C n∑
j=i

j/M2
j ≤ C

n∑
j=i

j1−2/(α−1)+ε ≤ C̃i−2((2−α)/(α−1)−ε/2), (6.48)

for some constant C ≥ m+m0. We note that this bound is similar to the upper bound for
(c1i /c

1
n − 1)−

∑n
j=i 1/(j + Sj/m) in (6.43). Also, both sums on the left-hand-side of (6.48)

converge almost surely, as α ∈ (1, 2). Thus, a similar approach, with the same indices
i0n, . . . , i

K
n can be used to obtain the desired result. Combining both statements in (6.41)

and using the triangle inequality and the continuous mapping theorem proves (6.40),
which together with Proposition 5.1 finishes the proof.

We now prove Proposition 6.2:

Proof of Proposition 6.2. The focus of the proof is on the PAFUD model, for which we
use the martingales Mk

n(i). The proof for the PAFRO model follows by setting m = 1,
and for the PAFFD model it follows in a similar fashion, where all upper bounds still hold
when the supermartingale M̃k

n(i) is to be used. We prove (6.3) first. Applying (6.28), a
pth moment bound for some p > 1 to be determined later, using Markov’s inequality and
Hölder’s inequality yields

PF (|max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]| > ηun)

≤ PF
(

max
i∈[n]
|Zn(i)− EF [Zn(i)]| > ηun

)
≤ 1

(ηun)p

n∑
i=1

EF
[
|Zn(i)− EF [Zn(i)]|p

]
≤ 1

(ηun)p

n∑
i=1

EF
[
|Zn(i)− EF [Zn(i)]|2k

]p/(2k)
,

(6.49)
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where k > p/2 is an integer. As Zn(i)−EF [Zn(i)] = (Zn(i) +Fi)−EF [Zn(i) +Fi] and 2k

is even, we find, using Hölder’s and Jensen’s inequality and setting Xn(i) := Zn(i) + Fi,

EF
[
|Zn(i)− EF [Zn(i)]|2k

]
=

2k∑
j=0

(
2k

j

)
EF [Xn(i)j ](−1)jEF [Xn(i)]2k−j

=

k∑
j=0

(
2k

2j

)
EF [Xn(i)2j ]EF [Xn(i)]2k−2j

−
k∑
j=1

(
2k

2j − 1

)
EF [Xn(i)2j−1]EF [Xn(i)]2k−(2j−1)

≤
k∑
j=0

(
2k

2j

)
EF [Xn(i)2k]−

k∑
j=1

(
2k

2j − 1

)
EF [Xn(i)]2k.

Using that
2k∑
j=0

(
2k

j

)
= 22k,

2k∑
j=0

(
2k

j

)
(−1)j = 0,

it follows that both sums in the last line of (6.49) equal 22k−1. We can thus bound (6.49)
from above by

22k−1

(ηun)p

n∑
i=1

(EF
[
(Zn(i) + Fi)2k

]
− EF [Zn(i) + Fi]2k)p/(2k). (6.50)

We now aim to bound the 2kth moment of Zn(i) + Fi. Since, for x ≥ 0, k ∈ N, x2k ≤∏2k
j=1(x+ (j − 1)) =

(
x+(2k−1)

2k

)
(2k)!, it follows from Lemma 6.3 that

EF
[
(Zn(i) + Fi)2k

]
≤ (c2kn )−1(2k)!EF [M2k

n (i)] =
c2ki∨n0

c2kn
(2k)!

(
Zi∨n0

(i) + Fi + 2k − 1

2k

)
.

We note that this inequality would still hold for the PAFFD model, when using the
supermartingales M̃k

n(i) and the sequences c̃kn(i). We thus obtain the upper bound

EF
[
(Zn(i) + Fi)2k

]
≤
c2ki∨n0

c2kn
(Zi∨n0

+ Fi)2k +
c2ki∨n0

c2kn
P2k−1(Zi∨n0

(i) + Fi),

where P2k−1(x) = (2k)!
(
x+2k−1

2k

)
− x2k is a polynomial of degree 2k − 1. Using (6.27), we

find

EF
[
(Zn(i) + Fi)2k

]
− EF [Zn(i) + Fi]2k ≤

(c2ki∨n0

c2kn
−
(c1i∨n0

c1n

)2k)
(Zi∨n0

(i) + Fi)2k

+
c2ki∨n0

c2kn
P2k−1(Zi∨n0

(i) + Fi).
(6.51)

Using the definition of ckn in (6.5) yields, for all 1 ≤ r ≤ n,

c2kr
c2kn

=

n−1∏
j=r∨n0

m∏
`=1

(
1 +

2k

m0 +m(j − n0) + (`− 1) + Sj

)

≤
n−1∏

j=r∨n0

m∏
`=1

(
1 +

1

m0 +m(j − n0) + (`− 1) + Sj

)2k

=
( c1r
c1n

)2k

.

(6.52)
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Therefore, using this in (6.51) we obtain an upper bound that contains powers of Fi of
order at most 2k − 1. This is the essential step to proving concentration holds. Namely,
in (6.50), this upper bound yields an expression with powers of Fi of order at most
p(1 − 1/2k), which is just slightly less than p. The aim is, for every value of α > 2, to
find values p, k such that the p(1− 1/2k)th moment of F exists and such that the entire
expression in (6.50) still tends to zero.

Let us write

P2k−1(x) =

2k−1∑
`=0

C`x
`,

for non-negative constants C`. Combining (6.51) and (6.52) in (6.50), bounding Zi∨n0
(i)

from above by m0 and recalling that p/(2k) < 1, results in the upper bound

22k

(ηun)p

n∑
i=1

(c2ki
c2kn

)p/(2k) 2k−1∑
`=0

C̃
p/(2k)
` F`p/2ki , (6.53)

where the C̃` > 0 are constants. We focus on the term where ` = 2k − 1, as this is the
boundary case. All other cases follow analogously. For the first n0 terms, we can bound
c2ki from above by (i/n0)−p/θm . For n0 + 1 ≤ i ≤ n, we use (6.10) to bound c2ki /c

2k
n from

above. This yields for all terms, for some constant C > 0,

C̃
p/(2k)
2k−1 22k

(ηun)p

(
exp

{ mp

E[F ]

∞∑
j=n0

|Sj/j − E[F ] |
j − n0 + Sj

− C
}
∨ 1

) n∑
i=1

(nn0

i

)p/θm
Fp(1−1/2k)
i

≤ Ck,p,θm exp

{
mp

E[F ]

∞∑
j=n0

|Sj/j − E[F ] |
j − n0 + Sj

}
np/θm

upn

n∑
i=1

i−p/θmFp(1−1/2k)
i ,

(6.54)

for some constant Ck,p,θm . In the last line, the exponential term is almost surely finite,
as follows from the proof of Lemma 6.4. We now show that the fraction multiplied by
the sum converges to zero in mean when p and k are chosen in a specific way. That
is, for α > 2, set p := (1 + ε)(α − 1), where ε ∈ (0, 1/(α + 1)) and set k := dp/2e. First
note that 2k > p, which was required for the Hölder inequality used in (6.49). We now
show that the p(1− 1/(2k))th moment of the fitness distribution exists. For this to hold,
α− 1 > p(1− 1/(2k)) needs to be satisfied, or, equivalently,

k <
p

2(p− (α− 1))
=

1 + ε

2ε
,

and, as ε ∈ (0, 1/(α+ 1)),

1 + ε

2ε
− p

2
=

1 + ε

2
(1/ε− (α− 1)) > 1 + ε.

It follows that, indeed,

(1 + ε)/(2ε) > p/2 + 1 + ε > dp/2e = k.

Hence, taking the mean, we obtain

np/θm

upn

n∑
i=1

i−p/θmE
[
Fp(1−1/(2k))
i

]
≤ Cn

p/θm

upn
n(1−p/θm)∨0,

with C > 0 a constant. This tends to zero with n, as un = n1/(α−1) ˜̀(n) for some slowly-
varying function ˜̀(n), and both p > α− 1 and θm > α− 1 hold. So, the last expression

EJP 25 (2020), paper 146.
Page 48/54

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP550
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A phase transition for preferential attachment models with additive fitness

in (6.54) consists of an almost surely finite random variable (the exponential term) and a
term that converges to zero mean, which implies that the entire expression converges
to zero in probability. The same argument holds also for all other values of ` in (6.53).
Thus, as n tends to infinity,

PF

(
|max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]| > ηun

)
P−→ 0. (6.55)

As this conditional probability measure is bounded from above by one, it follows from
the dominated convergence theorem and (6.55) that (6.3) holds.

We now prove (6.4), so let α ∈ (1, 2). A different approach is required, so we write,
using (6.28), a union bound and Chebyshev’s inequality,

PF

(
|max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]| > ηn

)
≤ PF

(
max
i∈[n]
|Zn(i)− EF [Zn(i)]| > ηn

)
≤

n∑
i=1

PF
(
|M1

n(i)− EF [M1
n(i)]| ≥ ηnc1n

)
≤ (ηnc1n)−2

n∑
i=1

VarF (M1
n(i)).

(6.56)

We now use the martingale property to split the variance in the variance of martingale
increments. To this end, we need to introduce some notation. Recall that Zn,j(i) is the
degree of i in Gn,j , the graph with n vertices where the n+ 1st vertex has connected j
half-edges with the first n vertices. Now, let us write

c1n,j(m) :=

n−1∏
r=n0

j∏
`=1

(
1− 1

m0 +m(r − n0) + (`− 1) + 1 + Sr

)
,

M1
n,j(i) := c1n−1,j(m)(Zn−1,j(i) + Fi).

If we let M` := M1
n,j(i), where n ≥ n0, j ∈ [m] are such that mn+ (j − 1) = `, it follows

from the proof of Lemma 6.3 that M` is a martingale for the PAFRO and PAFUD model.
Hence, we can then write the conditional variance of M1

n(i) as in (6.56) as

VarF (M1
n(i)) =

n∑
k=i+1∨n0+1

m∑
j=1

VarF (∆M1
k,j(i)), (6.57)

where ∆M1
k,j(i) := M1

k,j(i) −M1
k,j−1(i), and where we note that M1

k,0(i) = M1
k−1,m(i) =

M1
k (i) for all k = i ∨ n0, . . . , n. We then obtain

VarF (∆M1
k,j(i))

= (c1k,j−1)2EF

[(
1k,j,i −

Zk−1,j−1(i) + Fi + 1k,j,i
m0 +m((k − 1)− n0) + (j − 1) + 1 + Sk−1

)2]
,

(6.58)

where 1k,j,i is the indicator of the event that vertex k connects its jth half-edge to vertex
i. We rewrite this to find the upper bound

VarF (∆M1
k,j(i)) ≤ EF

[(
1k,j,i −

Zk−1,j−1(i) + Fi
m0 +m((k − 1)− n0) + (j − 1) + Sk−1

)2]
= EF

[
Var(1k,j,i | Gk−1,j−1)

]
≤ EF

[ Zk−1,j−1(i) + Fi
m0 +m((k − 1)− n0) + (j − 1) + Sk−1

]
.

(6.59)
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Combining this with (6.56) and (6.57) and switching summations yields

PF

(
|max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]| > ηn

)
≤ (ηnc1n)−2mn,

This final expression tends to zero almost surely, as c1n converges almost surely when
α ∈ (1, 2), as follows from Lemma 6.4. For the PAFFD model, we can use similar steps.
We construct M̃` := M̃1

n,j(i) as above, with M̃1
n,j := c̃1n−1,j(m)(Zn−1,j(i) + Fi), and

c̃n,j(m) :=

n−1∏
r=n0

(
1− 1

m0 +m(r − n0) + Sr

)j
.

It again follows from the proof of Lemma 6.3 that M̃` is a supermartingale, thus yield-
ing (6.57) for M̃n(i). Then, all further steps can be applied for the PAFFD model as
well, where the equality in (6.57) becomes an upper bound and the denominator of the
fractions in (6.58) and (6.59) changes to m0 +m((k − 1)− n0) + Sk−1.

For the PAFRO model, an adapted final step is required, as the conditional moments
in (6.59) do not sum to one (when summing over i from 1 to k − 1). Rather, we set m to 1

and follow the same steps up to (6.59). Then, we obtain by switching the summations,

PF

(
|max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]| > ηn

)
≤ (ηnc1n)−2

n∑
k=n0+1

k−1∑
i=1

EF [Zk−1(i) + Fi]
m0 + ((k − 1)− n0)

.

Now, in the same spirit as the steps from (4.5) through (4.6), we obtain the upper bound

(ηnc1n)−2
n∑

k=n0+1

k−1∑
i=1

(m0 + Fi)(m0 + k − n0)

(m0 + i ∨ n0 − n0)(m0 + (k − 1)− n0)
=: (c1n)−2Qn,

where, in n the last step, we separate this upper bound into a product of two quantities.
That is, we consider (c1n)−2 and the rest of the terms, Qn. Since c1n converges almost
surely when α ∈ (1, 2), it follows that (c1n)−2 does too. Then, it remains to show that Qn
converges to zero in mean. Hence, taking the mean with respect to the fitness random
variables yields

E[Qn] ≤ 2

(ηn)2

n∑
k=n0+1

k−1∑
i=1

m0 + E[F ]

m0 + i ∨ n0 − n0
≤ 1

(ηn)2

n∑
k=n0+1

(C1 + C2 log k) ≤ C̃1 + C̃2 log n

η2n
,

which proves that Qn does indeed converge to zero in mean. We thus also obtain for the
PAFRO model that

PF

(
|max
i∈[n]
Zn(i)−max

i∈[n]
EF [Zn(i)]| > ηn

)
P−→ 0.

Finally, like the argument made above (6.56), applying the dominated convergence
theorem proves (6.4) for all three models, which concludes the proof.

7 Proof of the maximum degree growth theorem

In this section, we use the results from Section 6 to prove Theorem 2.7.

Proof of Theorem 2.7. We start by proving (i) and (ii). This directly follows from Lem-
mas 6.3 and 6.4. As discussed after Lemma 6.3, the martingales (resp. supermartingales)
Mk
n(i) (resp. M̃k

n(i)) converge almost surely to ξki (resp. ξ̃ki ). Also, for the PAFFD model,
M1
n(i) converges almost surely to ξ1

i as well. By these two lemmas, c1nZn(i) = M1
n(i)−c1nFi
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converges almost surely to ξ1
i for the PAFRO and PAFUD models, c̃1nZn(i) = M̃1

n(i)− c̃1nFi
converges almost surely to ξ̃1

i for the PAFFD model and c1n(m)n1/θm and c̃1n(m)n1/θm

converge almost surely to c1, c̃1, respectively, when E
[
F1+ε

]
<∞ for some ε > 0. Hence,

we can set ξi := (c1)−1ξ1
i for the PAFRO (note m = 1) and the PAFUD model, and

ξi := (c̃1)−1ξ̃1
i for the PAFFD model. Since c1 and c̃1 are finite almost surely, it follows

directly from Lemma 6.5 that ξi has no atom at zero for all i ∈ N for any of the three
models.

When α ∈ (1, 2), we note that c1n
a.s.−→ c1 without the need of rescaling and thus (2.9)

follows with Z∞(i) := ξ1
i /c1 − Fi, as Zn(i) = M1

n(i)/c1n − Fi, for the PAFRO and PAFUD
models and Z∞(i) := ξ̃1

i /c̃1 −Fi for the PAFFD model.
We now prove (iii). From the second inequality in (6.18) we obtain (c1n)k ≤ ckn when

k ≥ 1. Furthermore, from [16, Theorem 1] it follows that xk ≤ Γ(x + k)/Γ(x) for all
x > 0, k ≥ 1. Hence, (c1nZn(i))k ≤ ckn(Zn(i) + Fi)k ≤ Mk

n(i)Γ(k + 1) for k ≥ 1. Recall M
from Lemma 6.6. Clearly, M > θm when E

[
Fθm+ε

]
< ∞ for some ε > 0. So, if we let

k ∈ (θm,M), Lemma 6.6 yields

lim
i→∞

sup
n≥i

c1nZn(i) = 0 almost surely.

It then follows from Lemma 6.7, as c1nZn(i)
a.s.−→ ξ1

i and ξ1
i 6= ξ1

j almost surely for i 6= j,

max
i∈[n]

n−1/θmZn(i) = (n1/θmc1n)−1 max
i∈[n]

c1nZn(i)
a.s.−→ (c1)−1 sup

i≥1
ξ1
i = sup

i≥1
ξi, and In

a.s.−→ I,

for some almost surely finite random variable I. The same approach with M̃k
n(i) holds

for the PAFFD model.
We now turn to the convergence of maxi∈[n]Zn(i)/un and maxi∈[n]Zn(i)/n as in (iv)

and (v), respectively. This follows immediately by applying Slutsky’s theorem to the
results in Propositions 6.1 and 6.2. For the convergence of In/n as in (2.11) and (2.12),
we let 0 ≤ a < b ≤ 1 and define, using z(t, f) := f(t−1/θm − 1), the random variables

Q`(a) := max
(t,f)∈Π:0<t<a

z(t, f), Q(a, b) := max
(t,f)∈Π:a<t<b

z(t, f), Qr(b) := max
(t,f)∈Π:b<t<1

z(t, f),

and events

Mn(a, b) :=
{

max
an<i<bn

Zn(i)/un > ( max
1≤i≤an

Zn(i)/un ∨ max
bn≤i≤n

Zn(i)/un)
}
,

M(a, b) :=
{
Q(a, b) > Q`(a) ∨Qr(b)

}
.

(7.1)

We can then conclude, for α ∈ (2, 1 + θm),

lim
n→∞

P(In/n ∈ (a, b)) = lim
n→∞

P(Mn(a, b)) = P(M(a, b)) , (7.2)

since it follows from the proof of Propositions 6.1 and 6.2 that the vector (Zn(i)/un)i∈[n]

converges in distribution when α ∈ (2, 1 + θm). Now, by the fact that Π is a PPP with
intensity measure ν(dt× dx) = dt× (α− 1)x−αdx, we find

P(Q(a, b) ≤ x) = exp

{
−
∫ b

a

∫ ∞
x(t−1/θm−1)−1

(α−1)s−αdsdt

}
= exp{−g(a, b)x−(α−1)}, (7.3)

where g(a, b) :=
∫ b
a

(t−1/θm − 1)α−1dt < ∞ for all 0 ≤ a ≤ b ≤ 1. Similarly, using the
independence property of PPPs,

P(Q`(a) ∨Qr(b) ≤ x) = exp{−(g(0, a) + g(b, 1))x−(α−1)}. (7.4)
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Combining (7.3) and (7.4) in (7.2) by conditioning on Q`(a) ∨Qr(b), we obtain

lim
n→∞

P(In/n ∈ (a, b)) = 1−
∫ ∞

0

(α− 1)x−α(g(0, a) + g(b, 1)) exp{−g(0, 1)x−(α−1)}dx

=
g(a, b)

g(0, 1)
.

Then, using the variable transform s = x1/θm yields

g(a, b) = θm

∫ b1/θm

a1/θm
s(θm−(α−1))−1(1− s)α−1ds = θmP

(
Bθm ∈ (a, b)

)
,

from which it follows that I
d
= Bθm , with B a Beta(θm − (α− 1), α) random variable. Via

a similar approach, redefining Mn(a, b) and M(a, b) accordingly for α ∈ (1, 2), we can
show In/n converges in distribution when α ∈ (1, 2), though it is not possible to find
an explicit expression for the law of I ′. Finally, we address the joint convergence of
(In/n,maxi∈[n]Zn(i)/un). We let 0 < c < d <∞ and define the events

En(a, b, c, d) =:
{

max
an<i<bn

Zn(i)/un ∈ (c, d)
}
, E(a, b, c, d) :=

{
Q(a, b) ∈ (c, d)

}
. (7.5)

We can then write, using these events and the events in (7.1) and letting A := (a, b)×(c, d),

P
(

(In/n,max
i∈[n]
Zn(i)/un) ∈ A

)
= P(Mn(a, b) ∩ En(a, b, c, d)) ,

which converges to P(M(a, b) ∩ E(a, b, c, d)) as n tends to infinity by the same argument
as provided for the limit in (7.2). Again, by conditioning on Q`(a)∨Qr(b) and using (7.4),
we find

P(M(a, b) ∩ E(a, b, c, d))

= P(E(a, b, c, d))P(Q`(a) ∨Qr(b) ≤ c)

+

∫ d

c

P(E(a, b, x, d)) (α− 1)x−α(g(0, a) + g(b, 1)) exp{−(g(0, a) + g(b, 1))x−(α−1)}dx.

Using (7.3), (7.4) and (7.5) the first term on the right-hand-side equals

(exp{ − g(a, b)d−(α−1)} − exp{−g(a, b)c−(α−1)}) exp{−(g(0, a) + g(b, 1))c−(α−1)}

= exp{−g(a, b)d−(α−1) − (g(0, a) + g(b, 1))c−(α−1)} − exp{−g(0, 1)c−(α−1)}.
(7.6)

For the second term, we realise we can write

P(E(a, b, x, d)) = P(Q(a, b) ∈ (x, d)) = P(Q(a, b) ≤ d))− P(Q(a, b) ≤ x) ,

so that we can split the integral into two parts. The first part, using (7.3) and (7.4),
becomes

P(Q(a, b) ≤ d)

∫ d

c

(α− 1)x−α(g(0, a) + g(b, 1)) exp{−(g(0, a) + g(b, 1))x−(α−1)}dx

= exp{−g(0, 1)d−(α−1)} − exp{−g(a, b)d−(α−1) − (g(0, a) + g(b, 1))c−(α−1)},
(7.7)

and the second part equals∫ d

c

P(Q(a, b) ≤ x)(α− 1)x−α(g(0, a) + g(b, 1)) exp{−(g(0, a) + g(b, 1))x−(α−1)}dx

=

∫ d

c

(α− 1)x−α(g(0, a) + g(b, 1)) exp{−g(0, 1)x−(α−1)}dx

=
(

1− g(a, b)

g(0, 1)

)
(exp{−g(0, 1)d−(α−1)} − exp{−g(0, 1)c−(α−1)}).

(7.8)
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Combining (7.6), (7.7) and (7.8), yields as n tends to infinity,

P
(

(In/n,max
i∈[n]
Zn(i)/un) ∈ A

)
→ g(a, b)

g(0, 1)
(exp{−g(0, 1)d−(α−1)} − exp{−g(0, 1)c−(α−1)})

= P(I ∈ (a, b))P
(

max
(t,f)∈Π

f(t−1/θm − 1) ∈ (c, d)
)
,

where the final step regarding the law of the maximum of the PPP, a Fréchet distribution
with shape parameter α − 1 and scale parameter g(0, 1)1/(α−1) = θ

1/θm
m , follows from a

similar argument as in (7.3). As before, redefining the events in (7.1) and (7.5) accord-
ingly and using the same steps yields the joint convergence of (In/n,maxi∈[n]Zn(i)/n)

when α ∈ (1, 2), which concludes the proof of Theorem 2.7.
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