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1. Introduction

The threshold autoregressive (TAR) model, proposed by [58], has enormous
popularity in a wide range of applications. It allows the modeling of diverse
behaviors under different regimes, which provides flexible descriptions of many
real-world scenarios. The backgrounds, theory, applications and extensions of
TAR models can be found in the excellent surveys of [59, 61].

Recently, generalizations to the TAR model have been considered by intro-
ducing threshold structures to non-linear models instead of autoregressive mod-
els. One important direction is on generalized linear models with thresholds, such
as the generalized threshold mixed model (GTMM) ([53]) and the generalized
threshold stochastic regression model (GTSRM) ([54]). In addition, threshold
modeling has been extended to heteroscedasticity of time series, for example,
the double-threshold autoregressive moving average conditional heteroskedastic
(DTARMACH) model ([38]), the threshold stochastic volatility (THSV) model
([56]), the multiple-threshold double autoregressive (MTDAR) model ([33]), and
the threshold double autoregressive model (TDAR) ([34]). Furthermore, thresh-
old models with more elastic regime switching mechanisms are considered in the
endogenous delay threshold model (EDTAR) of [27] and the hysteretic autore-
gressive (HAR) model of [36].

For the asymptotic theory of TAR models, the strong consistency and asymp-
totic distributions of the parameter estimates are studied by [10] and [13]. On
the other hand, tests for a linear series against its threshold extension are consid-
ered in [12], [63] and [35]. For many sophisticated threshold models, asymptotic
theories are developed by assuming stationarity and ergodicity of the process
(for example, [54]). However, conditions for strict stationarity and ergodicity are
investigated only for the self-excited threshold autoregressive (SETAR) model
([11]), the TAR model with order p ([3]), the DTARMACH model in [38], the
HAR model in [36], the MTDAR model in [33], and the TDAR model in [34].
Corresponding results for the generalized linear-type threshold models remain
unexplored.

More importantly, despite the well developed theoretical background of es-
timation theory, the estimation procedure of threshold models demands a high
computational cost. Due to the irregular nature of the threshold parameters,
locating the global minimum of the likelihood requires a multi-parameter grid
search over all possible values of the threshold parameters, which is typically
computationally infeasible; see [32] and [65]. Consequently, many threshold mod-
els are implemented assuming one threshold a priori; see [56], [53], and [54].
When the number of thresholds and the parametric model of each regime are
unknown, no practical estimation method appears available except for the sim-
plest TAR model; see [66], [15] and [16].

To tackle the above problems and further extend the flexibility, in this article
we first propose the generalized threshold latent variable model (GTLVM) which
covers most of the aforementioned models as special cases. In particular, the
threshold variables may be continuous or discrete valued. As far as we know,
asymptotic theory for threshold models with discrete-valued thresholds has not
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been investigated in the literature. Second, we establish sufficient conditions
for the stationarity and ergodicity of the proposed model. Third, and most
importantly, we develop a computationally efficient estimation procedure using
an information criterion derived from the minimal description length (MDL)
principle, which substantially generalizes the procedure of [66] for TAR model.
The procedure allows not only fast estimation of the number and the location
of thresholds, but also model selection in each regime.

This paper is organized as follows. Section 2 defines the GTLVM. Section 3
establishes sufficient conditions for strict stationarity and ergodicity of GTLVM.
Section 4 proposes a genetic algorithm using MDL principle for parameter esti-
mation. Section 5 establishes asymptotic consistency and convergence rates of
parameter estimations. Section 6 provides two simulation studies to illustrate
the effectiveness of the proposed estimation method. Section 7 presents an ap-
plication of modeling IPO volumes in U.S. stock market. The proof of Theorems
are provided in the appendix.

2. Generalized threshold latent variable model

Consider a time series {yt}t=1,...,n in which yt depends on its past observations
and a latent variable λt, and follows different models when a threshold variable
zt−d belongs to different regimes. The latent variable λt is not only associated
with past observations of yt but also exogenous covariates Xt, and has a regime
switching structure. Specifically, the conditional density function of yt satisfies

f(yt|Yt−1, Xt, zt−d) =

r+1∑
i=1

[∫
fi(yt|Yt−1, λt)hi(λt|Yt−1, Xt)dλt

]
× I(zt−d ∈ (θi−1, θi]) , (2.1)

where −∞ = θ0 < θ1 < · · · < θr < θr+1 = ∞ are the thresholds that clas-
sify yt into r + 1 regimes based on the threshold variable zt−d and threshold
delay parameter d, Yt−1 = {yt−1, . . . , yt−pY

} are the past observations, and
Xt = {xt,1, . . . , xt,pX

} are the covariates. Moreover, fi and hi are conditional
densities of yt and λt of regime i, respectively. We assume that zt−d is measurable
with respect to the sigma-field generated by {Xt−d, yt−d, Xt−d−1, yt−d−1, . . .}.
Typical examples include zt−d = yt−d for self-excited threshold models, and
zk−d = xk−d,k for some exogenous covariates xt−d,k.

To explicitly describe the dependence of yt on λt, Yt−1, Xt and zt−d, the
GTLVM can be specified as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yt =

r+1∑
i=1

[
ωi +

pY,1∑
l=1

ψ
(l)
y,1,igy,1(yt−l) + gλ(λt, ut) +

pe∑
m=0

ψ
(m)
e,i et−m

]
× I(zt−d ∈ (θi−1, θi]) ,

φ(λt) =

r+1∑
i=1

⎡⎣αi +

pY,2∑
j=1

ψ
(j)
y,2,igy,2(yt−j) +

pX∑
k=1

ψ
(k)
x,i xt,k +

pε∑
q=0

ψ
(q)
ε,i εt−q

⎤⎦
× I(zt−d ∈ (θi−1, θi]) ,

(2.2)
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where φ(·) is the link function which is smooth and monotonic increasing; {εt}
and {et} are independent and identical (i.i.d.) mean-zero errors; gy,1(·) and
gy,2(·) are known continuous functions; gλ(λt, ut) is an inverse cumulative distri-
bution function with parameter λt, and {ut} are i.i.d. uniform random variables
on [0, 1]. Without loss of generality, we may assume gy,1(0) = gy,2(0) = 0 by ad-
justing ωi and αi accordingly. Note that (2.2) is a special case of (2.1): In (2.2),
for any regime i, the conditional density of yt given λt, denoted as fi(yt|Yt−1, λt),
can be determined by the distributions of ut and et. Also, the conditional density
of λt given Yt−1, Xt, denoted as hi(λt|Yt−1, Xt), can be found from the second
equation of (2.2). Integrating out the effect of λt in fi(yt|Yt−1, λt) with respect
to hi, (2.1) follows. Although (2.1) is slightly more general than (2.2), we focus
our attention on (2.2) for convenience in parametric modeling.

By properly choosing λt, gλ(λt, ut), φ(λt) and zt−d, model (2.2) covers a
number of the aforementioned threshold models in the literature. For instance,
if gλ(λt, ut) = 0 and gy,1 is the identity function, then (2.2) reduces to threshold
autoregressive and moving average (TARMA) model

yt =

r+1∑
i=1

[
ωi +

pY,1∑
l=1

ψ
(l)
y,1,iyt−l +

pe∑
m=0

ψ
(m)
e,i et−m

]
I(zt−d ∈ (θi−1, θi]) , (2.3)

as in [31]. If, in addition, pe = 0, then (2.3) reduces to threshold autoregressive
(TAR) model as in [58]. If gλ(λt, ut) = gλ(ut) is a quantile function with pe = 0,
then (2.2) reduces to the quantile self-excited threshold autoregressive (QSE-
TAR) model in [8]. Next, denote λt = E(yt) and let gλ(λt, ut) = F−1(λt, ut) be
the inverse of the cumulative distribution function of some exponential family
distribution with probability density

f(yt;λt, at, ν) = exp

[
1

νat
{ytη(λt)− b(λt)}+ c(yt; νat)

]
,

where η(λt) is the canonical parameter, ν is an overdispersion parameter and
at is a user-specified weight. Then, the special case of (2.2) given by⎧⎪⎪⎨⎪⎪⎩

yt = gλ(λt, ut) ,

φ(λt) =
∑r+1

i=1

[
αi +

∑pY

j=1 ψ
(j)
y,igy(yt−j) +

∑pX

k=1 ψ
(k)
x,i xt,k + ψε,iεt

]
× I(zt−d ∈ (θi−1, θi]) ,

(2.4)

reduces to the GTMM in [53] when φ(λt) = 0 in the first or last regime, and
reduces to the GTSRM in [54] when ψε,j = 0 for all j. In addition, (2.2) covers
models with double threshold structure and conditional heteroskedasticity. For
example, with λt = σt and φ(σt) = σ2

t ,⎧⎨⎩yt =
∑r+1

i=1

[
ωi +

∑p
l=1 ψ

(l)
y,1,iyt−l + σtεt

]
I(yt−d ∈ (θi−1, θi]) ,

σ2
t =

∑r+1
i=1

(
αi +

∑p
j=1 ψ

(j)
y,2,iy

2
t−j

)
I(yt−d ∈ (θi−1, θi]) ,

(2.5)
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is the MTDAR model ([33]). Similar arguments apply to the THSV model in
[56].

Therefore, the proposed model (2.2) allows a unified treatment to the open
problem of establishing the stationarity and ergodicity of many existing thresh-
old-type models. Moreover, the algorithm developed in Section 4 provides an
efficient solution to the computationally challenging problem of estimation and
model selection for these models.

Denote the threshold parameters by Θ = (θ1, . . . , θr) and the model param-
eters for the ith regime by Ψi = (ωi,ΨY,1,i,Ψe,i, αi,ΨY,2,i,ΨX,i,Ψε,i), where

ΨY,1,i =(ψ
(1)
y,1,i, . . . , ψ

(pY,1)
y,1,i ), Ψe,i =(ψ

(0)
e,i , . . . , ψ

(pe)
e,i ), ΨY,2,i =(ψ

(1)
y,2,i, . . . , ψ

(pY,2)
y,2,i ),

ΨX,i = (ψ
(1)
x,i , . . . , ψ

(pX)
x,i ), Ψε,i = (ψ

(0)
ε,i , . . . , ψ

(pε)
ε,i ). Combining the parameters in

all regimes, we define Ψ = (Ψ1, ...,Ψr+1). Note that we allow some of ψ
(l)
y,1,i, ψ

(m)
e,i ,

ψ
(j)
y,2,i, ψ

(k)
x,i and ψ

(q)
ε,i equal to zero so that different autoregressive orders and co-

variates can be included in different regimes. Denote the model order parameter
as p = (p1, . . . , pr+1), where pi = (pY,1,i, pe,i, pY,2,i, pX,i, pε,i), pY,1,i, pe,i, pY,2,i

and pε,i are integers, and pX,i = (p
(1)
X,i, . . . , p

(pX)
X,i ) is a binary vector indicating

the nonzero entries of ΨX,i. Thus, in (2.2), pY,1 = maxi=1,...,r+1 pY,1,i, and pY,2,
pe and pε are defined similarly.

3. Stationarity and ergodicity

We state a set of sufficient conditions for the strict stationarity and ergodicity
of the GTLVM (2.2) as follows:

Condition 1.
a) The covariate Xt is independent of {ys}s<t and E|Xt| < ∞. In addition,

there exists a positive integer p̃ such that {(Xt, . . . , Xt−p̃+1)}t=1,... is Marko-
vian, strictly stationary and ergodic. Moreover, there exists a non-negative in-
teger q such that zt is measurable with respect to the sigma-field generated by
{Xt, yt, . . . , Xt−q, yt−q}.

b) The link function φ(·) is smooth and strictly increasing, and is either
concave or a polynomial of order γ ≥ 1;

c) There exist constants b1 > 0 and ỹ > 0 such that |gy,1(y)| ≤ b1|y| for all
|y| > ỹ, and gy,1(y) ≤ G1 for all |y| ≤ ỹ. In addition, φ(·) and gy,2(·) satisfy
φ−1(gy,2(y)) ≤ b2|y| for some b2 > 0 and all |y| > ỹ, and φ−1(gy,2(y)) ≤ G2 for
some constant G2 and all |y| ≤ ỹ;

d) E[|gλ(λ, u)| | λ] is increasing in λ. Moreover, there exist some positive
constants bλ, λ̃ and H such that E[|gλ(λ, u)| | λ] ≤ bλ|λ| if |λ| > λ̃, and
E[|gλ(λ, u)| | λ] ≤ H if |λ| ≤ λ̃;

e) E(|et|) < ∞, E[φ−1(εt)] < ∞, and E[φ−1(xt,k)] < ∞ for all xt,k;
f) For the case pe > 0, {yt} is an irreducible process.

Remark 1. Denote ξt = (yt, Xt, et, εt) and p∗ = max{pY,1, pY,2, p̃, pe, pε, q +
d, 1}. Condition 1a) ensures the Markovian property of Ξt = (ξt, . . . , ξt−p∗+1),
which helps to prove the strict stationarity and ergodicity of {yt}. Condition



2048 Y. Li et al.

1b) is satisfied for the concave link from the exponential family distribution
(for example, log-link in [54]) and the square-link from modeling conditional
heteroskedasticity ([33]). Conditions 1c) and 1d) are regularity conditions that
control the increasing rates to avoid explosive behaviors. For example, taking
φ(·) and gy,2(·) as the log-transform in [54], 1c) and 1d) hold with b2 = bλ =
1. Condition 1e) regulates the tails of the noise and covariates. For example,
if φ is the log link, then εt must have tails lighter than Laplace distribution
with intensity 1. Similar conditions are found in [11], [38] and [33]. Finally, the
irreducibility required in Condition 1f) is used to derive the geometric ergodicity
of the process when pe > 0, see [37] and [38]. For pe = 0, the irreducibility is
guaranteed by the following lemma.

Lemma 3.1. Under Condition 1, if pe = 0 in (2.2), then {yt} is irreducible.

To establish stationarity and ergodicity of a threshold model, a condition for

preventing the series from exploding is required. For example, maxi
∑pY,1

l=1 |ψ(j)
y,1,i|

< 1 for TAR model in [3]. Under Condition 1, we have the following result for
GTLVM, where the proof is provided in the Appendix.

Theorem 3.1. Suppose that a process {yt} satisfies (2.2) and Condition 1. Let

ρi(γ) =

⎛⎝b1

pY,1∑
l=1

|ψ(l)
y,1,i|+ bλb2

pY,2∑
j=1

|ψ(j)
y,2,i|1/γ

⎞⎠ .

If either one of the following conditions holds:

1) φ is concave, maxi=1,...,r+1 ρi(1) < 1, and maxi=1,...,r+1

∑pY,2

j=1 |ψ
(j)
y,2,i| < 1;

2) φ is a polynomial of order γ ≥ 1 and maxi=1,...,r+1 ρi(γ) < 1,

then {yt} is strictly stationary and ergodic.

Remark 2. The HAR model in [36] has a two-regime structure

yt =

{
ω1 +

∑p
l=1 ψ

(l)
y,1yt−l + σ1et , z∗t = 1 ,

ω2 +
∑p

l=1 ψ
(l)
y,2yt−l + σ2et , z∗t = 0 ,

z∗t =

⎧⎪⎨⎪⎩
1 , if yt−d ≤ θ1 ,

0 , if yt−d > θ1 + a ,

z∗t−1 , otherwise ,

(3.1)

where a > 0 and (θ1, θ1 + a] is called the hysteresis region, is covered by (2.2)
by defining gλ(λt, ut) = 0, pe = 0, and

zt−d = yt−dI(yt−d /∈ (θ1, θ1 + a]) (3.2)

+

∞∑
l=1

yt−d−lI(yt−d−l /∈ (θ1, θ1 + a])

l−1∏
j=0

I(yt−d−j ∈ (θ1, θ1 + a]) .
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Note that under (3.2), the threshold variable zt−d is measurable with respect to
the sigma field generated by {yt−d, yt−d−1, . . .} and thus does not satisfy Condi-
tion 1a). Nevertheless, Theorem 3.1 can be established if we replace Condition
1a) by:

Condition 1a′) The covariate Xt is independent of {ys}s<t and E|Xt| < ∞. In
addition, there exists a positive integer p̃ such that {(Xt, . . . , Xt−p̃+1)}t=1,... is
Markovian, strictly stationary and ergodic. Moreover, there exists some integer q
such that the vector z∗t = (I(zt−d ∈ (θ0, θ1]), . . . , I(zt−d ∈ (θr−1, θr])) is measur-
able with respect to the sigma-field generated by {yt, z∗t−1, yt−1, . . . , yt−q, z

∗
t−q}.

Also, z∗t is irreducible and aperiodic.
Clearly, with q = 1 and r = 1, Condition 1a′) covers HAR model (3.1).

In other words, Theorem 3.1 guarantees the stationarity and ergodicity of the
multiple-regime extension of HAR model.

When specific knowledge is available on the threshold variable zk−d, the con-
ditions 1) and 2) in Theorem 3.1 can be relaxed as follows.

Corollary 1. If zt−d = xt−d,k, then {yt} is strictly stationary and ergodic under
either one of the following conditions:

1′) φ is concave,
∑r+1

i=1 ρi(1)pr(zt−d ∈ (θi−1, θi])< 1 and
∑r+1

i=1

∑pY,2

j=1 |ψ
(j)
y,2,i| ×

pr(zt−d ∈ (θi−1, θi]) < 1;

2′) φ is polynomial of order γ ≥ 1 and
∑r+1

i=1 ρi(γ)pr(zt−d ∈ (θi−1, θi]) < 1.

Corollary 2. If zt−d = yt−d, then the conditions of ρi in Theorem 3.1 can be
relaxed to ρ1 < 1, ρr+1 < 1 and max{ρ1, ρr+1}(1 − πy) + maxi=2,...,r ρiπy < 1,
where πy = supu pr(yt ∈ (θ1, θr] | Yt−1 = u).

We have the following corollary for the classical TAR and TARMA models
defined in (2.3).

Corollary 3. Suppose that E(|et|) < ∞ and maxi=1,...,r+1

∑pY,1

l=1 |ψ(l)
y,1,i| < 1. If

pe = 0 (TAR model), then (2.3) is stationary and ergodic. If pe > 0 (TARMA
model), then (2.3) is stationary and ergodic provided that the irreducibility Con-
dition 1f) holds.

For TAR model, the condition in Corollary 3 is the same as [11]. For TARMA
model, [38] also established the stationarity and ergodicity under the irreducibil-

ity condition. However, it requires
∑pY,1

l=1 maxi |ψ(l)
y,1,i| < 1, which is slightly

stronger than the condition maxi
∑pY,1

l=1 |ψ(l)
y,1,i| < 1 in Corollary 3. We remark

that recently [14] proves the irreducibility for TARMA(1,1) model under some
parametric conditions (see Condition (C3) in [14]). This justifies the potential
validity of Condition 1f).

4. Estimation and model selection criterion

Given the delay parameter d, the number of thresholds r, and the model order
parameter p, the GTLVM is completely specified. Estimation of model param-
eters can be performed by maximum likelihood. Specifically, the log-likelihood
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of the time series is

L(Ψ,Θ, d) =

n∑
t=1

[
r+1∑
i=1

l(Ψi; yt, Yt−1, Xt)I(zt−d ∈ (θi−1, θi])

]
, (4.1)

where l(Ψi; yt, Yt−1, Xt) = log f(yt | Yt−1, Xt; zt−d ∈ (θi−1, θi]) is the condi-
tional log-likelihood of yt given {Yt−1, Xt} in regime i. Let r0, d0, p0, Θ0 and

Ψ0 be the true parameter values, and Θ̂ = (θ̂1, . . . , θ̂r), Ψ̂ = (Ψ̂i, . . . , Ψ̂r+1) be
the corresponding maximum likelihood estimators that maximize (4.1) given d,
r and p.

Based on the likelihood function, traditional methods such as sequential chi-
square likelihood ratio test from [12] can be derived to determine the number
of thresholds. However, different autoregressive orders and combination of co-
variates in different regimes contribute to complication in implementing the
traditional methods. To overcome the computational burden, we adopt a model
selection approach by developing a criterion function based on the minimal de-
scription length (MDL) principle ([47, 48]). Given a model M, the criterion is
defined by

MDL(M) = CL(M) + CL(En | M) , (4.2)

where the right hand side of (4.2) are the code lengths in bits for encoding the
model and the fitted residuals En = (ê1, . . . , ên) given the model, respectively.

Encoding the model M requires the specification of r, d, p, θ̂is and Ψ̂is. Thus,
CL(M) can be expressed as

CL(M) = CL(r) + CL(d) + CL(θ̂1, . . . , θ̂n) + CL(Ψ̂1) + · · ·+CL(Ψ̂r+1) .

From [47, 48] and [30], it requires approximately log2(n) bits to encode an integer
and (log2 n)/2 bits to encode a maximum likelihood estimator with n data
points. From [66], the thresholds can be associated with the order statistics of
the threshold variables {z1, . . . , zn} and require

∑r
i=1 log2(ni)/2 bits, where ni is

the number of observations in the ith regime. Recall that ψ
(k)
x,i = 0 when the kth

covariate is not included in the model. As the integer 0 requires 1 bit and log2 1 =

0, by denoting p′X,i =
∑pX

w=1 p
(w)
X,i as the number of nonzero entries in pX,i, the

maximum likelihood estimator Ψ̂X,i can be encoded with (p′X,i/2) log2(ni) bits.

Similar arguments suggest that encoding Ψ̂Y,1,i, Ψ̂e,i, Ψ̂Y,2,i and Ψ̂ε,i require
(pY,1,i/2) log2(ni), (pe,i/2) log2(ni), (pY,2,i/2) log2(ni) and (pe,i/2) log2(ni) bits,
respectively. Thus, we have

CL(M) = log2(r) + log2(d) +

r∑
i=1

log2(ni)

2
+

r+1∑
i=1

log2(p
′
i + 4)

+

r+1∑
i=1

p′i + 4

2
log2(ni) ,

where p′i = pY,1,i + pe,i + pY,2,i + p′X,i + pε,i is the total number of nonzero coef-
ficients in regime i. From [47], CL(Et|M) can be approximated by the negative
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of log2 of the likelihood. Hence,

MDL(M) = log2(r) + log2(d) +

r∑
i=1

log2(ni)

2
+

r+1∑
i=1

log2(p
′
i + 4)

+

r+1∑
i=1

p′i + 4

2
log2(ni)

− log2(e)L(Ψ̂, Θ̂, d) . (4.3)

The optimal model can then be selected as the values r̂, d̂ and p̂ that minimize
the MDL(M).

Since the likelihood function remains constant when θi ∈ (Rj , Rj+1], j =
1, . . . , n − 1, where {R1, . . . , Rn} is the ordered observations of the threshold

variable, the estimator θ̂i may take any value on (Rj , Rj+1] for some j. Without

loss of generality we take θ̂i = Rj+1. Then, to obtain an approximate solu-
tion to the optimization problem, we developed a genetic algorithm which is
found to achieve promising performance for related optimization problems in
change-point analysis ([18, 20], [41]) and estimation of the TAR model ([64]
and [66]). Inspired by [66], we develop the methodology with modifications for
a simultaneous detection of both autoregressive and covariate structures.

The genetic algorithm is an imitation of the biological evolution for optimiza-
tion. It involves inheritance, crossover, mutation and filtering. Specifically, the
algorithm begins with a population of chromosomes, where each chromosome
stores the information of a candidate solution to the optimization problem. For
our application, we first fix a d and define each candidate solution as a model
M specified by some r and p. Then, the performance of each chromosome is
measured by its information criterion MDL(M). Chromosomes with better per-
formance have higher probabilities to conduct crossover and produce offspring,
and so their good model features are more likely to be inherited. Meanwhile,
mutation occurs with a small probability, which brings in new models to seek
the global optimum. After several generations of crossover and mutation, the
best performing model is selected as the optimal one. Finally, we repeat the
procedure with different d and select the best performing model that attains
the smallest MDL(M).

Specifically, each step of the genetic algorithm is described as follows.

Chromosome Formation: First, generate the initial population, which is
a set of chromosomes in vector form. Each chromosome is expressed as c =
[r, p1, (θ1, p2), . . . , (θr, pr+1)]; the parameter estimate Ψ̂ is obtained once c is
specified. Similar to [66], the initial population is created as follows:

1) The number of thresholds r is generated from a Poisson distribution with
mean 2.

2) Sample θis uniformly from {zt}. Reject the sample and sample again if any
regime has fewer than τn,0 observations. This minimum span condition
ensures the estimation accuracy of Ψ.
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3) Select pY,1,i, pe,i, pY,2,i and pε,i uniformly from {0, . . . , QY,1}, {0, . . . , Qe},
{0, . . . , QY,2} and {0, . . . , Qε}, respectively, where QY,1, Qe, QY,2 and Qε

are pre-specified upper bounds of model orders. Generate a binary vector
pX,i of length pX with each element following an independent Bernoulli
distribution with mean 0.5. Set pi = (pY,1,i, pe,i, pY,2,i, pX,i, pε,i).

The MDL(M) of each chromosome is then computed by (4.3).

Crossover and Mutation: Crossover and mutation are two methods for
generating offspring. In crossover, two chromosomes are selected from the pop-
ulation as “parents” with probabilities proportional to the inverse of their ranks
of MDL(M). Next, a po1 is drawn from one of the parent’s p1 with equal proba-
bility. Then, for both parents, each of their {θj , pj+1} is selected with probability
0.5. Sort all selected {θj , pj+1}s in ascending order of θj to produce an offspring
[ro, po1, (θ

o
1, p

o
2), . . . , (θ

o
r , p

o
ro+1)]. If some thresholds θoj s violate the minimum span

condition, randomly delete the pair {θoj , poj+1} until the condition is satisfied.

In mutation, one parent chromosome is selected from the population with
probabilities proportional to the inverse of the ranks of MDL(M). Then, a new
chromosome is generated to crossover with the parent chromosome to produce
an offspring. To achieve a higher degree of exploration, the features from the
generated parent are selected with probability 0.7.

To balance between retaining good features with crossover and bringing new
solutions with mutation, the probabilities of performing crossover and mutation
are 0.9 and 0.1, respectively. To explore more possibilities in the model order,
every offspring will have its order parameter in one randomly selected regime
replaced by a newly generated order, with probability 0.3.

After conducting crossover and mutation, the group of offspring become a
new generation of chromosomes. To ensure monotonicity of optimization, an
elitist step is conducted to replace the worst performing 20 chromosomes in the
new generation by the best performing chromosome in the previous generation.

Migration: With the advance of parallel computing, the island model is in-
troduced to accelerate the computation and alleviate trapping in suboptimal
solutions. In particular, we perform genetic algorithm on NI groups of subpop-
ulations with size Np. These subpopulations conduct their own reproduction
steps and thus are treated as distinct islands. To share good features between
islands, for every Mi generations, the MN worst performing chromosomes in
the jth island are replaced by the best MN chromosomes from the (j − 1)th
island, for j = 1, . . . , NI , where the 0th island is conventionally defined as the
NI -th island. In this article we used NI = 50, Np = 200, Mi = 4, and MN = 2.
The full mechanism and improvement in performance of the parallelized genetic
algorithm can be found in [1, 2].

Claim of Convergence: When the best chromosome remains unchanged
over 20 generations, we claim that convergence is achieved and the optimal
model is obtained from the parameters of the best chromosome. Alternatively,
in consideration of computational efficiency, the algorithm may be stopped after
a fixed number of generations.
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5. Asymptotic inferences of GTLVM

5.1. Assumptions for asymptotic inferences

Apart from Condition 1, we state the following assumptions for asymptotic
inferences. First, Assumptions 1–3 are proposed for the consistency:

Assumption 1. The parameters (Ψ,Θ, d) are in the space ΩM × {1, . . . , D},
where ΩM = ΩΨ×ΩΘ is a compact subset of R(pY,1+pe+pY,2+pX+pε+4)×(r+1)×R

r,
and D is some positive integer. In addition, (Ψ0,Θ0) is an interior point in ΩM.

Assumption 2. The conditional density f(yt | Yt−1, Xt, zt−d) is regular in the
sense that the maximum likelihood estimator Ψ̂i is asymptotically normal ([17]
and [44]). We assume E[{∂ log(f(yt | Yt−1, Xt, zt−d))/∂Ψi}2] < ∞. Moreover,
l(Ψi; yt, Yt−1, Xt)) is concave in Ψi, and ∂3l(Ψi; yt, Yt−1, Xt)/∂Ψ

3
i exists for i =

1, . . . , r + 1 and is bounded by an integrable function in the neighborhood of
Ψ0

i . Furthermore, f(yt | Yt−1, Xt, zt−d ∈ (θ0i−1, θ
0
i ]) and f(yt | Yt−1, Xt, zt−d ∈

(θ0i , θ
0
i+1]) are not equal almost everywhere for all i and all {Yt−1, Xt}.

Assumption 3. The joint probability density of {zt−i, zt−j}, πz,i−j(·, ·), is uni-
formly bounded. In addition, for any vector Φ that has the same dimension as
(1, XT

t ) and satisfies |Φ| = 1, there exists an ε > 0 such that

pr(|Φ(1, XT

t )
T| > ε|zt−i, zt−j) > 0 almost surely , (5.1)

with respect to the joint distribution of (zt−i, zt−j), where i, j = 1, . . . , D.

Assumptions 1–2 are standard regulatory conditions for statistical inference
in parametric models. The assumption on the third-order derivatives of L(Ψ,Θ, d)
is essential in deriving the asymptotic distribution of Θ̂; see Theorem 5.41 of
[62]. Assumption 3, which is in similar spirit as Assumption 3 in [54], assumes
the linear independence of Xt to eliminate redundancy in the covariates. It holds
if the joint conditional density of the exogenous covariates Xt is non-degenerate
given zt−i and zt−j .

Additionally, the following two assumptions are required for the convergence
rates of estimators:

Assumption 4. There exists an integrable function Γ(Yt−1, Xt, yt) satisfying∣∣∣l(Ψ(1); yt, Yt−1, Xt)− l(Ψ(2); yt, Yt−1, Xt)
∣∣∣ < Γ(Yt−1, Xt, yt)|Ψ(1) −Ψ(2)| a.s. ,

for any Ψ(1), Ψ(2) ∈ ΩΨ. Furthermore, we assume that either one of the following
condition holds:

a) The marginal density of zt, πz(·), is continuous at {θ01, . . . , θ0r}, and the
joint probability density of {zt−i, zt−j}, πz,i−j(·, ·), is positive everywhere.
Moreover, there exists an ε > 0 such that, for all zt−d0 ∈ [θ0i − ε, θ0i + ε],
i = 1, . . . , r, E[Γ2(Yt−1, Xt, yt)] < ∞. The joint conditional distribution
function of {Yt−1, Xt} given zt−d0 is continuous at zt−d0 = θ01, . . . , θ

0
r .
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b) The threshold variable zt is discrete, and yt is in the exponential family
satisfying⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(yt;λt, at)=
∑r+1

i=1 exp
[

1
νiat

{T (yt)γ(λt)− b(λt)}+ c(yt; νiat)
]

× I(zt−d ∈ (θ0i−1, θ
0
i ]) ,

φ(λt) =
∑r+1

i=1

[
αi +

∑pY

j=1 ψ
(j)
y,igy(yt−j) +

∑pX

k=1 ψ
(k)
x,i xt,k

]
× I(zt−d ∈ (θi−1, θi]) ,

(5.2)

where T (·) is a measurable function such that var(T (yt) | λt) ∈ (0,∞)
almost surely, γ(·), b(·) are continuous transformation functions, and νi
is the overdispersion parameter for regime i. Moreover, we assume that

E[Γ2(Yt−1, Xt, yt)] < ∞, lim supn→∞
1
n

∑n
t=1 c

3/2
t < ∞ and log[E(euT (yt) |

λt)] ≤ ct for some constant u and sequence {ct}.
Assumption 5. When zt is continuous, there exists some Δ > 0 such that the
process {Γ(Yt−1, Xt, yt)I(zt−d0 ∈ [θ0i −Δ, θ0i +Δ]), zt−d0I(zt−d0 ∈ [θ0i −Δ, θ0i +
Δ])} is ρ-mixing with summable mixing coefficients.

Assumption 4 are the conditions for the likelihood function with respect to
continuous and discrete threshold variables. Asymptotic theory for threshold
models with discrete threshold variables does not seem to have been studied in
the literature. Similar to Assumption 6 in [54], we impose a square-integrable
bound function for the difference of log-likelihood in both Assumption 4a) and
4b). While an example of verifying Assumption 4a) has been shown in supple-
mentary materials of [54], an example of verifying Assumption 4b) is given in
the Appendix. Furthermore, Assumption 4b) requires that the conditional den-
sity of yt given {Yt−1, Xt, zt−d} is in the exponential family. Thus, an explicit
form of the difference in log-likelihood is available for applying results in large
deviation theory; see [46]. Note that although the assumptions and asymptotic
properties of Θ̂ for continuous and discrete zt are different, the same estimation
procedure proposed in Section 4 is applied. Assumption 5 is analogous to As-
sumption 7 in [54] for proving the convergence of n(Θ̂ − Θ0). For any integer
j, let A and A∗ be the σ-algebras generated by {wt}t≤j and {wt}t≥j+k, re-
spectively. If {wt} is ρ-mixing, then there exists a sequence {ρ(k)}k=1,2,... with
limk→∞ ρ(k) → 0 such that, for all square-integrable random variables g and
h that are respectively A and A∗measurable, |corr(g, h)| ≤ ρ(k) holds; see [7]
and [21]. See also Examples 1 and 2 in the supplementary materials of [54] for
verification of ρ-mixing and selections of the function Γ. We will illustrate the
verification of the above assumptions in some explicit examples in Section 6.

5.2. Asymptotic theorems

Under Condition 1, we develop the consistency and asymptotic properties of the
parameter estimates. The proofs are provided in the appendix.

Theorem 5.1. If Assumptions 1–3 hold, then d̂ → d0 and r̂ → r0 almost surely.
In addition, on {d̂ = d0, r̂ = r0}, Θ̂ → Θ0, p̂ → p0 and Ψ̂ → Ψ0 almost surely.
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Next, we derive the convergence rate of Θ̂ for continuous or discrete zt, re-
spectively:

Theorem 5.2. Under Assumptions 1–3,

1) if Assumptions 4a) and 5 are satisfied, then |Θ̂−Θ0| = Op(n
−1);

2) if Assumption 4b) is satisfied, then pr(Θ̂ = Θ0) = 1 − O(n1/2e−an) for
some a > 0.

Denote the difference between the log-likelihood of ys under parameters Ψ(1)

and Ψ(2) by

ζs(ys;Ys−1, Xs,Ψ
(1),Ψ(2)) = l(Ψ(1); ys, Ys−1, Xs)− l(Ψ(2); ys, Ys−1, Xs) .

Define a double-sided compound Poisson process �̃∗i (κi) = �̃∗1,i(κi)I(κi ≥ 0) +

�̃∗2,i(κi)I(κi < 0), where

�̃∗1,i(κi) =

N1,i(κi)∑
s=1

ζs(y
∗
s ;Y

∗
s−1, X

∗
s ,Ψ

0
i+1,Ψ

0
i ) , (5.3)

is a compound Poisson process such that N1,i(κi) is a Poisson processes with
intensity πz(θ

0
i ), and (y∗s , Y

∗
s−1, X

∗
s ) is an independent copy of (ys, Ys−1, Xs)

given zs−d = (θ0i )
+. Moreover,

�̃∗2,i(κi) =

N2,i(−κi)∑
s=1

ζs(y
∗
s ;Y

∗
s−1, X

∗
s ,Ψ

0
i ,Ψ

0
i+1) , (5.4)

is a compound Poisson process, independent of �̃∗1,i(κi), defined by where

N2,i(−κi) is a Poisson processes with the same intensity πz(θ
0
i ), and (y∗s , Y

∗
s−1,

X∗
s ) is an independent copy of (ys, Ys−1, Xs) given zs−d = (θ0i )

−. In addition,

define an aggregated compound Poisson process �̃∗(κ) =
∑r+1

i=1 �̃∗i (κi). The fol-
lowing theorems derive the asymptotic distribution of the threshold parameters
Θ̂ and model parameters Ψ̂.

Theorem 5.3. Under Assumptions 1–3, 4a) and 5, then n(Θ̂−Θ0) weakly con-
verges to M−, where the random r-dimension cube [M−,M+) = [M−

1 ,M+
1 ) ×

[M−
2 ,M+

2 ) × · · · × [M−
r ,M+

r ) is an almost surely minimizer of the compound
Poisson process �̃∗(κ). In addition, if f(y | Yt−1, Xt, zt−d) is continuous in y,
then [M−,M+) is unique.

Remark 3. Note that [M−,M+) depends on Θ0 and Ψ0. For constructing con-
fidence intervals for Θ̂, algorithms for estimating M− can be derived by similar
methods in [32] and [67].

Theorem 5.4. Define

L′(Ψ,Θ, d) =
∂

∂Ψ

[
1

n
L(Ψ,Θ, d)

]
, L′′(Ψ,Θ, d) =

∂2

∂Ψ2

[
1

n
L(Ψ,Θ, d)

]
.
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Under Assumptions 1–5, n1/2(Ψ̂−Ψ0) →d. N (0,Σ∗), where

Σ∗ = −
[
E{L′′(Ψ0,Θ0, d0)}

]−1
. (5.5)

Moreover, Σ∗ is a diagonal block matrix, and thus {Ψ̂i}i=1,...,r+1 are asymptot-

ically independent. In addition, n(Θ̂−Θ0) and n1/2(Ψ̂−Ψ0) are asymptotically
independent.

6. Simulation

In this section, two simulation experiments are performed to illustrate model
fitting with respect to discrete and continuous thresholds. In each simulation
experiment, 300 replications are conducted for every scenario. For simplicity, d
is assumed to be known.

6.1. Example 1

Consider a three-regime self-excited GTLVM with Poisson distribution and log-
link:{

f(yt;λt) = λt
yte−λt/yt! ,

log(λt) =
∑r+1

i=1

[
αi +

∑pY,2

j=1 ψ
(j)
y,i log(yt−j + 1)

]
I(yt−4 ∈ (θi−1, θi]) ,

(6.1)

with {θ1, θ2} = {24, 42}, {α1, α2, α3} = {0.45, 3.4, 6.3}, {pY,2,1, pY,2,2, pY,2,3} =

{2, 2, 1}, and {(ψ(1)
y,1, ψ

(2)
y,1), (ψ

(1)
y,2, ψ

(2)
y,2), ψ

(1)
y,3}= {(0.65, 0.25), (0.4,−0.35),−0.95}.

A time series plot of realization is shown in Figure 1.
Here we verify Condition 1, and the assumptions in Section 5 for model

(6.1). Note that (6.1) can be expressed as (2.2) with φ(x) = log(x), gλ(λt, ·)
being the inverse c.d.f. of Poisson distribution with parameter λt, gy,1(x) ≡ 0,
gy,2(x) = log(x + 1), pX = pe = pε = 0, and ψl

y,1,i = 0 for all i and l. As
no covariate is used and pe = pε = 0, it suffices to check Condition 1 b), c),
d). From the forms of φ, gy,1 and gy,2, Conditions 1b) and c) clearly hold with
b1 = b2 = 1.1. Given λ and the uniform random variable u on [0, 1], gλ(λ, u) is
a Poisson random variable with parameter λ. Thus, E[|gλ(λ, u)| | λ] = λ and
Condition 1d) holds with bλ = 1. Therefore, Condition 1 holds and Theorem
3.1 implies that (6.1) is stationary and ergodic.

As the threshold variable is discrete and no covariate is used, it suffices to
verify Assumptions 1, 2 and 4b). As is common in the literature, Assumption
1 can be achieved by focusing attention on a sufficiently large compact subset
of the parameter space. For Assumption 2, note that the conditional density
f(yt | Yt−1, yt−4) is the density of Poisson distribution, and is thus regular.

Also, E[{∂ log(f(yt | Yt−1, yt−4))/∂ψ
(j)
y,i}2] = E((yt − λt)(log(yt−j + 1))2 < ∞.

Moreover, the third-order derivative of l(Ψ,Θ, d) with respect to ψ
(j)
y,i exists

and is equal to −λt(log(yt−j + 1))3. Also, f(yt | Yt−1, yt−4 ∈ (θ0i−1, θ
0
i ]) and
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f(yt | Yt−1, yt−4 ∈ (θ0i , θ
0
i+1]) are not equal almost everywhere for all i since

the latent variable λt takes different values in the two regimes. Verification of
Assumption 4b) is more technical and is given in the Appendix.

Table 1

Example 1: Percentage of correct number of estimated thresholds and correct model structure
specification. MDL: minimum description length; BIC: Bayesian information criterion.

Size Regime structure
classified(%), MDL

Model structure
classified(%), MDL

Regime structure
classified(%), BIC

Model structure
classified(%), BIC

200 91.7 65.3 85.6 60.0
500 96.7 94.0 94.3 87.3
1000 99.3 96.3 98.3 94.3
2000 100.0 97.0 99.3 93.7

Table 2

Example 1: Mean and standard derivations of parameter estimates. Parentheses: empirical
standard derivations. The threshold estimates are based on replications with correct number
of regimes. The coefficient estimates are based on replications with correct model structure.

Size θ̂1 θ̂2 α̂1 ψ̂
(1)
Y,2,1 ψ̂

(2)
Y,2,1 α̂2 ψ̂

(1)
Y,2,2 ψ̂

(2)
Y,2,2 α̂3 ψ̂

(1)
Y,2,3

200 24.036 42.007 0.430 0.631 0.276 3.411 0.395 -0.348 6.260 -0.938
(0.875) (0.171) (0.324) (0.091) (0.068) (0.234) (0.050) (0.052) (0.267) (0.083)

500 24.003 42.000 0.463 0.647 0.250 3.396 0.397 -0.346 6.285 -0.946
(0.228) (0.000) (0.214) (0.050) (0.043) (0.126) (0.033) (0.032) (0.131) (0.041)

1000 24.006 42.000 0.452 0.649 0.250 3.400 0.399 -0.349 6.293 -0.948
(0.082) (0.000) (0.174) (0.039) (0.034) (0.094) (0.023) (0.023) (0.097) (0.030)

2000 24.000 42.000 0.447 0.652 0.249 3.402 0.401 -0.351 6.293 -0.948
(0.000) (0.000) (0.102) (0.025) (0.021) (0.070) (0.016) (0.015) (0.063) (0.020)

True 24 42 0.45 0.65 0.25 3.4 0.4 -0.35 6.3 -0.95

Table 1 reports the model selection performance. Even for a small sample of
size of 200, the percentage of correct number of estimated threshold is over 80%,
and the percentage of correct identification of model order in all regimes is over
60%. For comparison, we repeated the experiment with the Bayesian Informa-
tion Criterion, which is defined as −2L(Ψ,Θ, d) +

∑r+1
i=1 log(ni)p

′
i. It is found

that minimal description length gives better performance. Other information
criteria such as NAIC in [59] might also be adopted; however, NAIC and other
AIC-type criteria are not consistent in estimating the true order of the model.
See [26] for details about consistency of information criterion.

Furthermore, Table 2 summarizes the performance of thresholds and model
parameters estimates within the replications that correctly specify the regime
and model structure using minimal description length. A fast convergence speed
for discrete thresholds is observed. Furthermore, Op(n

−1/2) convergence rate of

Ψ̂ is realized based on the rapid convergence of Θ̂.
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Fig 1. Sample plots of simulated series. Left: Example 1, with thresholds at 24 and 42 (hor-
izontal dashed line). Right: Example 2, with thresholds at −0.2 and 0.4 (horizontal dashed
line)

6.2. Example 2

We consider a double threshold autoregressive model with conditional het-
eroskedasticity by a log-link on σ2

t :⎧⎨⎩yt =
∑r+1

i=1

[
ωi +

∑pY,1

l=1 ψ
(l)
y,1,iyt−l + σtεt

]
I(yt−4 ∈ (θi−1, θi]) ,

log(σ2
t ) =

∑r+1
i=1

[
αi +

∑pY,2

j=1 ψ
(j)
y,2,i log(y

2
t−j)

]
I(yt−4 ∈ (θi−1, θi]) .

(6.2)

Here {θ1, θ2} = {−0.2, 0.4}, {ω1, ω2, ω3} = {−0.15, 0.1, 0.3}, {pY,1,1, pY,1,2,
pY,1,3}= {1, 1, 2}, {(ψ(1)

y,1,1), (ψ
(1)
y,1,2), (ψ

(1)
y,1,3, ψ

(2)
y,1,3)}= {(0.6), (0.25), (0.25,−0.7)},

{α1, α2, α3} = {−0.4,−0.2, 0.15}, {pY,2,1, pY,2,2, pY,2,3} = {1, 2, 0}, {(ψ(1)
y,2,1),

(ψ
(1)
y,2,2, ψ

(2)
y,2,2), (ψ

(1)
y,2,3)} = {(0.35), (0.45, 0.25), (0)}, with εt

iid.∼ N (0, 1). In the

third regime, we select pY,2,3 = 0 so σ2
t = e0.15 is a constant. A sample time

series plot is depicted in Figure 1.
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Note that (6.2) can be expressed as (2.2) with φ(x) = log(x), gλ(λt, ·) ≡ 0,
gy,1(x) = x, gy,2(x) = 2 log(x) and pX = pe = pε = 0. Condition 1 can be
verified readily using similar arguments in the verification for model (6.1). As
the threshold variable is continuous and no covariate is used, it suffices to verify
Assumptions 1, 2 and 4a). While Assumptions 1, 2 can be verified similarly as
in Example 1, the verification of Assumption 4a) is similar to [54].

Table 3

Example 2: Percentage of correct number of estimated threshold, and correct model structure
specification. MDL, minimum description length; BIC, Bayesian information criterion.

Size Regime structure
classified(%), MDL

Model structure
classified(%), MDL

Regime structure
classified(%), BIC

Model structure
classified(%), BIC

200 83.3 5.00 56.0 3.00
500 97.3 47.7 78.0 36.7
1000 99.3 79.3 97.7 78.7
2000 100.0 90.0 100.0 88.0

Table 4

Example 2: Mean and standard derivations of parameter estimates, thresholds and
autoregressive coefficients. Parentheses: empirical standard derivations. The threshold

estimates are based on replications with correct number of regimes. The coefficient estimates
are based on replications with correct model structure.

Size θ̂1 θ̂2 ω̂1 ψ̂
(1)
y,1,1 ω̂2 ψ̂

(1)
y,1,2 ω̂3 ψ̂

(1)
y,1,3 ψ̂

(2)
y,1,3

200 -0.213 0.402 -0.143 0.565 0.107 0.369 0.244 0.196 -0.708
(0.122) (0.063) (0.057) (0.096) (0.028) (0.086) (0.177) (0.110) (0.093)

500 -0.207 0.402 -0.154 0.594 0.101 0.267 0.294 0.253 -0.696
(0.030) (0.018) (0.036) (0.067) (0.018) (0.061) (0.096) (0.078) (0.079)

1000 -0.202 0.400 -0.148 0.599 0.101 0.250 0.300 0.250 -0.703
(0.016) (0.008) (0.026) (0.049) (0.009) (0.047) (0.064) (0.055) (0.061)

2000 -0.201 0.399 -0.149 0.600 0.100 0.248 0.297 0.247 -0.697
(0.008) (0.004) (0.020) (0.037) (0.007) (0.033) (0.040) (0.040) (0.040)

True -0.2 0.4 -0.15 0.6 0.1 0.25 0.3 0.25 -0.7

Table 5

Example 2: Mean and standard derivations of parameter estimates, log-link coefficients.
Parentheses: empirical standard derivations. The coefficient estimates are based on

replications with correct model structure.

Size α̂1 ψ̂
(1)
y,2,1 α̂2 ψ̂

(1)
y,2,2 ψ̂

(2)
y,2,2 α̂3

200 -0.401(0.176) 0.359(0.067) -0.099(0.242) 0.447(0.077) 0.333(0.096) 0.016(0.138)
500 -0.419(0.135) 0.357(0.044) -0.213(0.168) 0.455(0.047) 0.253(0.049) 0.114(0.112)
1000 -0.425(0.093) 0.349(0.033) -0.205(0.123) 0.451(0.032) 0.254(0.033) 0.139(0.074)
2000 -0.404(0.067) 0.350(0.025) -0.202(0.092) 0.449(0.022) 0.251(0.022) 0.145(0.058)
True -0.4 0.35 -0.2 0.45 0.25 0.15

The empirical classification rate of regime and model structure for (6.2),
and comparisons between criteria, are reported in Table 3. Again, the results
are promising for moderately large sample sizes, and minimal description length
still achieves superior performance. Tables 4 and 5 summarize estimation results
for thresholds and model parameters, where the asymptotic convergences such
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as Op(n
−1) rate for Θ̂, and Op(n

−1/2) for Ψ̂, are recognized. In conclusion, the
purposed methodology has satisfactory performance.

7. Application

Initial public offerings (IPOs) are one of the most important funding sources
in finance. IPO activities are found to be time-varying; see, for example, [50],
which discusses the cyclical effect with respect to stock market bull/bear trends
and cross-year variation of levels of monthly IPO volumes. This is evidenced by
a large variation with clustering of small and large observations across yearly
periods. For instance, retreats of IPO activities are observed in 1973-1979 for
the oil crisis, in 1982 for the energy crisis, in 2001 for the burst of Internet bub-
bles, and in 2008-2009 for the financial crisis; meanwhile, fervent IPO activity
occurred in 1983-1987 during the stable global market with economic expansion,
and in 1992-2000 during the high-tech boom.

However, few studies of IPO activities have considered quantitative modeling.
[39] and [40] purposed autoregressive models which incorporates past monthly
initial returns and market participation proxies. Nevertheless, linear autoregres-
sive modeling is theoretically questionable for integer IPO volumes. Moreover,
as indicated in [49] and [68], different market scenarios exist in the IPO market.
These facts suggest the necessity of regime classifications for proper modeling.

Thus, for theoretical soundness and modeling flexibility, the GTLVM is ap-
plied to IPO volumes modeling. We model the U.S. monthly net IPO vol-
umes from January 1976 to March 2014, where the dataset is available at
[51]) (https://www.quandl.com/data/RITTER/US IPO STATS-Historical-US-
IPO-Statistics). By the definition in [51], net IPO volumes exclude issuance of
penny stocks, units and close-end funds.

To flexibly model counting data, we use a negative binomial distribution with
a canonical log-link function in order to capture different dispersions across
regimes. Here

fi(yt;λt) =

r+1∑
i=1

[
Γ(yt + ki)

Γ(ki)Γ(yt + 1)

(
ki

ki + λt

)ki
(

λt

ki + λt

)yt
]
I(yt−d ∈ (θi−1, θi]) ,

yt ∈ N ,

where λt satisfies λt = E(yt), and ki is the dispersion parameter. With y∗t−j =
log[max(yt−j , 0.01)] = gy,2(yt−j), the link function is expressed as

log(λt) =

r+1∑
i=1

⎡⎣αi +

pY,2∑
j=1

ψ
(j)
y,iy

∗
t−j +

pX∑
k=1

ψ
(k)
x,i xk

⎤⎦ I(yt−d ∈ (θi−1, θi]) .

To capture the dependence of the variables in the previous 12 months, we set
the maximum delay as D = 12 and autoregressive order as QY,2 = 12. And as
indicated by [39], IPO activities are affected by new information arriving during

https://www.quandl.com/data/RITTER/US_IPO_STATS-Historical-US-IPO-Statistics
https://www.quandl.com/data/RITTER/US_IPO_STATS-Historical-US-IPO-Statistics
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Fig 2. Plot of U.S. monthly net IPO volumes. Solid: original series; dashed: fitted series;
dotted: threshold estimates

the book-building period which lasts for approximately two to four months.
Hence, we check the averaged historical two-, three- or four-month return of the
S&P 500 Index, denoted as x(2), x(3), and x(4), respectively, as possible covariates
that represent recent market performance. In addition, the past observations
y∗t−2, y

∗
t−3 and y∗t−4 are included in the model. In each regime, the parameter

Ψi is estimated by quasi-maximum likelihood with iteratively reweighted least
square method, see [42].

For the net IPO series, two thresholds are estimated as θ̂1 = 2 and θ̂2 = 24.
The estimated dispersion ki in the three regimes are 1.5962, 4.1817 and 9.9228,
with theoretical standard errors of 0.4593, 0.5342 and 1.6211, respectively. The
link function estimate is

log(λt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.0242 + 0.1487y∗t−4 + 11.9900x
(2)
t , yt−1 ≤ 2 ,

(0.1178) (0.0484) (2.9743)

0.4552 + 0.5595y∗t−1 + 0.1549y∗t−2 + 0.1300y∗t−4 + 7.6926x
(2)
t ,

(0.1508) (0.0746) (0.0360) (0.0290) (1.3092)

2 < yt−1 ≤ 24 ,

1.0459 + 0.5608y∗t−1 + 0.1468y∗t−4 , yt−1 > 24 .

(0.4239) (0.1222) (0.0705)

(7.1)
The plot of fitted values is displayed in Figure 2. For model diagnostics, the
standardized deviance residuals are plotted in Figure 3. The fluctuations of
deviance residuals around zero indicates that the fitting is adequate.

Some discussions about the estimation results are as follows. First, [49] as-
serts that IPO activities can be classified in to two regimes: “cold” and “hot”
markets, depending on the volumes of the activities. Later, [68] propose a more
sophisticated three-regimes classification in terms of “cold”, “normal” and “hot”
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Fig 3. Model diagnostic plot: standardized deviance residuals of net IPO series for the three
estimated regimes.

markets. The results in (7.1) suggest that the classification in [68] is more ap-
propriate.

Second, (7.1) indicates that stock market return is an effective predictor of
IPO volumes. In particular, the positive coefficients of x(2) in regimes 1 and 2
of (7.1) indicate that IPO activities are positively associated with stock market
performances. This phenomenon agrees with the theory in [45] that high market
returns increase the incentives of IPO issuance, thus contributing to IPO market
activity as volumes soar. Moreover, the coefficient of x(2) is decreasing from
regime 2 to regime 1, and becomes insignificant in regime 3, indicating that the
positive effect of stock market returns diminishes with the increase in recent
IPO activities. One possible explanation for this is as follows: as mentioned in
[49], when the market is overactive, severe underpricing exists and discourages
entrepreneurs. Hence, entrepreneurs choose to issue stocks in other periods,
which offsets the market performance influence.
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Appendix

Proof of Theorem 3.1 (strict stationarity and ergodicity)

First, we state the following definitions from Markov chain theory that provide
the background for studying strict stationarity and ergodicity.

Definition 1. Irreducibility A Markov process {Yt} on a measurable space
{Ω,B} with transition probability Pn(Y,A) = pr(Yn ∈ A | Y0 = y) is said to be
μ-irreducible for a measure μ on B if

∑∞
n=1 P

n(y,A) > 0 for all y ∈ Ω whenever
μ(A) > 0.

Definition 2. Geometric ergodicity: a Markov process {Yt} on {Ω,B} is geo-
metrically ergodic if there exists a probability measure π on B such that for all
A ∈ B and y ∈ Ω, there exist ρ ∈ (0, 1) and My > 0 that

‖Pn(y,A)− π(A)‖ ≤ ρnMy ,

where ‖·‖ is the total-variation norm. This implies that {yt} is ergodic, β-mixing
and has a unique stationary distribution π; see [4] and [52].

Definition 3. Small set and petite set: a set C ∈ B is said to be small if there
exists an integer m > 0 and a non-trivial measure vm(·) on B such that for all
y ∈ C and A ∈ B, Pm(y,A) ≥ vm(A).

Similarly, a set C is said to be petite for {yt} if there exists a probability
measure γ∗(·) on N

+ and a non-trivial measure vγ∗(·) on B such that for all
y ∈ C and A ∈ B,

∑∞
n=0 P

n(y,A)γ∗(n) ≥ vγ∗(A). Clearly, a small set is a petite
set; see [43].

The proof of Theorem 3.1 relies on the following theorem about the ergodicity
of Markov chains.

Theorem 7.1. ([43]) Let n(y) : Ω → N
+ be an integer valued function. An

irreducible chain {Yt} on Ω is geometrically ergodic if it is aperiodic and there
exists a non-negative function V ≥ 1 on Ω which is bounded on a petite set C,
and for all y ∈ Ω, there exist ρ ∈ (0, 1) and b ∈ (0,∞) such that

E[V (Yt+n(Yt)) | Yt] =

∫
Pn(Yt)(Yt, dYt+n(Yt))V (Yt+n(Yt))

≤ ρn(Yt)[V (Yt) + bI(Yt ∈ C)] . (7.2)

By Condition 1a), denote

p∗ = max{pY,1, pY,2, p̃, pe, pε, q + d, 1}, ξt = (yt, Xt, et, εt),

Ξt = {(ξt, . . . , ξt−p∗+1)} ,

and Ft−1 as the sigma-field generated by {Ξt−1,Ξt−2, . . .}. First, we show that
{Ξt} is Markovian under Condition 1a). Note that

pr({Xt, . . . , Xt−p∗+1} | Ft−1) = pr({Xt, . . . , Xt−p∗+1} | {Xt−1, . . . , Xt−p∗})
= pr({Xt, . . . , Xt−p∗+1} | Ξt−1) . (7.3)
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Also, as zt−d is measurable with respect to the sigma-field generated by {Xt−d,
yt−d, . . . , Xt−d−q, yt−d−q}, we have that pr(zt−d | Ft−1) = pr(zt−d | Ξt−1).
Hence,

pr(Ξt, zt−d | Ft−1) = pr(zt−d | Ft−1)pr(Ξt | Ft−1, zt−d)

= pr(zt−d | Ξt−1)pr(Ξt | Ξt−1, zt−d) = pr(Ξt, zt−d | Ξt−1) .

Integrating both sides with respective to the density of zt−d, we have pr(Ξt |
Ft−1) = pr(Ξt | Ξt−1), and hence {Ξt} is a Markov process.

Under Condition 1a′), we can analogously verify the Markovian property of
{Ξt, z

∗
t }. Denote Ft−1 as the sigma-field generated by {Ξt−1, z

∗
t−1,Ξt−2, z

∗
t−2,

. . .}. As (7.3) and pr(z∗t | Ft−1) = pr(z∗t | Ξt−1, z
∗
t−1) hold by Condition 1a′),

we have

pr(Ξt, z
∗
t | Ft−1) = pr(z∗t | Ft−1)pr(Ξt | Ft−1, z

∗
t )

= pr(z∗t | Ξt−1, z
∗
t−1)pr(Ξt | Ξt−1, z

∗
t )

= pr(z∗t | Ξt−1, z
∗
t−1)pr(Ξt | Ξt−1, z

∗
t , z

∗
t−1)

= pr(Ξt, z
∗
t | Ξt−1, z

∗
t−1) .

Thus, {Ξt, z
∗
t } is shown to be Markovian. Next, we illustrate our proof with

pX = pe = pε = 0 for simplicity. In this case, it suffices to prove stationarity
and ergodicity of {Yt} = (yt, . . . , yt−p∗+1). We will show the geometric ergodicity
of {yt} by using Theorem 7.1. Hence, we need to verify that {Yt} or {Yt, Z

∗
t } is

an irreducible and aperiodic Markov process and construct the corresponding
function V . For the general case (except for the irreducibility when pe > 0), the
same verification methodologies could be applied on {Ξt} or {Ξt, z

∗
t } with mild

modifications, and hence the proof is omitted. Therefore, it suffices to show the
stationarity and ergodicity of⎧⎪⎪⎨⎪⎪⎩

yt =
∑r+1

i=1

[
ωi +

∑pY,1

l=1 ψ
(l)
y,1,igy,1(yt−l) + gλ(λt, ut) + ψ

(0)
e,i et

]
× I(zt−d ∈ (θi−1, θi]) ,

φ(λt) =
∑r+1

i=1

[
αi +

∑pY,2

j=1 ψ
(j)
y,2,igy,2(yt−j) + ψ

(0)
ε,i εt

]
I(zt−d ∈ (θi−1, θi]) .

(7.4)
Denote μ as the Lebesgue measure on R, and μp∗

as the Lebesgue measure on
R

p∗
. Next, we show that {Yt} or {Yt, Z

∗
t } is irreducible and aperiodic, and there

exists some small set by the following proposition.

Proposition 1. Under (7.4), we have:

1. Under Condition 1a), {Yt} is μp∗
-irreducible and aperiodic. In addition,

sets of the form C = {Yt : |Yt|∞ ≤ c} for some c > 0 is small for {Yt}.
2. Under Condition 1a′), {Yt, Z

∗
t } is μp∗ × νq-irreducible with some discrete

measure ν on {0, 1}r for r-manifolds of set {0, 1}, and {Yt, Z
∗
t } is aperi-

odic. In addition, sets of the form C = {(Yt, Z
∗
t ) : |Yt|∞ ≤ c, |Z∗

t |∞ ≤ q}
for some c > 0 is small for {Yt, Z

∗
t }.
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Proof of Proposition 1. We illustrate the proof of {Yt} under Condition 1a),
where the proof of {Yt, Z

∗
t } under condition 1a′) follows similar arguments.

First we assume that et and εt have almost everywhere continuous and positive
densities on R. We divide the proof into three parts: irreducibility, existence of
small set, and aperiodicity.

1) Irreducibility. As et has positive density on R, yt can reach any point
on R. Let A ⊂ R satisfies 0 < μ(A) < ∞, we first show that pr(yt ∈ A |
Yt−1, λt, ut, zt−d) is positive for any realization {Yt−1, λt, ut, zt−d} = {(yt−1, . . . ,
yt−p∗), λt, ut, zt−d} with zt−d ∈ (θi−1, θi]. With respect to (7.4), we can con-
struct

Et,i =

{
et :

[
αi +

pY,1∑
l=1

ψ
(l)
y,1,igy,1(yt−l) + gλ(λt, ut) + ψ

(0)
e,i et

]
∈ A |

Yt−1, λt, ut, zt−d

}
.

Hence, an injection exists between Et,i and A and thus μ(Et,i) > 0. The mapping
from Et,i to A is surjective and μ(Et,i) > 0 holds. Denote the density of et as
fe(·), we have

pr(yt ∈ A | Yt−1, λt, ut, zt−d) = pr (et ∈ Et,i | Yt−1, λt, ut, zt−d)

=

∫
v∈Et,i

fe(v)dv ≥ inf
et∈Et,i

fe(et)μ(Et,i) > 0 .

As et and εt have almost everywhere positive densities, the conditional densi-
ties fi(yt | Yt−1, λt, ut, zt−d) and hi(λt | Yt−1, zt−d) are thus almost everywhere
positive. Therefore, from (2.1), the marginally density f is positive almost every-
where. Denote the marginal density of ut and εt as fu(·) and fε(·), respectively,
it follows that

pr(yt ∈ A | Yt−1, zt−d)

=

∫
pr(yt ∈ A | Yt−1, λt, zt−d)hi(λt | Yt−1, zt−d) dλt

=

∫∫ 1

0

pr(yt ∈ A | Yt−1, λt, u, zt−d)fu(u) duhi(λt | Yt−1, zt−d)dλt

> 0 , (7.5)

for some set B with μ(B) > 0, where fu(u) = 1 on [0, 1] and zt−d ∈ (θi−1, θi].
Furthermore, denote fz(·) as the density of zt, we have, almost surely,

pr(yt ∈ A | Yt−1) =

∫
pr(yt ∈ A | Yt−1, zt−d)fz(zt−d | Yt−1)dzt−d > 0 . (7.6)

Therefore, for any Ã ⊂ R
p∗

and y ∈ R
p∗

with Lebesgue measure μp∗(Ã) > 0, as

there exist some A1 ∈ R and A2 ∈ R
p∗−1 such that A1×A2 ⊂ Ã and μ(A1) > 0,
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we have P (Yt ∈ Ã|Yt−1 = y) > P (yt ∈ A1|Yt−1 = y) > 0. This completes the
proof of irreducibility.

2) Existence of a small set C. By Definition 3, we need to construct a small
set C such that, for all Y0 = y ∈ C ⊂ R

p∗
with μp∗(C) > 0, there exists a

non-trivial measure vm(·) on the Borel sigma-field on R
p∗
, B, such that for any

Ã ∈ B with μp∗(Ã) > 0,

Pm(y, Ã) ≥ vm(Ã) > 0 .

We construct the set as C = {y : y = (y1, . . . , yp∗) ∈ R
p∗
, |y|∞ ≤ c} for

some constant c, where |y|∞ = max{|y1|, . . . , |yp∗ |}. First, as the density of
et is almost everywhere positive, f(yt | Yt−1, λt, ut, zt−d) > 0. Analogous to
(7.5)–(7.6), we have that f(yt | Yt−1) > 0, and hence with (7.6),

pr(yt+1 ∈ A | Yt−1) =

∫
pr(yt+1 ∈ A | Yt−1, yt)f(yt | Yt−1)dyt

=

∫
pr(yt+1 ∈ A | Yt)f(yt | Yt−1)dyt > 0 , (7.7)

for any A ⊂ R with μ(A) > 0. By using induction on (7.7), pr(yt+m−1 ∈ A |
Yt−1) > 0 and hence pr(Yt+m−1 ∈ Ã | Yt−1) > 0 for all positive integer m and
any Ã ∈ B with μp∗(Ã) > 0. Thus, setting

vm(Ã) = min
y∈C

pr(ym−1 ∈ Ã | Y0 = y) = min
y∈C

Pm(y, Ã) ,

we have vm(Ã) > 0 by the compactness of C. Thus, the set C is verified as a
small set.

3) Aperiodicity. From the existence proof of the small set C, it has been
shown that P 1(y, C) > 0 and P 2(y, C) > 0 for all y ∈ C. By Proposition A1.1
of [9], it follows that {yt} is aperiodic.

To relax the assumption that εt and et have almost everywhere continuous
and positive densities on R, we extend to the case et = εt = 0 for all t where
et and εt do not have almost everywhere positive density. Define a perturbation
{ymt } of {yt} by⎧⎪⎪⎨⎪⎪⎩

ymt =
∑r+1

i=1

[
ωi +

∑pY,1

l=1 ψ
(l)
y,1,igy,1(y

m
t−l) + gλ(λt, ut)

]
I(zt−d ∈ (θi−1, θi])

+ σ1,me1,t ,

φ(λt) =
∑r+1

i=1

[
αi +

∑pY,2

j=1 ψ
(j)
y,2,igy,2(y

m
t−j)

]
I(zt−d ∈ (θi−1, θi]) + σ2,me2,t ,

(7.8)
where σ1,m, σ2,m > 0, σ1,m → 0 and σ2,m → 0 as m → ∞, and e1,t, e2,t are i.i.d.
zero-mean noises with finite first moment and almost everywhere positive den-
sities. Using the perturbation techniques in [22], {ymt } is irreducible, aperiodic,
and a small set exists. Thus we can derive the strict stationarity and ergodicity
of {ymt } by Theorem 7.1. Since {ymt } converges almost surely to {yt} as m → ∞,
the proof is complete.



Generalized threshold latent variable model 2067

Proof of Lemma 3.1. Lemma 3.1 is established in the irreducibility part of the
proof of Proposition 1.

Proof of Theorem 3.1. First, we give the proof with respect to {Yt} under Con-
dition 1a). Recall that the irreducibility, aperiodicity, and existence of a small
set C = {y : y = (y1, . . . , yp∗) ∈ R

p∗
, |y|∞ ≤ c} have been established in Propo-

sition 1. From Theorem 7.1, it suffices to construct a function V that satisfies
(7.2). For the model (7.4), let Yt−1 = (yt−1, . . . , yt−p∗) and define

V (Yt−1) = 1 + |Yt−1|∞ , (7.9)

where |Yt−1|∞ = max{|yt−1|, . . . , |yt−p∗ |}. Conditional on Yt−1, we have

E(|yt| | Yt−1) ≤ E

[{
r+1∑
i=1

|ωi|+
pY,1∑
l=1

∣∣∣ψ(l)
y,1,i

∣∣∣ |gy,1(yt−l)|+ |gλ(λt, ut)|+
∣∣∣ψ(0)

e,i et

∣∣∣}

× I(zt−d ∈ (θi−1, θi]) | Yt−1

]

≤ max
i

{
pY,1∑
l=1

∣∣∣ψ(l)
y,1,i

∣∣∣ |gy,1(yt−l)|+ E(|gλ(λt, ut)| | Yt−1)

}
+max

i

(
|ωi|+ E

∣∣∣ψ(0)
e,i et

∣∣∣) . (7.10)

Denote y∗ = argmaxj=1...pY,2
gy,2(yt−j). For the case of concave φ(·), Condition

1b) implies that the inverse function φ−1(·) exists, and is strictly increasing and

convex. Hence, as maxi
∑pY,2

j=1

∣∣∣ψ(j)
y,2,i

∣∣∣ < 1,

λt = φ−1

⎧⎨⎩
r+1∑
i=1

⎛⎝αi +

pY,2∑
j=1

ψ
(j)
y,2,igy,2(yt−j) + ψ

(0)
ε,i εt

⎞⎠ I(zt−d ∈ (θi−1, θi])

⎫⎬⎭
≤ φ−1

⎧⎨⎩max
i

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣ gy,2(y∗) + max
i

(
αi + ψ

(0)
ε,i |εt|

)⎫⎬⎭
≤

⎛⎝1−max
i

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣
⎞⎠φ−1

⎧⎨⎩ maxi

(
αi + ψ

(0)
ε,i |εt|

)
1−maxi

∑pY,2

j=1

∣∣∣ψ(j)
y,2,i

∣∣∣
⎫⎬⎭

+max
i

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣φ−1(gy,2(y
∗))

≤

⎛⎝1−max
i

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣
⎞⎠φ−1

⎧⎨⎩ maxi

(
αi + ψ

(0)
ε,i |εt|

)
1−maxi

∑pY,2

j=1

∣∣∣ψ(j)
y,2,i

∣∣∣
⎫⎬⎭

+max
i

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣max{b2|Yt−1|∞, G2} ,
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where the second last inequality follows from Jensen’s inequality, and the last
inequality follows from Condition 1c). Let Ft−1 be the σ-field generated by
{ys, εs}s≤t−1. It follows from E{φ−1(εt)} < ∞ that

E(|gλ(λt, ut)| | Yt−1)

≤ E

⎡⎣∣∣∣∣∣∣gλ
⎧⎨⎩φ−1

⎛⎝max
i

⎛⎝αi +

pY,2∑
j=1

ψ
(j)
y,2,igy,2(y

∗) + ψ
(0)
ε,i εt

⎞⎠⎞⎠ , ut

⎫⎬⎭
∣∣∣∣∣∣ | Yt−1

⎤⎦
= E

⎡⎣E
⎡⎣∣∣∣∣∣∣gλ

⎧⎨⎩φ−1

⎛⎝max
i

⎛⎝αi +

pY,2∑
j=1

ψ
(j)
y,2,igy,2(y

∗) + ψ
(0)
ε,i εt

⎞⎠⎞⎠ , ut

⎫⎬⎭
∣∣∣∣∣∣

| Ft−1

⎤⎦ | Yt−1

⎤⎦
≤ E

⎡⎣max

⎧⎨⎩H, bλ

⎛⎝1−max
i

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣
⎞⎠φ−1

⎛⎝ maxi

(
αi + ψ

(0)
ε,i |εt|

)
1−maxi

∑pY,2

j=1

∣∣∣ψ(j)
y,2,i

∣∣∣
⎞⎠

+bλ max
i

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣max{b2|Yt−1|∞, G2}

⎫⎬⎭ | Yt−1

⎤⎦
≤ bλb2 max

i

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣ |Yt−1|∞ + H̃∗ , (7.11)

for some constant H̃∗. Equipped with (7.11), it can be shown from (7.10) that

E(|yt| | Yt−1) ≤ max
i

⎛⎝pY,1∑
l=1

∣∣∣ψ(l)
y,1,i

∣∣∣ |gy,1(yt−l)|+ bλb2

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣ |Yt−1|∞

⎞⎠
+H̃∗ +max

i

(
|ωi|+ E

∣∣∣ψ(0)
e,i et

∣∣∣)
≤ H∗ +max

i
ρi(1)|Yt−1|∞ = H∗ + ρ̃|Yt−1|∞ , (7.12)

where ρ̃ = maxi ρi(1) ∈ (0, 1) and H∗ is some constant. Using (7.12), we have

E(|yt+1| | Yt−1) = E{E(|yt+1| | yt, Yt−1) | Yt−1}
≤ H∗ + ρ̃max{|Yt−1|∞,E(|yt| | Yt−1)}
≤ (1 + ρ̃)H∗ + ρ̃|Yt−1|∞ .

Arguing inductively, for Yt+p∗−1 = (yt+p∗−1, . . . , yt), we have

E(|Yt+p∗−1|∞ | Yt−1) ≤ (1 + ρ̃+ . . .+ ρ̃p
∗−1)H∗ + ρ̃|Yt−1|∞ . (7.13)

Select ρ ∈ (ρ̃1/p
∗
, 1). Then, taking n(Yt−1) = p∗, b = [(1+ ρ̃+ · · ·+ ρ̃p

∗−1)H∗ +
1]/ρp

∗ −1 and c = max{ỹ, b/(ρp∗ − ρ̃)} for the small set C, it can be verified that
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V in (7.9) satisfies (7.2). By Theorem 7.1, {yt} is geometric ergodicity. Thus,
by Definition 2, {yt} is strict stationary and ergodic.

For the case that φ(·) is a polynomial with order γ, we have φ(λ) = λγ(1 +
o(1)) and so φ−1(v) = v1/γ(1 + o(1)). For γ ≥ 1,

λt = φ−1

⎧⎨⎩
r+1∑
i=1

⎛⎝αi +

pY,2∑
j=1

ψ
(j)
y,2,igy,2(yt−j) + ψ

(0)
ε,i εt

⎞⎠ I(zt−d ∈ (θi−1, θi])

⎫⎬⎭
≤

⎧⎨⎩max
i

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣ gy,2(y∗) + max
i

(
αi + ψ

(0)
ε,i |εt|

)⎫⎬⎭
1/γ

(1 + o(1))

≤

⎧⎨⎩max
i

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣1/γ (gy,2(y∗))1/γ +max
i

(
αi + ψ

(0)
ε,i |εt|

)1/γ⎫⎬⎭ (1 + o(1))

≤

⎧⎨⎩max
i

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣1/γ max{b2|Yt−1|∞, G2}+ φ−1
(
max

i

(
αi + ψ

(0)
ε,i |εt|

))⎫⎬⎭
× (1 + o(1)) , (7.14)

where the last inequality follows from Condition 1c) and φ−1(v) = v1/γ(1 +
o(1)). The (1 + o(1)) term in (7.14) is negligible if |Yt−1|∞ is large. Using the
same arguments as in the derivation of (7.11), (7.12) and (7.13), the geometric
ergodicity can be derived similarly.

The geometric ergodicity of {Yt, Z
∗
t } under condition 1a′) can be shown analo-

gously: By Proposition 1, sets of the form C = {(Yt, Z
∗
t ) : |Yt|∞ ≤ c, |Z∗

t |∞ ≤ q}
for some c > 0 are small for {Yt, Z

∗
t }. Define V (Yt, Z

∗
t ) = 1+ |Yt|∞ + |Z∗

t |∞, we
have that (7.13) holds by the same derivation. Then, since 0 ≤ |Z∗

t |∞ ≤ 1, by
selecting b = [(1+ ρ̃+ · · ·+ ρ̃p

∗−1)H∗ +1+ q]/ρp
∗ − 1, c = max{ỹ, b/(ρp∗ − ρ̃)},

with other parameters the same as in the proof of {Yt} under condition 1a), the
geometric ergodicity of {Yt, Z

∗
t } is verified by Theorem 7.1. Hence, {Yt, Z

∗
t } is

strictly stationary and ergodic, and so does yt. This finishes the proof.

Proof of Corollary 1. Denote

ρz(γ, zt−d) =

r+1∑
i=1

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣1/γ I(zt−d ∈ (θi−1, θi]) .

Let Ft−1 be the σ-field generated by {ys, εs}s≤t−1. From the independence of
zt−d and {ys}s<t, for concave φ in 1′), we have

E(|gλ(λt, ut)| | Yt−1)

= E

⎡⎣E
⎡⎣∣∣∣∣∣∣gλ

⎧⎨⎩φ−1

⎛⎝r+1∑
i=1

⎛⎝αi +

pY,2∑
j=1

ψ
(j)
y,2,igy,2(yt−j) + ψ

(0)
ε,i εt−q

⎞⎠
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×I(zt−d ∈ (θi−1, θi])

⎞⎠ , ut

⎫⎬⎭
∣∣∣∣∣∣ | Ft−1

⎤⎦ | Yt−1

⎤⎦
≤ E

⎡⎣max

⎧⎨⎩H, bλ (1− ρz(1, zt−d))φ
−1

⎛⎝maxi

(
αi + ψ

(0)
ε,i |εt−q|

)
1− ρz(1, zt−d)

⎞⎠
+ bλρz(1, zt−d)max{b2|Yt−1|∞, G2}

}
| Yt−1

]

≤ bλb2

r+1∑
i=1

⎧⎨⎩
pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣ |Yt−1|∞pr(zt−d ∈ (θi−1, θi])

⎫⎬⎭+ H̃∗
2 , (7.15)

for some constant H̃∗
2 . Thus, it is straightforward to bound E(|yt| | Yt−1) by

E(|yt| | Yt−1)

≤
r+1∑
i=1

⎡⎣⎧⎨⎩
pY,1∑
l=1

∣∣∣ψ(l)
y,1,i

∣∣∣ |gy,1(yt−l)|+ bλb2

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣ |Yt−1|∞

⎫⎬⎭pr(zt−d ∈ (θi−1, θi])

⎤⎦
+ H̃∗

2 +max
i

(
|ωi|+ E

∣∣∣ψ(0)
e,i et−m

∣∣∣)
≤ H∗

2 +
r+1∑
i=1

⎡⎣⎧⎨⎩b1

pY,1∑
l=1

∣∣∣ψ(l)
y,1,i

∣∣∣+ bλb2

pY,2∑
j=1

∣∣∣ψ(j)
y,2,i

∣∣∣
⎫⎬⎭ pr(zt−d ∈ (θi−1, θi])

⎤⎦ |Yt−1|∞

= H∗
2 +

{
r+1∑
i=1

ρi(1)pr(zt−d ∈ (θi−1, θi])

}
|Yt−1|∞

≤ H∗
2 + ρ̃|Yt−1|∞ ,

for some ρ̃ ∈ (0, 1) and some constants H∗
2 . Using similar arguments in the proof

of Theorem 3.1, {yt} is geometrically ergodic and hence strictly stationary and
ergodic. If φ(·) is a polynomial with order γ ≥ 1 in 2′), then by considering
ρz(γ, zt−d) instead of ρz(1, zt−d), similar derivations yield an analogous result

to (7.15), with |ψ(j)
y,2,i| replaced by |ψ(j)

y,2,i|1/γ . Thus, the strict stationarity and
ergodicity are verified.

Proof of Corollary 2. First consider concave φ. For simplicity, we first illustrate
the proof for d = 1 and assume υ = maxi=2,...,r ρi(1) > 1. Using similar argu-
ments as in (7.12), E(|yt| | Yt−1) ≤ H∗ + υ|Yt−1|∞ for some H∗. Therefore,

E(|yt+1| | Yt−1)

=E{E(|yt+1| | yt, Yt−1) | Yt−1}

≤E

[
r+1∑
i=1

ρi(1)I(yt ∈ (θi−1, θi])max{|Yt−1|∞, |yt|} | Yt−1

]
+H∗
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≤
[
max{ρ1(1), ρr+1(1)}pr({yt > θr} ∪ {yt ≤ θ1} | Yt−1)

+ max
i=2,...,r

ρi(1)pr(θ1 < yt ≤ θr | Yt−1)

]
×max{E(|yt| | Yt−1), |Yt−1|∞}+H∗

≤H∗ + [max{ρ1(1), ρr+1(1)}(1− πy) + υπy] (H
∗ + |υYt−1|∞)

≤(1 + ρ̃)H∗ + ρ̃υ|Yt−1|∞ , (7.16)

for some ρ̃ ∈ (0, 1). Arguing inductively, analogous to (7.16), for all k1 ≥ 0,
0 ≤ k2 ≤ p∗ − 1,

E(|yt+k1p∗+k2+1| | Yt−1) ≤ (1 + ρ̃+ · · ·+ ρ̃k1p
∗+k2+1)H∗ + ρ̃k1+1υ|Yt−1|∞ .

As ρ̃k1+1υ < 1 for sufficiently large k1, the geometric ergodicity of {yt} can
be established using similar arguments in the proof in Theorem 3.1. When φ
is a polynomial of order γ ≥ 1, we replace ρi(γ) by ρi(1) to derive the result
analogous to (7.16). Using similar but more tedious arguments, the results can
be derived for d = 2, . . . , p∗ that, k1 ≥ 0, 0 ≤ k2 ≤ p∗ − 1,

E(|yt+k1p∗+k2+d| | Yt−1) ≤ (1 + ρ̃+ · · ·+ ρ̃k1p
∗+k2+1)(1 + υ + · · ·+ υd−1)H∗

+ ρ̃k1+1υd|Yt−1|∞ .

Again, as ρ̃k1+1υd < 1 for sufficiently large k1, the geometric ergodicity of {yt}
follows.

Proof of Corollary 3. For the TARMA model, the threshold variable yt−d is
clearly measurable with respect to the sigma-field generated by {Xt, yt, . . . ,
Xt−q, yt−q} with q ≥ d. Let b1 = 1, b2 = 0 and G1 = ỹ = 1. It follows that
|gy,1(y)| ≤ b1|y| for all |y| > ỹ, and gy,1(y) ≤ G1 for all |y| ≤ ỹ. Together with
the irreducibility from Condition 1f), Condition 1 holds. Therefore, by Theorem

3.1 and the fact that ψ
(j)
y,2,i = 0 for all i, the TARMA process is stationary

and ergodic if maxi=1,...,r+1 ρi(1) = maxi=1,...,r+1

∑pY,1

l=1 |ψ(l)
y,1,i| < 1. The same

arguments apply to TAR model, with the irreducibility condition guaranteed by
Lemma 3.1 instead of Condition 1f).

Verification of Assumption 4b)

In this section we illustrate the verification of conditions in Assumption 4b) using
the model in Example 1 of the simulation studies. First, we have T (yt) = yt.
As Theorem 3.1 indicates that {yt} is strictly stationary and ergodic, yt < ∞
almost surely. Denote Yt = (yt, . . . , yt−3) and let | · |∞ be the infinite norm
such that |Yt|∞ = max{|yt|, . . . , |yt−3|}. Note that {Yt} is a Markov process. By
(6.1),

log(λt) ≤ max
i

ai +max
i

pi∑
j=1

|ψi,j | log(|Yt−1|∞ + 1) ,
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and hence

λt ≤ emaxi ai(|Yt−1|∞ + 1)maxi

∑pi
j=1 |ψi,j | ≤ Kλ|Yt−1|ρ∞ + cλ , (7.17)

for some 0 < ρ < 1 and positive constants Kλ and cλ. Thus, λt < ∞ almost
surely, and var(T (yt) | λt) < ∞ almost surely.

Next we show the existence of moments of yt and λt. By strict stationarity and
ergodicity, we have E(yt) = E(λt) < ∞ and hence E(ykt ) < ∞ and E(λk

t ) < ∞
for all k ∈ (0, 1]. For k > 1, we denote ỹt = ykt and analogous to [22], we consider
a sequence of perturbation {ỹmt } given by{
ỹmt = ykt + cmεt , yt ∼ Pois(λt) ,

log(λt) =
∑r+1

i=1

[
αi +

∑pY,2

j=1 ψ
(j)
y,i log((ỹ

m
t−j)

1/k + 1)
]
I((ỹmt−4)

1/k ∈ (θi−1, θi]) ,

where {εt} are i.i.d. uniform random variables taking values on (0, 1), {cm} is a
sequence of positive constants converging to 0. Thus, we may utilize Theorem 7.1
for proving geometric ergodicity of Ỹ m

t = (ỹmt , . . . , ỹmt−3), and show the existence
of kth moment of ỹmt . As yt follows Poisson distribution with mean λt, we have
E(ykt | λt) ≤ ckλ

k
t + bk for all k > 1 and some positive constants ck and bk.

Together with (7.17),

E(ykt | Ỹ m
t−1) ≤ ckE(λ

k
t | Ỹ m

t−1) + bk ≤ ck(Kλ|Ỹ m
t−1|ρ/k∞ + cλ)

k + bk .

As ρ ∈ (0, 1), for any constant c1 and c2, we have c1y
ρ+c2 < ρy for all sufficiently

large y. Therefore,

ck(Kλ|Ỹ m
t−1|ρ/k∞ + cλ)

k = (c
1/k
k Kλ|Ỹ m

t−1|ρ/k∞ + c
1/k
k cλ)

k ≤ (ρ|Ỹ m
t−1|1/k∞ )k

= ρk|Ỹ m
t−1|∞ ,

for all |Ỹ m
t−1|

1/k
∞ > y∗ with some sufficiently large y∗. Meanwhile, there exists

a sufficiently large constant Hk such that ck(Kλ|Ỹ m
t−1|

ρ/k
∞ + cλ)

k ≤ Hk for all

|Ỹ m
t−1|

1/k
∞ ≤ y∗. Hence,

E(ykt | Ỹ m
t−1) ≤ ρk|Ỹ m

t−1|∞ +Hk + bλ = ρk|Ỹ m
t−1|∞ +H∗

k ,

where H∗
k = Hk + bλ. Thus, we have

E(|ỹmt | | Ỹ m
t−1) = E(ykt | Ỹ m

t−1) + cmE|εt| ≤ ρk|Ỹ m
t−1|∞ +H∗

k + cm/2 .

By the induction arguments as in (7.12) and (7.13), we have

E(|Ỹ m
t+3|∞ | Ỹ m

t−1) ≤ (1 + ρk + . . .+ ρ3k)(cm/2 +H∗
k ) + ρk|Ỹ m

t−1|∞ . (7.18)

Analogous to (7.13), (7.18) implies (7.2) with V (Ỹ m
t−1) = |Ỹ m

t−1|∞ + 1, and
hence the geometric ergodicity of {ỹmt } is verified by Theorem 7.1, which further
implies E(ỹmt ) < ∞. Then, as cm → 0, ỹmt → ỹt almost surely and hence
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E(ỹt) = E(ykt ) < ∞ for all k > 1. In conclusion, E(ykt ) < ∞ and E(λk
t ) < ∞ for

all k > 0.
With the existence of all moments of yt and λt, we are ready to verify the

remaining conditions. As log[E(euT (yt) | λt)] = λt(e
u − 1), by choosing ct =

λt(e
u − 1), we have lim supn→∞

1
n

∑n
t=1 c

3/2
t < ∞. Next, choosing

Γ(Yt−1; yt) = yt

2∑
j=1

log(yt−j + 1) + eK
∑2

j=1 log(yt−j+1)
2∑

j=1

log(yt−j + 1) ,

with some K > 0, we have E[Γ2(Yt−1; yt)] < ∞ since E(y2Kt ) is finite for all
K > 0. Therefore, all of the conditions in Assumption 4b) are satisfied.

Proof of Theorems 5.1, 5.2, 5.3 and 5.4(asymptotic theory of
inferences)

From (4.3), the minimum description length is a sum of the negative log-
likelihood and the penalties on model complexity. We define

Pen(Θ, p, d) = log2(r) + log2(d) +
1

2

r∑
i=1

log2(ni) +
r+1∑
i=1

log2(p
′
i + 4)

+

r+1∑
i=1

p′i + 4

2
log2(ni) , (7.19)

as the penalty on the model complexity. Similar to [66], we show the following
propositions:

Proposition 2. Let θl < θu be constants satisfying (θl, θu) ⊆ Bn = (θ0i−1 −
k1n, θ

0
i + k2n), where {k1n} and {k2n} are two positive sequences that converging to

0. Define

Ln,i(Ψi, θl, θu, d) =
1

n

n∑
t=1

l(Ψi; yt, Yt−1, Xt)I(zt−d ∈ (θl, θu]) .

In addition, let Li = limn→∞ E(Ln,i), and L
(k)
i , L

(k)
n,i be the kth derivative with

respect to Ψi for Li, Ln,i, respectively. Here L
(0)
i = Li, L

(0)
n,i = Ln,i. Then, under

Assumptions 1–3,

sup
θl,θu∈Bn

sup
Ψi

|L(k)
i (Ψi, θl, θu, d)− L

(k)
n,i(Ψi, θl, θu, d)| −→ 0 a.s. ,

for k = 0, 1, 2, i = 1, . . . , r + 1.

Proof of Proposition 2. We show the case k = 0 as an illustrative example. The
proofs for k = 1 or 2 are similar. First, by the compactness of the parameter
space S(Ψ∗

i ) of Ψi and the ergodic theorem, for any pair of (θl, θu) ⊆ [θ0i−1, θ
0
i ],

sup
Ψi∈S(Ψ∗

i )

|Li(Ψi, θl, θu, d)− Ln,i(Ψi, θl, θu, d)| −→ 0 a.s. . (7.20)
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For discrete zt, (7.20) holds for any combination of (θl, θu) from observed zt
values. Thus, Proposition 2 holds.

For continuous zt, (7.20) holds particularly for all subintervals of rational
endpoints. Hence for θ ∈ (θ0i−1, θ

0
i ) and any ε > 0, there exists a rational number

w < θ such that

sup
Ψi∈S(Ψ∗

i )

|Li(Ψi, θ
0
i−1, θ, d)− Ln,i(Ψi, θ

0
i−1, w, d)|

≤ sup
Ψi∈S(Ψ∗

i )

∣∣∣∣∣ 1n
n∑

t=1

l(Ψi; yt, Yt−1, Xt)I(w < zt−d ≤ θ)

∣∣∣∣∣+ ε/3

≤ sup
Ψi∈S(Ψ∗

i )

|E[l(Ψi; yt, Yt−1, Xt)]Q(w, θ) + ε/3|+ ε/3

< ε ,

where Q(w, θ) = E(I(w < zt−d ≤ θ)). Selecting w close to θ ensures a sufficiently
small Q(w, θ). As the pair (θl, θu) is closely approximated by some subset with
rational number endpoints, (7.20) holds uniformly on all (θl, θu) ⊆ [θ0i−1, θ

0
i ].

Furthermore, if θl or θu is outside [θ0i−1, θ
0
i ], the almost sure convergence still

holds if they are within a shrinkage neighborhood.

Proposition 3. For any (θl, θu) ⊆ Bn = (θ0i−1 − k1n, θ
0
i + k2n), we define Ψ∗

i =

argmaxΨi
Li(Ψi, θl, θu, d) and Ψ̂i = argmaxΨi

Ln,i(Ψi, θl, θu, d). Then, under

Assumptions 1–3, Ψ̂i → Ψ∗
i almost surely.

Proof of Proposition 3. From the definition of Ψ̂i and Ψ∗
i , we have

Ln,i(Ψ̂i, θl, θu, d) ≥ Ln,i(Ψ
∗
i , θl, θu, d) , Li(Ψ̂i, θl, θu, d) ≤ Li(Ψ

∗
i , θl, θu, d) .

By decomposing Li(Ψ
∗
i , θl, θu, d)− Li(Ψ̂i, θl, θu, d), we have almost surely that

0 ≤ Li(Ψ
∗
i , θl, θu, d)− Li(Ψ̂i, θl, θu, d)

≤ |Li(Ψ
∗
i , θl, θu, d)− Ln,i(Ψ

∗
i , θl, θu, d)|+ Ln,i(Ψ

∗
i , θl, θu, d)

− Ln,i(Ψ̂i, θl, θu, d) + |Ln,i(Ψ̂i, θl, θu, d)− Li(Ψ̂i, θl, θu, d)| (7.21)

≤ 0 ,

where the first and last terms in (7.21) converge to 0 almost surely by Propo-
sition 2. Thus, by the uniqueness of Ψ∗

i under Assumption 2, Ψ̂∗
i → Ψ∗

i almost
surely.

For any (θl, θu) ⊆ (θ0i−1, θ
0
i ), by the theory of Kullback–Leibler distance,

Li(Ψ
0
i , θl, θu, d

0) ≥ Li(Ψi, θl, θu, d), where the equality sign holds if and only if
d = d0 and Ψi = Ψ0

i . This observation is the main idea for proving Theorem
5.1.

Proof of Theorem 5.1. We prove by contradiction. Let A be the probability one
set under which Propositions 2 and 3 hold. For each ω ∈ A, suppose that there
exists a subsequence {nm} such that r̂nm → r∗, d̂nm → d∗, Θ̂nm → Θ∗, Ψ̂nm →
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Ψ∗ almost surely with {Ψ∗,Θ∗, d∗} ∈ ΩM×{1, . . . , D} under Assumption 1. For
simplicity, we omit the subscript “nm” and replace {nm} by {n} when necessary.
Suppose that r∗ < r0, then there must be some θ∗j−1 and θ∗j such that for some
positive integer k,

θ0i−1 < θ∗j−1 ≤ θ0i < θ0i+1 < · · · < θ0i+k < θ∗j ≤ θ0i+k+1 .

In other words, k + 2 true regimes are pooled into a “working regime” j. We
relabel the true regimes as sub-regime 1, ..., k+2 with thresholds of sub-regime
l denoted as (θ(l−1), θ(l)]. Hence, the number of observations in the working
regime j is nj . The log-likelihood of the working regime j is

njL
∗
nj
(Ψ̂j , θ̂j−1, θ̂j , d̂) =

k+2∑
l=1

njL
∗
nj,l

(Ψ̂j , θ̂(l−1), θ̂(l), d̂) ,

where

L∗
nj,l

(Ψj , θ(l−1), θ(l), d) =
1

nj

nj∑
t=1

l(Ψj ; yt, Yt−1, Xt)I(zt−d ∈ (θ(l−1), θ(l)]) ,

L∗
nj
(Ψj , θ

∗
j−1, θ

∗
j , d) =

1

nj

nj∑
t=1

l(Ψj ; yt, Yt−1, Xt)I(zt−d ∈ (θ∗j−1, θ
∗
j ]) ,

and Ψ̂j = argmaxΨj
L∗
nj
(Ψj , θ

∗
j−1, θ

∗
j , d̂). Similarly, we define

L∗
j,l(Ψj , θ(l−1), θ(l), d) = lim

nj→∞
E[L∗

nj,l
(Ψj , θ(l−1), θ(l), d)] ,

and
L∗
j (Ψj , θ

∗
j−1, θ

∗
j , d) = lim

nj→∞
E[L∗

nj
(Ψj , θ

∗
j−1, θ

∗
j , d)] .

As n → ∞, we have nj → ∞ and nj,l → ∞. Denote the true parameter in sub-
regime l as Ψ0

(l). Consider a sub-regime m, from Propositions 2, 3 and theory of
Kullback–Leibler distance,

lim
n→∞

L∗
nj,m

(Ψ̂j , θ(m−1), θ(m), d̂) = L∗
j,m(Ψ∗

j , θ(m−1), θ(m), d
∗)

≤ L∗
j,m(Ψ0

(m), θ(m−1), θ(m), d
0) a.s. .

However, the equality cannot hold for all m under Assumption 2. Hence, we
have

lim
nj→∞

L∗
nj
(Ψ̂j , θ̂j−1, θ̂j , d̂) <

k+2∑
l=1

L∗
j,l(Ψ

0
(l), θ(l−1), θ(l), d

0) a.s. , (7.22)

since at least one part in the summation of (7.22) is not maximized. Further-
more, for one of such sub-regime m, equipped with the ergodic theorem, there
exists some cm > 0 such that
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L∗
j,m(Ψ∗

j , θ(m−1), θ(m), d
∗) = E[l(Ψ∗

j ; yt, Yt−1, Xt)I(zt−d∗ ∈ (θ(m−1), θ(m)])]

= E[l(Ψ0
(m); yt, Yt−1, Xt)I(zt−d0 ∈ (θ(m−1), θ(m)])]

− cm

= L∗
j,m(Ψ0

(m), θ(m−1), θ(m), d
0)− cm .

By the ergodic theorem again, we have

L(Ψ0,Θ0, d0)− L(Ψ∗,Θ∗, d∗) = O(n) ,

and is positive almost surely. On the other hand, from (7.19), Pen(Θ0, p0, d0)−
Pen(Θ∗, p∗, d∗) is of order O(log(n)). Hence, the decrease in log-likelihood is
more rapid. Therefore, r∗ < r0 fails to optimize MDL(M). In general, if one of
the working regimes is not nested in a true regime, for example, θ0i−1 < θ∗j−1 <

θ0i < θ∗j < θ0i+1 for some i, j, then the MDL(M) cannot be smaller than that

with sub-regimes (θ0i−1, θ
∗
j−1], (θ

∗
j−1, θ

0
i ] and (θ0i , θ

∗
j ]. As a result, all working

regimes have to be nested in some true regimes, i.e., θ0i−1 < θ∗j−1 < θ∗j < θ0i for

all j with some i, which implies r∗ ≥ r0.
Next, assume that d∗ 
= d0 with r∗ ≥ r0. Consider regime i, from Proposition

2,

lim
n→∞

1

n

n∑
t=1

r+1∑
i=1

l(Ψi; yt, Yt−1, Xt)I(zt−d ∈ (θi−1, θi])

= Li(Ψi, θi−1, θi, d) < ∞ a.s. .

As the estimated regimes are nested in true regimes, (θ∗j−1, θ
∗
j ) ⊆ [θ0i−1, θ

0
i ]. By

the property of Kullback-Leibler distance,

Li(Ψ
0
i , θ

∗
j−1, θ

∗
j , d

0)− Li(Ψ
∗
j , θ

∗
j−1, θ

∗
j , d

∗) ≥ 0 ,

for all j and i, where the equality holds if and only if d∗ = d0. Hence it implies

L(Θ0,Ψ0, d0) > L(Θ∗,Ψ∗, d∗) , (7.23)

where the difference between the two terms is of order O(n). Thus, for the

optimal model, d̂ → d0 almost surely.
Moreover, if r̂ > r0, at least two of the classified regimes are sub-regimes of

a true regime. By Taylor’s expansion, for any (θl, θu] ⊆ (θ0i−1, θ
0
i ],

Ln,i(Ψ̂i, θl, θu, d
0)− Ln,i(Ψ

0
i , θl, θu, d

0)

= (Ψ̂i −Ψ0
i )L

(1)
n,i(Ψ

0
i , θl, θu, d

0) + (Ψ̂i −Ψ0
i )

2L
(2)
n,i(Ψ

0
i , θl, θu, d

0) + o(1)

= o(1) + (Ψ̂i −Ψ0
i )

2L
(2)
n,i(Ψ

0
i , θl, θu, d

0) + o(1) a.s. . (7.24)

As

L
(1)
n,i(Ψ̂i, θl, θu, d

0)− L
(1)
n,i(Ψ

0
i , θl, θu, d

0) = (Ψ̂−Ψ0
i )L

(2)
n,i(Ψ

0
i , θl, θu, d

0) + o(1) ,
(7.25)
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where the left-hand-side converges to 0 almost surely, by Assumption 2 and
Kolmogorov’s law of iterated logarithm, we have

lim sup
n→∞

n1/2

(log log(n))1/2
L
(2)
n,i(Ψ

0
i , θl, θu, d

0)

−→ 21/2[var(L
(2)
i (Ψ0

i , θl, θu, d
0))]1/2 a.s. . (7.26)

Together with (7.25), we have |Ψ̂−Ψ0
i | = O((n−1 log log(n))1/2) almost surely.

Thus, by (7.24), L(Θ0,Ψ0, d0) − L(Θ∗,Ψ∗, d∗) = O(log log(n)). As r∗ > r0 re-
sults in Pen(Θ∗, p∗, d0) > Pen(Θ0, p0, d0) where Pen(Θ∗, p∗, d0)−Pen(Θ0, p0, d0)
= O(log(n)), it implies that the MDL criterion is not minimized almost surely.
Hence, r̂ → r0 almost surely.

Under the consistency conditions, we can assume d̂ = d0 and r̂ = r0 holds for
sufficiently large n. As all of the estimated regimes are nested in true regimes,
Θ̂ → Θ0 almost surely. From Proposition 2, in regime i, we have almost surely
that Ψ̂i → Ψ∗

i , p̂i → p∗i for some Ψ∗
i and p∗i . Suppose that Ψ∗

i 
= Ψ0
i in one of

the regime i. Then, as Kullback-Leibler distance suggests, Li(Ψ
∗
i , θ

0
i−1, θ

0
i , d

0) ≤
Li(Ψ

0
i , θ

0
i−1, θ

0
i , d

0). Analogous to the argument in proving d̂ → d0, MDL(M) is

not asymptotically minimized. On the other hand, if Ψ̂ → Ψ0 almost surely, we
have p̂ → p∗ simultaneously for some p∗. As Pen(Θ0, p∗, d0) ≥ Pen(Θ0, p0, d0)
where equality holds if and only if p∗ = p0, by the strong consistency of order
estimation of MDL (see [47] and [48]) with respect to true regimes, p̂ → p0

almost surely.

Proof of Theorem 5.2.

1) We prove by showing the Op(n
−1) convergence speed of θ̂i for all i. Under

Theorem 5.1, |θ̂i − θ0i | = o(1) almost surely; hence it suffices to verify pr(|θ̂i −
θ0i | > c/n) → 0 for some c > 0. Below we show pr(|θ̂i−θ0i |I(θ0i < θ̂i) > c/n) → 0,

and the same argument give pr(|θ̂i − θ0i |I(θ0i ≥ θ̂i) > c/n) → 0, and thus the
result follows.

From the strong consistency of θ̂i, we can restrict |θ̂i−θ0i | < δ and |Ψ̂i−Ψ0
i | <

δ for some positive δ and sufficiently large n. Denote Q(a) = E{I(zt−d0 ∈
(θ0i , θ

0
i + a])} for some a > 0, where I(·) is the indicator function. Then for any

ξ, δ > 0, there is some c > 0 such that

pr

(
sup

c/n<a≤δ

∣∣∣∣∣
n∑

t=1

I(zt−d0 ∈ (θ0i , θ
0
i + a])

nQ(a)
− 1

∣∣∣∣∣ < ξ

)
> 1− ε . (7.27)

Furthermore, from Assumption 4a), there exists a measurable function Γt =
Γ(Yt−1, Xt, yt) such that E(Γ2

t |zt−d0) ≤ M for all zt−d0 ∈ [θ0i −δ, θ0i +δ] and some
constant M > 0. Combined with Assumption 5, the joint process {ΓtI(zt−d0 ∈
[θ0i − δ, θ0i + δ]), zt−d0I(zt−d0 ∈ [θ0i − δ, θ0i + δ])} is ρ-mixing with summable
mixing coefficients. Therefore, we have
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pr

(
sup

c/n<a≤δ

∣∣∣∣∣
n∑

t=1

ΓtI(zt−d0 ∈ (θ0i , θ
0
i + a])− E{ΓtI(zt−d0 ∈ (θ0i , θ

0
i + a])}

nQ(a)

∣∣∣∣∣ < ξ

)
> 1− ε . (7.28)

The derivations of (7.27) and (7.28) follow similar arguments in Proposition 1
of [10] and Theorem 2 of [54]. Let

H(θ0i , a) =
1

nQ(a)

n∑
t=1

[
l(Ψ̂i; yt, Yt−1, Xt)− l(Ψ̂i+1; yt, Yt−1, Xt)

]
× I(zt−d0 ∈ (θ0i , θ

0
i + a])

=
1

nQ(a)

n∑
t=1

[{
l(Ψ̂i; yt, Yt−1, Xt)− l(Ψ0

i ; yt, Yt−1, Xt)
}

+
{
l(Ψ0

i ; yt, Yt−1, Xt)− l(Ψ0
i+1; yt, Yt−1, Xt)

}
+
{
l(Ψ0

i+1; yt, Yt−1, Xt)− l(Ψ̂i+1; yt, Yt−1, Xt)
}]

× I(zt−d0 ∈ (θ0i , θ
0
i + a]) .

From Assumptions 4a) and 5, (7.27) and (7.28), we have for every ξ, δ > 0, there
exists a c > 0 satisfying c/n < a < δ such that

H(θ0i , a) <
1

nQ(a)

n∑
t=1

[
l(Ψ0

i ; yt, Yt−1, Xt)− l(Ψ0
i+1; yt, Yt−1, Xt)

]
× I(zt−d0 ∈ (θ0i , θ

0
i + a])

+
(
|Ψ̂i −Ψ0

i |+ |Ψ0
i+1 − Ψ̂i+1|

)
(ξ +M) + ξ , (7.29)

with probability greater than 1−ε for some small positive ε. Using Assumptions
2, 4 and Lemma 5.35 in [62], for 0 < a < δ, there exists a constant χ < 0 such
that

E
[
l(Ψ0

i ; yt, Yt−1, Xt)− l(Ψ0
i+1; yt, Yt−1, Xt) | zt−d0 ∈ (θ0i , θ

0
i + a]

]
≤ χ < 0 .

Following Theorem 2 of [54], the first term on the right hand side of (7.29) is
less than χ(1 − ξ) with some ξ > 0. Hence, by appropriate choices of δ and ξ
such that 2δ(M+ξ)+ξ+χ(1−ξ) < 0, we verify that H(θ0i , a) < 0 in probability,
with δ, ξ and ε go to 0 as n → ∞.

Now suppose that |θ0i − θ̂i| > c/n holds for some c > 0 with positive prob-

ability. Denote Θ̃ = (θ̃1, . . . , θ̃) with θ̃j = θ̂j if j 
= i and θ̃i = θ0i , and Ψ̃ is the

maximum likelihood estimator under Θ̃. As Θ̂ is the minimizer of MDL, we have

pr
(
|θ0i − θ̂i|I(θ0i < θ̂i) > c/n

)
= pr

(
|θ0i − θ̂i|I(θ0i < θ̂i) > c/n,MDL(M̂(Ψ̂, Θ̂, d0)) < MDL(M̃(Ψ̃, Θ̃, d0))

)
≤ pr

(
MDL(M̂(Ψ̂, Θ̂, d0)) < MDL(M̃(Ψ̃, Θ̃, d0))

)
,
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where M̂(Ψ̂, Θ̂, d0),M̃(Ψ̃, Θ̃, d0) are models with parameters {Ψ̂, Θ̂, d0} and

{Ψ̃, Θ̃, d0}, respectively. As |θ0i − θ̂i| > c/n, there exists some a∗ ∈ (c/n, δ]
with a sufficiently small δ such that

L(Ψ̃, Θ̃, d0)− L(Ψ̂, Θ̂, d0) = −nQ(a∗)H(θ0i , a
∗) = Op(1) . (7.30)

Furthermore, H(θ0i , a) is negative with probability going to 1, the term in (7.30)

converges in probability to a positive term. Meanwhile, as θ̂i → θ0i and p̂i → p0i
almost surely, the difference of penalties Pen(Θ̃, p̃, d0) − Pen(Θ̂, p̂, d0) = o(1).
Therefore, as n → ∞,

pr(MDL(M̂(Ψ̂, Θ̂, d0)) > MDL(M̃(Ψ̃, Θ̃, d0))) → 1 ,

and thus pr(|θ0i − θ̂i|I(θ0i < θ̂i) > c/n) → 0. Therefore, the convergence rate of

θ̂i is of order Op(n
−1) for all i = 1, . . . , r0, and the proof is complete.

2) We first prove the convergence property of pr(θ̂i 
= θ0i ). For simplicity we

assume θ̂i are integers and νi = ν in all regimes. Without loss of generality, we
show the convergence of pr(θ̂i > θ0i ).

Denote Ψ̂i =argmaxΨi
Ln,i(Ψi, θ

0
i−1, θ

0
i , d

0) and Ψ̂∗
i =argmaxΨi

Ln,i(Ψi, θ
0
i−1,

θ̃i, d
0), where Ψ̂∗

i → Ψ∗
i almost surely for Ψ∗

i = argmaxΨi
Ln,i(Ψi, θ

0
i−1, θ̃i, d

0)
which is neither Ψ0

i nor Ψ0
i+1. Under (5.2), we have λ∗

t = λt(Ψ
∗
i ;Yt−1, Xt, zt−d)

and λ0
t = λt(Ψ

0
i ;Yt−1, Xt, zt−d), and λ∗

t 
= λ0
t almost surely.

For discrete zt and any θ̃i > θ0i , the number of observations with zt−d ∈
(θ0i , θ̃i] with order O(n) almost surely. If θ̂i → θ̃i 
= θ0i , then by the ergodic
theorem,

n
[
Ln,i(Ψ

0
i , θ

0
i−1, θ

0
i , d

0)− Ln,i(Ψ
∗
i , θ

0
i−1, θ̃i, d

0)
]
= O(n) a.s. ,

which overweights the O(log(n)) rate of difference in penalties under θ0i and θ̃i
by (7.19). Hence we claim that asymptotically,

pr(θ̂i > θ0i )

= pr

(
n∑

t=1

[l(Ψ̂∗
i ; yt, Yt−1, Xt)− l(Ψ̂i; yt, Yt−1, Xt)]I(zt−d ∈ (θ0i−1, θ̂i]) > 0

)
.

For any θ̃i > θ0i , we divide all observations with zt−d ∈ (θ0i−1, θ̃i] into two
partitions: the first partition constitutes all yt with zt−d ∈ (θ0i−1, θ

0
i ]; and the

second partition constitutes of all yt with zt−d ∈ (θ0i , θ̃i]. For the first partition,
from Assumption 4b),

l(Ψ̂∗
i ; yt, Yt−1, Xt)− l(Ψ̂i; yt, Yt−1, Xt)

= [l(Ψ∗
i ; yt, Yt−1, Xt)− l(Ψ0

i ; yt, Yt−1, Xt)](1 + o(1))

=
1

νat
[{T (yt)γ(λ∗

t )− b(λ∗
t )} − {T (yt)γ(λ0

t )− b(λ0
t )}](1 + o(1)) . (7.31)
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Here λ∗
t and λ0

t are deterministic given {Yt−1, Xt, zt−d}, and {T (yt)}t=1,2,... in
(7.31) are mutually independent given λ0

t . To simplify derivation, we relabel all
observations in the first group from s = 1, . . . , n0

i , and denote Λn0
i
as a realization

of {λ∗
s, λ

0
s}s=1,...,n0

i
, where λ∗

s 
= λ0
s, s = 1, . . . , n0

i almost surely. Let fΛ be the

joint density of {λ∗
s, λ

0
s}s=1,...,n0

i
. By (7.31), for sufficiently large n and n0

i ,

pr

(
n∑

t=1

[l(Ψ̂∗
i ; yt, Yt−1, Xt)− l(Ψ̂i; yt, Yt−1, Xt)]I(zt−d ∈ (θ0i−1, θ

0
i ]) > 0

)

=

∫
pr

⎛⎝ n0
i∑

s=1

1

νas
[{T (ys)γ(λ∗

s)− b(λ∗
s)}

− {T (ys)γ(λ0
s)− b(λ0

s)}](1 + o(1)) > 0 | Λn0
i

⎞⎠
×fΛ

(
{λ∗

s, λ
0
s}s=1,...,n0

i

)
dλ∗

1λ
0
1 . . . λ

∗
n0
i
λ0
n0
i
, (7.32)

with

pr

⎛⎝ n0
i∑

s=1

1

νas
[{T (ys)γ(λ∗

s)− b(λ∗
s)}

− {T (ys)γ(λ0
s)− b(λ0

s)}](1 + o(1)) > 0 | Λn0
i

⎞⎠
= pr

⎛⎝ n0
i∑

s=1

1

νas
[T (ys){γ(λ∗

s)− γ(λ0
s)} − E(T (ys) | λ0

s){γ(λ∗
s)− γ(λ0

s)}

>

n0
i∑

s=1

1

νas
[b(λ∗

s)− b(λ0
s)− E(T (ys) | λ0

s){γ(λ∗
s)− γ(λ0

s)}] | Λn0
i

⎞⎠
× (1 + o(1))

= pr

⎛⎝ n0
i∑

s=1

1

νas
T ∗(ys){γ(λ∗

s)− γ(λ0
s)} >

n0
i∑

s=1

Δb(λ
∗
s , λ

0
s) | Λn0

i

⎞⎠ (1 + o(1)) ,

(7.33)

where given Λn0
i
in (7.33), T ∗(ys) = T (ys) − E(T (ys) | λ0

s), s = 1, 2, . . . are
mutually independent. Denote

Δb(λ
∗
s , λ

0
s) =

1

νas
[b(λ∗

s)− b(λ0
s)− E(T (ys) | λ0

s){γ(λ∗
s)− γ(λ0

s)}]

= E[l(Ψ0
i ; ys, Ys−1, Xs)]− E[l(Ψ∗

i ; yt, Ys−1, Xs)] .
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By Assumption 4b), E[l(Ψ0
i ; ys, Ys−1, Xs)− l(Ψ∗

i ; yt, Ys−1, Xs)]
2 < ∞, and hence

E|Δb(λ
∗
s , λ

0
s)| < ∞ , and E

[
1

ν2a2s
var(T (ys) | λ0

s){γ(λ∗
s)− γ(λ0

s)}2
]
< ∞ .

(7.34)
By the property of Kullback–Leibler distance, E[l(Ψ0

i ; ys, Ys−1, Xs)] > E[l(Ψ∗
i ;

yt, Ys−1, Xs)] if λ
∗
s 
= λ0

s. Thus Δb(λ
∗
s , λ

0
s) > 0 for all ys with zs−d ∈ (θ0i−1, θ

0
i ].

As λ∗
s 
= λ0

s almost surely and {Yt−1, Xt, zt−d} is ergodic, by (7.34) and the
ergodic theorem,

lim
n0
i→∞

1

n0
i

n0
i∑

s=1

Δb(λ
∗
s , λ

0
s) = E(Δb(λ

∗
s, λ

0
s)) > 0 a.s. . (7.35)

Meanwhile, as

var

⎡⎣ n0
i∑

s=1

1

νas
T ∗(ys){γ(λ∗

s)− γ(λ0
s)} | Λn0

i

⎤⎦
=

n0
i∑

s=1

1

ν2a2s
var(T (ys) | λ0

s){γ(λ∗
s)− γ(λ0

s)}2 ,

analogously we have

lim
n0
i→∞

1

n0
i

var

⎡⎣ n0
i∑

s=1

1

νas
T ∗(ys){γ(λ∗

s)− γ(λ0
s)} | Λn0

i

⎤⎦
= lim

n0
i→∞

1

n0
i

n0
i∑

s=1

1

ν2a2s
var(T (ys) | λ0

s){γ(λ∗
s)− γ(λ0

s)}2

= E

[
1

ν2a2s
var(T (ys) | λ0

s){γ(λ∗
s)− γ(λ0

s)}2
]
> 0 a.s. . (7.36)

by (7.34) and the ergodic theorem. Denote

Xn0
i
=

∑n0
i

s=1 Δb(λ
∗
s , λ

0
s)[∑n0

i
s=1 var

(
1

νas
T ∗(ys){γ(λ∗

s)− γ(λ0
s)} | Λn0

i

)]1/2 . (7.37)

By (7.35) and (7.36), (n0
i )

−1/2Xn0
i
converges almost surely to some τ = τ(θ̃i) >

0. By Theorem 10 in Chapter VIII of [46] and Assumption 4b), we have

pr

⎛⎝ n0
i∑

s=1

1

νas
T ∗(ys){γ(λ∗

s)− γ(λ0
s)} >

n0
i∑

s=1

Δb(λ
∗
s , λ

0
s) | Λn0

i

⎞⎠
= {1− Φ(Xn0

i
)}exp

[
X 3

n0
i

(n0
i )

1/2
hn0

i

( Xn0
i

(n0
i )

1/2

)]
(1 + l1τ) , (7.38)
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where Φ(·) is the cumulative distribution function of a standard normal ran-
dom variable, hn0

i
(x) =

∑∞
k=0 akn0

i
xk is the generalized Cramér series defined

on p.220 of [46], and l1 is some constant. By [46], hn0
i
(τ) converges as n0

i goes
to infinity for sufficiently small |τ |. Hence, we may select a sufficiently small
constant τ∗ such that for sufficiently large n0

i , hn0
i
(τ) ≤ H for some constant H

whenever |τ | ≤ τ∗. Therefore, for sufficiently large n, if τ ≤ τ∗, we have

1− Φ(Xn0
i
) ≤ c1n

− 1
2 e−

1
2 τ

2n , and exp

[
X 3

n0
i

(n0
i )

1/2
hn0

i

( Xn0
i

(n0
i )

1/2

)]
≤ c2e

τ3n ,

for some c1, c2 > 0. Thus, (7.38) is of order O(n−1/2e−an) almost surely for some
a = τ2/2−τ3 > 0, by choosing a proper τ∗ < 1/2. Otherwise, if τ > τ∗, we have

pr

⎛⎝ n0
i∑

s=1

1

νas
T ∗(ys){γ(λ∗

s)− γ(λ0
s)} >

n0
i∑

s=1

Δb(λ
∗
s, λ

0
s) | Λn0

i

⎞⎠
≤ pr

⎛⎝ n0
i∑

s=1

1

νas
T ∗(ys){γ(λ∗

s)− γ(λ0
s)} >

τ∗

τ

n0
i∑

s=1

Δb(λ
∗
s, λ

0
s) | Λn0

i

⎞⎠
=

{
1− Φ

(
τ∗

τ
Xn0

i

)}
exp

[
(τ∗)3

τ3

X 3
n0
i

(n0
i )

1/2
hn0

i

(
τ∗Xn0

i

τ(n0
i )

1/2

)]
(1 + l1τ

∗)

≤ c1c2(1 + l1τ
∗)n− 1

2 e−( 1
2 (τ

∗)2−(τ∗)3)n a.s. . (7.39)

Next, using similar arguments in (7.38), (7.39) is of order O(n−1/2e−a′n) almost
surely for some a′ = (τ∗)2/2 − (τ∗)3 > 0. Thus, given Λn0

i
, (7.33) is of order

O(n−1/2e−a1n) almost surely for some a1 > 0. Combining with (7.32), we have

pr

(
n∑

t=1

[l(Ψ̂∗
i ; yt, Yt−1, Xt)− l(Ψ̂i; yt, Yt−1, Xt)]I(zt−d ∈ (θ0i−1, θ

0
i ]) > 0

)
= O(n−1/2e−a1n) .

Applying similar argument for the second partition, we have

pr

(
n∑

t=1

[l(Ψ̂∗
i ; yt, Yt−1, Xt)− l(Ψ̂i+1; yt, Yt−1, Xt)]I(zt−d ∈ (θ0i , θ̃i]) > 0

)
= O(n−1/2e−a2n) ,

for some a2 > 0. Hence,

pr(θ̂i = θ̃i)

≤ pr

(
n∑

t=1

[l(Ψ̂∗
i ; yt, Yt−1, Xt)− l(Ψ̂i; yt, Yt−1, Xt)]I(zt−d ∈ (θ0i−1, θ

0
i ]) > 0

)
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+ pr

(
n∑

t=1

[l(Ψ̂∗
i ; yt, Yt−1, Xt)− l(Ψ̂i+1; yt, Yt−1, Xt)]I(zt−d ∈ (θ0i−1, θ̃i]) > 0

)
= O(n−1/2e−a1n) +O(n−1/2e−a2n) = O(n−1/2e−min(a1,a2)n) . (7.40)

Note that a1 and a2 in (7.40) are functions of θ̃i. As the choices of θ̃i are infinite
in regime 1 and r + 1, we need to show that a1 and a2 are positive uniform
in all θ̃i. Without loss of generality we prove this for regime r + 1: we verify
both inf θ̃i a1(θ̃i) > 0 and inf θ̃i a2(θ̃i) > 0. From (7.39), showing inf θ̃i a1 > 0

is equivalent to showing inf θ̃i∈[θ0
i+1,θ0

i+1)]
τ(θ̃i) > 0. In addition, from (7.37), it

suffices to show
inf

θ̃i∈[θ0
i+1,θ0

i+1)
E(Δb(λ

∗
s , λ

0
s)) > 0 ,

and
sup

θ̃i∈[θ0
i+1,θ0

i+1)

E[var(T (yt) | λ0
s)(γ(λ

∗
s)− γ(λ0

s))
2/(vas)

2] < ∞ .

First, by Assumption 2, we have

E{l(Ψ∗
i ; yt, Yt−1, Xt)I(zt−d ∈ (θ0i−1, θ̃i])}

< E{l(Ψ0
i ; yt, Yt−1, Xt)I(zt−d ∈ (θ0i−1, θ

0
i ])}

+ E{l(Ψ0
i+1; yt, Yt−1, Xt)I(zt−d ∈ (θ0i , θ̃i])} .

Therefore, for all zt−d ∈ (θ0i−1, θ
0
i ], there exists some β ∈ (0, 1) such that

E(l(Ψ∗
i ; yt, Yt−1, Xt)) ≤ (1− β)E{l(Ψ0

i ; yt, Yt−1, Xt)}
+ βE{l(Ψ0

i+1; yt, Yt−1, Xt)} . (7.41)

Given zt−d ∈ (θ0i−1, θ
0
i ], by (7.41) and the property of Kullback-Leibler distance,

we have

E{l(Ψ0
i ; yt, Yt−1, Xt)} − E{l(Ψ∗

i ; yt, Yt−1, Xt)}
≥ E{l(Ψ0

i ; yt, Yt−1, Xt)}
− [(1− β)E{l(Ψ0

i ; yt, Yt−1, Xt)}+ βE{l(Ψ0
i+1; yt, Yt−1, Xt)}]

= β[E{l(Ψ0
i ; yt, Yt−1, Xt)} − E{l(Ψ0

i+1; yt, Yt−1, Xt)}] > 0 . (7.42)

By (7.42), inf θ̃i∈[θ0
i+1,θ0

i+1)
E(Δb(λ

∗
s, λ

0
s)) > 0. On the other hand, by Assump-

tion 4b), we have

sup
θ̃i∈[θ0

i+1,θ0
i+1)

E

[
1

ν2a2s
var(T (ys) | λ0

s){γ(λ∗
s)− γ(λ0

s)}2
]

= sup
θ̃i∈[θ0

i+1,θ0
i+1)

E
[
var

{
l(Ψ∗

i ; yt, Yt−1, Xt)− l(Ψ0
i ; yt, Yt−1, Xt) | Yt−1, Xt

}]
≤ sup

θ̃i∈[θ0
i+1,θ0

i+1)

E
[
E
{
l(Ψ∗

i ; yt, Yt−1, Xt)− l(Ψ0
i ; yt, Yt−1, Xt) | Yt−1, Xt

}2]
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≤ E
[
E
{
Γ2(Yt−1, Xt, yt | Yt−1, Xt

}]
sup

θ̃i∈[θ0
i+1,θ0

i+1)

|Ψ∗
i −Ψ0

i |2

= E[Γ2(Yt−1, Xt, yt)] sup
θ̃i∈[θ0

i+1,θ0
i+1)

|Ψ∗
i −Ψ0

i |2 , (7.43)

where (7.43) is bounded by Assumption 4b) and the compactness of ΩΨ in As-
sumption 1. Therefore, inf θ̃i∈[θ0

i ,θ
0
i+1)

τ > 0 and hence inf θ̃i∈[θ0
i ,θ

0
i+1)

a1(θ̃i) > 0.

Analogously, inf θ̃i∈[θ0
i ,θ

0
i+1)

a2(θ̃i) > 0. Since θ̂i takes value in {zt−d}, the number

of choices in θ̃i is O(n) increasing. By (7.40),

pr(θ̂i > θ0i ) =
∑
θ̃i>θ0

i

pr(θ̂i = θ̃i) = O(n1/2e−a∗n) ,

for some a∗ > 0. The derivation of the same convergence rate of pr(θ̂i < θ0i )

is analogous, and hence pr(θ̂i 
= θ0i ) = O(n1/2e−a∗
2n) for some a∗2 > 0. If

νi 
= νi+1 for some i, the derivation is similar albeit more tedious. Finally,
as pr(Θ̂ 
= Θ0) ≤

∑r
i=1 pr(θ̂i 
= θ0i ), the result in 2) follows.

Proof of Theorem 5.3. First we prove the weak convergence of n(θ̂i − θ0i ) to
M−

i , where [M−
i ,M+

i ) is the unique random interval which minimizes the pro-
cess

�̈i(κi) =

n∑
t=1

[l(Ψ̂i+1; yt, Yt−1, Xt)− l(Ψ̂i; yt, Yt−1, Xt)]

× I(zt−d0 ∈ (θ0i , θ
0
i +

κi

n
])I(κi ≥ 0)

+

n∑
t=1

[l(Ψ̂i; yt, Yt−1, Xt)− l(Ψ̂i+1; yt, Yt−1, Xt)]

× I(zt−d0 ∈ (θ0i +
κi

n
, θ0i ])I(κi < 0) , (7.44)

where |θ̂i − θ0i | = |κi|/n. When Ψ̂i and Ψ̂i+1 are replaced by Ψ0
i and Ψ0

i+1 in

(7.44), we define an analogous process �̃i(κi) = �̃1,i(κi)I(κi ≥ 0)+ �̃2,i(κi)I(κi <
0) where

�̃1,i(κi) =

n∑
t=1

[l(Ψ0
i+1; yt, Yt−1, Xt)− l(Ψ0

i ; yt, Yt−1, Xt)]I(zt−d0 ∈ (θ0i , θ
0
i +

κi

n
]) ,

�̃2,i(κi) =

n∑
t=1

[l(Ψ0
i ; yt, Yt−1, Xt)− l(Ψ0

i+1; yt, Yt−1, Xt)]I(zt−d0 ∈ (θ0i +
κi

n
, θ0i ]) ,

which correspond to the case θ̂i ≥ θ0i and θ̂i < θ0i , respectively. Denote Ψ̂(0) =

(Ψ̂
(0)
1 , . . . , Ψ̂

(0)
r+1) as the maximum likelihood estimates given Θ0. By Assump-

tions 1–5 and Lemmas 3 and 4 of [54], we have for all K > 0,

sup
|θ̂i−θ0

i |<K/n

|Ψ̂i − Ψ̂
(0)
i | = op(n

−1/2) , (7.45)
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and

sup
κi≤K

|�̈(κi)− �̃(κi)| = op(1) . (7.46)

By (7.46), it suffices to study the convergence properties of �̃i(κi). We show
that �̃1,i(κi) converges to �̃∗1,i(κi) in distribution, and the convergence of �̃2,i(κi)

follows similarly. We study the right-continuous version of �̃∗1,i(κi) with assuming
κi ≥ 0.

First, we construct a piecewise constant interpolation for the difference in
log-likelihood. Taking ε = 1/n, we let ηε(v) = Xε

	nv
 for 0 ≤ v ≤ 1, where �·� is
the floor function. Note that Xε

0 = 0, Xε
t+1 = Xε

t + ζεt+1. In addition, define

ζεt = [l(Ψ0
i+1; yt, Yt−1, Xt)− l(Ψ0

i ; yt, Yt−1, Xt)]I(zt−d0 ∈ (θ0i , θ
0
i + κiε]) .

By construction, we have ηε(1) = �̃1,i(κi), and ηε(v) = Xε
s when v ∈ [sε, sε+ ε).

Using similar arguments for the discontinuities of �̃1,i(κi) on (u, u+h] in the proof

of Lemma 3.2 in [25], {�̃1,i(κi)} is tight with κi ≥ 0. Combining with the uniform
boundedness of ηε(v) which is verified by the truncation argument in [29], we
can apply the operator convergence in [29], by which the weak convergence of
ηε(v) can be deduced. Then taking v = 1, the weak convergence of �̃1,i(κi) in
the Skorohod metric is established.

Next, we show the weak convergence of ηε(v) to the compound Poisson pro-
cess C(v) with intensity π(θ0i )κ. Let Fv be a sequence of σ-algebras that are
generated from {ηε(u), u ≤ v}, and L be a set of progressively measurable func-
tions f with respective to Fv, with supv E|f(v)| < ∞. Then, let Fε

v ⊆ Fv denote
the σ-algebra generated by {ηε(u), u ≤ v}, and Eε

v denote the conditional ex-
pectation under Fε

v. From the definition in [28], we denote p-limδ→0 f
δ = f for

fδ ∈ L if and only if limδ→0 E|f δ−f | = 0. In addition, define the p-infinitesimal
operator Âε by Âεf ε = p-limδ→0[E

ε
vf(v + δ)− f(v)]/δ, which is p-right contin-

uous and in L. Denote L̂ as the space of continuous bounded positive function
f with limv→∞ f(v) → 0, and L̂(2) ⊆ L̂ with compact supports and continuous
bounded second derivatives. Then, define the operator A on L̂(2) as

Af(v) = πz(θ
0
i )κi

∫
(f(y + v)− f(v))q(dy) ,

where q(dy) is the induced probability measure of l(yt;Yt−1, Xt,Ψ
0
i+1) − l(yt;

Yt−1, Xt,Ψ
0
i ) conditioning on zt−d0 = (θ0i )

+
. Let f ∈ L̂(2), and for any τ ε > 0,

define

f ε(v) =
1

τ ε

∫ τε

0

Eε
v[f(η

ε(v + s))]ds .

By construction, f ε(v) ∈ L̂(2) and p-limτε→0 f
ε(v) = f(ηε(v)). Moreover, from

[28],

Âεf ε(v) =
1

τ ε
[Eε

v{f(ηε(v + τ ε))} − f(ηε(v))] .
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Next we show the operator convergence of Âεf ε(v) to Af(ηε(v)). Express

Âεf ε(v) =
1

τ ε

	n(v+τε)
−	nv
−1∑
k=0

Eε
v{f(ηε(v + kε) + ζεk+	nv
+1)− f(ηε(v + kε))} ,

and

Af(ηε(v)) =
1

τ ε

	n(v+τε)
−	nv
−1∑
k=0

Eε
v{f(ηε(v) + ζεk+	nv
+1)− f(ηε(v))} .

Without loss of generality, we illustrate the proof with f(y | Yt−1, Xt, zt−d)
is continuous in y, where the derivation for general case is analogous. Denote
mε = �n(v + τ ε)� − �nv�, by Theorem 15.3 of [6], we have

Âεf ε(v) =

mε−1∑
k=0

Eε
v{f(ηε(v) + ζεk+	nv
+1)− f(ηε(v))}/τ ε + op(1) . (7.47)

Meanwhile, for sufficiently large n and ε = 1/n,

pr(zt−d0 ∈ (θ0i , θ
0
i+κiε]) = pr(zt−d0 = (θ0i )

+)κiε(1+o(1)) =
1

n
πz(θ

0
i )κi(1+o(1)) .

Thus, together with Assumptions 4a) and 5 and equation (48) in Appendix
M, [7], for all fixed X with ρ-mixing coefficient sequence {ρ(k)}, there exists
K∗ ≥ E|f(X + ζεk+	nv
+1)− f(X)| such that

1

τ ε

mε−1∑
k=0

E
[∣∣∣Eε

v{f(X + ζεk+	nv
+1)− f(X)} − E{f(X + ζεk+	nv
+1)− f(X)}
∣∣∣]

≤ 1

τ ε

[
E{f(X + ζεk+	nv
+1)− f(X)}2

]1/2 mε−1∑
k=0

ρ(k + 1)

≤ 1

τ ε
K∗ {pr(Zt−d0 ∈ (θ0i , θ

0
i + κiε])

}1/2 mε−1∑
k=0

ρ(k + 1)

= (1 + o(1))
K∗
√
nτ ε

(
πz(θ

0
i )κi

)1/2 mε−1∑
k=0

ρ(k + 1) → 0 ,

by taking τ ε = n−b for some b ∈ (0, 1/2) and mε → ∞. Combining with (7.47),
we have

Âεf ε(v) = Af(ηε(v)) + op(1) . (7.48)

As p-limτε→0 f
ε(v) = f(ηε(v)), by Theorem 1 of [29], ηε(v) converges weakly

to C(v). On the other hand, ηε(v) is the uniquely solution such that f(η(t)) −∫ t

0
Af(η(s))ds is a martingale for any f with continuous second-derivative and
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a compact support ([57])). Choose v = 1, then �̃1,i(κi) converges in distribution

to �̃∗1,i(κi) in the Skorohod metric. Analogously, we have the weak convergence

of �̃2,i(κi) to �̃∗2,i(κi) in the Skorohod metric; by Cramer–Wold device, the weak

convergence of �̃i(κi) to �̃∗i (κi) is obtained. Thus, Combining with Theorem 3.1

in [55], n(θ̂i − θ0i ) converges weakly to M−
i , where [M−

i ,M+
i ) is the unique

random interval that minimizes �̃∗i (κi).

Next we consider the convergence of Θ̂. Analogously, we construct �̃(κ) =∑r
i=1 �̃i(κi). Recall that for �̃∗i (κi), as suggested by (5.3) and (5.4), it has an

intensity πz(θ
0
i ) and jumps

ζs(y
∗
s ;Y

∗
s−1, X

∗
s ,Ψ

0
i+1,Ψ

0
i )I(κi ≥ 0) + ζs(y

∗
s ;Y

∗
s−1, X

∗
s ,Ψ

0
i ,Ψ

0
i+1)I(κi < 0) ,

with a non-degenerate distribution. Meanwhile, we have deduced the weak con-
vergence of �̃i(κi) to �̃∗i (κi) from operator convergence as (7.48). Employing the
idea in Theorem 3.3 of [32], for any constants c1 and c2 with either one nonzero,

and any vectors κ(1), . . . , κ(4) = {κ(1)
1 , . . . , κ

(1)
r }, . . . , {κ(4)

1 , . . . , κ
(4)
r } which are

not all equal, the process

c1[�̃(κ
(1))− �̃(κ(2))] + c2[�̃(κ

(3))− �̃(κ(4))]

has a positive jump rate with bounded and non-degenerated jump sizes. Fur-
thermore, operator convergence results analogous to (7.48) can be shown for
this process, as both A and Âε are linear operators. Thus, by similar arguments
in the proof of Theorem 3.3 in [32], the weak convergence of �̃(κ) to the com-
pound Poisson process �̃∗(κ) is established. Using Theorem 3.1 in [55] again,
n(Θ̂−Θ0) converges weakly to M−, where [M−,M+) is the unique minimizer
of �̃∗(κ).

In the general case, as {ηε(v), 0 ≤ v ≤ 1} is tight, every subsequence has a
convergent subsequence, where the convergence can be assumed almost surely by
enlarging the probability space. Moreover, as (7.47)–(7.48) hold, by using simi-
lar arguments as in [54], n(Θ̂−Θ0) converges weakly to M−, where [M−,M+)
is an almost surely minimizer of �̃∗(κ).

Proof of Theorem 5.4. For continuous zt, the asymptotic independence between
n(Θ̂−Θ0) and n1/2(Ψ̂−Ψ0) follows from Op(n

−1) convergence rate of Θ̂, (7.45)
and arguments of proving Theorem 2 of [10]. For discrete zt, as we have obtained
a very rapid convergence of Θ̂ to Θ0 in probability, the asymptotic independence
between n(Θ̂−Θ0) and n1/2(Ψ̂−Ψ0) can be similarly established.

Next we show the asymptotic distribution of model parameter estimates using
techniques in [62]. Under Assumption 2 and the strong consistency of model
parameters estimates, the estimator Ψ̂ satisfies

L′(Ψ̂, Θ̂, d0) =

(
∂Ln,1(Ψ̂1, θ0, θ̂1, d

0)

∂Ψ1
, . . . ,

∂Ln,r0+1(Ψ̂r0+1, θ̂r0 , θr0+1, d
0)

∂Ψr0+1

)T

= 0.
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By Taylor’s expansion,

L′(Ψ̂, Θ̂, d0) = L′(Ψ0, Θ̂, d0) + L′′(Ψ0, Θ̂, d0)(Ψ̂−Ψ0) + op(1)

= L′(Ψ0,Θ0, d0) + L′′(Ψ0,Θ0, d0)(Ψ̂−Ψ0) + op(1) ,

where the second-order partial derivative is symmetric. Next we verify the reg-
ularity conditions in Theorem 5.41 of [62]. First, from (4.1), for all i 
= j we
have

∂2L(Ψ,Θ0, d0)

∂Ψi∂Ψj
= 0 , E

[
∂L(Ψ,Θ0, d0)

∂Ψi

(
∂L(Ψ,Θ0, d0)

∂Ψj

)T
]
= 0 .

Thus, L′′(Ψ0,Θ0, d0) and E
[
L′(Ψ0,Θ0, d0){L′(Ψ0,Θ0, d0)}T

]
are block-diagonal.

In addition, by ergodic theorem,{
L′′(Ψ0,Θ0, d0)

}−1 −→
[
E
{
L′′(Ψ0,Θ0, d0)

}]−1
,

in probability. From Assumption 2, we have the finiteness of E[{∂L(Ψ0,Θ0, d0)/
∂Ψi}2] and E[L′(Ψ0,Θ0, d0){L′(Ψ0,Θ0, d0)}T]. Furthermore, Assumption 2 im-
plies the boundedness of third-order derivatives of L(Ψ,Θ0, d0) with respect to
Ψ by some integrable function in the neighborhood of Ψ0. Therefore, as all regu-
larity conditions are satisfied, by Theorem 5.41 in [62], we have n1/2(Ψ̂−Ψ0) ∼
N (0,Σ∗), where

Σ∗ =
[
E{L′′(Ψ0,Θ0, d0)}

]−1
E
[
L′(Ψ0,Θ0, d0){L′(Ψ0,Θ0, d0)}T

]
×
[
E{L′′(Ψ0,Θ0, d0)}

]−1
.

As L′(Ψ0,Θ0, d0) is continuous in Ψ for sufficiently large n, by information
matrix equality,

E
[
L′(Ψ0,Θ0, d0){L′(Ψ0,Θ0, d0)}T

]
= −

[
E{L′′(Ψ0,Θ0, d0)}

]−1
.

Hence, Σ∗ is defined as (5.5) and is diagonal. In particular, |Ψ̂−Ψ0| = Op(n
−1/2).
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