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Abstract. Matrix Dirichlet processes, in reference to their reversible measure, appear in a natural way in many different models
in probability. Applying the language of diffusion operators and the theory of boundary equations, we describe Dirichlet processes
on the matrix simplex and provide two models of matrix Dirichlet processes, which can be realized by various projections, through
the Brownian motion on the special unitary group and also through Wishart processes.

Résumé. Les processus de Dirichlet matriciels, en référence à leur mesure réversible, apparaissent de manière naturelle dans de
nombreux modèles différents en probabilité. En utilisant la langage des opérateurs de diffusion et la théorie des équations de bord,
nous décrivont les processus de Dirichlet sur le simplexe matriciel et proposont deux modèles pour les processus de Dirichlet
matriciels, qui peuvent être réalisés par les projections diverses, par le movement brownien sur le groupe unitaire spécial et par les
processus de Wishart.
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1. Introduction

The complex matrix simplex �n,d is the set of the sequences (Z(1), . . . ,Z(n)) of non negative d × d Hermi-
tian matrices such that

∑n
i=1 Z(i) ≤ Id, where the inequality is understood in the sense of Hermitian matrices.

On the matrix simplex, there exist natural probability measures, with densities C det(Z(1))a1−1 · · ·det(Z(n))an−1 ×
det(Id − ∑n

i=1 Z(i))an+1−1 (see Section 4). As the natural extensions of the Dirichlet measures on the simplex, they
are called matrix Dirichlet measures.

It turns out that on matrix simplex there exist many diffusion processes which admit matrix Dirichlet measures as
reversible ones, and their generators may be diagonalized by a sequence of orthogonal polynomials whose variables
are the entries of the matrices. Therefore the matrix simplex appears to be a polynomial domain as described in [4],
see Section 2.

The purpose of this paper is to describe these diffusion processes that we call matrix Dirichlet processes. They
appear in a natural way in different models in probability: in the projection of Brownian motions on SU(N), and also
in the projection of Wishart matrices, as we will see below.

To begin with, we deal with diffusion processes on the simplex which have Dirichlet measures as reversible ones.
Dirichlet measures are multivariate generalizations of the beta distribution, and play an important role in statistics
and population biology, for example the Wright–Fisher model. In this paper, we talk about Dirichlet processes, by
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which we mean that these diffusion processes on the simplex are polynomial models with Dirichlet measures as their
reversible measures.

The matrix Dirichlet measures, being analogues of Dirichlet distributions, were first introduced by Gupta and
Richards [12], as special cases of matrix Liouville measures. They have been deeply studied, for example by Olkin
and Rubin [16], Gupta and Nagar [11], see also Letac [14,15] and references therein. They not only provide models for
multiple random matrices, which are related with orthogonal polynomials, integration formulas, etc., but also reflect
the geometry of spaces of matrices, see [11,13]. Therefore, it is natural to consider their corresponding diffusion
processes. It is worth to mention that matrix Jacobi processes, which can be considered as a one matrix case of matrix
Dirichlet processes, were introduced by Doumerc in [10]. Demni studied the large size limit of matrix Jacobi processes
in two interesting papers [7,8].

Our interest of this topic not only lies in its importance in statistics and random matrices, but also in the fact that
it provides a polynomial model of multiple matrices. In a polynomial model, the diffusion operator (the generator)
can be diagonalized by orthogonal polynomials, and this leads to the algebraic description of the boundary. Such
polynomial models are quite rare: up to affine transformation, there are 3 models in R [3] and 11 models on compact
domains in R

2 [4]. More recently, Bakry and Bressaud [1] provided new models in dimensions two and three, by
relaxing the hypothesis in [4] that polynomials are ranked with respect to their natural degree, and investigating the
finite groups of O(3) and their invariant polynomials.

As we will see in this paper, the simplex and the matrix simplex are both polynomial domains where there exist
many different polynomial models, which is a situation even more rare: in general, there is just one polynomial
diffusion process on a given domain, up to scaling. The situation here is quite complicated, since we are dealing
with a family of matrices. By applying the theory of boundary equations, as introduced in [5], we are able to describe
Dirichlet processes on the simplex, and we provide two models of such matrix Dirichlet processes. Our two models are
found to be realized, via various projections, through the Brownian motion on the special unitary group and through
the Wishart processes. This leads to some efficient ways to describe image measures in such projections.

This paper is organized as follows. In Section 2, we present the basics on diffusion operators and polynomial
models that we will use in this paper. In Section 3, we introduce the Dirichlet process on the simplex, and describe its
realizations in the special cases from spherical Laplacian, and also from Ornstein–Uhlenbeck or Laguerre processes.
In Section 4, we give the description of two models. In Section 5, we present the realizations of matrix Dirichlet
processes through projections of the Brownian motion on special unitary group and of Wishart processes which are
extensions of their scalar counterparts.

2. Symmetric diffusion operators and polynomial models

We present in this section a brief introduction to symmetric diffusion processes and operators, in particular to those
diffusion operators which may be diagonalized in a basis of orthogonal polynomials.

2.1. Symmetric diffusion operators

Symmetric diffusion operators are described in [2], which we refer the reader to for further details. Moreover, for
those associated with orthogonal polynomials, we refer to the paper [4]. Although the description that we provide
below is quite similar to that in [1], we choose to present it here for completeness.

Diffusion processes are Markov processes with continuous trajectories in some open set of Rn or on some manifold,
usually given as solutions of stochastic differential equations. They are described by their infinitesimal generators,
which are called diffusion operators.

Diffusion operators are second order differential operators with no zero order terms. When those operators have
smooth coefficients, they are given in some open subset � of Rd by their action on smooth, compactly supported
function f on �,

L(f ) =
∑
ij

gij (x)∂2
ij f +

∑
i

bi(x)∂if, (2.1)

where the symmetric matrix (gij )(x) is everywhere non negative, i.e. the operator L is semi-elliptic.
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A Markov process (ξt )t≥0 is associated to such a diffusion operator through the requirement that the process
f (ξt ) − ∫ t

0 L(f )(ξs) ds is a local martingale for any function f in the domain of the operator L.
In this paper we will concentrate on the elliptic case (that is when the matrix (gij ) is everywhere non degenerate),

and on the case where this operator is symmetric with respect to some probability measure μ: for any smooth functions
f,g, compactly supported in �, we have∫

�

f L(g) dμ =
∫

�

gL(f ) dμ. (2.2)

We say that μ is a reversible measure for L when the associated stochastic process (ξt )t≥0 has a law which is invariant
under time reversal, provided that the law at time 0 of the process is μ. In particular, the measure is invariant: when
the associated process (ξt )t≥0 is such that the law of ξ0 is μ, the law of (ξt )t≥0 is μ for any time t > 0.

When μ has a smooth positive density ρ with respect to the Lebesgue measure, the symmetry property (2.2) is
equivalent to

bi(x) =
∑
j

∂j g
ij (x) +

∑
j

gij ∂j logρ, (2.3)

where bi(x) is the drift coefficient appearing in equation (2.1). In general by equation (2.3) we are able to completely
determine μ up to some normalizing constant.

Now we introduce the carré du champ operator �. Suppose that we have some dense algebra A of functions in
L2(μ) which is stable under the operator L and contains the constant functions. Then for (f, g) ∈ A we define

�(f,g) = 1

2

(
L(fg) − f L(g) − gL(f )

)
. (2.4)

If L is given by equation (2.1), and the elements of A are at least C2, we have

�(f,g) =
∑
ij

gij ∂if ∂j g,

so that � describes in fact the second order part of L. The semi-ellipticity of L gives rise to the fact that �(f,f ) ≥ 0,
for any f ∈A.

Applying formula (2.2) with g = 1, we obtain
∫
�

Lf dμ = 0 for any f ∈ A. Then with (2.2) again, we see imme-
diately that for any (f, g) ∈ A∫

�

f L(g) dμ = −
∫

�

�(f,g) dμ, (2.5)

so that the knowledge of � and μ describe entirely the operator L. Such a triple (�,�,μ) is called a Markov triple
in [2].

By (2.1), we see that L(xi) = bi and �(xi, xj ) = gij . The operator � is called the co-metric, and in our system of
coordinates is described by a matrix � = (�(xi, xj )) = (gij ).

In our setting, we will always assume that � is bounded and choose A to be the set of polynomials. Since poly-
nomials are not compactly supported in �, the validity of equation (2.2) requires extra conditions on the coefficients
(gij ) at the boundary of �, which we will describe below.

The fact that L is a second order differential operator implies the change of variable formulas. Whenever f =
(f1, . . . , fn) ∈ An and �(f1, . . . , fn) ∈ A, for some smooth function � : Rn �→R, we have

L
(
�(f )

) =
∑

i

∂i�(f )L(fi) +
∑
ij

∂2
ij�(f )�(fi, fj ) (2.6)

and also

�
(
�(f ), g

) =
∑

i

∂i�(f )�(fi, g). (2.7)

When A is the algebra of polynomials, properties (2.6) and (2.7) are equivalent.
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An important feature in the examples described in this paper is the notion of image. Whenever we have a diffusion
operator L on some set �, it may happen that we find some functions (X1, . . . ,Xp) in the algebra A such that
L(Xi) = Bi(X) and �(Xi,Xj ) = Gij (X) where X = (X1, . . . ,Xp). Then we say that we have a closed system. If
(ξt )t≥0 is the Markov diffusion process with generator L, (ζt ) = X(ξt ) is again a diffusion process, with its generator
expressed in coordinates (X1, . . . ,Xp)

L̂ =
∑
ij

Gij (X)∂2
ij + Bi(X)∂i .

Moreover, when L has a reversible probability measure μ, L̂ has the image measure of μ through the map X as its
reversible measure. And equation (2.3) is an efficient way to determine image measure, which will be used many
times in this paper.

2.2. Polynomial models

As mentioned above, we will restrict our attention to the elliptic case. Here we expect L to have a self adjoint extension
(not unique in general), thus it has a spectral decomposition. Also we expect that the spectrum is discrete thus it has
eigenvectors, which we will require to be polynomials in the variables (xi). Moreover, we will require that those
polynomial eigenvectors to be ranked according to their degrees, i.e., if we denote by Hn the space of polynomials
with total degree at most n, then for each n we need that there exists an orthonormal basis of Hn which is made of
eigenvectors for L. Equivalently, we require that L maps Hn into itself. This situation is quite rare, and imposes some
strong restriction on the domain � that we will describe below.

When we have such a Markov triple (�,�,μ), where � has a piecewise smooth (at least C1) boundary, μ has a
smooth density with respect to the Lebesgue measure on �. Then we call � a polynomial domain and (�,�,μ) a
polynomial model.

In dimension 1 for example, up to affine transformations, there are only 3 cases of polynomial models, correspond-
ing to the Jacobi, Laguerre and Hermite polynomials, see for example [3].

1. The Hermite case corresponds to the case where � = R, μ is the Gaussian measure e−x2/2√
2π

dx on R and L is the
Ornstein–Uhlenbeck operator

LOU = d2

dx2
− x

d

dx
. (2.8)

The Hermite polynomial Hn of degree n satisfy LOUPn = −nPn.
2. The Laguerre polynomials correspond to the case where � = (0,∞), the measure μ depends on a parameter a > 0

and is μa(dx) = Cax
a−1e−x dx on (0,∞), and L is the Laguerre operator

La = x
d2

dx2
+ (a − x)

d

dx
. (2.9)

The Laguerre polynomial L
(a)
n with degree n satisfies LaL

(a)
n = −nL

(a)
n .

3. The Jacobi polynomials correspond to the case where � = (−1,1), the measure μ depends on two parameters a

and b, a, b > 0 and is is μa,b(dx) = Ca,b(1 − x)a−1(1 + x)b−1 dx on (−1,1), and L is the Jacobi operator

La,b = (
1 − x2) d2

dx2
− (

a − b + (a + b)x
) d

dx
. (2.10)

The Jacobi polynomial (J
(a,b)
n )n with degree n satisfy

La,bJ
(a,b)
n = −n(n + a + b − 1)J (a,b)

n .

In higher dimensions, when � is bounded, we recall from [4] the following results.
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Proposition 2.1. Let (�,�,μ) be a polynomial model in R
d . Then, with L described by equation (2.1), we have

1. For i = 1, . . . , d , bi is a polynomial with deg(bi) ≤ 1.
2. For i, j = 1, . . . , d , gij is a polynomial with deg(gij ) ≤ 2.
3. The boundary ∂� is included in the algebraic set {det(gij ) = 0}.
4. If {P1 · · ·Pk = 0} is the reduced equation of the boundary ∂� (see Remark 2.3 below), then, for each q = 1, . . . , k,

each i = 1, . . . , d , one has

�(logPq, xi) = Li,q, (2.11)

where Li,q is a polynomial with deg(Li,q) ≤ 1;
5. All the measures μα1,...,αk

with densities Cα1,...,αk
|P1|α1 · · · |Pk|αk on �, where the αi are such that the density is is

integrable on �, are such that (�,�,μα1,...,αk
) is a polynomial model.

6. When the degree of P1 · · ·Pk is equal to the degree of det(gij ), there are no other measures.

Conversely, assume that some bounded domain � is such that the boundary ∂� is included in an algebraic surface
and has reduced equation {P1 · · ·Pk = 0}. Assume moreover that there exists a matrix (gij (x)) which is positive
definite in � and such that each component gij (x) is a polynomial with degree at most 2. Let � denote the associated
carré du champ operator. Assume moreover that equation (2.11) is satisfied for any i = 1, . . . , d and any q = 1, . . . , k,
with Li,q a polynomial with degree at most 1.

Let (α1, . . . , αk) be such that the |P1|α1 · · · |Pk|αk is integrable on � with respect to the Lebesgue measure, and
denote

μα1,...,αk
(dx) = Cα1,...,αk

|P1|α1 · · · |Pk|αk dx,

where Cα1,...,αk
is the normalizing constant such that μα1,...,αk

is a probability measure.
Then (�,�,μα1,...,αk

) is a polynomial model.

Remark 2.2. The determination of the polynomial domains therefore amounts to the determination of the domains �

with an algebraic boundary, with the property that the reduced equation of ∂� is such that the set of equations (2.11)
has a non trivial solution, for gij and Li,q . Given the reduced equation of ∂�, equations (2.11) are linear homogeneous
ones in the coefficients of the polynomials gij and of the polynomials Li,k . Unfortunately, in general we need much
more equations to determine the unknowns uniquely, and this requires very strong constraints on the polynomials
appearing in the reduced equation of the boundary. We will see that both the simplex and the matrix simplex (in the
complex and real case) are such domains where the choice of the co-metric � is not unique.

Remark 2.3. The set of equations (2.11), which are central in the study of polynomial models, may be reduced to
less equations, when k > 1. Indeed, if we set P = P1 · · ·Pk , it reduces to

�(xi, logP) = Li, deg(Li) ≤ 1. (2.12)

In fact assume that this last equation holds with some polynomial Li , then on the regular part of the boundary described
by {Pq(x) = 0}, we have �(xi,Pq) = 0 since

�(xi,Pq) = Pq

(
Li −

∑
l 	=q

�(xi,Pl)

Pl

)
.

Therefore, �(xi,Pq) vanishes on the regular part, and Pq is irreducible, dividing �(xi,Pq), which leads to �(xi,Pq) =
Li,qPq , where deg(Li,q) ≤ 1. Thus we obtain the equation (2.11).

Remark 2.4. A bounded polynomial domain is therefore any bounded domain � with algebraic boundary, on which
there exists a symmetric matrix (gij ) with entries which are polynomials with degree at most 2, that is positive definite
on � and defines on � an operator � satisfying equation (2.12).
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In [4], a complete description of all polynomial domains and models in dimension 2 is provided: 11 different cases
are given up to affine transformations. This description only relies on algebraic considerations on those algebraic
curves in the plane where the boundary condition (2.11) has a non trivial solution. This reflects the fundamental role
played by the boundary equation.

Among the 11 bounded domains provided by the classification in [4], the triangle appears to be one of the few
ones (with the unit ball and a particular case of the parabolic bi-angle) where the metric is not unique, which may be
generalized in higher dimension as the simplex. Here we extend it furthermore to the matrix simplex.

3. Dirichlet measure on the simplex

In this section, we recall a few facts about the simplex and provide some diffusion operators on it which shows that
the simplex is a polynomial domain in the sense of Section 2.

Definition 3.1. The n dimensional simplex �n ⊂R
n is the set

�n =
{

0 ≤ xi ≤ 1, i = 1, . . . , n,

n∑
i=1

xi ≤ 1

}
.

Given a = (a1, a2, . . . , an+1) ∈ R
n+1, where ai > 0, i = 1, . . . , n + 1, the Dirichlet distribution Da is the probability

measure given by

1

Ba
x

a1−1
1 · · ·xan−1

n (1 − x1 − · · · − xn)
an+1−11�n(x1, . . . , xn) dx1 · · ·dxn,

where Ba = �(a1)···�(an+1)

�(a1+···+an+1)
is the normalizing constant.

The Dirichlet measure can be considered as a n-dimensional generalization of the beta distribution on the real line,

β(a1, a2) = 1

B(a1, a2)
xa1−1(1 − x)a2−11(0,1)(x) dx,

which is indeed D(a1,a2).
It turns out that the simplex �n is a polynomial diffusion domain in R

n in the sense of [4], as described in Section 2.
More precisely, there exist many different polynomial models on the simplex which admit the Dirichlet measure as
their reversible measures.

Theorem 3.2. Let A = (Aij )i,j=1,...,n+1 be a symmetric (n+1)× (n+1) matrix where all the coefficients Aij are non
negative, and Aii = 0. Let a = (a1, . . . , an+1) be a (n + 1)-tuple of positive real numbers. Let LA,a be the symmetric
diffusion operator defined on the simplex �n defined by

�A(xi, xj ) = −Aijxixj + δij

n+1∑
k=1

Aikxkxi, (3.1)

LA,a(xi) = −xi

n+1∑
j=1

Aijaj + ai

d+1∑
j=1

Aijxj , (3.2)

where xn+1 = 1 − ∑n
j=1 xj .

Then, as soon as Aij > 0 for all i, j = 1, . . . , n + 1, i 	= j , (�n,Da,�A) is a polynomial model, and the operator
LA,a is elliptic on �n. Moreover, any polynomial diffusion model on �n having Da as its reversible measure has this
form (however without the requirement that the coefficients Aij are positive).
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Observe that the condition Aii = 0 is irrelevant in formulas (3.1), since the coefficient Aii vanishes in the formulas.

Proof of Theorem 3.2. Let us prove first that any polynomial model with the usual degree has this form. According
to Proposition 2.1, to be a polynomial model, �(xi, xj ) must be a polynomial no more than degree 2 and satisfy the
boundary equation (2.11): for 1 ≤ i, j ≤ n,

�A(xi, logxj ) = Li,j , (3.3)

�A(xi, logxn+1) = Li,n+1, (3.4)

where {Li,j ,1 ≤ j ≤ n + 1} are polynomials with degree at most 1.
From equation (3.3), we get

�A(xi, xj ) = xjxjL
ij ,

so that �A(xi, xj ) is divisible by xi , and similarly by xj . Therefore when i 	= j , there exists a constant Aij , with
Aij = Aij , such that

�A(xi, xj ) = −Aijxjxi .

When i = j , �A(xi, xi) is divisible by xi and from equation (3.4), we obtain

n∑
j=1

�A(xi, xj ) = −xn+1L
i,n+1,

which writes

�A(xi, xi) = xi

(
n∑

j=1,j 	=i

Aij xj

)
− xn+1L

i,n+1.

This implies that xi divides Li,n+1, and therefore that Li,n+1 = −Ai(n+1)xi , so that

�A(xi, xi) = xi

n+1∑
i=1,j 	=i

Aij xj .

Conversely, it is quite immediate every operator �A defined by equation (3.3) satisfies the boundary condition on
the simplex.

The formulas for LA,a are just a direct result from the reversible measure equation (2.3).
The ellipticity of �A when all the coefficients Aij , i 	= j are positive is a particular case of the real version of

Theorem 4.1, which will be proved in Section 4. �

When all the coefficients Aij are equal to 1, the operator (3.1) is an image of the spherical Laplacian when all the
parameters ai are half integers. Indeed, consider the unit sphere

∑N
i=1 y2

i = 1 in R
N , and split the set {1, . . . ,N} in

a partition of n + 1 disjoint subsets I1, . . . , In+1 with size p1, . . . , pn+1. For i = 1, . . . , n + 1, set xi = ∑
j∈Ii

y2
j , so

that xn+1 = 1 − ∑n
i=1 xi . Then it is easy to check that, for the spherical Laplace operator �SN−1 in R

N (see [2] for
details), �SN−1(xi) and �SN−1(xi, xj ) coincide with those given in equations (3.1) whenever ai = pi

2 .
The next proposition generalizes this geometric interpretation for the general choice of the parameters Aij .

Proposition 3.3. Let I1, . . . , In+1 be a partition of {1, . . . ,N} into disjoint sets with size p1, . . . , pn+1. For i, j ∈
{1, . . . , n + 1}, with i 	= j , let Li,j be the operator acting on the unit sphere S

N−1 ⊂R
N as

Li,j =
∑

p∈Ii ,q∈Ij

(yp∂yq − yq∂yp )2.
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Then, setting xi = ∑
p∈Ii

y2
i , {x1, . . . , xn+1} are a closed system for any Li,j , and the image of

1

2

∑
i<j

Aij Li,j

is the operator LA,a, where ai = pi

2 .

The proof follows from a direct application of the change of variable formulas (2.6) and (2.7) applied to the
functions {xp}. For any operator Li,j , the associated carré du champ operator is �i,j (f, g) = ∑

p∈Ii ,q∈Ij
(yp∂yq −

yq∂yp )(f )(yp∂yq − yq∂yp )(g). We just have to identify Li,j (xp) and �i,j (xp, xq) through a direct and easy computa-
tion, and observe that it fits with the coefficients of Aij in the same expression in the definition of LA,a.

It is worth to observe that the spherical Laplace operator is nothing else than
∑

i,j Li,j . The disappearance of the
operators Li,i in the general form for LA,a comes from from the fact that the action of Li,i on any of the variables xp

vanishes.
To come back to the case where all the coefficients Aij are equal to 1, and as a consequence of the previous obser-

vation, the Dirichlet measure on the simplex is an image of the uniform measure on the sphere when the parameters are
half integers, through the map that we just described (y1, . . . , yN) �→ (x1, . . . , xd) where xi = ∑

j∈Ii
y2
j . In the same

way that the uniform measure on a sphere is an image of a Gaussian measure through the map y ∈R
N �→ y

‖y‖ ∈ S
N−1,

the Dirichlet measure may be seen as the law of the random variables
∑

j∈Ii
y2
j where yj are independent stan-

dard Gaussian variables. More precisely, if (y1, . . . , yN) are independent real valued Gaussian variables, setting
Si = ∑

j∈Ii
y2
j and S = ∑d+1

i=1 Si , we see that ( S1
S

, . . . ,
Sd

S
) follows the Dirichlet law Da whenever ai = pi

2 .

Since the variables Si have γ distribution 1

�(
pi
2 )2

pi
2

x
pi
2 −1e−x/2 dx, it is not surprising that this representation of

Dirichlet laws may be extended for the general case, that is when the parameters ai are no longer half integers,
by replacing norms of Gaussian vectors by independent variables having γ distribution. We quote the following
proposition from [14], which gives a construction of Dirichlet random variable through gamma distributions γα,β on
R

+ given by

γα,β(dx) = 1

�(α)βα
xα−1e

− x
β 1(0,∞)(x) dx,

where α > 0 and �(α) = ∫ ∞
0 xα−1e−x dx.

Proposition 3.4. Consider independent random variables x1, . . . , xn, xn+1 such that each xk has gamma distribution
γαk,2. Define S = ∑n+1

k=1 xk . Then S is independent of 1
S
(x1, . . . , xn), and the distribution of 1

S
(x1, . . . , xn) has the

density D(α1,...,αn).

When (y1, . . . , yp) are independent standard N (0,1) Gaussian variables, the random variable x = ∑p

i=1 y2
i follows

a γp/2,2 distribution. Then Proposition 3.4 generalizes the previous discription of the Dirichlet law from standard
Gaussian variables in R

N .
Indeed, Proposition 3.4 is still valid at the level of the processes. Start first from an N -dimensional Ornstein–

Uhlenbeck process, which admits the standard Gaussian measure in R
N as reversible measure. One should be careful

here, since the spherical Brownian motion is not directly the image of an Ornstein–Uhlenbeck process through x �→
x

‖x‖ . Indeed, writing the Ornstein–Uhlenbeck operator LOU = � − x · ∇ in R
N \ {0} in polar coordinates (r = ‖x‖,

φ = x
‖x‖ ) ∈ (0,∞) × S

N−1, we derive

LOU = ∂2
r +

(
N − 1

r
− r

)
∂r + 1

r2
�SN−1 ,

where �SN−1 is the spherical Brownian Laplace operator acting on the variable φ ∈ S
N−1. The structure of LOU shows

that it appears as a warped product of a one dimensional operator and the spherical Laplace operator.
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Starting again with some Ornstein–Uhlenbeck process in ξt = (ξ
(1)
t , . . . , ξ

(N)
t ) in R

N , and cutting the set of indices
in n+1 parts Ii as above, with |Ii | = pi , we may now consider the variables σ

(i)
t = Si(ξt ) and denote σt = S(ξt ), where

Si(x) = 1
2

∑
j∈Ii

x2
j and S(x) = ∑

i Si(x). Then σ
(i)
t are independent Laguerre processes with generator Lai

(f ) =
2(xf ′′ + (ai − x)f ′), where ai = pi

2 . One sees that σt is again a Laguerre process with generator La(f ) = 2(xf ′′ +
(a − x)f ′), with a = N/2. Then, setting ζ

(i)
t = σ

(i)
t

σt
and ζt = (ζ

(1)
t , . . . , ζ

(n)
t ), ζt takes values in the simplex �n, and

a simple computation shows that (σt , ζt ) is a Markov process with generator La + 1
S

LA,a, where LA,a is the operator
defined in Theorem 3.2, with Aij = 2 and ai = pi

2 .
This may be extended to the general case where the parameters ai are no longer half integers. Starting from the

standard Laguerre operator, we have

Proposition 3.5. Let ā = (a1, . . . , an+1) be positive integers and �t = (σ
(1)
t , . . . , σ

(n+1)
t ) be independent Laguerre

processes on R+ with generator Lai
(f ) = xf ′′ + (ai − x)f ′. Let σt = ∑n+1

i=1 σ
(i)
t and ζt = (

σ
(1)
t

σt
, . . . ,

σ
(d)
t

σt
). Then, the

pair (σt , ζt ) ∈R+ × �n is a diffusion process with generator

S∂2
S + (a − S)∂S + 1

S
LA,a,

where LA,a is defined in Theorem 3.2 with Aij = 1 for i 	= j , a = ā and a = ∑n+1
i=1 ai .

Proof. Following the notations of Section 2, we consider he generator of the process �t , which is

Lā =
n+1∑
i=1

yi∂
2
yi

f +
n+1∑
i=1

(ai − yi)∂yi
f,

where y = (y1, . . . , yn+1) ∈R
(n+1)
+ . Let �ā be its associated carré du champ operator. With S = ∑n+1

i=1 yi and zi = yi

S
,

i = 1, . . . , n, we just have to check that

1. Lā (S) = a − S;
2. Lā (zi) = 1

S
(ai − azi);

3. �ā(S,S) = S;
4. �ā(S, zi) = 0;
5. �ā(zi, zj ) = 1

S
(δij zi − zizj ).

This follows directly from a straightforward computation. �

Remark 3.6. As pointed out by the referee, a special case of Proposition 3.5 has appeared in [17], where Warren and
Yor showed that the ratio of two squared Bessel process is a real time-changed Jacobi process.

Remark 3.7. Proposition 3.5 provides a construction of the process on the simplex with generator LA,a for the general
a but only when Aij = 1 for i 	= j . To obtain a construction in the general case, we may use the same generalization
that we did on the sphere with the operators Li,j = ∑

k∈Ii ,l∈Ij
(yk∂l − yl∂k)

2, where y = (yi) ∈ S
n, i.e., consider the

operator

LA
OU = ∂2

r +
(

N − 1

r
− r

)
∂r + 1

2r2

∑
i<j

Aij Li,j ,

where we use 1
2

∑
i<j Aij Li,j instead of �SN−1 in the Ornstein–Uhlenbeck operator.

Its reversible measure is still e− 1
2 ‖x‖2

dx1 · · ·dxN+1 on R
N+1. Now let LA

OU act on the variables xi = ∑
p∈Ii

y2
p ,

and S = ∑
i xi zi = xi

S
, i = 1, . . . , n, then it is easy to check that the image of LA

OU is LA,a with ai = pi

2 .
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4. Matrix Dirichlet processes

4.1. The complex matrix simplex and their associated Dirichlet measures

We now introduce complex matrix simplex, the complex matrix Dirichlet processes and their corresponding diffusion
operators. In particular, we give two families of models. The first ones come from extracted matrices from the Brown-
ian motion on SU(N), and are analogues to the construction of the scalar Dirichlet process from spherical Brownian
motion. Similarly, Proposition 3.5 may be extended to a similar construction from Wishart matrix processes, which
are a natural matrix extension of Laguerre processes.

As the complex matrix simplex has its real version, it is not hard to derive the real counterparts of our results.
First we define the complex matrix generalization �n,d of the n-dimensional simplex as the set of n-tuple of

Hermitian non negative matrices {Z(1), . . . ,Z(n)} such that

n∑
k=1

Z(k) ≤ Id. (4.1)

Accordingly, the complex matrix Dirichlet measure Da on �n,d is given by

Cd;a
n∏

k=1

det
(
Z(k)

)ak−1 det

(
Id −

n∑
k=1

Z(k)

)an+1−1 n∏
k=1

dZ(k), (4.2)

where a = (a1, . . . , an+1), {ai}n+1
i=1 are all positive constants, and dZ(k) is the Lebesgue measure on the entries of Z(k),

i.e., if Z(k) has complex entries Z
(k)
pq = X

(k)
pq + iY

(k)
pq , with Z

(k)
qp = Z̄

(k)
pq ,

dZ(k) =
∏

1≤p≤q≤d

dX(k)
pq dY (k)

pq .

This measure is finite exactly when the constants ai are positive, and the normalizing constant Cd;a makes Da a
probability measure on �n,d .

The normalization constant Cd;a may be explicitly computed with the help of the matrix gamma function

�d(a) =
∫

A>0
e− trace(A) det(A)a−1 dA = π

1
2 d(d−1)

d∏
i=1

�(a + d − i),

where {A > 0} denotes the domain of d × d positive-definite, Hermitian matrices. Then, the normalization constant
may be written as

Cd;a =
∏n+1

i=1 �d(ai)

�d(
∑n+1

i=1 ai)
.

It turns out that �n,d is polynomial domain as described in Remark 2.4, with boundary described by the equation

det
(
Z(1)

) · · ·det
(
Z(n)

)
det

(
Id − Z(1) − · · · − Z(n)

) = 0, (4.3)

which is a polynomial domain. For convenience, and as described in Section 2, we will use complex coordinates
(Z

(k)
pq , Z̄

(k)
pq ,1 ≤ k ≤ n,1 ≤ p < q ≤ d), and real ones Z

(k)
pp , to describe the various diffusion operators acting on

�n,d . Moreover, instead of using (Z
(k)
ij , Z̄

(k)
ij ), 1 ≤ i < j ≤ d as coordinates, in our case it is simpler to use (Z

(k)
ij ,

i, j = 1, . . . , d), due to the fact that Z̄
(k)
ij = Z

(k)
ji . As in the scalar case studied in Section 3, it turns out that there are

many possible operators � acting on �n,d such that (�n,d ,�,Da1,...,an+1) is a polynomial model.

To simplify the notations, we shall always set Z(n+1) = Id − ∑n
i=1 Z(i), with entries Z

(n+1)
ij , i, j = 1, . . . , d .
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According to the boundary equation (2.12), the carré du champ operator � of the matrix Dirichlet process is such
that each entry must be a polynomial of degree at most 2 in the variables (Z

(k)
ij , Z̄

(k)
ij ) and must satisfy

�
(
Z

(p)
ij , log det

(
Z(k)

)) = Lp,k

for every p = 1, . . . , n, k = 1, . . . , n + 1, i, j = 1, . . . d , where Lp,k is an affine function of the entries of
{Z(1), . . . ,Z(n)}. However, since there are many variables in the diffusion operator �, we are not in the position
to describe all the possible solutions for � as we did in the scalar case. Therefore, we will restrict ourselves to a
simpler form. Namely, we assume that for any 1 ≤ p,q ≤ n + 1,

�
(
Z

(p)
ij ,Z

(q)
kl

) =
∑

abcdrs

(
A

p,q
ij,kl

)ab,cd

r,s
Z

(r)
ab Z

(s)
cd ,

with some constant coefficients (A
p,q
ij,kl)

ab,cd
r,s . Then the tensor (Ap,q

ij,kl), whose entries are denoted by {(Ap,q
ij,kl)

ab,cd
r,s },

should satisfy the following restrictions:

• Since � is symmetric, we have (A
p,q
ij,kl)ab,cd = (A

q,p
kl,ij )ab,cd , and the choice of (Ap,q

ij,kl) should ensure that � is elliptic
on the matrix simplex.

• The fact that the diffusions live in the matrix simplex gives rise to

n+1∑
p=1

∑
abcd

(
A

p,q
ij,kl

)
ab,cd

Z
(p)
ab Z

(q)
cd = 0.

• The boundary equation (4.4) leads to

�
(
Z

(p)
ij , log det Z(q)

) =
∑
abcd

(
Z(q)

)−1
lk

(
A

p,q
ij,kl

)
ab,cd

Z
(p)
ab Z

(q)
cd = Lp,q (4.4)

for every p = 1, . . . , n, q = 1, . . . , n + 1, where Lp,q is an affine function in the entries of {Z(1), . . . ,Z(n)}, and

(Z(q))−1
ij are the entries of the inverse matrix (Z(q))−1.

This last equation comes from the diffusion property for the operator � (equation (2.7)), together with the fact
that, for any matrix Z with entries Zij ,

∂Zij
log det(Z) = Z−1

ji ,

where Z−1
ij are the entries of the inverse matrix Z−1.

Even under above restrictions, it is still hard to give any complete description of such tensors {(Ap,q
ij,kl)}. In the

following we give two models of matrix Dirichlet process, which appear quite naturally as projections from the
Brownian motion on SU(N) and from complex Wishart processes, as we have mentioned before.

4.2. Two polynomial diffusion models on �n,d

Our first model is defined by the following Theorem 4.1. As we will see in next section, it appears naturally in some
projections of diffusion models on SU(N).

Theorem 4.1. Let the matrix A = (Apq),1 ≤ p,q ≤ n + 1 be a symmetric matrix. Then, consider the diffusion �A
operator given by

�A
(
Z

(p)
ij ,Z

(q)
kl

) = δpq

n+1∑
s=1

Asp

(
Z

(s)
il Z

(p)
kj + Z

(s)
kj Z

(p)
il

) − Apq

(
Z

(q)
il Z

(p)
kj + Z

(p)
il Z

(q)
kj

)
(4.5)
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for 1 ≤ p,q ≤ n, 1 ≤ i, j, k, l ≤ d . Following the notations of Section 4.1, in this model we have

(
Ap,q

ij,kl

)ab,cd

r,s
= Ars(δpqδpr − δprδqs)(δakδbj δciδdl + δaiδblδckδdj ).

Then �A is elliptic if and only if the matrix A has non negative entries and is irreducible. In this case, (�n,d ,�A,Da)

is a polynomial model and

LA,a
(
Z

(p)
ij

) =
n+1∑
q

2(ap + d − 1)ApqZ
(q)
ij −

n+1∑
q

2(aq + d − 1)ApqZ
(p)
ij . (4.6)

We recall that a matrix A with non negative entries is irreducible if and only if for any p 	= q , there exits a path
p = p0,p1, . . . , pk = q such that for any i = 0, . . . , k − 1, Apipi+1 	= 0.

Proof of Theorem 4.5. Recall that our coordinates are the entries Z
(k)
ij of the Hermitian matrices Z(1), . . . ,Z(n) and

that Z(n+1) = Id − ∑n
k=1 Z(k).

The only requirement here (apart from the ellipticity property that we willl deal with below) is that equation (4.4)
is satisfied for this particular choice of the tensor (Ap,q

ij,kl). Thus for 1 ≤ p,q ≤ n, we have

�A
(
log det

(
Z(q)

)
,Z

(p)
ij

) = δpq

n+1∑
s

2AspZ
(s)
ij − 2ApqZ

(p)
ij ,

while

�A
(
log det

(
Z(n+1)

)
,Z

(p)
ij

) = −2A(n+1)pZ
(p)
ij ,

which shows that the boundary equation is satisfied for this model.
We now prove that on the matrix simplex �n,d , �A given by (4.5) is elliptic if and only if for p,q = 1, . . . , n + 1,

Apq > 0.

For fixed (p, q), we consider �A(Z
(p)
ij ,Z

(q)
kl ) as the (ij, kl) element in a d2 × d2 matrix; and (�A(Z

(p)
ij ,Z

(q)
kl )) is

the (p, q) element in a n × n matrix of d2 × d2 matrices. Notice that we may write

(�A) =
∑

1≤p<q≤n

Apq�(pq) + An+1�
(n+1),

where

1. (�pq) is a nd2 × nd2 block matrix with

(
�(pq)

)
pq,(ij,kl)

= −(
Z

(q)
il Z

(p)
kj + Z

(p)
il Z

(q)
kj

)
,(

�(pq)
)
qp,(ij,kl)

= −(
Z

(q)
il Z

(p)
kj + Z

(p)
il Z

(q)
kj

)
,(

�(pq)
)
pp,(ij,kl)

= Z
(q)
il Z

(p)
kj + Z

(p)
il Z

(q)
kj ,(

�(pq)
)
qq,(ij,kl)

= Z
(q)
il Z

(p)
kj + Z

(p)
il Z

(q)
kj ,

and other entries are 0;
2. �(n+1) is a diagonal block matrix with �

(n+1)
pp,(ij,kl) = Z

(n+1)
il Z

(p)
kj + Z

(p)
il Z

(n+1)
kj and other entries are 0;

3. An+1 is a diagonal block matrix of size nd2 × nd2 satisfying (An+1)pp = Ap(n+1)Idd2×d2 .
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We first observe that each operator associated with �(pq) is non negative. To see this, we have to check that for any
sequence (�) = (�(1), . . . ,�(n)) of Hermitian matrices with entries λ

(k)
ij ,

∑
rs,ij,kl

�
(pq)

rs,(ij,k̄l)
λ

(r)
ij λ̄

(s)
kl ≥ 0.

In fact,∑
rs,ij,kl

�
(pq)

rs,(ij,k̄l)
λ

(r)
ij λ̄

(s)
kl = (

�(p) − �(q)
)
�

(pq)
pp

(
�̄(p) − �̄(q)

)

= trace
(
Z(q)

(
�̄(p) − �̄(q)

)
Z(p)

(
�(p) − �(q)

)t)
+ trace

(
Z(p)

(
�̄(p) − �̄(q)

)
Z(q)

(
�(p) − �(q)

)t)
.

For any p, Z(p) is Hermitian and non negative-definite, so are (�̄(p) − �̄(q))Z(p)(�(p) − �(q))t , (�(p) −
�(q))tZ(p)(�̄(p) − �̄(q)), then we have

trace
(
Z(q)

(
�̄(p) − �̄(q)

)
Z(p)

(
�(p) − �(q)

)t) ≥ 0,

trace
(
Z(p)

(
�̄(p) − �̄(q)

)
Z(q)

(
�(p) − �(q)

)t) ≥ 0.

Therefore �(pq) are all non negative-definite matrices.
Similarly, we have∑

p,ij,kl

Ap(n+1)�
(n+1)

pp,(ij,k̄l)
λ

(p)
ij λ̄

(p)
kl

=
∑
p

Ap(n+1)

(
trace

(
Z(n+1)�̄(p)Z(p)

(
�(p)

)t) + trace
(
Z(n+1)

(
�(p)

)tZ(p)�̄(p)
))

.

Thus we know �(n+1) ≥ 0.
We then prove the following lemma,

Lemma 4.2. Let A, B be d × d Hermitian positive definite matrices. Then for a given d × d matrix U , if
trace(AUBU∗) = 0, then U = 0.

Proof. Suppose A has the spectral decomposition A = P ∗DP , where P is unitary and D = diag{λ1, . . . , λd} with all
λi positive. Then

trace
(
AUBU∗) = trace

(
P ∗DPUBU∗) = trace

(
DPUBU∗P ∗).

Notice that since B is positive definite, if PU 	= 0, then PUBU∗P ∗ is also positive definite, whose elements on
the diagonal are all positive, implying trace(DPUBU∗P ∗) > 0. Therefore, trace(AUBU∗) = 0 holds only when
PU = 0. Since P is unitary, this happens only when U = 0. �

Recall the boundary equation of �n,d (4.3), then inside �n,d we know all Z(i) are positive definite. Now we claim
that �A is elliptic inside �n,d if and only if A has non negative entries and is irreducible.

Previous computations show that �A ≥ 0 and if there exists �0 such that �0�A�∗
0 = 0, we have

n∑
p<q

Apq

(
trace

(
Z(q)

(
�̄

(p)

0 − �̄
(q)

0

)
Z(p)

(
�

(p)

0 − �
(q)

0

)t)

+ trace
(
Z(p)

(
�̄

(p)

0 − �̄
(q)

0

)
Z(q)

(
�

(p)

0 − �(q)
)t

0

))
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+
n∑
p

Ap(n+1)

(
trace

(
Z(n+1)�̄(p)Z(p)

(
�(p)

)t)

+ trace
(
Z(n+1)

(
�(p)

)tZ(p)�̄(p)
))

= 0. (4.7)

Since each term is non-negative, they should all vanish. By the fact that A is irreducible, we know that for
any 1 ≤ p ≤ n, there exists a path connecting p and n + 1, noted by p,p1,p2, . . . , pr , (n + 1), which leads to
App1 ,Ap1p2 , . . . ,Apr (n+1) > 0. Then by Lemma 4.2, we have

�
(p)

0 = �
(p1)

0 = · · · = �
(pr)

0 = 0,

i.e. �0 = 0, which implies that �A is elliptic.
Conversely, when �A is elliptic, then if �0�A�∗

0 = 0, we must have �0 = 0. First we prove that A has non
negative entries. For given 1 ≤ p ≤ (n + 1), assume that some Apq < 0 for some q 	= p. Then, choose the sequence

�1 = (�
(1)
1 , . . . ,�

(n)
1 ) to be such that �(p) = ((Z(p))− 1

2 )t and all others are 0, then from �1�A�∗
1 > 0, we conclude

that for (Z(1), . . . ,Z(n)) ∈ �n,d ,

n+1∑
r 	=p

2Apr trace
(
Z(r)

)
> 0.

Now, choose Z(q) = (1 − ε)Id and Z(r) = ε
n

Id for r 	= q , 0 < ε < 1. Then when ε <
|Apq |∑n+1

s 	=p |Aps | we obtain a

contradiction.
Now suppose A is not irreducible, then it has at least two strongly connected components A1, A2, such that Apq = 0

for p ∈ A1, q ∈ A2. Suppose (n + 1) ∈ A1, then for all p ∈ A1, choose �
(p)

0 = 0, while for q ∈ A2, �
(q)

0 	= 0, such
that we have �0 	= 0 which satisfies �0�A�∗

0 = 0. Thus there is a contradiction, so we must have A to be irreducible.
Finally, by a direct computation, we have

LA,a
(
Z

(p)
ij

) =
n+1∑
q=1

(aq − 1)�
(
log det

(
Z(q)

)
,Z

(p)
ij

) +
n∑

q=1

∑
kl

∂
Z

(q)
kl

�
(
Z

(p)
ij ,Z

(q)
kl

)

=
n+1∑
q

2(ap + d − 1)ApqZ
(q)
ij −

n+1∑
q

2(aq + d − 1)ApqZ
(p)
ij .

�

The second model is given by the following Theorem 4.3, which can be naturally derived from the Ornstein–
Uhlenbeck process on the complex matrices.

Theorem 4.3. Let A be a d × d positive-definite Hermitian matrix and B be a d2 × d2 positive-definite Hermitian
matrix. Consider the diffusion �A,B operator given by

�A,B
(
Z

(p)
ij ,Z

(q)
kl

) = δpq

(
AilZ

(p)
kj + AkjZ

(p)
il

) − Akj

(
Z(p)Z(q)

)
il

− Ail

(
Z(q)Z(p)

)
kj

+
∑
ab

(
Bia,lbZ

(p)
aj Z

(q)
kb + Baj,bkZ

(p)
ia Z

(q)
bl − Baj,lbZ

(p)
ia Z

(q)
kb − Bia,bkZ

(p)
aj Z

(q)
bl

)
(4.8)

for 1 ≤ p,q ≤ n, 1 ≤ i, j, k, l ≤ d . Following the notations of Section 4.1, in this model we have

(
Ap,q

ij,kl

)ab,cd

r,s
= δpqδprAcd(δakδbj δciδdl + δaiδblδckδdj ) − δprδqs(Akj δaiδbcδdl + Ailδckδadδbj )

+ δprδqs(Bia,ldδbj δck + Bbj,ckδaiδdl − Bbj,ldδaiδck − Bia,ckδbj δdl).
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Then (�n,d ,�A,B,Da1,...,an+1) is a polynomial model. Moreover, in this case,

LA,B,a
(
Z

(p)
ij

) = 2(ap − 1 + d)Aij −
n∑

q=1

(aq − 1 + d)
((

AZ(p)
)
ij

+ (
Z(p)A

)
ij

)

− (an+1 − 1)
((

AZ(p)
)
ij

+ (
Z(p)A

)
ij

) − 2Aij trace
(
Z(p)

)
+

∑
ab

(
Bia,jbZ

(p)
ab + Bbj,aiZ

(p)
ab − Bia,baZ

(p)
bj − Bbj,baZ

(p)
ia

)
, (4.9)

where Z(n+1) = Id − ∑n
p=1 Z(p).

Proof. First, let us show that equations (4.8) and (4.9) define a polynomial model. In fact, for 1 ≤ p,q ≤ n,

�
(
Z

(p)
ij , log det Z(q)

) = 2Aij δpq − (
AZ(p)

)
ij

− (
Z(p)A

)
ij
,

�
(
Z

(p)
ij , log det Z(n+1)

) = −(
AZ(p)

)
ij

− (
Z(p)A

)
ij
,

which is a polynomial model by Proposition 2.1.
Direct computations yield

L
(
Z

(p)
ij

) = 2(ap − 1 + d)Aij −
n∑

q=1

(aq − 1 + d)
((

AZ(p)
)
ij

+ (
Z(p)A

)
ij

)

− (an+1 − 1)
((

AZ(p)
)
ij

+ (
Z(p)A

)
ij

) − 2Aij trace
(
Z(p)

)
+

∑
ab

(
Bia,jbZ

(p)
ab + Bbj,aiZ

(p)
ab − Bia,baZ

(p)
bj − Bbj,baZ

(p)
ia

)
.

Now we prove that if A is a d ×d Hermitian and positive-definite matrix and B is a d2 ×d2 Hermitian and positive-
definite matrix, then �A,B is elliptic inside the matrix simplex �n,d . In fact, consider �A,B as a n × n block matrix,
and each block is of size d2 × d2, then we may write

�A,B = �A + �B,

where �A is the block matrix containing A and �B is the block matrix containing B.
Let (�1, . . . ,�n) be any sequence of d × d Hermitian matrices. Then,

n∑
p,q=1

∑
ijkl

λ
p
ij λ̄

q
kl

(
�

p,q

A

)
ij,lk

= trace

(
A

(
n∑

p=1

�̄pZ(p)
(
�p

)t −
n∑

p,q=1

�̄pZ(p)Z(q)
(
�q

)t

))

+ trace

(
A

(
n∑

p=1

(
�p

)tZ(p)�̄p −
n∑

p,q=1

(
�p

)tZ(p)Z(q)�̄q

))
.

Then since A is positive definite, we just need to prove that

n∑
p=1

�̄pZ(p)
(
�p

)t −
n∑

p,q=1

�̄pZ(p)Z(q)
(
�q

)t
,

n∑
p=1

(
�p

)tZ(p)�̄p −
n∑

p,q=1

(
�p

)tZ(p)Z(q)�̄q,
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are non negative definite. For the first one, given a vector X = (X1, . . . ,Xd), we have

X

(
n∑

p=1

�̄pZ(p)
(
�p

)t −
n∑

p,q=1

�̄pZ(p)Z(q)
(
�q

)t

)
X∗

= X�̄
(
Z − YY ∗)�tX∗

= X�̄Z
1
2
(
Idnd − (

Z− 1
2 Y

)(
Z− 1

2 Y
)∗)(

X�̄Z
1
2
)∗

,

where � is a vector of matrices � = (�1, . . . ,�n), Z = diag(Z(1), . . . ,Z(n)) and Y is a vector of matrices such
that Y = (Z(1), . . . ,Z(n))∗. Then by Sylvester determinant theorem, we are able to compute the eigenvalues of Id −
(Z− 1

2 Y)(Z− 1
2 Y)∗,

det
(
λIdnd − (

Idnd − (
Z− 1

2 Y
)(

Z− 1
2 Y

)∗))
= det

(
(λ − 1)Idnd + (

Z− 1
2 Y

)(
Z− 1

2 Y
)∗)

= (λ − 1)(n−1)d det
(
λId − Z(n+1)

)
. (4.10)

Since Z(n+1) = Id − ∑n
p=1 Z(p) is also a non negative-definite Hermitian matrix, the above equation means that the

eigenvalues of Id − (Z− 1
2 Y)(Z− 1

2 Y)∗ are all non negative, indicating that it is a non negative definite matrix, such that

X

(
n∑

p=1

�̄pZ(p)
(
�p

)t −
n∑

p,q=1

�̄pZ(p)Z(q)
(
�q

)t

)
X∗ ≥ 0,

thus
∑n

p=1 �̄pZ(p)(�p)t − ∑n
p,q=1 �̄pZ(p)Z(q)(�q)t is non negative definite, so is

∑n
p=1(�

p)tZ(p)�̄p −∑n
p,q=1(�

p)tZ(p)Z(q)�̄q . Therefore by the fact that A is a positive-definite, Hermitian matrix, we have

trace

(
A

(
n∑

p=1

�̄pZ(p)
(
�p

)t −
n∑

p,q=1

�̄pZ(p)Z(q)
(
�q

)t

))
≥ 0,

trace

(
A

(
n∑

p=1

(
�p

)tZ(p)�̄p −
n∑

p,q=1

(
�p

)tZ(p)Z(q)�̄q

))
≥ 0.

Since

trace

(
A

(
n∑

p=1

�̄pZ(p)
(
�p

)t −
n∑

p,q=1

�̄pZ(p)Z(q)
(
�q

)t

))
= trace

(
A�̄

(
Z − YY ∗)�t

)
,

and by (4.10) we know that inside �n,d , Z − YY ∗ is positive definite. Thus following the proof of Lemma 4.2, we
may conclude that if

trace

(
A

(
n∑

p=1

�̄pZ(p)
(
�p

)t −
n∑

p,q=1

�̄pZ(p)Z(q)
(
�q

)t

))
= 0,

then � = 0. This implies that �A is elliptic inside �n,d .
As for �B, notice that

d∑
i,j,k,l=1

λ
p
ij λ̄

q
kl

(
�

p,q

B

)
ij,k̄l

= (
�pZ̄(p) − Z̄(p)�p

)
B

(
Z̄(q)

(
�q

)∗ − (
�q

)∗Z̄(q)
)
.
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Let H(p) = �pZ̄(p) − Z̄(p)�p , since B is positive-definite, Hermitian in the sense that Bij,kl = B̄kl,ij , then

n∑
p,q=1

d∑
i,j,k,l=1

λ
p
ij λ̄

q
kl

(
�

p,q
B

)
ij,lk

=
(

n∑
p=1

H(p)

)
B

(
n∑

q=1

(
H(q)

)∗
)

≥ 0,

which means �B is non-negative definite. Since �A,B = �A + �B, we know that �A,B is elliptic inside �n,d . Then we
finish the proof. �

5. Examples

5.1. The construction from SU(N)

In this section, we show that our first model of matrix Dirichlet processes can be realized by the projections from
Brownian motion on SU(N). The construction relies on the matrix-extracting procedure, extending the construction
of matrix Jacobi processes described in [10]. In both this case and the special case where all the parameters Aij are
equal to d , the associated generator may be considered as an image of the Casimir operator on SU(N), whenever the
coefficients ai in the measure are integers. Moreover, for the general case, similar to the construction in the scalar case
in Proposition 3.3, we provide a construction from more general Brownian motions on SU(N), where the generator
is no longer the Casimir operator on SU(N).

The so-called “matrix-extracting procedure” is the following: consider a matrix u on SU(N), then take the first d

lines, and split the set of all N columns into (n + 1) disjoint sets I1, . . . , In+1. For 1 ≤ i ≤ (n + 1), define di = |Ii |
such that N = d1 +· · ·+ dn+1. Then we get (n+ 1) extracted matrices {W(i)}, respectively of size d ×d1, d ×d2, . . . ,
d ×dn+1. The matrix Jacobi process is obtained by considering the Hermitian matrix W(1)W(1)∗. Here, we extend this
procedure, defining Z(i) = W(i)(W(i))∗ for i = 1, . . . , n + 1. Then,

∑n+1
i=1 Z(i) = Id, and the process (Z(1), . . . ,Z(n))

lives in the complex matrix Dirichlet simplex �d,n.
The compact Lie group SU(N) is semi-simple compact. There is, up to a scaling constant, a unique elliptic diffu-

sion operator on it which commutes both with the right and the left multiplication. This operator is called the Casimir
operator, see [4,18] for more details. The Brownian motion on SU(N) is the diffusion process which has the Casimir
operator as its generator. It may be described by the vector fields VRij

, VSij
and VDij

which are given on the entries
{uij } of u ∈ SU(N) matrix as

VRij
=

∑
k

(ukj ∂uki
− uki∂ukj

+ ūkj ∂ūki
− ūki∂ūkj

), (5.1)

VSij
= i

∑
k

(ukj ∂uki
+ uki∂ukj

− ūkj ∂ūki
− ūki∂ūkj

), (5.2)

VDij
= i

∑
k

(uki∂uki
− ukj ∂ukj

− ūki∂z̄ki
+ ūkj ∂ūkj

). (5.3)

Then for the Casimir operator �SU(N) on SU(N), we have

�SU(N) = 1

4N

∑
i<j

(
V2

Rij
+ V2

Sij
+ 2

N
V2

Dij

)
,

and

�SU(N)(f, g) = 1

4N

(∑
i<j

VRij
(f )VRij

(g) + VSij
(f )VSij

(g) + 2

N
VDij

(f )VDij
(g)

)
.

From this, a simple computation provides

�SU(N)(uij , ukl) = − 1

2N
uilukj + 1

2N2
uijukl,
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�SU(N)(uij , ūkl) = 1

2N
δikδjl − 1

2N2
uij ūkl,

�SU(N)(uij ) = −N2 − 1

2N2
uij , �SU(N)(ūij ) = −N2 − 1

2N2
ūij ,

and these formulas describe entirely the Brownian motion on SU(N).
A simple application of the diffusion property (equations (2.6) and (2.7)) yields, for 1 ≤ p,q ≤ n, for the entries

Z
(p)
ij of the matrices Z(p),

�SU(N)

(
Z

(p)
ij ,Z

(q)
kl

) = 1

2N
δpq

(
δilZ

(p)
kj + δkjZ

(p)
il

) − 1

2N

(
Z

(p)
kj Z

(q)
il + Z

(p)
il Z

(q)
kj

)
, (5.4)

�SU(N)

(
Z

(p)
ij

) = −Z
(p)
ij + 1

N
dpδij . (5.5)

Comparing (5.4), (5.5) with (4.5) and (4.6), we obtain a matrix Dirichlet operator described in Theorem 4.1, with

Apq = 1

2N
, ai = di − d + 1

for any 1 ≤ p,q ≤ n and 1 ≤ i ≤ (n + 1). Therefore, the density of the reversible measure is

C

n∏
p=1

det
(
Z(p)

)dp−d det

(
Id −

n∑
p=1

Z(p)

)dn+1−d

. (5.6)

To have this measure finite, we need di > d − 1 for all 1 ≤ i ≤ (n+ 1), i.e., di ≥ d since these parameters are integers.
It is worth to observe that this restriction is necessary for the matrices Z(i) to be non degenerate. If it is not satisfied,
the matrices Z(i) live on an algebraic submanifold and their law may not have any density with respect to the Lebesgue
measure.

To summarize, we have

Proposition 5.1. The image of the Brownian motion on SU(N) under the matrix-extracting procedure is a diffusion
process on the complex matrix simplex �d,n with carré du champ �A and reversible measure Da1,...,an+1 where
Apq = 1

2N
,p,q = 1, . . . , n + 1,p 	= q , ai = di − d + 1.

As a corollary, we get

Corollary 5.2. Whenever di ≥ d , i = 1, . . . , n + 1, the image of the Haar measure on SU(N) through the matrix-
extracting procedure is the matrix Dirichlet measure Dd1−d,...,dn+1−d .

For the general case where the parameters Aij are not equal, we may follow Proposition 3.3. For p 	= q , we define
the following L(pq) acting on the matrix simplex {Z(i),

∑n
i=1 Z(i) ≤ Id},

L(pq) =
∑

i∈Ip,j∈Iq

V2
Rij

+ V2
Sij

+ 2

N
V2

Dij
,

with its corresponding carré du champ operator �(pq),

�(pq)(f, g) =
∑

i∈Ip,j∈Iq

VRij
(f )VRij

(g) + VSij
(f )VSij

(g) + 2

N
VDij

(f )VDij
(g).
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Lemma 5.3. For the entries uij of an SU(N) matrix, and denoting by Z
(p)
ij the entries of the extracted matrix Z(p),

we have

VRij
Z

(p)
ab = 1i∈Ip (uaj ūbi + uai ūbj ) − 1j∈Ip (uai ūbj + uaj ūbi), (5.7)

VSij
Z

(p)
ab = √−1

(
1i∈Ip (uaj ūbi − uai ūbj ) + 1j∈Ip (uai ūbj − uaj ūbi)

)
, (5.8)

VDij
Z

(p)
ab = 0, (5.9)

and

V2
Rij

Z
(p)
ab = 1i∈Ip (2uaj ūbj − 2uai ūbi) − 1j∈Ip (2uaj ūbj − 2uai ūbi), (5.10)

V2
Sij

Z
(p)
ab = 1i∈Ip (2uaj ūbj − 2uai ūbi) − 1j∈Ip (2uaj ūbj − 2uai ūbi). (5.11)

Then,

�(pq)
(
Z

(p)
ab ,Z

(q)
cd

) = −2Z
(p)
cb Z

(q)
ad − 2Z

(p)
ad Z

(q)
cb , (5.12)

�(pq)
(
Z

(p)
ab ,Z

(p)
cd

) = 2Z
(p)
cb Z

(q)
ad + 2Z

(p)
ad Z

(q)
cb , (5.13)

�(pq)
(
Z

(q)
ab ,Z

(q)
cd

) = 2Z
(p)
cb Z

(q)
ad + 2Z

(p)
ad Z

(q)
cb . (5.14)

For a pair (r, s) 	= (p, q), we have

�(pq)
(
Z

(r)
ab ,Z

(s)
cd

) = 0. (5.15)

Moreover,

L(pq)
(
Z

(r)
ij

) = 1r=p4
(
dpZ

(q)
ij − dqZ

(p)
ij

) − 1r=q4
(
dpZ

(q)
ij − dqZ

(p)
ij

)
. (5.16)

Remark 5.4. The action of VDij
vanishes on the variables Z

(p)
ab such that indeed we could replace L(pq) by

L(pq) =
∑

i∈Ip,j∈Iq

V2
Rij

+ V2
Sij

,

and the dimension N disappears from the definition.

Proof of Lemma 5.3. Recall (5.1). Then letting VRij
act on Z(p) = W(p)(W(p))∗ and writing (uij )1≤i≤d,j∈Ip for the

entries of W(p), which are indeed entries of an SU(N) matrix, we have

VRij
Z

(p)
ab =

∑
r∈Ip

VRij
(uar ūbr )

= 1i∈Ip (uaj ūbi + uai ūbj ) − 1j∈Ip (uai ūbj + uaj ūbi).

Similarly we can prove (5.8), (5.9).
By (5.7), (5.8), we obtain

VRij
(uaj ūbi + uai ūbj ) = 2uaj ūbj − 2uai ūbi ,

VSij
(uaj ūbi − uai ūbj ) = −√−1(2uaj ūbj − 2uai ūbi),

then (5.15), (5.10) follow.
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By (5.7), (5.8) and (5.9) we have

�(pq)
(
Z

(p)
ab ,Z

(q)
cd

)
=

∑
i∈Ip,j∈Iq

VRij

(
Z

(p)
ab

)
VRij

(
Z

(q)
cd

) + VSij

(
Z

(p)
ab

)
VSij

(
Z

(q)
cd

)

= −2Z
(p)
cb Z

(q)
ad − 2Z

(p)
ad Z

(q)
cb ,

which proves (5.12).
In the same way, we can deduce (5.13), (5.14) and (5.15).
(5.16) is proved by (5.10), (5.11) and

L(pq)
(
Z

(r)
ij

) =
∑

k∈Ip,l∈Iq

V2
Rkl

Z
(r)
ij + V2

Skl
Z

(r)
ij

= 1r=p4
(
dpZ

(q)
ij − dqZ

(p)
ij

) − 1r=q4
(
dpZ

(q)
ij − dqZ

(p)
ij

)
. �

Now by Lemma 5.3 we may derive the following conclusion.

Proposition 5.5. (Z(1), . . . ,Z(n)) is a closed system for any L(pq) and the image of

1

2

n+1∑
p<q

ApqL(pq)

is the operator LA,a in Theorem 4.1 with ai = di − d + 1.

5.2. The construction from Wishart processes

In what follows, we show that our second model may be constructed as a projection from complex Wishart pro-
cesses, which are matrix generalizations of Laguerre processes. We first recall the definition of the complex Wishart
distribution.

Definition 5.6. A d × d Hermitian positive definite matrix W is said to have a Wishart distribution with parameters
d , r ≥ d , if its distribution has a density given by

Cr,d det(W)r−de− 1
2 trace(W), (5.17)

where Cr,d = (2rdπ
1
2 d(d−1)�(r)�(r − 1) · · ·�(r − d + 1))−1 is the normalization constant.

When r ≥ d is an integer, this distribution can be derived from the Gaussian distributed complex matrix. Indeed, if
we consider a d × r complex matrix X with its elements being independent Gaussian centered random variables, then
W = XX∗ has the complex Wishart distribution with parameters d, r .

A d ×d complex Wishart process {Wt, t ≥ 0} is usually defined as a solution to the following stochastic differential
equation,

dWt = √
Wt dBt + dB∗

t

√
Wt + (αWt + βIdd) dt, Wt = W0,

where {Bt , t ≥ 0} is a d × d complex Brownian motion, W0 is a d × d Hermitian matrix. Wishart processes have
been deeply studied, see [6,9] etc. There exists more general form of Wishart processes that we will not consider here.
In what follows, we extend the construction of Wishart laws from matrix Gaussian ones at the level of processes,
exactly as in the scalar case where Laguerre processes may be constructed (with suitable parameters) from Ornstein–
Uhlenbeck ones. We will apply the matrix extracting procedure again.
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The generator of an Ornstein–Uhlenbeck process on N × N complex matrices is given, on the entries {zij } of a
complex matrix z, by

�(zij , zkl) = 0,

�(zij , z̄kl) = 2δikδjl,

L(zij ) = −zij .

This describes a process on matrices where the entries are independent complex Ornstein–Uhlenbeck processes.
Now we start the “matrix-extracting” procedure on z, as we did before on SU(N) in Section 5.1, i.e., take the first d

lines and split the N columns into (n + 1) parts I1, . . . , In+1, such that di = |Ii |, for 1 ≤ i ≤ (n + 1) and N = d1 +
· · ·+dn+1, then we have (n+1) extracted matrices Y(1), . . . , Y(n+1). For 1 ≤ p ≤ (n+1), define W(p) = Y(p)(Y(p))∗
with entries W

(p)
ij .

Proposition 5.7. {W(p),1 ≤ p ≤ (n + 1)} form a family of independent complex Wishart processes, whose reversible
measure respectively given by (5.17) with rp = dp for 1 ≤ p ≤ (n + 1). Moreover, the image of complex Gaussian
measure through the “matrix-extracting” procedure is a product of complex Wishart distributions.

Proof. One may check

�
(
W

(p)
ij ,W

(q)
kl

) = 2δpq

(
δjkW

(p)
il + δilW

(p)
kj

)
, (5.18)

L
(
W

(p)
ij

) = 4dpδij − 2W
(p)
ij . (5.19)

Let ρ be the density of the reversible measure of {W(1), . . . ,W(n+1)}. Then,

�
(
logρ,W

p
ij

) = 4(dp − d)δij − 2W
(p)
ij ,

and we also have

�
(
log det

(
W(p)

)
,W

(p)
ij

) = 4δij ,

�
(
traceW(p),W

(p)
ij

) = 4W
(p)
ij ,

therefore,

ρ = C

n+1∏
p=1

det
(
W(p)

)dp−d
e
− 1

2 trace(
∑n+1

p=1 W(p))
,

which shows that, under the reversible measure, we have a family of d × d independent Wishart matrices
{W(1), . . . ,W(n+1)}. �

We now construct a process on the complex matrix simplex from independent Wishart processes (W(1), . . . ,

W(n+1)). As in the scalar case, we obtain a kind of warped product on the set D × �n,d , where D denotes the set
of real diagonal matrices with positive diagonal entries.

Let S = ∑n+1
p=1 W(p). Since S is a positive-definite Hermitian matrix, we may assume that it has a spectral decom-

position S = UD2U∗, where U is unitary and D = diag{λ1, . . . , λd}. Observe that U is not uniquely determined, since
we may change U into UP where P = diag{eiφ1, . . . , eiφd }, 0 ≤ φ1, . . . , φd ≤ 2π , and this amounts to the choice of a
phase for the eigenvectors. In this paper, we choose U to be the one that has real elements on its diagonal, such that U
is an analytic function of S in the Weyl chamber {λ1 < · · · < λd}. This choice will be irrelevant to the construction of
the process. Moreover, we introduce (V(1), . . . ,V(d)), whose elements are given by

V
(p)
ij = UipU∗

pj (5.20)

for 1 ≤ i, j,p ≤ d , and we see that the choice of phase in U has no influence on {V(p)}.
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Then for 1 ≤ i ≤ (n + 1), write

M(i) = S− 1
2 W(i)S− 1

2 , Z(i) = U∗M(i)U (5.21)

for which we have the following result.

Theorem 5.8. Let (W1, . . . ,W(n+1)) be (n + 1) independent Wishart processes. Then with D = diag{λ1, . . . , λd},
0 ≤ λ1 ≤ · · · ≤ λd and Z(i) defined as in equation (5.21), (D,Z(1), . . . ,Z(n)) is a Markov diffusion process, where
(Z(1), . . . ,Z(n)) lives in the matrix simplex �d,n. The generator of the process is

d∑
i=1

(
∂2
λi

+
(

2(N − d) + 1

λi

− λi +
∑
j 	=i

4λi

λ2
i − λ2

j

)
∂λi

)
+ LA,B,a, (5.22)

where LA,B,a is defined in Theorem 4.3 with

Aij = 2λ−2
i δij ,

Bij,kl =
⎧⎨
⎩2

λ2
i +λ2

j

(λ2
i −λ2

j )2 δikδjl, i 	= j and k 	= l,

1
λ2

i

δij δikδjl, i = j or k = l

for 1 ≤ i, j, k, l ≤ d and ap = dp − d + 1 for 1 ≤ p ≤ (n + 1).

It is known that starting from random matrices (W(1), . . . ,W(n+1)) distributed as independent Wishart distributions,

one could get the matrix Dirichlet distribution through Mi = S− 1
2 W(i)S− 1

2 , where S = ∑n+1
i=1 Wi , see [11]. Also

from our results in the scalar case (Section 3), it is natural to guess that (M(1), . . . ,M(n)) may be a matrix Dirichlet
process. As we will see in the following proposition, given S, (M(1), . . . ,M(n)) is indeed a matrix Dirichlet process;
However, the operator of (S,M(1), . . . ,M(n)) is much more complicated than the one of (D,Z(1), . . . ,Z(n)), since
�(S,M(i)) 	= 0, and therefore does not have the structure of a (generalized) warped product.

Proposition 5.9. (S,M(1), . . . ,M(n)) is a Markov diffusion process where (M(1), . . . ,M(n)) lives on the matrix sim-
plex �n,d , and the generator of the process is

∑
ijkl

2(δjkSil + δilSkj )∂Sij
∂Skl

+
∑
ij

(4Nδij − 2Sij )∂Sij
+ LA,B,a

+
∑

ijkl,p

d∑
a,b=1

2
λa − λb

λa + λb

((
M(p)V (a)

)
il
V

(b)
kj − V

(a)
il

(
V (b)M(p)

)
kj

)
∂Sij

∂
M

(p)
kl

, (5.23)

where V (i) defined by equation (5.20), LA,B,a is defined in Theorem 3.2 with

A = 2S−1, Bij,kl =
d∑

r,s=1

4

(λr + λs)2
V

(r)
ik V

(s)
lj ,

and ap − 1 + d = dp .

Before proving Theorem 5.8 and Proposition 5.9, we first give the following lemmas regarding the action of the

diffusion operators of N = S
1
2 , {M(i),1 ≤ i ≤ n} and {Z(i),1 ≤ i ≤ n}.
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Lemma 5.10. For the generator of independent Wishart matrices (W(1), . . . ,W(n+1)) and S = ∑n+1
p=1 W(p), we have

�(Sij , Skl) = 2(δjkSil + δilSkj ), (5.24)

L(Sij ) = 4Nδij − 2Sij , (5.25)

�
(
Sij ,W

(p)
kl

) = 2
(
δjkW

(p)
il + δilW

(p)
kj

)
. (5.26)

Moreover, suppose S has a spectral decomposition S = UD2U∗, where U is unitary and D = diag{λ1, . . . , λd}, we
have

�(λi, λj ) = δij , (5.27)

L(λi) = 2(N − d) + 1

λi

− λi + 4λi

∑
j 	=i

1

λ2
i − λ2

j

. (5.28)

Proof. Formulas (5.24), (5.26) and (5.25) are straight-forward from (5.18) and (5.19).
By (5.24), (5.25), we are able to compute the diffusion operators of D = {λ1, . . . , λd}. Let P(X) = det(S − XId),

P(Y ) = det(S − Y Id). Notice that

�
(
logP(X), logP(Y )

) = 4

Y − X

(
XP ′(X)

P (X)
− YP ′(Y )

P (Y )

)
,

and compare it with

�
(
logP(X), logP(Y )

) =
∑
i,j

4λiλj�(λi, λj )

(λ2
i − X)(λ2

j − Y)
,

implying that

�(λi, λj ) = δij .

Now we compute L(λi). By (5.24), (5.25) we derive

L
(
logP(X)

) = 4(d − N)
P ′(X)

P (X)
− 4

X(P ′(X))2

P 2(X)
− 2d + 2

XP ′(X)

P (X)
. (5.29)

On the other hand, let ηi = λ2
i be the eigenvalues of S, we have

L
(
logP(X)

) =
d∑

i=1

(
− 4ηi

(ηi − X)2
+ L(ηi)

ηi − X

)
.

Comparing it with (5.29) leads to

L(ηi) = 8ηi

∑
j 	=i

1

ηi − ηj

+ 4(N − d + 1) − 2ηi,

such that

L(λi) = 2(N − d) + 1

λi

− λi + 4λi

∑
j 	=i

1

λ2
i − λ2

j

.
�
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Lemma 5.11. Let S be a positive definite, Hermitian matrix and N be its positive definite square root. Suppose S has
the spectral decomposition S = UD2U∗, where U is the unitary part and D = diag{λ1, . . . , λd}, with λi all positive.
With N = UDU∗, and V

(p)
ij = UipU∗

pj for 1 ≤ i, j,p ≤ d , we have for 1 ≤ i, j, k, l ≤ d

∂Skl
Nij =

d∑
r,s=1

1

λr + λs

V
(r)
ik V

(s)
lj . (5.30)

Proof. For fixed k, l, write Dkl
ij = ∂Skl

Nij . Then from N2
ij = Sij , we have

DklN + NDkl = Ekl,

where Ekl is the matrix satisfying Ekl
ab = δakδbl . Since S = UD2U∗, we may write N = UDU∗, such that

(
U∗DklU

)
D + D

(
U∗DklU

) = U∗EklU.

Therefore, we deduce

(
U∗DklU

)
ij

= U∗
ikUlj

λi + λj

,

so that

Dkl
ij =

∑
r,s

1

λr + λs

V
(r)
ik V

(s)
lj ,

which finishes the proof. �

Lemma 5.12. The following formulas hold for N = S
1
2 ,

�
(
Nij ,W

(p)
kl

) =
d∑

r,s=1

2

λr + λs

V
(r)
il

(
W(p)V (s)

)
kj

+
d∑

r,s=1

2

λr + λs

V
(s)
kj

(
V (r)W(p)

)
il
, (5.31)

�(Nij ,Nkl) =
d∑

r,s=1

2
λ2

r + λ2
s

(λr + λs)2
V

(r)
il V

(s)
kj , (5.32)

L(Nij ) = 4
d∑

r,s=1

λs

(λr + λs)2
V

(r)
ij − Nij + 2(N − d)N−1

ij . (5.33)

Furthermore,

�
(
N−1

ij ,Nkl

) = −
d∑

r,s=1

2
λ2

r + λ2
s

λrλs(λr + λs)2
V

(r)
il V

(s)
kj , (5.34)

�
(
N−1

ij ,W
(p)
kl

) = −2
d∑

r,s=1

1

λrλs(λr + λs)

(
V

(r)
il

(
W(p)V (s)

)
kj

+ V
(s)
kj

(
V (r)W(p)

)
il

)
, (5.35)

�
(
N−1

ij ,N−1
kl

) = 2
d∑

r,s=1

λ2
r + λ2

s

λ2
r λ

2
s (λr + λs)2

V
(r)
il V

(s)
kj , (5.36)
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L
(
N−1

ij

) = 4
d∑

r,s=1

1

λs(λr + λs)2
V

(r)
ij + N−1

ij − 2(N − d)
(
S−1N−1)

ij
. (5.37)

Proof. By (5.30), we are able to compute

�
(
Nij ,W

(p)
kl

) =
∑
ab

Dab
ij �

(
Sab,W

(p)
kl

)

= 2
d∑

r,s=1

1

λr + λs

V
(r)
il

(
W(p)V (s)

)
kj

+ 2
d∑

r,s=1

1

λr + λs

V
(s)
kj

(
V (r)W(p)

)
il
,

and

�(Nij ,Nkl) = 2
d∑

r,s=1

λ2
r + λ2

s

(λr + λs)2
V

(r)
il V

(s)
kj ,

L(Nij ) = 4
∑ λs

(λr + λs)2
V

(r)
ij − Nij + 2(N − d)N−1

ij .

Moreover, due to the fact that

∂Nab
N−1

ij = −N−1
ia N−1

bj ,

we have

�
(
N−1

ij ,W
(p)
kl

) =
d∑

a,b=1

∂Nab
N−1

ij �
(
Nab,W

(p)
kl

)

= −2
d∑

r,s=1

1

λrλs(λr + λs)
V

(r)
il

(
W(p)V (s)

)
kj

− 2
d∑

r,s=1

1

λrλs(λr + λs)
V

(s)
kj

(
V (r)W(p)

)
il
.

Similar computations yield

�
(
N−1

ij ,Nkl

) = −2
d∑

r,s=1

λ2
r + λ2

s

λrλs(λr + λs)2
V

(r)
il V

(s)
kj ,

�
(
N−1

ij ,N−1
kl

) = 2
d∑

r,s=1

λ2
r + λ2

s

λ2
r λ

2
s (λr + λs)2

V
(r)
il V

(s)
kj ,

L
(
N−1

ij

) =
d∑

k,l=1

∂Nkl
N−1

ij L(Nkl) +
d∑

k,l,a,b=1

�(Nkl,Nab)∂Nab
∂Nkl

N−1
ij

= 4
d∑

r,s=1

1

λs(λr + λs)2
V

(r)
ij + N−1

ij − 2(N − d)
(
S−1N−1)

ij
.

�

Lemma 5.13. With V (i) defined in equation (5.20), we have

�
(
M

(p)
ij ,M

(q)
kl

)
= 2δpq

(
S−1

il M
(p)
kj + S−1

kj M
(p)
il

) − 2S−1
kj

(
M(p)M(q)

)
il

− 2S−1
il

(
M(q)M(p)

)
kj
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−
d∑

a,b=1

4

(λa + λb)2

(
V (b)M(p)

)
kj

(
V (a)M(q)

)
il

−
d∑

a,b=1

4

(λa + λb)2

(
M(p)V (a)

)
il

(
M(q)V (b)

)
kj

+
d∑

a,b=1

4

(λa + λb)2
V

(a)
kj

(
M(p)V (b)M(q)

)
il

+
d∑

a,b=1

4

(λa + λb)2
V

(a)
il

(
M(q)V (b)M(p)

)
kj

, (5.38)

and

L
(
M

(p)
ij

) = 4dpS−1
ij − 2(N − d)

(
S−1M(p)

)
ij

− 2(N − d)
(
M(p)S−1)

ij
− 4S−1

ij trace
(
M(p)

)

− 4
d∑

a,b=1

1

(λa + λb)2

(
V (a)M(p)

)
ij

− 4
d∑

a,b=1

1

(λa + λb)2

(
M(p)V (b)

)
ij

+ 8
d∑

a,b=1

1

(λa + λb)2
V

(a)
ij trace

(
V (b)M(p)

)
. (5.39)

Moreover, we have

�
(
M

(p)
ij , Skl

) =
d∑

a,b=1

2
λa − λb

λa + λb

((
M(p)V (a)

)
il
V

(b)
kj − V

(a)
il

(
V (b)M(p)

)
kj

)
. (5.40)

Proof. Since

�
(
M

(p)
ij ,M

(q)
kl

) = �
((

N−1W(p)N−1)
ij
,
(
N−1W(q)N−1)

kl

)
,

then by (5.18), (5.35) and (5.36) we are able to prove (5.38).
As for (5.39), direct computations yield

L
(
M

(p)
ij

) =
d∑

r,s=1

L
(
N−1

ir W
(p)
rs N−1

sj

)

= 8
d∑

a,b=1

1

(λa + λb)2
V

(a)
ij trace

(
V (b)M(p)

) − 4S−1
ij trace

(
Mp

)

− 4
d∑

a,b=1

1

(λa + λb)2

(
V (a)M(p)

)
ij

− 4
d∑

a,b=1

1

(λa + λb)2

(
M(p)V (b)

)
ij

+ 4dpS−1
ij − 2(N − d)

(
S−1M(p)

)
ij

− 2(N − d)
(
M(p)S−1)

ij
,

where the last equality is due to (5.19), (5.35), (5.36) and (5.37).
By (5.31), (5.34), we get

�
(
M

(p)
ij ,Nkl

)

=
d∑

a,b=1

2
λa − λb

(λa + λb)2

(
M(p)V (a)

)
il
V

(b)
kj − 2

d∑
a,b=1

λa − λb

(λa + λb)2
V

(a)
il

(
V (b)M(p)

)
kj

, (5.41)

which leads to (5.40), showing that in fact M(p) and S are not independent. �

Now we may obtain Proposition 5.9 directly from Lemma 5.13.
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Proof of Proposition 5.9. Combining (5.24), (5.25) and (5.38), (5.39) and (5.40), we derive (5.23) as the operator of
(S,M(1), . . . ,M(n)). �

To examine the relation of N and M(p) more precisely, we decompose N into D and U, and explore their relations
with M(p) separately. The method is adapted from [5], i.e., to obtain the action of the � operator of the spectrum of N
and M(p) by computing its action on the characteristic polynomial of N and M(p).

Lemma 5.14.

�
(
M

(p)
ij , λk

) = 0, (5.42)

and

�
(
M

(p)
ij ,Ukl

) =
d∑

a=1

gal

(
M(p)U

)
il
U∗

ajUka −
d∑

a=1

galUil

(
U∗M(p)

)
aj

Uka, (5.43)

�
(
U∗

kl,M
(p)
ij

) = −
d∑

a=1

gka

(
M(p)U

)
ia

U∗
alU

∗
kj +

d∑
a=1

gkaUiaU
∗
al

(
U∗M(p)

)
kj

, (5.44)

where

gij =
{

2
(λi+λj )2 , i 	= j ,

0, i = j

for 1 ≤ i, j ≤ d .

Proof. Let PN(X) = det(N − XId) = ∏d
i=1(λi − X) be the characteristic polynomial of N. Notice that

�
(
logPN(X),M

(p)
ij

) =
d∑

k,l=1

N−1(X)lk�
(
Nkl,M

(p)
ij

)

=
∑
r,s

2
λr − λs

(λr + λs)2

1

λr − X
δrsU

∗
sj

(
M(p)U

)
ir

− 2
∑
r,s

λr − λs

(λr + λs)2

1

λr − X
δrsUir

(
U∗M(p)

)
sj

= 0,

from which we deduce that

�
(
M

(p)
ij , λk

) = 0,

since

�
(
logPN(X),M

(p)
ij

) =
d∑

k=1

1

λk − X
�

(
λk,M

(p)
ij

) = 0.

Also notice that �(Nkl,M
(p)
ij ) is invariant under the unitary transformation

(
N,M(p)

) → (
U0N

(
U0)∗

,U0M(p)
(
U0)∗)
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for any unitary matrix U0, we may compute �(M
(p)
ij ,Ukl) at U = Id, then obtain it at any U . More precisely, by

(5.41), we obtain at U = Id,

�
(
Nkl,M

(p)
ij

) = 2
λl − λk

(λl + λk)2
δkjM

(p)
il − 2

λl − λk

(λl + λk)2
δilM

(p)
kj ,

and on the other hand at U = Id,

�
(
Nkl,M

(p)
ij

) = �
(
Ukl,M

(p)
ij

)
(λl − λk).

Combining the two equalities together, we have for k 	= l

�
(
Ukl,M

(p)
ij

)
(U = Id) = 2

1

(λl + λk)2

(
δkjM

(p)
il − δilM

(p)
kj

)
. (5.45)

Moreover, at U = Id, for 1 ≤ k ≤ d

�(Ukk, ·) = −�
(
U∗

kk, ·
)
.

Then by the fact that Ukk is real, we have at U = Id,

�
(
Ukk,M

(p)
ij

) = 0.

Now write

gij =
{

2
(λi+λj )2 , i 	= j ,

0, i = j ,

then at any U , we derive (5.43) and (5.44) by the invariance of unitary transformation. �

Lemma 5.15. The diffusion operators of {Zi} are given by

�
(
Z

(p)
ij ,Z

(q)
kl

) = 2δpq

(
δil

1

λ2
i

Z
(p)
kj + δkj

1

λ2
j

Z
(p)
il

)
− 2

(
δkj

1

λ2
j

(
Z(p)Z(q)

)
il

+ δil

1

λ2
i

(
Z(q)Z(p)

)
kj

)

+
d∑

a=1

(
yiaδilZ

(p)
aj Z

(q)
ka + ykaδkjZ

(p)
ia Z

(q)
al

) − yikZ
(p)
kj Z

(q)
il − yjlZ

(p)
il Z

(q)
kj , (5.46)

where yij = 2
λ2

i +λ2
j

(λ2
i −λ2

j )2 when i 	= j and yii = 1
λ2

i

for 1 ≤ i ≤ d , and

L
(
Z

(p)
ij

) = 4dp

1

λ2
i

δij − 2(N − d)

(
1

λ2
i

+ 1

λ2
j

)
Z

(p)
ij − 4

1

λ2
i

δij trace
(
Z(p)

)

+ 2
d∑

a=1

yiaδijZ
(p)
aa −

d∑
a=1

yjaZ
(p)
ij −

d∑
a=1

yiaZ
(p)
ij . (5.47)

Moreover,

�
(
Z

(p)
ij , λk

) = 0, (5.48)

�
(
Z

(p)
ij ,Ukl

) = δil

d∑
a 	=l

dalUkaZ
(p)
aj − djlUkjZ

(p)
il , (5.49)

where dij = 4
λiλj

(λ2
i −λ2

j )2 when i 	= j and dii = 0.
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Proof. Notice the diffusion operator of (U,M(1), . . . ,M(n)) are all invariant through the map

(
U,M(1), . . . ,M(n)

) → (
U0U,U0M(1)

(
U0)∗

, . . . ,U0M(n)
(
U0)∗)

,

hence the diffusion operator of Z = (Z(1), . . . ,Z(n)) are also invariant. Therefore to compute �(Z(p),Z(q)), we may
first consider the case at U = Id. By direct computations, we have

�
(
Z

(p)
ij ,Z

(q)
kl

) =
d∑

r,s=1

(
�

(
M

(p)
ij ,M

(q)
kl

) + �
(
M

(p)
ij ,U∗

krUsl

)
M

(q)
rs + M

(p)
rs �

(
U∗

irUsj ,M
(q)
kl

))

+
d∑

u,v,r,s=1

�
(
U∗

iuUvj ,U
∗
krUsl

)
M

(p)
uv M

(q)
rs .

The first term �(M
(p)
ij ,M

(q)
kl ) at U = Id is straightforward from (5.38).

By (5.45), we get

d∑
r,s=1

�
(
M

(p)
ij ,U∗

krUsl

)
M

(q)
rs

=
d∑

a=1

(−gkaδkjZ
(p)
ia Z

(q)
al − galδilZ

(q)
ka Z

(p)
aj

) + gjlZ
(p)
il Z

(q)
kj + gikZ

(p)
kj Z

(q)
il ,

d∑
r,s=1

�
(
M

(q)
kl ,U∗

irUsj

)
M

(p)
rs

=
d∑

a=1

(−giaδilZ
(q)
ka Z

(p)
aj − gaj δkjZ

(p)
ia Z

(q)
al

) + gjlZ
(p)
il Z

(q)
kj + gikZ

(p)
kj Z

(q)
il ,

and

d∑
u,v,r,s=1

�
(
U∗

iuUvj ,U
∗
krUsl

)
M

(p)
uv M

(q)
rs

=
d∑

a=1

(
riaδilM

(p)
aj M

(q)
ka + rkaδkjM

(p)
ia M

(q)
al

) − rikM
(p)
kj M

(q)
il − rjlM

(p)
il M

(q)
kj .

Therefore, putting all the four terms together we obtain at U = Id,

�
(
Z

(p)
ij ,Z

(q)
kl

)
= 2δpq

(
δil

1

λ2
i

Z
(p)
kj + δkj

1

λ2
j

Z
(p)
il

)
− 2

(
δkj

1

λ2
j

(
Z(p)Z(q)

)
il

+ δil

1

λ2
i

(
Z(q)Z(p)

)
kj

)

− 1

λ2
i

δikZ
(p)
ij Z

(q)
il − 1

λ2
j

δjlZ
(p)
ij Z

(q)
kj + 1

λ2
j

δkjZ
(p)
ij Z

(q)
j l + 1

λ2
i

δilZ
(p)
ij Z

(q)
ki

+
d∑

a=1

(
riaδilZ

(p)
aj Z

(q)
ka + rkaδkjZ

(p)
ia Z

(q)
al

) − rikZ
(p)
kj Z

(q)
il − rjlZ

(p)
il Z

(q)
kj
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and defining

yij =
{

rij , i 	= j ,
1
λ2

i

, i = j

for 1 ≤ i, j ≤ d , we obtain

�
(
Z

(p)
ij ,Z

(q)
kl

)
= 2δpq

(
δil

1

λ2
i

Z
(p)
kj + δkj

1

λ2
j

Z
(p)
il

)
− 2

(
δkj

1

λ2
j

(
Z(p)Z(q)

)
il

+ δil

1

λ2
i

(
Z(q)Z(p)

)
kj

)

+
d∑

a=1

(
yiaδilZ

(p)
aj Z

(q)
ka + ykaδkjZ

(p)
ia Z

(q)
al

) − yikZ
(p)
kj Z

(q)
il − yjlZ

(p)
il Z

(q)
kj .

This formula is also valid at any U , because under the map (U,Mp) → (U0U,U0Mp(U0)∗), Z(p) does not change.
Thus we derive (5.46).

Let P(X) = det(S − XId). Then

�
(
Sij , logP(X)

) =
d∑

r=1

1

λ2
r − X

�
(
Sij , λ

2
r

) =
d∑

p,q=1

(S − X)−1
qp �(Sij , Spq).

Setting Vijp,k = �(UipŪjp, λ2
k), we may derive from the above formula that

4U
D

D − X
U∗ +

∑
kp

λ2
p

λ2
k − X

Vijp,k = 4
H

H − X
,

which leads to∑
p

λ2
pVijp,k = 0.

On the other hand, since U is unitary, we know that �(Uij , ·) = −�(Ūji , ·) at U = Id. Then taking
∑

p XpVijp,k = 0
at U = Id, we derive

�(Uij , λk) = 0 (5.50)

for any i 	= j and k.
Computing �(Sij , Skl) at U = Id leads to

2δilδkj

(
λ2

i + λ2
j

) = 4δi=j=k=lλ
2
i + (

λ2
i − λ2

j

)(
λ2

k − λ2
l

)
�(Uij ,Ukl),

from which we may deduce that for i 	= j or k 	= l

�(Uij ,Ukl)(Id) = −rij δilδkj , (5.51)

where rij = 2
(λ2

i +λ2
j )

(λ2
i −λ2

j )2 . Also since Uii is real, we have rii = 0.

As for L(Uij ), by the fact that U is unitary we obtain at U = Id,

L(Ūji) + L(Uij ) + 2
∑

r

�(Uir , Ūjr ) = 0,
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thus

L(Uij ) = L(Ūji) = −
∑
r 	=i

rir δij . (5.52)

By (5.45), (5.51) and (5.52), we have (5.47).
(5.45) and (5.50) lead to

�
(
Z

(p)
ij , λk

) = 0.

Also by (5.51), we have at U = Id and at any U ,

�
(
Z

(p)
ij ,Ukl

) = 4
λkλl

(λ2
k − λ2

l )
2

(
δilZ

(p)
kj − δkjZ

(p)
il

)
.

Let dij = 4
λiλj

(λ2
i −λ2

j )2 when i 	= j and dii = 0, then at any U , we obtain (5.49). �

Finally we are in the position to prove Theorem 5.8.

Proof of Theorem 5.8. By (5.27), (5.28), we obtain the generator of D.
Together with (5.48), and comparing (5.46), (5.47) with Theorem 4.3, we obtain the operator (5.22) with

A = 2D−2, Bij,kl = yij δikδjl,

and ap = dp − d + 1. �
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