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Abstract. Berry–Esseen bounds for non-linear functionals of infinite Rademacher sequences are derived by means of the
Malliavin–Stein method. Moreover, multivariate extensions for vectors of Rademacher functionals are shown. The results establish
a connection to small ball probabilities and shed new light onto the relation between central limit theorems on the Rademacher
chaos and norms of contraction operators. Applications concern infinite weighted 2-runs, a combinatorial central limit theorem and
traces of Bernoulli random matrices.

Résumé. Nous dérivons des estimations de type Berry–Esseen pour des fonctionnelles non-linéaires de suites infinies de Radema-
cher par la méthode de Malliavin–Stein. De plus, nous prouvons des extensions multivariées pour des vecteurs de fonctionnelles
de Rademacher. Ces résultats établissent une connexion avec les probabilités de petites boules et apportent un nouvel éclairage sur
la relation entre des théorèmes centraux limites sur le chaos de Rademacher et les normes d’opérateurs de contraction. Des appli-
cations concernent des succès consécutifs pondérés, un théorème central limite combinatoire et des traces de matrices de Bernoulli
aléatoires.
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1. Introduction

In the seminal paper [21] by Nourdin and Peccati it has been demonstrated for the first time that there is a powerful
connection between Stein’s method and the Malliavin calculus of variations. A main feature of this approach is that
the various coupling constructions, which are usually in the background of Stein’s method, are replaced by a structural
property of the involved random variables. In practice, this is reflected by the use of Malliavin operators and especially
through application of an integration-by-parts formula. We mention one of the main results of the paper [29] of
Nualart and Peccati, which shows that a sequence of Gaussian multiple integrals Fn := Iq(fn) of fixed order q ≥ 1
of symmetric and square-integrable functions fn such that E[F 2

n ] = 1 for all n ≥ 1 converges to a standard Gaussian
random variable N if and only if the 4th cumulant

κ4(Fn) := E
[
F 4

n

] − 3

converges to 0, as n → ∞. Using Stein’s method, this has been extended to an estimate on various probability distances
between Fn and N (cf. [21,23,25]). In fact, a combination of the main results of [21] and [25] (see also Theorem 5.2.6
in [23]) asserts that

dK(Fn,N) := sup
x∈R

∣∣P(Fn ≤ x) − P(N ≤ x)
∣∣ ≤ Cκ4(Fn)

1/2 (1.1)
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with a constant 0 < C < ∞ not depending on n. A key step in the proof of this bound is an estimate of dK(Fn,N)

in terms of contraction operators fn �r
r fn, and a comparison with an expression for the 4th cumulant κ4(Fn) in terms

of such contractions. We emphasize that the quantitative 4th moment theorem (1.1) is one of the cornerstones and at
the heart of the Malliavin–Stein approach. The following optimal bound on the total variation distance dTV(Fn,N) :=
sup{|P(Fn ∈ A)−P(N ∈ A)|: A ⊂R Borel} has recently been derived in [24]. Namely, if Fn converges in distribution
to a standard Gaussian random variable N , then

C1 max
{∣∣E[

F 3
n

]∣∣, κ4(Fn)
} ≤ dTV(Fn,N) ≤ C2 max

{∣∣E[
F 3

n

]∣∣, κ4(Fn)
}
, (1.2)

where 0 < C1 < C2 < ∞ are constants which are independent of n. Since dK(Fn,N) ≤ dTV(Fn,N), this improves
(1.1) significantly in case that E[F 3

n ] = 0, for example, if q is odd. Since its first appearance, the 4th moment theorem
has attracted considerable interest and has further been exploited by many authors. Selected applications concern
central limit theorems for non-linear functionals of Gaussian stochastic processes [20], random fields on the sphere
[18], random matrices [22] and universality of homogeneous sums [25] (we also refer to the monograph [23] and the
exhaustive list of references therein).

Besides non-linear functionals of Gaussian random measures, there is another branch to which the Malliavin–
Stein approach has been applied, namely non-linear functionals of Poisson random measures, see the papers [30,32,
34] of Peccati, Solé, Taqqu, Utzet and Zheng. These general results have found numerous applications especially in
geometric probability and stochastic geometry, see [14–16,37,40] for distinguished examples developed by Lachièze-
Rey, Last, Peccati, Penrose, Reitzner, Schulte and Thäle. We emphasize that it has been shown by Eichelsbacher
and Thäle [10], and Lachièze-Rey and Peccati [14], who combined Stein’s method with the Malliavin calculus of
variations on the Poisson space, that a quantitative 4th moment theorem similar to (1.1) is also available for multiple
stochastic integrals with respect to Poisson random measures if the integrands fn are non-negative.

In [26], Nourdin, Peccati and Reinert pushed this line of research further by proving quantitative central limit
theorems for functionals of so-called infinite Rademacher sequences, which rely on a combination of Stein’s method
with tools from discrete stochastic analysis as developed in [35] by Privault. By a Rademacher sequence we mean in
this paper an infinite sequence X = (Xn)n∈N of independent and identically distributed random variables such that
Xn takes the values ±1 with probability 1/2. The aim of this paper is to develop the theory of [26] further in several
directions. In particular, our main findings are:

(i) An estimate for the Kolmogorov distance between a possibly non-linear functional of a Rademacher sequence X

(this is what we call a Rademacher functional) and a Gaussian random variable in terms of Malliavin operators.
This refines the bounds of [26], where only smooth distances have been considered. The proof of this bound is
a non-trivial task as it relies on various new computations involving discrete Malliavin operators and also on a
new integration-by-parts formula.

(ii) A connection between our Malliavin–Stein bound and quantities, which are known as small ball probabilities.
They are a measure of anti-concentration and enter the expression for the Kolmogorov distance. We mention that
they were not visible in the previous work [26] because of the smoothness of the test functions used there. It
is worth pointing out that small ball probabilities in the context of Berry–Esseen bounds have previously found
attention in the works [17,39] of Litvak, Pajor Rudelson and Tomczak-Jaegermann, and Rudelson and Vershynin,
respectively.

(iii) A quantitative multivariate central limit theorem dealing with the distance between a vector of Rademacher
functionals and a Gaussian random vector. In particular, we show that a vector consisting of discrete multiple
stochastic integrals satisfies a multivariate central limit theorem if its entries fulfil univariate central limit theo-
rems. This is the discrete analogue to a similar phenomenon observed by Nourdin, Peccati and Réveillac [27],
Nualart and Ortiz-Latorre [28], Peccati and Tudor [33] and Peccati and Zheng [34] for Gaussian or Poisson
multiple integrals, respectively.

(iv) A clarification of the rôle of contraction operators in light of necessary conditions for a sequence of discrete
multiple stochastic integrals to satisfy a central limit theorem. We develop a new necessary criterion for discrete
double integrals, which is based on a novel representation of the 4th cumulant involving on- and off-diagonal
terms. We also present a counterexample showing that vanishing contraction norms do not provide a necessary
condition. This sheds new light onto a 4th moment theorem for Rademacher functionals, and general quadratic
forms as considered by de Jong [8] or Chatterjee [6], for example.
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(v) Applications of our results to infinite weighted 2-runs, an extended version of a combinatorial central limit
theorem and traces of powers of Bernoulli random matrices. This extends the previous results from [5] and also
some of the findings in [22,26]. In particular, we provide a Berry–Esseen bound for an infinite-dimensional
version of a central limit theorem of Blei and Janson and give a direct proof for a multivariate central limit
theorem for traces of powers of Bernoulli matrices without resorting to universality results.

Our results rely on Stein’s method for normal approximation and tools from discrete stochastic analysis. We recall
both together with some other preliminaries in Section 2. There, we also provide a new integration-by-parts formula
on which our proofs are based on. The one-dimensional Malliavin–Stein bound is the content of Section 3, while
Section 4 discusses various versions in case of sequences of discrete multiple stochastic integrals. In this context we
also develop the announced new necessary criterion for a sequence of discrete stochastic double integrals to satisfy
a central limit theorem. Multivariate central limit theorems for vectors of Rademacher functionals are provided in
Section 5. The final Section 6 contains the applications of our results.

2. Preliminaries

2.1. Rademacher sequences

By a Rademacher sequence (Xn)n∈N we understand a sequence consisting of i.i.d. random variables Xn defined on
some probability space (Ω,F,P ) such that

P(Xn = −1) = P(Xn = +1) = 1

2
.

They are constructed in the canonical way, namely by taking

Ω := {−1,+1}N, F := P
({−1,+1})⊗N

, P :=
(

1

2
δ−1 + 1

2
δ+1

)⊗N

,

where δ±1 is the unit-mass Dirac measure concentrated at ±1, and then putting Xn(ω) := ωn for (ωn)n∈N ∈ Ω . Here
and below, we write P(M) for the power set of a set M .

2.2. Kernels and contractions

In what follows we will denote by κ the counting measure on N. For n ≥ 1 define �2(N)⊗n := L2(Nn,P(N)⊗n, κ⊗n).
Functions in �2(N)⊗n are called kernels in the sequel. The following subsets of �2(N)⊗n are of interest. Let �2(N)◦n
denote the class of symmetric kernels and �2

0(N)⊗n denote the class of kernels vanishing on the diagonal, i.e., on the
complement Δc

n of the set

Δn := {
(i1, . . . , in) ∈ Nn: ik 
= il for k 
= l

}
.

Let �2
0(N)◦n denote the class of symmetric kernels vanishing on diagonals. For q = 0 one defines �2(N)◦0 := R. For

integers n,m ≥ 1, r ∈ {0, . . . , n ∧ m}, l ∈ {0, . . . , r} and kernels f ∈ �2
0(N)◦n and g ∈ �2

0(N)◦m the contraction

f �l
r g(i1, . . . , in−r , j1, . . . , jr−l , k1, . . . , km−r )

:=
∑

(a1,...,al )∈Δl

f (i1, . . . , in−r , j1, . . . , jr−l , a1, . . . , al)g(k1, . . . , km−r , j1, . . . , jr−l , a1, . . . , al)

arises from the tensor product of f and g by first identifying r of the n + m variables and then by integrating out l

of them with respect to the counting measure κ . In particular, for f ∈ �2
0(N)◦n the contraction f �0

0 f is the tensor
product of f with itself. For a function f on Nn denote by f̃ = 1

n!
∑

σ f (iσ(1), . . . , iσ (n)) its canonical symmetrization,
where the sum runs over all permutations σ of {1, . . . , n}. Since f �l

r g is usually not symmetric, we often consider its

canonical symmetrization f̃ �l
r g. Note that ‖f̃ ‖�2(N)⊗n ≤ ‖f ‖�2(N)⊗n for any f ∈ �2(N)⊗n.
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Lemma 2.1. Let q ≥ 2 and suppose that f ∈ �2
0(N)◦q .

(i) It holds that

(2q)!∥∥f̃ �0
0 f

∥∥2
�2(N)⊗2q = 2

(
q!‖f ‖2

�2(N)⊗q

)2 +
q−1∑
r=1

(q!)2
(

q

r

)2 ∥∥f �r
r f

∥∥2
�2(N)⊗2(q−r) . (2.1)

(ii) One has∥∥f �0
1 f

∥∥
�2(N)⊗2q−1 = ∥∥f �

q−1
q f

∥∥
�2(N)

(2.2)

and ∥∥f �r−1
r f

∥∥
�2(N)⊗2(q−r)+1 ≤ ∥∥f �r−1

r−1 f
∥∥

�2(N)⊗2(q−r+1) (2.3)

for every r ∈ {2, . . . , q}.

Proof. Identity (2.1) is formula (11.6.30) in [31] and for part (ii) we refer to Lemma 2.4 in [26]. �

2.3. Multiple stochastic integrals and chaotic decomposition

For q ≥ 1 and f ∈ �2
0(N)◦q the discrete multiple stochastic integral of order q of f is defined as

Jq(f ) := q!
∑

1≤i1<···<iq<∞
f (i1, . . . , iq)Xi1 · · ·Xiq . (2.4)

For q = 0 and c ∈R we put J0(c) := c. The family of random variables of the form Jq(f ) with f ∈ �2
0(N)◦q is called

Rademacher chaos of order q (sometimes also called the Walsh chaos of order q). Multiple stochastic integrals fulfil
the isometry relation

E
[
Jq(f )Jp(g)

] = 1{q=p}q!〈f,g〉�2(N)⊗q . (2.5)

Moreover, it is a crucial fact that every F ∈ L2(Ω) possesses a unique decomposition in terms of multiple stochastic
integrals, i.e., each F ∈ L2(Ω) can be written as

F = E(F ) +
∞∑

n=1

Jn(fn),

where fn ∈ �2
0(N)◦q, n ≥ 1, is a uniquely determined sequence of kernels (see Section 6 in [35]). In our paper, the

following multiplication formula for discrete stochastic integrals will turn out to be crucial (see Proposition 2.9 in
[26]). It says that for all integers p,q ≥ 1 and symmetric kernels f ∈ �2

0(N)◦q and g ∈ �2
0(N)◦p , it holds that

Jq(f )Jp(g) =
q∧p∑
r=0

r!
(

q

r

)(
p

r

)
Jq+p−2r

((
f̃ �r

r g
)
1Δq+p−2r

)
. (2.6)

2.4. Discrete Malliavin operators

We are now going to introduce the four important so-called Malliavin operators for which we refer to [35].
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2.4.1. Gradient operator
The gradient operator D transforms random variables into random sequences and is defined as

DJq(fq) := (
DkJq(fq)

)
k∈N = (

Jq−1
(
fq(·, k)

))
k∈N ∈ L2(Ω ×N,P ⊗ κ)

on a Rademacher chaos of fixed order q ≥ 1. We also put DkJ0(c) = 0 for c ∈ R and k ∈ N. It can consistently be
extended to the class of functionals F ∈ L2(Ω) of the form F = E(F ) + ∑∞

n=1 Jn(fn), which satisfy the relation

E
[‖DF‖2

�2(N)

] =
∞∑

n=1

nn!‖fn‖2
�2(N)⊗n < ∞. (2.7)

The class of all such functionals is the domain of D and will be denoted by dom(D). For F ∈ dom one has

DF = (DkF )k∈N =
( ∞∑

n=1

nJn−1
(
fn(·, k)

))
k∈N

.

The operator D also admits a pathwise representation, which can be used as an alternative definition, especially if the
functional does not satisfy condition (2.7). To spell this out, define for ω = (ωn)n∈N ∈ Ω ,

ω+
k := (ω1, . . . ,ωk−1,+1,ωk+1, . . .) and ω−

k := (ω1, . . . ,ωk−1,−1,ωk+1, . . .).

We further define for F ∈ L2(Ω) and ω ∈ Ω the functionals F+
k and F−

k by

F+
k (ω) := F

(
ω+

k

)
and F−

k (ω) := F
(
ω−

k

)
.

Then, for F ∈ dom(D) one has the relation

DkF(ω) = 1

2

(
F

(
ω+

k

) − F
(
ω−

k

))
.

Formally, let us denote by D′ the operator acting on F ∈ L2(Ω) by

D′
kF (ω) := 1

2

(
F

(
ω+

k

) − F
(
ω−

k

))
.

We shall discuss the difference between D and D′ now, but before, we define inductively the higher-order gradients
by putting Dn

k1,...,kn
F := Dk1D

n−1
k2,...,kn

F for n ≥ 1, where D0 := Id and D1 := D, and similarly for (D′)nk1,...,kn
F .

Lemma 2.2.

(i) If F = ∑∞
n=0 Jn(fn) with fn ∈ �2

0(N)◦n then

E[F · Xk1 · · ·Xkn] = n!fn(k1, . . . , kn) for all (k1, . . . , kn) ∈ Δn.

(ii) For F ∈ L2(Ω) it holds that

E
[(

D′)n

k1,...,kn
F

] = E[F · Xk1 · · ·Xkn] for all (k1, . . . , kn) ∈ Δn. (2.8)

(iii) For F,G ∈ L2(Ω) and k ∈ N one has

Dk(FG) = GDkF + FDkG − 2Xk(DkF)(DkG). (2.9)

Remark 2.1. Lemma 2.2(i) and (ii) show that

fn(k1, . . . , kn) = 1

n!E
[(

D′)n

k1,...,kn
F

]
(2.10)
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if F has chaotic decomposition F = ∑∞
n=0 Jn(fn). This is the analogue of the classical Stroock formula for

Rademacher functionals.

Proof of Lemma 2.2. Part (i) follows directly from the definition (2.4) of a discrete multiple stochastic integral. To
prove (ii) we first observe that for every k ∈ N,

E
[
F+

k

] = E[Xk · F ] +E[F ] and E
[
F−

k

] = E[−Xk · F ] +E[F ].

We thus get for k ∈N that

E
[
D′

kF
] = 1

2
E

[(
F+

k − F−
k

)] = 1

2

((
E[Xk · F ] +E[F ]) − (

E[−Xk · F ] +E[F ]))
= E[Xk · F ].

The general case is proved by induction. Let n ∈ N and (k1, . . . , kn+1) ∈ Δn+1. Then, using the induction hypothesis
and the fact that from the point of view of Dk1,...,kn the kn+1st entry Xkn+1 of the Rademacher sequence X behaves
like a constant, we find that

E
[(

D′)n+1
k1,...,kn+1

F
] = E

[
D′

kn+1

((
D′)n

k1,...,kn
F

)] = E
[
Xkn+1 · (D′)n

k1,...,kn
F

]
= E

[(
D′)n

k1,...,kn
(F · Xkn+1)

] = E
[
(F · Xkn+1) · Xk1 · · ·Xkn

]
= E[F · Xk1 · · ·Xkn+1].

This proves assertion (ii). Part (iii) corresponds to Proposition 7.8 in [35]. �

The next lemma formalizes Remark 2.11 in [26].

Lemma 2.3. Let F ∈ L2(Ω). Then E[∑∞
k=1(D

′
kF )2] < ∞, if and only if F ∈ dom(D).

Proof. Let F = E[F ] + ∑∞
k=1 Jn(fn) be the chaotic decomposition of the square integrable random variable F for

a sequence of kernels fn ∈ �2
0(N)◦n. The condition E[∑∞

k=1(D
′
kF )2] < ∞ implies that D′

kF ∈ L2(Ω) for all k ∈ N.
Therefore D′

kF has a chaotic decomposition of the form

D′
kF =

∞∑
n=0

Jn

(
f ′

n

)
for a sequence of kernels f ′

n ∈ �2
0(N)◦n. The Stroock formula (2.10) yields

f ′
n(k1, . . . , kn) = 1

n!E
[(

D′)n

k1,...,kn
D′

kF
] = (n + 1)!

n! fn+1(k1, . . . , kn, k)

= (n + 1)fn+1(k1, . . . , kn, k).

We thus get the representation

D′
kF =

∞∑
n=0

(n + 1)Jn

(
fn+1(·, k)

) =
∞∑

n=1

nJn−1
(
fn(·, k)

)
for the chaotic decomposition of D′

kF which is equal to DkF and implies that F ∈ dom. This completes the
proof. �
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2.4.2. Divergence operator
The divergence operator is the adjoint of D. It is given by

δ
(
Jn

(
un+1(∗, ·))) := Jn+1(ũn+1), n ∈ {0,1, . . .},

if un+1 ∈ �2(N)◦n⊗�2(N). It can consistently be extended to the class of random functions u(∗, ·) ∈ L2(Ω ×N,P ⊗κ)

with u(∗, k) = ∑∞
n=0 Jn(un+1(∗, k)) and kernels un+1(∗, k) ∈ �2

0(N)◦n satisfying

E
[
δ(u)2] =

∞∑
n=0

(n + 1)!‖ũn+1‖2
�2(N)⊗(n+1) < ∞.

The class of these random functions is called the domain of δ and is denoted by dom(δ). Similar to the difference
operator, also the divergence operator admits a pathwise representation, namely

δ(u) =
∞∑

k=1

ukXk −
∞∑

k=1

Dkuk (2.11)

for u ∈ dom(δ), see [35], Proposition 9.3.

2.4.3. Ornstein–Uhlenbeck operator and its inverse
The Ornstein–Uhlenbeck operator L is defined by the relation

L := −δD (2.12)

for elements of a fixed Rademacher chaos, see [35], Proposition 10.1. In other words this means that

LJn(fn) = −nJn(fn)

for fn ∈ �2
0(N)◦n. The domain of L is the class of all functionals F = ∑∞

n=0 Jn(fn) ∈ L2(Ω) such that E[(LF)2] =∑∞
n=1 n2n!‖fn‖2

�2(N)⊗n < ∞. We notice that L maps F into the class of square-integrable centred random variables

L2
0(Ω). The (pseudo-) inverse operator L−1 of L is defined on L2

0(Ω) by

L−1F = −
∞∑

n=1

1

n
Jn(fn)

if F ∈ L2
0(Ω) has representation F = ∑∞

n=1 Jn(fn).

2.5. Important identities

The following lemma collects two important identities, namely the integration-by-parts formula and an isometric
formula for the divergence operator.

Lemma 2.4.

(i) Let F ∈ dom(D) and u ∈ dom(δ), then

E
[
Fδ(u)

] = E
[〈DF,u〉�2(N)

]
. (2.13)

(ii) For all u ∈ dom(δ) it holds that

E
[
δ(u)2] = E

[‖u‖2
�2(N)

] +E

[ ∞∑
k,l=1

(Dkul)(Dluk)

]
. (2.14)
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Proof. Part (i) is [35], Proposition 9.2, and for part (ii) we refer to [35], Proposition 9.3. �

In the proof of one of our main results we will encounter the expression D′1{F>x} with x ∈ R and would like to
apply the integration-by-parts formula (2.13) to it. Unfortunately, it is not clear in general whether the integrability
condition of Lemma 2.3 is satisfied for 1{F>x} or not. To overcome this difficulty we follow the strategy introduced in
[41] in a different context and now develop an integration-by-parts formula for functionals F not necessarily belonging
to dom(D).

Lemma 2.5. Suppose that F ∈ L2(Ω) is bounded, u ∈ L2(Ω ×N) is such that uk := u(·, k) is independent of Xk and
(D′

kF )uk ≥ 0 for all k ∈N. Then,

E
[
Fδ(u)

] = E
[〈
D′F,u

〉
�2(N)

]
.

Proof. First observe that δ(u) = ∑∞
k=1 ukXk by (2.11), due to the independence assumption. Using (2.8), we thus

find that

E
[〈
D′F,u

〉] = E

[ ∞∑
k=1

(
D′

kF
)
uk

]
=

∞∑
k=1

E
[
D′

k(F · uk)
]

=
∞∑

k=1

E
[
(F · uk) · Xk

]
= E

[
F · δ(u)

]
.

The exchange of the order of summation is justified by Fubini’s theorem, since (D′
kF )u(k) ≥ 0 by assumption and

since

E

[ ∞∑
k=1

|F · ukXk|
]

≤ CE

[ ∞∑
k=1

|uk|
]

< ∞

for a suitable constant 0 < C < ∞ by boundedness of F and square integrability of u. �

From now on and to simplify the notation we will write DF for the discrete gradient applied to a Rademacher
functional F ∈ L2(Ω) and interpret this as D′F if F ∈ L2(Ω) \ dom(D).

2.6. Stein’s method for one-dimensional normal approximation

It is a well known fact that a real-valued random variable Z follows a standard normal (or Gaussian) distribution if
and only if

E
[
f ′(Z) − Zf (Z)

] = 0

for all bounded, continuous and piecewise continuously differentiable functions f :R→ R satisfying E|f ′(Z)| < ∞,
see [7, Lemma 2.1]. This is the so-called Stein-type characterization of the standard normal distribution and the
corresponding Stein-equation reads

f ′(z) − zf (z) = 1(z ≤ x) − P(N ≤ x), x ∈ R, (2.15)

where N stands for a standard normal random variable. For a given x, a solution of (2.15) will be denoted by fx(z).
Taking expectations in (2.15) suggests to re-write the Kolmogorov distance

dK(Z,N) := sup
x∈R

∣∣P(Z ≤ x) − P(N ≤ x)
∣∣
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between (the distributions of) Z and N as

dK(Z,N) ≤ sup
fx

∣∣E[
f ′

x(Z) − Zfx(Z)
]∣∣, (2.16)

where the supremum runs over the class of solutions fx of (2.15). The unique bounded solution of (2.15) is of the
form

fx(z) = ez2/2
∫ z

−∞
(
1(y ≤ x) − P(N ≤ x)

)
e−y2/2 dy,

see [7], Lemma 2.2, and satisfies the estimate 0 < fx(z) ≤
√

2π
4 . Moreover fx is continuous on R, infinitely differen-

tiable on R \ {x}, but not differentiable at x. However, interpreting the derivative of fx at x as 1 − P(N ≤ x) + xf (x)

in view of (2.15), we have∣∣f ′
x(z)

∣∣ ≤ 1 for all z ∈R (2.17)

from Lemma 2.3 in [7]. Moreover, the same result ensures that fx satisfies

∣∣(w + u)fx(w + u) − (w + v)fx(w + v)
∣∣ ≤

(
|w| +

√
2π
4

)(|u| + |v|) (2.18)

for all u,v,w ∈R.

2.7. Stein’s method for multivariate normal approximation

There is also a multivariate version of Stein’s method for normal approximation. It starts with the observation that a
centred random variable Z with values in Rd for some d ≥ 2 follows a multivariate normal distribution with covariance
matrix C (which is a positive semi-definite (d × d)-matrix) if and only if

E
[〈

Z,∇f (Z)
〉
Rd − 〈

C,Hessf (Z)
〉
HS

] = 0

for all twice differentiable f :Rd →R with

E
∣∣〈Z,∇f (Z)

〉
Rd

∣∣ +E
∣∣〈C,Hessf (Z)

〉
HS

∣∣ < ∞.

Here, 〈·, ·〉Rd is the inner product in Rd , for two matrices A and B , 〈A,B〉HS = trace(ABT ) is the Hilbert–Schmidt
inner product and Hessf (z) stands for the Hessian matrix of f at z. If g :Rd → R, the multivariate Stein equation
reads 〈

z,∇f (z)
〉
Rd − 〈

C,Hessf (z)
〉
HS = g(x) −E

[
g(N)

]
, (2.19)

where N stands for a random variable with a multivariate centred normal distribution having covariance matrix C. It
is well known that for a given function g,

fg(x) =
∫ 1

0

1

2t
E

[
g(

√
tx + √

1 − tN) − g(N)
]

dt, x ∈Rd,

is a solution of (2.19). To rephrase smoothness properties of fg we introduce the following notation. If h : Rd → R,
k ∈N and i1, . . . , ik ∈ {1, . . . , d}, put

Mk(h) := max
1≤i1,...,ik≤d

sup
x∈Rd

∣∣∣∣ ∂k

∂xi1 · · ·∂xik

h(x)

∣∣∣∣
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(provided this is well defined). We notice that

∂k

∂xi1 · · ·∂xik

fg(x) =
∫ 1

0

1

2t
tk/2E

[
∂k

∂xi1 · · · ∂xik

g(
√

tx + √
1 − tN)

]
dt,

whenever g possesses partial derivatives up to order k. In particular, this shows that Mk(g) ≤ 1 implies Mk(fg) ≤ 2/k,
see [7], Lemma 2.6.

To compare (the distributions of) the Rd -valued random variables Z and N, and inspired by (2.19), we use the
d4-distance

d4(Z,N) := sup
g

∣∣Eg(Z) −Eg(N)
∣∣, (2.20)

where the supremum runs over all g :Rd → R having continuous partial derivatives up to order 4 and satisfy
Mi(g) ≤ 1 for i ∈ {1, . . . ,4}. Note that convergence in the d4-distance implies convergence in distribution of the
involved random variables.

3. A one-dimensional Berry–Esseen bound

We now present the first main result of this work, a Berry–Esseen bound for Rademacher functionals in terms of
discrete Malliavin operators. From a structural point of view, this bound is very similar to that obtained in Theorem 3.1
of [10], which is not surprising as we also follow the basic idea of that paper. However, the proof and the interpretation
of the involved Malliavin operators are different, because of the special structure of a Rademacher functional. This
point will further be discussed in Remark 3.2 below.

Theorem 3.1. Let F ∈ dom(D) with E[F ] = 0 and let N be a standard Gaussian random variable. Then

dK(F,N) ≤ E
[∣∣1 − 〈

DF,−DL−1F
〉
�2(N)

∣∣] +
√

2π
4

E
[〈
(DF)2,

∣∣DL−1F
∣∣〉

�2(N)

]
+E

[〈
(DF)2,

∣∣F · DL−1F
∣∣〉

�2(N)

] + 2 sup
x∈R

E
[〈
(DF)D1{F>x},

∣∣DL−1F
∣∣〉

�2(N)

]
.

Remark 3.1. Our result should be compared with the estimate from [26]. For a Rademacher functional F ∈ dom(D)

with E[F ] = 0, define B1(F ) and B2(F ) by

B1(F ) := E
[∣∣1 − 〈

DF,−DL−1F
〉
�2(N)

∣∣],
B2(F ) := 20

3
E

[〈|DF |3, ∣∣DL−1F
∣∣〉

�2(N)

]
.

Then Theorem 3.1 in [26] says that∣∣E[
g(F )

] −E
[
g(N)

]∣∣ ≤ min
{
4
∥∥g′∥∥∞,

∥∥g′′∥∥∞
}
B1(F ) + ∥∥g′′∥∥∞B2(F ), (3.1)

where N is a standard Gaussian random variable and g :R → R is a twice differentiable function with bounded
derivatives of order one and two. Moreover, using a standard smoothing argument, this has been extended in Corol-
lary 3.6 ibidem to an estimate for the Wasserstein distance:

dW (F,N) := sup
g∈Lip1

∣∣E[
g(F )

] −E
[
g(N)

]∣∣
≤

√
2
(
B1(F ) + B2(F )

)(
5 +E

[|F |]), (3.2)

where the supremum runs over all Lipschitz functions g :R → R with Lipschitz constant bounded by 1. In view of the
well-known relation dK(F,N) ≤ 2

√
dW (F,N) between the Kolmogorov and the Wasserstein distance, this leads in



Limit theorems for Rademacher functionals 773

general to a suboptimal estimate for dK(F,N). Even (3.2) is suboptimal compared to (3.1). Our bound provided in
Theorem 3.1 resolves this problem. Moreover, in our applications below we will see that the Kolmogorov distance will
be of the same order of magnitude as (3.1), improving thereby also (3.2).

Proof of Theorem 3.1. Let fx be the solution of the Stein equation (2.15). In view of (2.16) we have to bound the
quantity

E
[
f ′

x(F ) − Ffx(F )
]

uniformly in x. For the following calculation we suppress the dependence on x of the Stein solution and use the
abbreviation f := fx . Using the relation δD = −L from (2.12) and the integration-by-parts formula in Lemma 2.5
we get

E
[
f ′(F ) − Ff (F)

] = E
[
f ′(F ) − δ

(−DL−1F
)
f (F )

]
= E

[
f ′(F ) − 〈

Df (F),−DL−1F
〉
�2(N)

]
. (3.3)

We now rewrite the scalar product on the right-hand side of (3.3). To this end, we find another representation of the
gradient Df (F), using the fundamental theorem of calculus. Note that this only makes use of the first derivative of f ,
which is in contrast to the approach taken in [26], where an approximate chain rule for Df (F) is used and higher
derivatives of f are involved. We get for k ∈ N,

Dkf (F ) = 1

2

((
f (F )

)+
k

− (
f (F )

)−
k

) = 1

2

((
f

(
F+

k

)) − (
f

(
F−

k

)))
= 1

2

∫ F+
k −F

F−
k −F

f ′(F + t)dt

= 1

2

(∫ F+
k −F

F−
k −F

(
f ′(F + t) − f ′(F )

)
dt +

∫ F+
k −F

F−
k −F

f ′(F )dt

)

= 1

2

(∫ F+
k −F

F−
k −F

(
f ′(F + t) − f ′(F )

)
dt + f ′(F ) · (F+

k − F−
k

))
.

Combining this with (3.3) we get

E
[
f ′(F ) − Ff (F)

] = E
[
f ′(F ) − 〈

f ′(F )DF,−DL−1F
〉
�2(N)

]
−E

[〈
1

2

∫ F+
(·)−F

F−
(·)−F

(
f ′(F + t) − f ′(F )

)
dt,−DL−1F

〉
�2(N)

]
. (3.4)

Since f is a solution of the Stein equation, we have for all t ∈R,

f ′(F + t) = (F + t)f (F + t) + 1{F+t≤x} − P(N ≤ x).

Thus, ∫ F+
k −F

F−
k −F

(
f ′(F + t) − f ′(F )

)
dt =

∫ F+
k −F

F−
k −F

(
(F + t)f (F + t) − Ff (F)

)
dt︸ ︷︷ ︸

=:I1(k)

+
∫ F+

k −F

F−
k −F

(1{F+t≤x} − 1{F≤x})dt︸ ︷︷ ︸
=:I2(k)

. (3.5)
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One can now make use of the bound (2.18). Using the identities

F±
k − F = ±2DkF1{Xk=∓1}, (3.6)

we get

∣∣I1(k)
∣∣ =

∣∣∣∣ ∫ F+
k −F

F−
k −F

(
(F + t)f (F + t) − Ff (F)

)
dt

∣∣∣∣
≤

∫ max {F−
k −F,F+

k −F }

min {F−
k −F,F+

k −F }

(
|F | +

√
2π
4

)
|t |dt

=
∫ 2 max {DkF1{Xk=−1},−DkF1{Xk=1}}

2 min {DkF1{Xk=−1},−DkF1{Xk=1}}

(
|F | +

√
2π
4

)
|t |dt

= (2DkF)2

2

(
|F | +

√
2π
4

)
. (3.7)

For an evaluation of the term I2(k) we first define

I+/+(k) = 1{Xk=1,DkF≥0} · I2(k), I+/−(k) = 1{Xk=1,DkF<0} · I2(k),

I−/+(k) = 1{Xk=−1,DkF≥0} · I2(k), I−/−(k) = 1{Xk=−1,DkF<0} · I2(k).

Using (3.6) we compute I+/+ as follows:

|I+/+| =
∣∣∣∣1{Xk=1,DkF≥0} ·

∫ F+
k −F

F−
k −F

(1{F+t≤x} − 1{F≤x})dt

∣∣∣∣
= 1{Xk=1,DkF≥0} ·

∣∣∣∣ ∫ 0

−2DkF

( 1{F+t≤x}︸ ︷︷ ︸
≤1{F−2DkF≤x}

−1{F≤x})dt

∣∣∣∣
≤ 1{Xk=1,DkF≥0} · ∣∣2DkF · (1{F−2DkF≤x} − 1{F≤x})

∣∣
= 1{Xk=1,DkF≥0} · ∣∣2DkF · (1{F−

k ≤x} − 1{F+
k ≤x})

∣∣
= 1{Xk=1,DkF≥0} · ∣∣2DkF · (1{F+

k >x} − 1{F−
k >x})

∣∣
= 1{Xk=1,DkF≥0} · 4DkF · Dk1{F>x}.

Similarly, we get the bounds∣∣I+/−(k)
∣∣ ≤ 1{Xk=1,DkF<0} · 4DkF · Dk1{F>x},∣∣I−/+(k)
∣∣ ≤ 1{Xk=−1,DkF≥0} · 4DkF · Dk1{F>x},∣∣I−/−(k)
∣∣ ≤ 1{Xk=−1,DkF<0} · 4DkF · Dk1{F>x}.

Since

I2(k) = I+/+(k) + I+/−(k) + I−/+(k) + I−/+(k),

we arrive at∣∣I2(k)
∣∣ ≤ 4DkF · Dk1{F>x}. (3.8)
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Using our bounds (3.7) and (3.8) for I1 := (I1(k))k∈N and I2 := (I2(k))k∈N and the identities (3.4) and (3.5) we
conclude that∣∣E[

f ′(F ) − Ff (F)
]∣∣ ≤ E

∣∣1 − 〈
DF,−DL−1F

〉
�2(N)

∣∣ + 1

2
E

[〈|I1| + |I2|,
∣∣DL−1F

∣∣〉
�2(N)

]
≤ E

∣∣1 − 〈
DF,−DL−1F

〉
�2(N)

∣∣ +
√

2π
4

E
[〈
(DF)2,

∣∣DL−1F
∣∣〉

�2(N)

]
+E

[〈
(DF)2,

∣∣F · DL−1F
∣∣〉

�2(N)

] +E
[〈
(2DF)1{F>x},

∣∣DL−1F
∣∣〉

�2(N)

]
.

The proof is completed by taking the supremum over all x ∈R. �

Let us finally introduce a simplification of the terms arising in Theorem 3.1, which will be used below.

Corollary 3.1. Let F ∈ dom(D). Then

(i) E[|1 − 〈DF,−DL−1F 〉�2(N)|] ≤ (E[(1 − 〈DF,−DL−1F 〉�2(N))
2])1/2,

(ii) E[〈(DF)2, |F · DL−1F |〉�2(N)] +
√

2π
4 E[〈(DF)2, |DL−1F |〉�2(N)] ≤ (E[〈(DF)2, (DL−1F)2〉�2(N)])1/2

× (E[‖DF‖4
�2(N)

])1/4((E[F 4])1/4 + 1),

provided all occurring expectations on the right-hand sides of the above inequalities are well defined.

Proof. An application of the Cauchy–Schwarz inequality yields (i). Using the Cauchy–Schwarz inequality again with
respect to E[·] and 〈·, ·〉�2(N) we find

√
2π
4

E
[〈
(DF)2,

∣∣DL−1F
∣∣〉

�2(N)

] +E
[〈
(DF)2,

∣∣F · DL−1F
∣∣〉

�2(N)

]
≤ E

[〈
(DF)2,

(
1 + |F |)∣∣DL−1F

∣∣〉
�2(N)

]
= E

[〈
(DF)

∣∣DL−1F
∣∣, (DF)

(
1 + |F |)〉

�2(N)

]
≤ E

[∥∥(DF)
(
DL−1F

)∥∥
�2(N)

· ∥∥(DF)
(
1 + |F |)∥∥

�2(N)

]
≤ (

E
[〈
(DF)2,

(
DL−1F

)2〉
�2(N)

])1/2 · (E[(
1 + |F |)2‖DF‖2

�2(N)

])1/2
. (3.9)

Now, (ii) is obtained by applying both the Cauchy–Schwarz and the Minkowski inequality to the second term in (3.9):(
E

[(
1 + |F |)2‖DF‖2

�2(N)

])1/2 ≤ E
[(

1 + |F |)4]1/4 ·E[‖DF‖4
�2(N)

]1/4

= ∥∥1 + |F |∥∥
L4(Ω)

·E[‖DF‖4
�2(N)

]1/4

≤ (
1 +E

[
F 4]1/4) ·E[‖DF‖4

�2(N)

]1/4
.

This completes the proof. �

Remark 3.2. Let us briefly discuss the novelties of the proof of Theorem 3.1 compared with the existing literature (such
as [26]). The common thread underlying the Malliavin–Stein approach (also on the Gaussian [21] or Poisson space
[30]) is the usage of an integration-by-parts formula. For smooth test functions, this is then combined with a Taylor
expansion, which leads to an appropriate chain rule. Here, we could not build on the existing so-called approximate
chain rule from [26] and instead followed the idea of [10] by expressing the remainder term in integral form. Handling
this term required new estimates, since the Malliavin operator D has a different representation and follows different
computation rules in case of Rademacher sequences.
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4. Explicit bounds for discrete multiple stochastic integrals

4.1. The first chaos

In the present section we apply our abstract bound from Theorem 3.1 dealing with the Kolmogorov distance between
the distribution of a general Rademacher functional F ∈ dom(D) and the standard normal distribution in the case
that F belongs to the first Rademacher chaos. This way, we establish a connection to small ball probabilities. So, let
F = J1(f ) for some f ∈ �2(N), i.e., F = ∑∞

i=1 f (i)Xi . Such functionals are known as Rademacher averages in the
literature.

Theorem 4.1. Let F = ∑∞
i=1 aiXi for (ai)i∈N ∈ �2(N) such that E[F 2] = ∑∞

i=1 a2
i = 1 and let N be a standard

Gaussian random variable. Then

dK(F,N) ≤ 2
∞∑
i=1

|ai |3 + sup
x∈R

∞∑
k=1

a2
k · P

(
x − |ak| <

∞∑
i=1
i 
=k

aiXi ≤ x + |ak|
)

. (4.1)

Proof. We first introduce abbreviations for the four terms appearing on the right-hand side of the bound in Theo-
rem 3.1:

A1(F ) := E
[∣∣1 − 〈

DF,−DL−1F
〉
�2N

∣∣], (4.2)

A2(F ) :=
√

2π
4

E
[〈
(DF)2,

∣∣DL−1F
∣∣〉

�2(N)

]
, (4.3)

A3(F ) := E
[〈
(DF)2,

∣∣F · DL−1F
∣∣〉

�2(N)

]
, (4.4)

A4(F ) := 2 sup
x∈R

E
[〈
(DF)D1{F>x},

∣∣DL−1F
∣∣〉

�2(N)

]
. (4.5)

In our case we have that DkF = −DkL
−1F = ak for all k ∈ N and thus get the following bounds for A1(F ),A2(F )

and A3(F ):

A1(F ) =
∣∣∣∣∣1 −

∞∑
i=1

a2
i

∣∣∣∣∣ = 0, A2(F ) ≤
∞∑
i=1

|ai |3,
(4.6)

A3(F ) = E

[ ∞∑
i=1

|ai |3 ·
∣∣∣∣∣

∞∑
i=1

aiXi

∣∣∣∣∣
]

≤
( ∞∑

i=1

|ai |3
)

·
√√√√E

[( ∞∑
i=1

aiXi

)2]
=

∞∑
i=1

|ai |3.

For the term A4(F ) we first observe that

Dk1

( ∞∑
i=1

aiXi > x

)
= 1

2

(
1

( ∞∑
i=1
i 
=k

aiXi > x − ak

)
− 1

( ∞∑
i=1
i 
=k

aiXi > x + ak

))
.

Thus,

A4(F ) = 2 sup
x∈R

E

[ ∞∑
k=1

DkF · Dk1(F > x)
∣∣DkL

−1F
∣∣]

= sup
x∈R

E

[ ∞∑
k=1

ak · |ak|
(

1

( ∞∑
i=1
i 
=k

aiXi > x − ak

)
− 1

( ∞∑
i=1
i 
=k

aiXi > x + ak

))]
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= sup
x∈R

E

[ ∞∑
k=1

a2
k1

(
x − |ak| <

∞∑
i=1
i 
=k

aiXi ≤ x + |ak|
)]

= sup
x∈R

∞∑
k=1

a2
k · P

(
x − |ak| <

∞∑
i=1
i 
=k

aiXi ≤ x + |ak|
)

. (4.7)

Putting together (4.6) and (4.7) yields the assertion. �

Remark 4.1. It is interesting to see that the bound (4.1) in Theorem 4.1 involves quantities which are known as small
ball probabilities in the literature. More precisely, if ξ1, . . . , ξn are i.i.d. real-valued random variables and a1, . . . , an

real numbers, then a quantity of the type

sup
x∈R

P

(∣∣∣∣∣
n∑

i=1

aiξi − x

∣∣∣∣∣ ≤ ε

)
, ε > 0,

is what is usually called a small ball probability and can be considered as a kind of measure of anti-concentration
for the partial sum

∑n
i=1 aiξi . The authors in [39] (see also [17]) found a bound for these small ball probabilities

using the classical Berry–Esseen theorem for i.i.d. random variables with finite third moment. In our set-up, i.e., if
X1, . . . ,Xn is a sequence of independent Rademacher random variables and if a1, . . . , an ∈ R, Corollary 2.9 in [39]
says that

sup
x∈R

P

(∣∣∣∣∣
n∑

i=1

aiXi − x

∣∣∣∣∣ ≤ ε

)
≤

√
2

π
ε + C

n∑
i=1

|ai |3, ε > 0, (4.8)

where 0 < C < ∞ is an absolute constant. Using (4.8) one can see that Theorem 4.1 reproduces the correct order for
the Berry–Esseen bound for the normal approximation of a finite sum F = ∑n

i=1 aiXi , which is O(
∑n

i=1 |ai |3). Our
Theorem 4.1 can be interpreted as an inverse of (4.8), as it provides a Berry–Esseen bound for F in terms of small
ball probabilities. Also note that our Theorem 4.1 goes beyond this set-up, since it allows F to depend on an infinite
sequence of independent Rademacher variables.

4.2. The case q ≥ 2

Our main result in this section is an estimate for the Kolmogorov distance of a discrete multiple stochastic integral
of arbitrary order q ≥ 2 and a standard Gaussian random variable in terms of contraction norms. We present two
estimates, which will separately be used below. We emphasize that they are the discrete analogues of similar results
for Gaussian or Poisson multiple stochastic integrals, see [10,21].

Theorem 4.2. Let F = Jq(f ) for a fixed integer q ≥ 2 and a symmetric kernel f ∈ �2
0(N)◦q . Assume that

‖(f �r
r f )1Δ2(q−r)

‖�2(N)⊗2(q−r) ≤ 1, for all r = 1, . . . , q − 1. Furthermore, let N be a standard Gaussian random
variable. Then

dK(F,N) ≤ C1 max
{∣∣1 − q!‖f ‖2

�2(N)⊗q

∣∣, max
r=1,...,q−1

{∥∥(
f �r

r f
)
1Δ2(q−r)

∥∥
�2(N)⊗2(q−r)

}
,

max
r=1,...,q

{∥∥f �r−1
r f

∥∥
�2(N)⊗(2(q−r)+1)

}}
≤ C2 max

{∣∣1 − q!‖f ‖2
�2(N)⊗q

∣∣, max
r=1,...,q−1

{∥∥f �r
r f

∥∥
�2(N)⊗2(q−r)

}}
with universal constants 0 < C1,C2 < ∞ only depending on q .
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Remark 4.2. Theorem 4.2 only proves useful for applications to sequences Fn = Jq(fn) with kernels fn for which at
least one of the above bounds vanishes. In such applications, the assumption ‖(fn �r

r fn)1Δ2(q−r)
‖�2(N)⊗2(q−r) ≤ 1, for

all r = 1, . . . , q − 1, is naturally fullfilled, whenever n is large enough.

We prepare the proof of Theorem 4.2 with the following lemma, which corresponds to Theorem 4.1 in [26] com-
bined with (2.2) and (2.3).

Lemma 4.1. Let F = Jq(f ) for a fixed integer q ≥ 2 and a symmetric kernel f ∈ �2
0(N)◦q . Then

E

[(
1 − 1

q
‖DF‖2

�2(N)

)2]
= (

1 − q!‖f ‖2
�2(N)⊗q

)2

+ q2
q−1∑
r=1

(
(r − 1)!

(
q − 1
r − 1

)2)2(
2(q − r)

)!∥∥(
f̃ �r

r f
)
1Δ2(q−r)

∥∥2
�2(N)⊗2(q−r)

≤ (
1 − q!‖f ‖2

�2(N)⊗q

)2

+ q2
q−1∑
r=1

(
(r − 1)!

(
q − 1
r − 1

)2)2(
2(q − r)

)!∥∥f �r
r f

∥∥2
�2(N)⊗2(q−r) (4.9)

and

E
[‖DF‖4

�4(N)

] =
∞∑

k=1

q4
q∑

r=1

(
(r − 1)!

(
q − 1
r − 1

)2)2(
2(q − r)

)!
× ∥∥( ˜

f (·, k) �r−1
r−1 f (·, k)

)
1Δ2(q−r)

∥∥2
�2(N)⊗2(q−r)

≤ q4
q∑

r=1

(
(r − 1)!

(
q − 1
r − 1

)2)2(
2(q − r)

)!∥∥f �r−1
r f

∥∥2
�2(N)⊗2(q−r)+1

≤ C max
r=1,...,q−1

{∥∥f �r
r f

∥∥2
�2(N)⊗2(q−r)

}
, (4.10)

for a constant 0 < C < ∞ depending only on q .

Proof of Theorem 4.2. Let us first assume that the support of f satisfies

supp(f ) ⊆ {1, . . . , n}q

for some n ∈ N. According to Theorem 3.1 and Corollary 3.1, we have to bound the following quantities:

A1(F ) := (
E

[(
1 − 〈

DF,−DL−1F
〉
�2(N)

)2])1/2
, (4.11)

A2(F ) := (
E

[〈
(DF)2,

(
DL−1F

)2〉
�2(N)

])1/2
, (4.12)

A3(F ) := (
E

[‖DF‖4
�2(N)

])1/4((
E

[
F 4])1/4 + 1

)
, (4.13)

A4(F ) := 2 sup
x∈R

E
[〈
(DF)(D1{F>x}),

∣∣DL−1F
∣∣〉

�2(N)

]
. (4.14)
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First observe that, since DkF = qJq−1(f (·, k)) and −DkL
−1F = Jq−1(f (·, k)) = 1

q
DkF , we have

A1(F ) =
(
E

[(
1 − 1

q
‖DF‖2

�2(N)

)2])1/2

and A2(F ) =
(
E

[
1

q2
‖DF‖4

�4(N)

])1/2

.

Thus, using (2.2), (2.3) and Lemma 4.1, we can estimate A1(F ) and A2(F ) as follows:

A1(F ) ≤ ∣∣1 − q!‖f ‖2
�2(N)⊗q

∣∣
+ q

(
q−1∑
r=1

(
(r − 1)!

(
q − 1
r − 1

)2)2(
2(q − r)

)!∥∥(
f �r

r f
)
1Δ2(q−r)

∥∥2
�2(N)⊗2(q−r)

)1/2

(4.15)

≤ ∣∣1 − q!‖f ‖2
�2(N)⊗q

∣∣
+ q

(
q−1∑
r=1

(
(r − 1)!

(
q − 1
r − 1

)2)2(
2(q − r)

)!∥∥f �r
r f

∥∥2
�2(N)⊗2(q−r)

)1/2

(4.16)

and

A2(F ) ≤ q

(
q∑

r=1

(
(r − 1)!

(
q − 1
r − 1

)2)2(
2(q − r)

)!∥∥f �r−1
r f

∥∥2
�2(N)⊗2(q−r)+1

)1/2

(4.17)

= q

((
2(q − 1)

)!∥∥f �0
1 f

∥∥
�2(N)⊗2(q−1)+1

+
q∑

r=2

(
(r − 1)!

(
q − 1
r − 1

)2)2(
2(q − r)

)!∥∥f �r−1
r f

∥∥2
�2(N)⊗2(q−r)+1

)1/2

≤ q

((
2(q − 1)

)!∥∥f �
q−1
q−1 f

∥∥2
�2(N)⊗2

+
q∑

r=2

(
(r − 1)!

(
q − 1
r − 1

)2)2(
2(q − r)

)!∥∥f �r−1
r−1 f

∥∥2
�2(N)⊗2(q−r+1)

)1/2

= q

((
2(q − 1)

)!∥∥f �
q−1
q−1 f

∥∥2
�2(N)⊗2

+
q−1∑
r=1

(
r!

(
q − 1

r

)2)2(
2(q − r − 1)

)!∥∥f �r
r f

∥∥2
�2(N)⊗2(q−r)

)1/2

. (4.18)

Considering A3(F ), we use the multiplication formula (2.6) to see that

(DkF )2 = q2
q−1∑
r=0

r!
(

q − 1
r

)2

J2(q−r−1)

((
˜f (·, k) �r

r f (·, k)
)
1Δ2(q−r−1)

)
= q2

q∑
r=1

(r − 1)!
(

q − 1
r − 1

)2

J2(q−r)

(( ˜
f (·, k) �r−1

r−1 f (·, k)
)
1Δ2(q−r)

)
.
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Since f has finite support, we thus find that

‖DF‖2
�2(N)

=
∞∑

k=1

q2
q∑

r=1

(r − 1)!
(

q − 1
r − 1

)2

J2(q−r)

(( ˜
f (·, k) �r−1

r−1 f (·, k)
)
1Δ2(q−r)

)
= q2

q∑
r=1

(r − 1)!
(

q − 1
r − 1

)2

J2(q−r)

((
f̃ �r

r f
)
1Δ2(q−r)

)

= q2
q−1∑
r=1

(r − 1)!
(

q − 1
r − 1

)2

J2(q−r)

((
f̃ �r

r f
)
1Δ2(q−r)

) + q · q!‖f ‖2
�2(N)⊗q .

Using the isometry relation (2.5) we deduce the bound(
E

[‖DF‖4
�2(N)

])1/4

≤ (
q · q!‖f ‖2

�2(N)⊗q

)1/2

+ q

(
q−1∑
r=1

(
(r − 1)!

(
q − 1
r − 1

)2)2(
2(q − r)

)!∥∥(
f �r

r f
)
1Δ2(q−r)

∥∥2
�2(N)⊗2(q−r)

)1/4

(4.19)

≤ q

(
q−1∑
r=1

(
(r − 1)!

(
q − 1
r − 1

)2)2(
2(q − r)

)!∥∥f �r
r f

∥∥2
�2(N)⊗2(q−r)

)1/4

+ (
q · q!‖f ‖2

�2(N)⊗q

)1/2 (4.20)

for the first factor in A3(F ). For the second factor we use again the multiplication formula (2.6) to see that

F 2 =
q−1∑
r=0

r!
(

q

r

)2

J2(q−r)

((
f̃ �r

r f
)
1Δ2(q−r)

) + q!‖f ‖2
�2(N)⊗q .

The isometry relation (2.5) then shows that E[F 4] can be expressed as

E
[
F 4] =

q−1∑
r=0

(
r!

(
q

r

)2)2(
2(q − r)

)!∥∥(
f̃ �r

r f
)
1Δ2(q−r)

∥∥2
�2(N)⊗2(q−r) + (

q!‖f ‖2
�2(N)⊗q

)2
.

Separating the term r = 0 and applying (2.1) we find that E[F 4] is bounded from above by

3
(
q!‖f ‖2

�2(N)⊗q

)2 +
q−1∑
r=1

((
q!

(
q

r

))2

+
(

r!
(

q

r

)2)2(
2(q − r)

)!)∥∥(
f �r

r f
)
1Δ2(q−r)

∥∥2
�2(N)⊗2(q−r) (4.21)

≤ 3
(
q!‖f ‖2

�2(N)⊗q

)2 +
q−1∑
r=1

(
q!

(
q

r

))2(
1 +

(
2(q − r)

q − r

))∥∥f �r
r f

∥∥2
�2(N)⊗2(q−r) . (4.22)

Next, we consider the term A4(F ). By virtue of Lemma 2.5, we have

A4(F ) = 2 sup
x∈R

E
[〈
(DF)(D1{F>x}),

∣∣DL−1F
∣∣〉

�2(N)

]
= 2

q
sup
x∈R

E
[〈
D1{F>x}, (DF)|DF |〉

�2(N)

]
= 2

q
sup
x∈R

E
[
1{F>x}δ

(
(DF)|DF |)]
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≤ 2

q
E

[∣∣δ((DF)|DF |)∣∣]
≤ 2

q

(
E

[(
δ
(
(DF)|DF |))2])1/2

. (4.23)

We now apply the isometry property (2.14) of the divergence operator. This leads to

E
[(

δ
(
(DF)|DF |))2]

= E
[∥∥(DF)|DF |∥∥2

�2(N)

] +E

[ ∞∑
k,l=1

[
Dk

(
DlF |DlF |)][Dl

(
DkF |DkF |)]]

= E
[‖DF‖4

�4(N)

] +E

[ ∞∑
k,l=1

[
Dk

(
DlF |DlF |)][Dl

(
DkF |DkF |)]]

≤ E
[‖DF‖4

�4(N)

] +E

[ ∞∑
k,l=1

(
Dk

(
DlF |DlF |))2

]
. (4.24)

Now, using both the product formula (2.9) for the gradient operator and (2.8) we see that

E
[(

Dk

(
DlF |DlF |))2]

= E
[(

Dk

(
(DlF )2))21{DlF≥0} + (

Dk

(−(DlF )2))21{DlF<0}
]

= E
[(

Dk

(
(DlF )2))2]

= E
[(

2(DlF )(DkDlF ) − 2Xk(DkDlF )2)2]
= 4E

[
(DlF )2(DkDlF )2] − 8E

[
Xk(DlF )(DkDlF )3] + 4E

[
(DkDlF )4]

= 4E
[
(DlF )2(DkDlF )2] − 8E

[
Dk

(
(DlF )(DkDlF )3)] + 4E

[
(DkDlF )4]

= 4E
[
(DlF )2(DkDlF )2] − 4E

[
(DkDlF )4]

≤ 4E
[
(DlF )2(DkDlF )2]. (4.25)

Combining (4.24) and (4.25) we further estimate

E
[(

δ
(
(DF)|DF |))2]

≤ E
[‖DF‖4

�4(N)

] + 4E

[ ∞∑
l=1

(
(DlF )2

∞∑
k=1

(DkDlF )2

)]

≤ E
[‖DF‖4

�4(N)

] + 4E

[
‖DF‖2

�4(N)

( ∞∑
l=1

( ∞∑
k=1

(DkDlF )2

)2)1/2]

≤ E
[‖DF‖4

�4(N)

] + 4
(
E

[‖DF‖4
�4(N)

])1/2

(
E

[ ∞∑
l=1

( ∞∑
k=1

(DkDlF )2

)2])1/2

.
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Putting this into (4.23), we arrive at

A4(F ) ≤ 2A2(F ) + 4

(
1

q
A2(F )

)1/2
(
E

[ ∞∑
l=1

( ∞∑
k=1

(DkDlF )2

)2])1/4

︸ ︷︷ ︸
=:A′

4(F )

. (4.26)

To bound A′
4(F ) further we notice that DkDlF = q(q − 1)Jq−2(f (·, k, l)), which implies

∞∑
k=1

(DkDlF )2

=
∞∑

k=1

q2(q − 1)2
q−2∑
r=0

r!
(

q − 2
r

)2

J2(q−r−2)

((
˜f (·, k, l) �r

r f (·, k, l)
)
1Δ2(q−r−2)

)
=

∞∑
k=1

q2(q − 1)2
q∑

r=2

(r − 2)!
(

q − 2
r − 2

)2

J2(q−r)

(( ˜
f (·, k, l) �r−2

r−2 f (·, k, l)
)
1Δ2(q−r)

)
= q2(q − 1)2

q∑
r=2

(r − 2)!
(

q − 2
r − 2

)2

J2(q−r)

(( ˜
f (·, l) �r−1

r−1 f (·, l))1Δ2(q−r)

)
.

Then, by the isometry of discrete multiple stochastic integrals (2.5) and the contraction inequality (2.3), we see that

∞∑
l=1

E

[( ∞∑
k=1

(DkDlF )2

)2]

=
∞∑
l=1

q4(q − 1)4
q∑

r=2

(
(r − 2)!

(
q − 2
r − 2

)2)2(
2(q − r)

)!‖( ˜
f (·, l) �r−1

r−1 f (·, l))1Δ2(q−r)
‖2
�2(N)⊗2(q−r)

≤
∞∑
l=1

q4(q − 1)4
q∑

r=2

(
(r − 2)!

(
q − 2
r − 2

)2)2(
2(q − r)

)!∥∥f (·, l) �r−1
r−1 f (·, l)∥∥2

�2(N)⊗2(q−r)

= q4(q − 1)4
q∑

r=2

(
(r − 2)!

(
q − 2
r − 2

)2)2(
2(q − r)

)!∥∥f �r−1
r f

∥∥2
�2(N)⊗2(q−r)+1

≤ q4(q − 1)4
q∑

r=2

(
(r − 2)!

(
q − 2
r − 2

)2)2(
2(q − r)

)!∥∥f �r−1
r−1 f

∥∥2
�2(N)⊗2(q−r+1)

= q4(q − 1)4
q−1∑
r=1

(
(r − 1)!

(
q − 2
r − 1

)2)2(
2(q − r − 1)

)!∥∥f �r
r f

∥∥2
�2(N)⊗2(q−r) . (4.27)

Thus,

A′
4(F ) ≤ q(q − 1)

(
q−1∑
r=1

(
(r − 1)!

(
q − 2
r − 1

)2)2(
2(q − r − 1)

)!∥∥f �r
r f

∥∥2
�2(N)⊗2(q−r)

)1/4

. (4.28)

Combining (4.15), (4.17), (4.19), (4.21), (4.26) and (4.27) yields the first inequality in Theorem 4.2, while (4.16),
(4.18), (4.20), (4.22), (4.26) and (4.28) give the second bound in Theorem 4.2 for a discrete multiple stochastic
integral Jq(f ) whose integrand f satisfies supp(f ) ⊆ {1, . . . , n}q . For the general case we use the following approxi-
mation argument (cf. [35]). Consider for n ∈ N the sequence of truncated kernels fn := f 1{1,...,n}q . Since the sequence
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(Jq(fn))n≥1 is a martingale with respect to the filtration (Fn)n≥1 with Fn := σ(X1, . . . ,Xn), an application of the
martingale convergence theorem yields that

lim
n→∞Jq(f 1{1,...,n}q ) = lim

n→∞E
[
Jq(f )|Fn

] = Jq(f ).

The assertion thus follows by means of [35], Lemma 2.6, and continuity of the gradient operator on a fixed
Rademacher chaos. �

Remark 4.3. If in Theorem 4.2 a general centred Gaussian random variable Nσ 2 with variance σ 2 > 0 is used, the
Berry–Esseen bound has to be replaced by

dK(F,Nσ 2) ≤ C
1

σ 2
max

{∣∣σ 2 − q!‖f ‖2
�2(N)⊗q

∣∣, max
r=1,...,q−1

{∥∥f �r
r f

∥∥
�2(N)⊗2(q−r)

}}
.

This is easily verified by a re-scaling argument.

4.3. A necessary condition for double integrals

Theorem 4.2 says that Jq(fn) converges in distribution to a standard Gaussian random variable if

lim
n→∞ max

r=1,...,q−1

{∥∥fn �r
r fn

∥∥
�2(N)⊗2(q−r)

} = 0,

provided that q!‖fn‖ → 1, as n → ∞. In view of the results from [10,14,21] implying that vanishing contraction
norms yield a central limit theorem for Gaussian or Poisson multiple integrals (in the latter case at least if the functions
fn are non-negative), it is natural to ask whether this is also a necessary condition for a sequence of discrete multiple
integrals to satisfy a central limit theorem. Here, we concentrate on the case of double integrals Fn := J2(fn) and
recall that it has been claimed in Proposition 4.6 of [26] that

lim
n→∞

∥∥fn �1
1 fn

∥∥2
�2(N)⊗2 = 0

is a necessary and sufficient condition for weak convergence of the distribution of Fn to the standard normal dis-
tribution, if E[F 2

n ] → 1, as n → ∞. The proof of sufficiency of this condition for asymptotic normality of (quite
general) quadratic forms goes back to the classical work [8] of de Jong. Another paper in this regard is the paper [6] of
Chatterjee, where in Proposition 3.1 ibidem a bound for the normal approximation of quadratic forms of Rademacher
functionals has been obtained by means of Stein’s method. As shown in [26], these bounds also have a representation
in terms of norms of contractions. However, it turns out that the convergence of these norms to zero is not neccessary
for asymptotic normality as the following example shows (see Section 1.6 in [25]).

Example 4.1. Consider Fn = J2(fn), n ≥ 2, with

fn(i, j) =
{

1
2
√

n−1
, if {i, j} = {1, k} for some k = 2, . . . , n,

0, otherwise.

Then,

Fn =
n∑

i,j=1

fn(i, j)XiXj = X1√
n − 1

n∑
i=2

Xi

with E[F 2
n ] = 1. We notice that the distribution of Fn converges weakly to the standard normal distribution. But

(
fn �1

1 fn

)
(i, j) =

n∑
k=2

f 2
n (1, k)1{i=j=1}(i, j) + fn(1, i)fn(1, j)1{i≥2,j≥2}(i, j)

= 1

4
1{i=j=1}(i, j) + 1

4(n − 1)
1{i≥2,j≥2}(i, j)
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and hence

∥∥fn �1
1 fn

∥∥2
�2(N)⊗2 =

n∑
i,j=1

(
1

16
1{i=j=1}(i, j) + 1

16(n − 1)2
1{i≥2,j≥2}(i, j)

)
= 1

8
.

We now deduce a new necessary condition for a sequence J2(fn) of double integrals to converge in distribution to
a standard Gaussian random variable. It shows that the validity of such a central limit theorem depends in general on a
subtle interplay of contraction norms on and off diagonals. Such a phenomenon is not visible for Gaussian or Poisson
multiple integrals and seems to be a special feature of the discrete set-up.

Theorem 4.3. Let Fn = J2(fn), fn ∈ �2
0(N)◦2 and assume that E[F 2

n ] = 1 for all n ∈ N. A necessary condition for
the convergence of the distribution of Fn to the standard normal distribution is that

2‖fn‖4
�4(N)⊗2 + 3

(∥∥(
fn �1

1 fn

)
1Δ2

∥∥2
�2(N)⊗2 − ∥∥(

fn �1
1 fn

)
1Δc

2

∥∥2
�2(N)⊗2

) −→ 0, (4.29)

as n → ∞.

It is readily checked that our new necessary condition (4.29) is satisfied for Example 4.1.
The proof of Theorem 4.3 is prepared by the following two lemmas. The first one is a hypercontractivity property

of Rademacher functionals with a finite chaotic decomposition and the second one provides an expression for the 4th
moment of a discrete stochastic double integral.

Lemma 4.2. Let F = E[F ] + ∑d
n=1 Jn(fn), fn ∈ �2

0(N)◦n, for some d ∈ N, and suppose that 2 ≤ p < q . Then there
exists a constant 0 < C < ∞ depending only on d such that

(
E

[|F |q])1/q ≤ C

(
q − 1

p − 1

)d/2(
E

[|F |p])1/p
. (4.30)

Proof. For F depending only on finitely many Rademacher variables this is Theorem 3.2.5 in [9]. In the general case,
the assertion follows by means of an approximation argument and Corollary 0.2.1 in [13]. �

Lemma 4.3. Let F = J2(f ) with f ∈ �2
0(N)◦2 such that E[F 2] = 1. Then,

E
[
F 4] = 3 + 32‖f ‖4

�4(N)⊗2 + 48
(∥∥(

f �1
1 f

)
1Δ2

∥∥2
�2(N)⊗2 − ∥∥(

f �1
1 f

)
1Δc

2

∥∥2
�2(N)⊗2

)
. (4.31)

Proof. From the multiplication formula (2.6), we have

F 2 = J4
((

f̃ �0
0 f

)
1Δ4

) + 4J2
((

f �1
1 f

)
1Δ2

) + 2‖f ‖2
�2(N)⊗2 .

Now the isometry of multiple stochastic integrals (2.5) and relation (2.1) yield

E
[
F 4] = 24

∥∥(
f̃ �0

0 f
)
1Δ4

∥∥2
�2(N)⊗4 + 32

∥∥(
f �1

1 f
)
1Δ2

∥∥2
�2(N)⊗2 + 4‖f ‖4

�2(N)⊗2

= 24
∥∥f̃ �0

0 f
∥∥2

�2(N)⊗4 − 24
∥∥(

f̃ �0
0 f

)
1Δc

4

∥∥2
�2(N)⊗4 + 32

∥∥(
f �1

1 f
)
1Δ2

∥∥2
�2(N)⊗2

+ 4‖f ‖4
�2(N)⊗2

= 12‖f ‖4
�2(N)⊗2 + 48

∥∥(
f �1

1 f
)
1Δ2

∥∥2
�2(N)⊗2 + 16

∥∥(
f �1

1 f
)
1Δc

2

∥∥2
�2(N)⊗2

− 24
∥∥(

f̃ �0
0 f

)
1Δc

4

∥∥2
�2(N)⊗4 . (4.32)
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By definition we have

∥∥(
f̃ �0

0 f
)
1Δc

4

∥∥2
�2(N)⊗4 =

∑
i1,i2,i3,i4

((
f̃ �0

0 f
)
(i1, i2, i3, i4)

)21Δc
4
(i1, i2, i3, i4),

with the indices running over all non-negative integers. Since f is symmetric and vanishes on diagonals, there are only

two types of 4-tuples (i1, i2, i3, i4) for which (f̃ �0
0 f )(i1, i2, i3, i4) can be non-zero. They are of the form (i1, i1, i2, i3)

and (i1, i1, i2, i2) – up to permutation of the entries. Hence,∑
i1,i2,i3,i4

((
f̃ �0

0 f
)
(i1, i2, i3, i4)

)21Δc
4
(i1, i2, i3, i4)

= 6
∑

i1,i2,i3
i2 
=i3

((
f̃ �0

0 f
)
(i1, i1, i2, i3)

)2 + 3
∑
i1,i2

((
f̃ �0

0 f
)
(i1, i1, i2, i2)

)2

= 6
∑

i1,i2,i3

((
f̃ �0

0 f
)
(i1, i1, i2, i3)

)2 − 3
∑
i1,i2

((
f̃ �0

0 f
)
(i1, i1, i2, i2)

)2
. (4.33)

Note that for every 4-tuple (i1, i2, i3, i4) there are 23 permutations σ such that

f (i1, i2)f (i3, i4) = f (iσ(1), iσ (2))f (iσ (3), iσ (4)).

Using this together with the symmetry of f , we deduce that

(
f̃ �0

0 f
)
(i1, i2, i3, i4) = 23

4!
(
f (i1, i2)f (i3, i4) + f (i1, i3)f (i2, i4) + f (i1, i4)f (i2, i3)

)
(4.34)

for all i1, i2, i3, i4 ∈N. Combining (4.33) and (4.34), we get

∥∥(
f̃ �0

0 f
)
1Δc

4

∥∥2
�2(N)⊗4 = 8

3

∑
i1,i2,i3

(
f (i1, i2)f (i1, i3)

)2 − 4

3

∑
i1,i2

f (i1, i2)
4

= 8

3

∥∥(
f �1

1 f
)
1Δc

2

∥∥2
�2(N)⊗2 − 4

3
‖f ‖4

�4(N)⊗2 . (4.35)

Plugging (4.35) into (4.32), we conclude that

E
[
F 4] = 12‖f ‖4

�2(N)⊗2 + 32‖f ‖4
�4(N)⊗2

+ 48
(∥∥(

f �1
1 f

)
1Δ2

∥∥2
�2(N)⊗2 − ∥∥(

f �1
1 f

)
1Δc

2

∥∥2
�2(N)⊗2

)
.

Equation (4.31) now follows immediately from our assumption that E[F 2] = 2‖f ‖2
�2(N)⊗2 = 1. �

Proof of Theorem 4.3. Since Fn converges in distribution to a standard Gaussian random variable and since
supn∈NE[|Fn|q ] < ∞ for all q ≥ 2, due to the hypercontractivity property stated in Lemma 4.2, we have E[F 4

n ] → 3.
The statement now follows from (4.31). �

Remark 4.4. It is a natural question whether the proof of Theorem 4.2 can be modified in such a way that it involves
differences of the type∥∥(

f �r
r f

)
1Δ2(q−r)

∥∥
�2(N)⊗2(q−r) − ∥∥(

f �r
r f

)
1Δc

2(q−r)

∥∥
�2(N)⊗2(q−r) (4.36)
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rather than the contraction norms ‖f �r
r f ‖�2(N)⊗2(q−r) . We doubt that this is possible with the usual Malliavin–Stein

technique, since already the key term A1(Fn) at (4.11) contains only the off-diagonal term in (4.36). For Example 4.1
with Fn = J2(fn), A1(Fn) reduces to

A1(Fn)
2 = E

[(
1 − 1

2
‖DFn‖�2(N)

)2]
= 8

∥∥(
fn �1

1 fn

)
1Δ2

∥∥2
�2(N)⊗2 = 1

16

n − 2

n − 1
.

This converges to 1
16 
= 0, as n → ∞, and since the other terms A2(Fn), A3(Fn) and A4(Fn) in the Malliavin–Stein

bound (recall (4.12), (4.13) and (4.14)) are non-negative, dK(Fn,N) does not converge to zero. Since the variance
comparison in terms of A1(Fn) lies at the heart of the Malliavin–Stein method, new ideas are necessary to overcome
this difficulty.

4.4. Sums of single and double integrals

For one of our applications below we need an estimate for the Kolmogorov distance between a Rademacher functional
of the type

F := J1
(
f (1)

) + J2
(
f (2)

)
with f (1) ∈ �2(Z), f (2) ∈ �2

0(Z)◦2

and a standard Gaussian random variable N . In other words, F is the sum of an element of the first and an element
of the second Rademacher chaos. From a technical point of view, such functionals are more elaborate compared to
elements of a single Rademacher chaos. We take up this point and develop a bound for dK(F,N).

As indicated in [26], the results of discrete Malliavin calculus as outlined above and Stein’s method extend to
Rademacher random variables indexed by Z. In this section and also in our first application presented in Section 6
below we make use of this extension in order to avoid boundary effects, following thereby [26].

Theorem 4.4. Let F = J1(f
(1)) + J2(f

(2)) with f (1) ∈ �2(Z) and f (2) ∈ �2
0(Z)◦2, and let N be a standard Gaussian

random variable. Suppose that E[F 2] = 1, then

dK(F,N) ≤ 3
∥∥f (1) �1

1 f (2)
∥∥

�2(Z)
+ 2

√
2
∥∥(

f (2) �1
1 f (2)

)
1Δ2

∥∥
�2(Z)⊗2 + 2

∥∥f (1)
∥∥2

�4(Z)

+ (4
√

2 + 12)
∥∥(

f (2) �1
1 f (2)

)
1Δc

2

∥∥
�2(Z)

+ (2
√

13 + 6)

( ∑
k,j∈Z

f (1)(k)2f (2)(k, j)2
)1/2

+ 2
∑
k∈Z

(∣∣f (1)(k)
∣∣ + 2

∑
j∈Z

∣∣f (2)(j, k)
∣∣)3

.

Remark 4.5. We should compare our result to the bound of Proposition 5.1 in [26]. It has been shown there that for a
twice differentiable function g :R→ R with bounded derivatives up to order two the estimate∣∣E[

g(F )
] −E

[
g(N)

]∣∣ ≤ C(g)
(
3
∥∥f (1) �1

1 f (2)
∥∥

�2(Z)
+ 2

√
2
∥∥(

f (2) �1
1 f (2)

)
1Δ2

∥∥
�2(Z)⊗2

)
+ 160

3

∥∥g′′∥∥∞
∑
k∈Z

[
f (1)(k)4 + 16

(∑
i∈Z

∣∣f (2)(i, k)
∣∣)4]

holds with C(g) := min{4‖g′‖∞,‖g′′‖∞}. The fact that our bound is more involved is not surprising since already the
abstract bound in Theorem 3.1 contains more terms compared to (3.1) from [26], because our bound is based on the
fundamental theorem of calculus rather than on an approximate chain rule. As already seen in Theorem 3.1 this also
leads to different exponents in our bound compared to the results from [26].
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Proof of Theorem 4.4. In view of our general Berry–Esseen estimate in Theorem 3.1 we have to bound the quanti-
ties A1(F )–A4(F ) given by (4.2)–(4.5) with F = J1(f

(1)) + J2(f
(2)) there. The first term A1(F ) has already been

addressed in [26], Proposition 5.1:

A1(F ) ≤ 3
∥∥f (1) �1

1 f (2)
∥∥

�2(Z)
+ 2

√
2
∥∥(

f (2) �1
1 f (2)

)
1Δ2

∥∥
�2(Z)⊗2 . (4.37)

Using the estimates

|DkF | ≤ ∣∣f (1)(k)
∣∣ + 2

∑
j∈Z

∣∣f (2)(j, k)
∣∣ and

∣∣DkL
−1F

∣∣ ≤ ∣∣f (1)(k)
∣∣ + 2

∑
j∈Z

∣∣f (2)(j, k)
∣∣,

valid for all k ∈ N, we find that (replacing thereby also
√

2π/4 by 1)

A2(F ) ≤
∑
k∈Z

(∣∣f (1)(k)
∣∣ + 2

∑
j∈Z

∣∣f (2)(j, k)
∣∣)3

(4.38)

and, in addition, using the Cauchy–Schwarz inequality together with our assumption that E[F 2] = 1,

A3(F ) ≤
∑
k∈Z

(∣∣f (1)(k)
∣∣ + 2

∑
j∈Z

∣∣f (2)(j, k)
∣∣)3

. (4.39)

It remains to consider the term A4(F ). Following the strategy already used in the proof of Theorem 4.2 we find that

E
[〈
(DF)D1{F>x}, (DF)

∣∣DL−1F
∣∣〉

�2(Z)

] ≤ (
E

[(
δ
(
(DF)

∣∣DL−1F
∣∣))2])1/2

≤ (
E

[∥∥(DF)
∣∣DL−1F

∣∣∥∥2
�2(Z)

])1/2 +
(
E

[ ∑
k,l∈Z

(
Dk

(
(DlF )

∣∣DlL
−1F

∣∣))(Dl

(
(DkF )

∣∣DkL
−1F

∣∣))])1/2

≤ (
E

[∥∥(DF)
∣∣DL−1F

∣∣∥∥2
�2(Z)

])1/2 +
(
E

[ ∑
k,l∈Z

(
Dk

(
(DlF )

∣∣DlL
−1F

∣∣))2
])1/2

,

where we have used the isometric relation (2.5) for the divergence operator. Now, let us consider an individual sum-
mand

E
[(

Dk

(
(DlF )

∣∣DlL
−1F

∣∣))2] = E
[(

Dk

(
(DlF )

(
DlL

−1F
)))2]

.

Using the product formula (2.9) we see that this equals

E
[(

(DkDlF )
(
DlL

−1F
) + (DlF )

(
DkDlL

−1F
) − 2Xk(DkDlF )

(
DkDlL

−1F
))2]

.

Taking into account that

DkF = f (1)(k) + 2J1
(
f (2)(·, k)

)
and DkL

−1F = −f (1)(k) − J1
(
f (2)(·, k)

)
, k ∈ N,

we get, after simplifications using the isometry property (2.14) of stochastic integrals,

E
[(

Dk

(
(DlF )

(
DlL

−1F
)))2] = 9f (1)(l)2f (2)(k, l)2 + 16f (2)(k, l)2

∑
j∈Z

f (2)(j, l)2 − 16f (2)(k, l)4

≤ 9f (1)(l)2f (2)(k, l)2 + 16f (2)(k, l)2
∑
j∈Z

f (2)(j, l)2.
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Next, we notice that E[J1(f
(2)(·, k))3] = 0 and

E
[
J1

(
f (2)(·k)

)4] = 2
∑
i,j∈Z
i 
=j

f (2)(i, k)2f (2)(j, k)2 +
(∑

j∈Z
f (2)(j, k)

)2

,

for all k ∈ Z, as a consequence of the multiplication formula (2.6). Using this together with the representations of
DkF and DkL

−1F from above, we see that

E
[
(DkF )2(DkL

−1F
)2] = f (1)(k)4 + 13f (1)(k)2

∑
j∈Z

f (2)(j, k)2

+ 4

(
2

∑
i,j∈Z
i 
=j

f (2)(i, k)2f (2)(j, k)2 +
(∑

j∈Z
f (2)(j, k)2

)2)
.

Hence, we find that A4(F ) is bounded by

A4(F ) ≤ 2
(
E

[∥∥(DF)
∣∣DL−1F

∣∣∥∥2
�2(Z)

])1/2 + 2

(
E

[ ∑
k,l∈Z

(
Dk

(
(DlF )

∣∣DlL
−1F

∣∣))2
])1/2

≤ 2

(∑
k∈Z

f (1)(k)4
)1/2

+ 2

(
13

∑
k,j∈Z

f (1)(k)2f (2)(j, k)2
)1/2

+ 4

(
2
∑
k∈Z

∑
i,j∈Z
i 
=j

f (2)(i, k)2f (2)(j, k)2
)1/2

+ 4

(∑
k∈Z

(∑
j∈Z

f (2)(j, k)2
)2)1/2

+ 6

( ∑
k,l∈Z

f (1)(l)2f (2)(k, l)2
)1/2

+ 8

( ∑
k,j,l∈Z

f (2)(k, l)2f (2)(j, k)2
)1/2

≤ 2

(∑
k∈Z

f (1)(k)4
)1/2

+ (2
√

13 + 6)

( ∑
k,l∈Z

f (1)(k)2f (2)(l, k)2
)1/2

+ (4
√

2 + 12)

(∑
k∈Z

(∑
i∈Z

f (2)(i, k)2
)2)1/2

.

Re-writing (whenever this is possible) the sums in terms of norms of suitable contractions completes the proof. �

5. Multivariate limit theorems for Rademacher functionals

In the present section we compare a vector of Rademacher functionals with a multivariate Gaussian random variable.
Recall that for this purpose we use the d4-distance introduced at (2.20).

Theorem 5.1. Fix an integer d ≥ 2, let F1, . . . ,Fd ∈ dom(D) be Rademacher functionals satisfying E[Fi] = 0
and E[‖DFi‖4

�4(N)
] < ∞ for all i ∈ {1, . . . , d} and define the random vector F := (F1, . . . ,Fd). Moreover, let

Σ = (σij )
d
i,j=1 be a positive semi-definite symmetric (d ×d)-matrix and N a centred d-dimensional Gaussian random
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vector with covariance matrix Σ . Then

d4(F,N) ≤ d

2

(
d∑

i,j=1

E
[(

σij − 〈
DFj ,−DL−1Fi

〉
�2(N)

)2])1/2

+ 5

3
E

[〈(
d∑

j=1

|DFj |
)3

,

d∑
i=1

∣∣DL−1Fi

∣∣〉
�2(N)

]
. (5.1)

The proof of Theorem 5.1 is given below. A particular case arises if each of the Rademacher functionals has the
form of a discrete multiple stochastic integral. Then, Theorem 5.1 implies the following multivariate analogue of
Theorem 4.2, whose proof is postponed to the end of this section.

Corollary 5.1. Fix an integer d ≥ 2 and q1, . . . , qd ∈N. Further, let for each i ∈ {1, . . . , d}, f (i) ∈ �2
0(N)◦qi , define the

random vector F := (Jq1(f
(1)), . . . , Jqd

(f (d))) and denote by N a centred Gaussian random vector with covariance
matrix Σ = (σij )

d
i,j=1, such that σij = 0 if qi 
= qj . Then,

d4(F,N) ≤ C1 max
i,j=1,...,d

{∣∣σij −E
[
Jqi

(
f (i)

)
Jqj

(
f (j)

)]∣∣,
max

r=1,...,min{qi ,qj }
{∥∥f (i) �r

r f (j)
∥∥

�2(N)
⊗qi+qj −2r

}
1{qi 
=qj },

max
r=1,...,qi−1

{∥∥f (i) �r
r f (j)

∥∥
�2(N)⊗2(qi−r)

}
1{qi=qj },

max
r=1,...,qi−1

{∥∥f (i) �r
r f (i)

∥∥2
�2(N)⊗2(qi−r)

}}
(5.2)

≤ C2 max
i,j=1,...,d

{∣∣σij −E
[
Jqi

(
f (i)

)
Jqj

(
f (j)

)]∣∣,
max

r=1,...,qi−1

{∥∥f (i) �r
r f (i)

∥∥
�2(N)⊗2(qi−r) ,

∥∥f (i) �r
r f (i)

∥∥2
�2(N)⊗2(qi−r) ,

∥∥f (j)
∥∥

�2(N)
⊗qj

∥∥f (i) �r
r f (i)

∥∥1/2
�2(N)⊗2(qi−r)

}}
(5.3)

with universal constants 0 < C1,C2 < ∞ only depending on d and on q1, . . . , qd .

The second estimate in Corollary 5.1 especialy implies that a random vector(
Jq1

(
f (1)

n

)
, . . . , Jqd

(
f (d)

n

))
, f (i)

n ∈ �2
0(N)◦qi , i ∈ {1, . . . , d},

whose entries are discrete multiple stochastic integrals, converges in distribution to a centred Gaussian random vector
N with covariance matrix Σ = (σij )

d
i,j=1 if the following two conditions are satisfied:

(i) limn→∞ E[Jqi
(f

(i)
n )Jqj

(f
(j)
n )] = limn→∞ Cov(Jqi

(f
(i)
n )Jqj

(f
(j)
n )) = σij for all i, j ∈ {1, . . . , d},

(ii) limn→∞ ‖f (i)
n �r

r f
(i)
n ‖�2(N)⊗2(qi−r) = 0 for all i ∈ {1, . . . , d} and all r ∈ {1, . . . , qi − 1}.

In view of Remark 4.3, (i) and (ii) imply that the sequence (Jqi
(f

(i)
n ))n≥1 satisfies a univariate central limit theorem

in that Jqi
(f

(i)
n ) converges in distribution to a one-dimensional centred Gaussian random variable with variance σii .

This is the discrete analogue to a similar phenomenon observed in [27,28,33,34] for Gaussian and Poisson multiple
integrals, respectively.

Remark 5.1. A bound on the distance between the law of a vector consisting of discrete multiple stochastic inte-
grals and a multivariate Gaussian random variable similar to that in Corollary 5.1 above can also be deduced from
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universality results for so-called homogeneous sums as in [25], see in particular Theorem 5.1 ibidem. However, this
approach does not deliver the general estimate (5.1), which is of independent interest. For this reason, we prefer to
give direct proofs using the multivariate Malliavin–Stein technique on the Rademacher chaos and not to employ uni-
versality results from [25], which on their part are based, for example, on highly non-trivial arguments centred around
the notion of influence, see [19]. We use an interpolation technique, which has already been applied in the Gaussian
and Poisson context (cf. [25,34]) together with a new multivariate approximate chain rule for the gradient operator
(see Lemma 5.1), which generalizes the one-dimensional chain rule in [26], Proposition 2.14.

Remark 5.2. In contrast to the one-dimensional case, in this section a probability metric based on smooth test func-
tions is considered, namely the d4-distance. The multivariate Kolmogorov distance can then be estimated from above
in terms of the d4-distance using a smoothing argument (see Lemma 12.1 in [7] and the references cited there), which
usually leads to suboptimal rates of convergence. Dealing with the multivariate Kolmogorov distance without smooth-
ing techniques would require precise information on the solution of the multivariate Stein equation associated with
a multivariate indicator function. To the best of our knowledge, this is still an open problem in the theory of Stein’s
method. In this context we emphasize that the multivariate normal approximation of a vector of multiple stochastic
integrals on the Gaussian (cf. [27]) or the Poisson space (cf. [34]) in terms of the multivariate Kolmogorov distance
has not been considered for the same reason.

To give a proof of Theorem 5.1 we need the following two lemmas. Recall that by X = (Xk)k∈N we denote a
Rademacher sequence and that a Rademacher functional F = F(X) is a (possibly) non-linear transformation of X.

Lemma 5.1. Fix an integer d ≥ 2, let F1, . . . ,Fd ∈ dom(D) be Rademacher functionals satisfying E[Fi] = 0 for
all i ∈ {1, . . . , d}, and define the random vector F := (F1, . . . ,Fd). Let f :Rd → R be thrice differentiable with
continuous and bounded partial derivatives up to order three. Then, for every k ∈ N,

Dkf (F) =
d∑

i=1

∂

∂xi

f (F)(DkFi)

− 1

2

d∑
i,j=1

(
∂2

∂xi ∂xj

f
(
F+

k

) − ∂2

∂xi ∂xj

f
(
F−

k

))
(DkFi)(DkFj )Xk + R,

where the remainder term R satisfies

R =
d∑

i,j,l=1

Ri,j,l with |Ri,j,l | ≤ 10

3
sup
x∈Rd

∣∣∣∣ ∂3

∂xi ∂xj ∂xl

f (x)

∣∣∣∣∣∣(DkFi)(DkFj )(DkFl)
∣∣.

Proof. For k ∈N we use the definition of the discrete gradient together with a Taylor series expansion of f to see that

Dkf (F) = 1

2

(
f

(
F+

k

) − f
(
F−

k

))
= 1

2

(
f

(
F+

k

) − f (F)
) − 1

2

(
f

(
F−

k

) − f (F)
)

= 1

2

d∑
i=1

∂

∂xi

f (F)
(
(Fi)

+
k − Fi

) + 1

4

d∑
i,j=1

∂2

∂xi ∂xj

f (F)
(
(Fi)

+
k − Fi

)(
(Fj )

+
k − Fj

)

−
(

1

2

d∑
i=1

∂

∂xi

f (F)
(
(Fi)

−
k − Fi

) + 1

4

d∑
i,j=1

∂2

∂xi ∂xj

f (F)
(
(Fi)

−
k − Fi

)(
(Fj )

−
k − Fj

))
+ R1 + R2
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=
d∑

i=1

∂

∂xi

f (F)DkFi

+ 1

8

d∑
i,j=1

∂2

∂xi ∂xj

f (F)
[(

(Fi)
+
k − Fi

)(
(Fj )

+
k − Fj

) − (
(Fi)

−
k − Fi

)(
(Fj )

−
k − Fj

)]

+ 1

8

d∑
i,j=1

∂2

∂xi ∂xj

f (F)
[(

(Fi)
+
k − Fi

)(
(Fj )

+
k − Fj

) − (
(Fi)

−
k − Fi

)(
(Fj )

−
k − Fj

)]
+ R1 + R2.

where

R1 :=
d∑

i,j,l=1

R
(1)
i,j,l

with

∣∣R(1)
i,j,l

∣∣ ≤ 1

12
sup
x∈Rd

∣∣∣∣ ∂3

∂xi ∂xj ∂xl

f (x)

∣∣∣∣∣∣((Fi)
+
k − Fi

)(
(Fj )

+
k − Fj

)(
(Fl)

+
k − Fl

)∣∣
≤ 2

3
sup
x∈Rd

∣∣∣∣ ∂3

∂xi ∂xj ∂xl

f (x)

∣∣∣∣∣∣(DkFi)(DkFj )(DkFl)
∣∣,

and

R2 :=
d∑

i,j,l=1

R
(2)
i,j,l

satisfies

∣∣R(2)
i,j,l

∣∣ ≤ 1

12
sup
x∈Rd

∣∣∣∣ ∂3

∂xi ∂xj ∂xl

f (x)

∣∣∣∣∣∣((Fi)
−
k − Fi

)(
(Fj )

−
k − Fj

)(
(Fl)

−
k − Fl

)∣∣
≤ 2

3
sup
x∈Rd

∣∣∣∣ ∂3

∂xi ∂xj ∂xl

f (x)

∣∣∣∣∣∣(DkFi)(DkFj )(DkFl)
∣∣.

To the two sums on the right-hand side of the last equation we now apply a Taylor expansion of ∂2

∂xi∂xj
f up to order 1

about F+
k and F−

k , respectively. We thus obtain that

Dkf (F) =
d∑

i=1

∂

∂xi

f (F)DkFi + 1

8

d∑
i,j=1

{[
∂2

∂xi ∂xj

f
(
F+

k

) + ∂2

∂xi ∂xj

f
(
F−

k

)]

× [(
(Fi)

+
k − Fi

)(
(Fj )

+
k − Fj

) − (
(Fi)

−
k − Fi

)(
(Fj )

−
k − Fj

)]} + R1 + R2 + R3,

where

R3 :=
d∑

i,j,l=1

R
(3)
i,j,l
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is such that∣∣R(3)
i,j,l

∣∣
≤ 1

8
sup
x∈Rd

∣∣∣∣ ∂3

∂xi ∂xj ∂xl

f (x)

∣∣∣∣
× (∣∣((Fi)

+
k − Fi

)(
(Fj )

+
k − Fj

)(
(Fl)

+
k − Fl

)∣∣ + ∣∣((Fi)
−
k − Fi

)(
(Fj )

−
k − Fj

)(
(Fl)

−
k − Fl

)∣∣)
≤ 2 sup

x∈Rd

∣∣∣∣ ∂3

∂xi ∂xj ∂xl

f (x)

∣∣∣∣∣∣(DkFi)(DkFj )(DkFl)
∣∣.

This yields the result. �

Lemma 5.2. Fix an integer d ≥ 2, let F0,F1, . . . ,Fd ∈ dom(D) be Rademacher functionals satisfying E[Fi] = 0
and E[‖DFi‖4

�4(N)
] < ∞ for 1 ≤ i ≤ d and define the random vector F := (F1, . . . ,Fd). Let f :Rd → R be thrice

differentiable with continuous and bounded partial derivatives up to order three. Then,

E
[
f (F)F0

] = E

[
d∑

j=1

∂

∂xj

f (F)
〈
DFj ,−DL−1F0

〉
�2(N)

]
+E

[〈
R,−DL−1F0

〉
�2(N)

]
with R satisfying the estimate

∣∣E[〈
R,−DL−1F0

〉
�2(N)

]∣∣ ≤ 10

3
M3(f )E

[〈(
d∑

j=1

|DFj |
)3

,
∣∣DF−1F0

∣∣〉
�2(N)

]
.

Proof. We use relation (2.12) and the integration-by-parts formula to see that

E
[
f (F)F0

] = E
[
δ
(−DL−1F0

)
f (F)

] = E
[〈
Df (F),−DL−1F0

〉
�2(N)

]
,

since f (F) ∈ dom(D) due to the assumed boundedness of the partial derivatives of the test function f . Now, we apply
Lemma 5.1 to re-write Df (F). This leads to

E
[
f (F)F0

] = E

[
d∑

j=1

∂

∂xj

f (F)
〈
DFj ,−DL−1F0

〉
�2(N)

]
+E

[〈
R,−DL−1F0

〉
�2(N)

]
with the term R satisfying

∣∣E[〈
R,−DL−1F0

〉
�2(N)

]∣∣ ≤ 10

3
M3(f )E

[〈(
d∑

j=1

|DFj |
)3

,
∣∣DL−1F0

∣∣〉
�2(N)

]
.

Note that the term involving second-order partial derivatives of f vanishes because of [26], Lemma 2.13(1), and an
application of Fubini’s theorem. More precisely, our assumption that E[‖DFi‖4

�4(N)
] < ∞ for all 1 ≤ i ≤ d and [26],

Lemma 2.13(3), is needed in order to justify an exchange of the order of integration by means of Fubini’s theorem.
This proves the claim. �

Proof of Theorem 5.1. We use the so-called smart-path technique, which in the context of the Malliavin–Stein
method has previously found application in [25] and [34].

Let g :Rd → R be continuously differentiable up to order 4 and define

Ψ (t) := E
[
g(

√
tN + √

1 − tF)
]
.
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Here F = (F1, . . . ,Fd) is a vector of Rademacher functionals and N = (N1, . . . ,Nd) is a Gaussian random vector with
covariance matrix Σ = (σij )

d
i,j=1. Then,∣∣E[

g(F)
] −E

[
g(N)

]∣∣ = ∣∣Ψ (0) − Ψ (1)
∣∣ ≤ sup

t∈(0,1)

∣∣Ψ ′(t)
∣∣

with the derivative of Ψ given by

Ψ ′(t) = 1

2
√

t
A − 1

2
√

1 − t
B, (5.4)

where

A :=
d∑

i=1

E

[
∂

∂xi

g(
√

tN + √
1 − tF)Ni

]
and B :=

d∑
i=1

E

[
∂

∂xi

g(
√

tN + √
1 − tF)Fi

]
.

As in the proof of Theorem 4.2 in [34] an integration-by-parts argument shows that

A = √
t

d∑
i,j=1

σijE

[
∂2

∂xi ∂xj

g(
√

tN + √
1 − tF)

]
. (5.5)

To evaluate B further, let us condition on N = b ∈ Rd , i.e.,

B =
d∑

i=1

E

[
E

[
∂

∂xi

g(
√

tb + √
1 − tF)Fi

]
b=N

]

and put g
t,b
i (F) := ∂

∂xi
g(

√
tb + √

1 − tF). Now, we apply Lemma 5.2 to the conditional expectation, which leads to

E
[
g

t,b
i (F)Fi

]
b=N = E

[
d∑

j=1

∂

∂xj

g
t,b
i (F)

〈
DFj ,−DL−1Fi

〉
�2(N)

]
b=N

+E
[〈
R,−DL−1Fi

〉
�2(N)

]
b=N

= √
1 − tE

[
d∑

j=1

∂

∂xj ∂xi

g(
√

tb + √
1 − tF)

〈
DFj ,−DL−1Fi

〉
�2(N)

]
b=N

+E
[〈
R,−DL−1Fi

〉
�2(N)

]
b=N,

with R satisfying

∣∣E[〈
R,−DL−1Fi

〉
�2(N)

]
b=N

∣∣ ≤ 10

3
M3

(
g

t,b
i

)
E

[〈(
d∑

j=1

|DFj |
)3

,
∣∣DL−1Fi

∣∣〉
�2(N)

]
.

Thus,

B = √
1 − t

d∑
i,j=1

E

[
∂2

∂xi ∂xj

g(
√

tN + √
1 − tF)

〈
DFj ,−DL−1Fi

〉
�2(N)

]

+
d∑

i=1

E
[
E

[〈
R,−DL−1Fi

〉
�2(N)

]
b=N

]
.
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Now, note that M3(g
t,b
i ) ≤ (1 − t)3/2M4(g) so that∣∣∣∣∣

d∑
i=1

E
[
E

[〈
R,−DL−1Fi

〉
�2(N)

]
b=N

]∣∣∣∣∣
≤ 10

3
M4(g)(1 − t)3/2E

[〈(
d∑

j=1

|DFj |
)3

,

d∑
i=1

∣∣DL−1Fi

∣∣〉
�2(N)

]
,

independently of b. Thus, (5.4) implies the bound

∣∣E[
g(F)

] −E
[
g(N)

]∣∣ ≤ 1

2
M2(g)

d∑
i,j=1

E
[∣∣σij − 〈

DFj ,−DL−1Fi

〉
�2(N)

∣∣]

+ 1

2

10

3

1√
1 − t

M4(g)(1 − t)3/2E

[〈(
d∑

j=1

|DFj |
)3

,

d∑
i=1

∣∣DL−1Fi

∣∣〉
�2(N)

]

≤ d

2

(
d∑

i,j=1

E
[(

σij − 〈
DFj ,−DL−1Fi

〉
�2(N)

)2])1/2

+ 5

3
E

[〈(
d∑

j=1

|DFj |
)3

,

d∑
i=1

∣∣DL−1Fi

∣∣〉
�2(N)

]
,

where in the last line we have applied the Cauchy–Schwarz inequality and took the supremum over all t ∈ (0,1) and
over all functions g :Rd → R with M2(g) ≤ 1 and M4(g) ≤ 1. This proves the theorem. �

Proof of Corollary 5.1. As in the proof of Theorem 4.2 we assume without loss of generality that the multiple inte-
grals Jqi

(f (i)) have kernels f (i) with finite support for all 1 ≤ i ≤ d . Fix i, j ∈ {1, . . . , d} and to ease the notation let
σ := σij , p := qj , q := qi , f := f (j), g := f (i). Assume without loss of generality that p ≤ q . We apply Theorem 5.1
to the random vector F (note that the assumption E[‖DFi‖4

�4(N)
] < ∞ for 1 ≤ i ≤ d is fulfilled by Lemma 4.2, see

also [26]). Using the multiplication formula (2.6) we get for all k ∈ N,(
DkJp(f )

)(−DkL
−1Jq(g)

)
= 1

q

(
DkJp(f )

)(
DkJq(g)

)
= pJp−1

(
f (·, k)

)
Jq−1

(
g(·, k)

)
= p

p−1∑
r=0

r!
(

p − 1

r

)(
q − 1

r

)
Jp+q−2(r+1)

( ˜(
f (·, k) �r

r g(·, k)
)
1Δp+q−2(r+1)

)
.

Thus, 〈
DJp(f ),−DL−1Jq(g)

〉
�2(N)

= p

p−1∑
r=0

r!
(

p − 1

r

)(
q − 1

r

)
Jp+q−2(r+1)

( ˜(
f �r+1

r+1 g
)
1Δp+q−2(r+1)

)
= p

p∑
r=1

(r − 1)!
(

p − 1

r − 1

)(
q − 1

r − 1

)
Jp+q−2r

( ˜(f �r
r g

)
1Δp+q−2r

)
.
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If p < q we get by isometry (2.14) of discrete multiple stochastic integrals,

E
[(

σ − 〈
DJp(f ),−DL−1Jq(g)

〉)2]
= σ 2 + p2

p∑
r=1

(
(r − 1)!)2

(
p − 1

r − 1

)2(
q − 1

r − 1

)2

(p + q − 2r)!∥∥ ˜(f �r
r g

)
1Δp+q−2r

∥∥2
�2(N)⊗p+q−2r (5.6)

≤ σ 2 + p2
p∑

r=1

(
(r − 1)!)2

(
p − 1

r − 1

)2(
q − 1

r − 1

)2

(p + q − 2r)!∥∥f �r
r g

∥∥2
�2(N)⊗p+q−2r . (5.7)

If p = q we get

E
[(

σ − 〈
DJp(f ),−DL−1Jq(g)

〉
�2(N)

)2]
= E

[((
σ − p!〈f,g〉�2(N)⊗p

) − p

p−1∑
r=1

(r − 1)!
(

p − 1

r − 1

)2

J2(p−r)

( ˜(f �r
r g

)
1Δ2(p−r)

))2]

= (
σ − p!〈f,g〉�2(N)⊗p

)2

+ p2
p−1∑
r=1

(
(r − 1)!)2

(
p − 1

r − 1

)4(
2(p − 1)

)!∥∥ ˜(f �r
r g

)
1Δ2(p−r)

∥∥2
�2(N)⊗2(p−r)

≤ (
σ −E

[
Jp(f )Jq(g)

])2

+ p2
p−1∑
r=1

(
(r − 1)!)2

(
p − 1

r − 1

)4(
2(p − 1)

)!∥∥f �r
r g

∥∥2
�2(N)⊗2(p−r) . (5.8)

Let us now consider the second term in the bound of Theorem 5.1. Let Fi := Jqi
(f (i)) for 1 ≤ i ≤ d . We have

E

[〈(
d∑

j=1

|DFj |
)3

,

d∑
i=1

∣∣DL−1Fi

∣∣〉
�2(N)

]
= E

[〈(
d∑

j=1

|DFj |
)3

,

d∑
i=1

1

qi

|DFi |
〉

�2(N)

]

≤ 1

min{q1, . . . , qd}E
[ ∞∑

k=1

(
d∑

j=1

|DkFi |
)4]

≤ d3

min{q1, . . . , qd}
d∑

i=1

E
[‖DFi‖4

�4(N)

]
(5.9)

≤ C max
i=1,...,d

r=1,...,qi−1

{∥∥f (i) �r
r f (i)

∥∥2
�2(N)⊗2(qi−r)

}
, (5.10)

with a constant 0 < C < ∞ only depending on d and on q1, . . . , qd . In (5.9) Hölder’s inequality with Hölder conju-
gates 4 and 4

3 has been used. Inequality (5.10) follows from (4.10). Now, Theorem 5.1 together with (5.7), (5.8) and
(5.10) gives the first inequality in Corollary 5.1. To derive the second inequality, we need to show that all ‘mixed’
contractions f �r

r g = f (i) �r
r f (j) appearing in (5.7) and (5.8) can be bounded by contractions of the form f �r

r f and
g �r

r g build up either by f or g. In the following we use the vector notation kr := (k1, . . . , kr ) ∈ Nr for summation
indices. Moreover krk� stands for the concatenation (k1, . . . , kr , kr+1, . . . , kr+�) of two vectors kr and k�. First, let
us consider the case r < p ≤ q . Then,∥∥f �r

r g
∥∥2

�2(N)⊗p+q−2r =
∑

kp+q−2r

(
f �r

r g
)
(kp+q−2r )

2
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=
∑
kp−r

∑
kq−r

∑
ar

∑
br

f (kp−rar )f (kp−rbr )g(kq−rar )g(kq−rbr )

=
∑
ar

∑
br

(
f �

p−r
p−r f

)
(arbr )

(
g �

q−r
q−r g

)
(arbr )

= 〈
f �

p−r
p−r f, g �

q−r
q−r g

〉
�2(N)⊗2r ≤ ∥∥f �

p−r
p−r f

∥∥
�2(N)⊗2r

∥∥g �
q−r
q−r g

∥∥
�2(N)⊗2r ,

which implies that∥∥f �r
r g

∥∥
�2(N)⊗p+q−2r ≤ max

{∥∥f �
p−r
p−r f

∥∥
�2(N)⊗2r ,

∥∥g �
q−r
q−r g

∥∥
�2(N)⊗2r

}
. (5.11)

If r = p < q , we get∥∥f �
p
p g

∥∥2
�2(N)⊗(q−p) =

∑
kq−p

(
f �

p
p g

)
(kq−p)2

=
∑
kq−p

∑
ar

∑
br

f (ar )f (br )g(kq−par )g(kq−pbr )

=
∑
ar

∑
br

f (ar )f (br )
(
g �

q−p
q−p g

)
(arbr ).

Hence,∥∥f �
p
p g

∥∥
�2(N)⊗(q−p) ≤ ‖f ‖�2(N)⊗p

(∥∥g �
q−p
q−p g

∥∥
�2(N)⊗2p

)1/2
. (5.12)

Now, the second estimate (5.3) in Corollary 5.1 follows from the first estimate (5.2) by means of (5.11) and (5.12).
This completes the proof. �

6. Applications

6.1. Infinite weighted 2-runs

The notion of a 2-run is one of the most simple dependency structures and has been studied exhaustively in the
literature, see [2]. For example, [42] uses the so-called local approach, while [36,38] apply exchangeable pair coupling
constructions. The first Berry–Esseen bound for the number of finite 2-runs appeared in [11]. In contrast to most of the
previously available results, our method, which is based on a discrete version of the Malliavin calculus of variations,
allows to treat infinite weighted 2-runs. This continues the line of research initiated in Section 5 of [26] and provides,
up to our best knowledge, the first Berry–Esseen bound for such functionals.

Let X = (Xi)i∈Z be a double-sided sequence of i.i.d. Rademacher random variables and let for each n ∈ N,
(a

(n)
i )i∈Z be a double-sided sequence of real numbers. The sequence (Fn)n∈N of normalized infinite weighted 2-runs

is then defined as

Fn := Gn −EGn√
VarGn

, Gn :=
∑
i∈Z

a
(n)
i YiYi+1, n ∈N,

where Yi := 1
2 (1 − Xi) for i ∈ Z. In other words, Gn counts the weighted number of subsequences of 1’s of length

two in an infinite double-sided sequence of Bernoulli trials. We notice that

VarGn = 3

16

∑
i∈Z

(
a

(n)
i

)2 + 1

8

∑
i∈Z

a
(n)
i a

(n)
i+1.

Our result reads as follows.
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Theorem 6.1. Let (Fn)n∈N be a sequence of normalized infinite weighted 2-runs as above and let N be a standard
Gaussian random variable. Then,

dK(Fn,N) ≤ C max

{
(VarGn)

−3/2
∑
i∈Z

∣∣a(n)
i

∣∣3
, (VarGn)

−1
(∑

i∈Z

(
a

(n)
i

)4
)1/2}

with a constant 0 < C < ∞ not depending on n.

Proof. We notice first that each Fn has chaotic decomposition Fn = J1(f
(1)
n ) + J2(f

(2)
n ) with f

(1)
n and f

(2)
n given by

f (1)
n (k) = 1

4
√

VarGn

∑
i∈Z

a
(n)
i (1{k=i} + 1{k=i+1}), k ∈ Z,

f (2)
n (k, l) = 1

8
√

VarGn

∑
i∈Z

a
(n)
i (1{k=i,l=i+1} + 1{k=i+1,l=i}), k, l ∈ Z.

Thus, (
f (1)

n �1
1 f (2)

n

)
(i) = 1

32 VarGn

(
a

(n)
i a

(n)
i+1 + (

a
(n)
i−1

)2 + (
a

(n)
i

)2 + a
(n)
i−1a

(n)
i−2

)
,

(
f (2)

n �1
1 f (2)

n

)
(i, j) = 1

64 VarGn

(
a

(n)
i a

(n)
i+11{j=i+2} + a

(n)
j a

(n)
j+11{j=i−2}

)
, i 
= j,

(
f (2)

n �1
1 f (2)

n

)
(i, i) = 1

64 VarGn

((
a

(n)
i−1

)2 + (
a

(n)
i

)2)
,

and consequently

∥∥f (1)
n �1

1 f (2)
n

∥∥
�2(Z)

≤
√

2

16 VarGn

(∑
i∈Z

(
a

(n)
i

)2(
a

(n)
i+1

)2 +
∑
i∈Z

(
a

(n)
i

)4
)1/2

≤ 1

8 VarGn

(∑
i∈Z

(
a

(n)
i

)4
)1/2

,

∥∥(
f (2)

n �1
1 f (2)

n

)
1Δ2

∥∥
�2(Z)⊗2 ≤

√
2

64 VarGn

(∑
i∈Z

(
a

(n)
i

)2(
a

(n)
i+1

)2
)1/2

≤
√

2

64 VarGn

(∑
i∈Z

(
a

(n)
i

)4
)1/2

,

∥∥(
f (2)

n �1
1 f (2)

n

)
1Δc

2

∥∥
�2(Z)⊗2 ≤ 1

64 VarGn

(∑
i∈Z

((
a

(n)
i−1

)2 + (
a

(n)
i

)2)2
)1/2

≤
√

2

64 VarGn

(∑
i∈Z

((
a

(n)
i−1

)4 + (
a

(n)
i

)4))1/2

≤ 1

32 VarGn

(∑
i∈Z

(
a

(n)
i

)4
)1/2

,

where we have used the Cauchy–Schwarz inequality. Moreover,

∥∥f (1)
n

∥∥2
�4(Z)

≤ 1

4 VarGn

(∑
i∈Z

(
a

(n)
i

)4
)1/2

.
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Multiple use of the Cauchy–Schwarz inequality gives∑
k,j∈Z

(
f (1)

n (k)
)2(

f (2)
n (k, j)

)2 = 1

4096(VarGn)2

∑
i∈Z

((
a

(n)
i−1

)2 + (
a

(n)
i

)2)(
a

(n)
i−1 + a

(n)
i

)2

≤ 1

2048(VarGn)2

∑
i∈Z

((
a

(n)
i−1

)2 + (
a

(n)
i

)2)2

≤ 1

1024(VarGn)2

∑
i∈Z

((
a

(n)
i−1

)4 + (
a

(n)
i

)4)
≤ 1

512(VarGn)2

∑
i∈Z

(
a

(n)
i

)4
.

Hence,( ∑
k,j∈Z

(
f (1)

n (k)
)2(

f (2)
n (k, j)

)2
)1/2

≤ 1√
512 VarGn

(∑
i∈Z

(
a

(n)
i

)4
)1/2

.

Finally, by Hölder’s inequality, we have

∑
k∈Z

(∣∣f (1)(k)
∣∣ + 2

∑
j∈Z

∣∣f (2)(j, k
)∣∣)3

≤ 4
∑
k∈Z

(∣∣f (1)(k)
∣∣3 + 8

(∑
j∈Z

∣∣f (2)(j, k)
∣∣)3)

= 4
∑
k∈Z

∣∣f (1)(k)
∣∣3 + 32

∑
k∈Z

(∑
j∈Z

∣∣f (2)(j, k)
∣∣)3

,

where each of these summands is bounded by a constant times

1

(VarGn)3/2

∑
i∈Z

∣∣a(n)
i

∣∣3
.

Now, applying Theorem 4.4 proves the result. �

6.2. A combinatorial central limit theorem

Our second application deals with an extended version of a combinatorial central limit theorem of Blei and Janson
[5], which has also been studied in [26]. Using Theorem 4.2 we can strengthen these results to a Berry–Esseen bound
without imposing further conditions.

The general set-up is as follows. Fix q ≥ 2 and let F ⊆ Δq be a (possibly infinite) non-empty subset of Nq . Let
further b = (bi)i≥1 ∈ �2(N) and define a measure μb on N by putting

μb(B) :=
∑
i∈B

b2
i , B ⊂N.

In what follows we assume that μ
⊗q
b (F ) > 0, where μ

⊗q
b stands for the q-fold product measure of μb. Given a

Rademacher sequence X = (Xi)i≥1, we now define the random variable S(b)(F ) by

S(b)(F ) := 1

(q!μ⊗q
b (F ))1/2

∑
(i1,...,iq )∈F

bi1 · · ·biq Xi1 · · ·Xiq . (6.1)

To discuss the distance between S(b)(F ) and a standard Gaussian random variable we need further notation. By F ∗
j

we denote the collection of all (i1, . . . , iq) ∈ F such that ik = j for some k ∈ {1, . . . , q}. Further, let F� ⊂ F × F
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be defined as follows. A pair ((i1, . . . , iq), (j1, . . . , jq)) belongs to F� if {i1, . . . , iq} ∩ {j1, . . . , jq} = ∅ and there
are (k1, . . . , kq), (l1, . . . , lq) ∈ F such that {k1, . . . , kq, l1, . . . , lq} = {i1, . . . , iq , j1, . . . , jq} with the property that

(k1, . . . , kq) does not coincide with (i1, . . . , iq) or (j1, . . . , jq). We finally define the quantities Φ(b)(F ) and Ψ
(b)
j (F )

by

Φ(b)(F ) := μ
⊗2q
b (F �)1/2

μ
⊗q
b (F )

and Ψ
(b)
j (F ) := μ

⊗q
b (F ∗

j )

μ
⊗q
b (F )

. (6.2)

Theorem 6.2. Let N be a standard Gaussian random variable. Then there are constants 0 < C1,C2 < ∞ only de-
pending on q such that

dK

(
S(b)(F ),N

) ≤ C1Φ
(b)(F ) + C2

(
sup
j≥1

Ψ
(b)
j (F )

)1/4
.

Proof. We notice that S(b)(F ) can be written as a discrete multiple stochastic integral Jq(f ) of order q with kernel
function

f (i1, . . . , iq) = bi1 · · ·biq

(q!μ⊗q
b (F ))1/2

1{(i1,...,iq )∈F }.

Furthermore, S(b)(F ) has unit variance so that the first inequality of Theorem 4.2 implies that dK(S(b)(F ),N) is
bounded from above by

C max
{

max
r=1,...,q−1

{∥∥(
f �r

r f
)
1Δ2(q−r)

∥∥
�2(N)⊗2(q−r)

}
, max
r=1,...,q

{∥∥f �r−1
r f

∥∥
�2(N)⊗(2(q−r)+1)

}}
with a constant 0 < C < ∞ only depending on q . These contraction norms can be computed exactly as in the proof
of Theorem 6.4 in [26], so that we leave out the details. This gives the result. �

We now specialize Theorem 6.2 to the set-up discussed in [5]. For this, let (Fn)n≥1 be a sequence of non-empty
subsets of Nq satisfying the following two properties:

(i) Fn ⊂ Δq ∩ {1, . . . , n}q for all n ∈ N,
(ii) Fn is symmetric in that (i1, . . . , iq) ∈ Fn implies that (iσ (1), . . . , iσ (q)) ∈ Fn for all permutations σ of {1, . . . , q}.
Further let b0 = (bi)i≥1 be such that b1 = · · · = bq = 1 and bi = 0 for all i ≥ q + 1. The sequence (Sn)n≥1 of
random variables is then given by Sn := S(b0)(Fn) with S(b0)(Fn) as at (6.1). Note that the measure μb0 reduces to the

counting measure restricted to {1, . . . , q} and we write Φ(Fn) and Ψj (Fn) in (6.2) instead of Φ(b0)(Fn) and Ψ
(b0)
j (Fn),

respectively. For this setting, Theorem 6.2 yields the following Berry–Esseen bound, which improves Theorem 1.7 in
[5] and Theorem 6.4 in [26].

Corollary 6.1. Let N be a standard Gaussian random variable. Then there are constants 0 < C1,C2 < ∞ only
depending on q such that

dK(Sn,N) ≤ C1Φ(Fn) + C2

(
max

1≤j≤n
Ψj (Fn)

)1/4

for all n ∈N.

A concrete situation to which Corollary 6.1 can be applied concerns fractional Cartesian products. We briefly recall
their definition and refer to [4] for further details. Fix integers q ≥ 3 and m ∈ {2, . . . , q}, and let {M1, . . . ,Mq} be a
collection of distinct non-empty subsets of [q] := {1, . . . , q} with the following properties:

(i) {M1, . . . ,Mq} is a connected cover of [q], i.e.,
⋃q

i=1 Mi = [q] and {M1, . . . ,Mq} cannot be partitioned into two
disjoint partial covers,
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(ii) each subset has exactly m elements,
(iii) each index j ∈ [q] appears in exactly m of the subsets M1, . . . ,Mq .

For a subset M ⊂ [q] and a vector y = (y1, . . . , yq) we write πMy := (yj : j ∈ M) for the projection of y on M . Now,
let for an integer n ≥ qm, K := max{k ∈N: k ≤ n1/m}, fix a one-to-one map ϕ : [K]m → [n] and define

F ∗∗
n := {(

ϕ(πM1y), . . . , ϕ(πMq y)
)
: y = (y1, . . . , yq) ∈ [K]q} ⊂ [n]q .

In general, F ∗∗
n is not symmetric and may contain diagonal elements. We thus define

Fn := {
(i1, . . . , iq) ∈ Δn

q : (iσ (1), . . . , iσ (q)) ∈ F ∗∗
n ∩ Δn

q for some permutation σ of [q]},
where Δn

q stands for Δq ∩ {1, . . . , n}q . The sequence (Fn)n≥1 is what is called a fractional Cartesian product in the
literature. The name comes from the fact that Fn has (fractional) combinatorial dimension q/m, a notion for which
we refer to [3]. We take such a fractional Cartesian product as in (6.1) as input sets for our random variables and write
SfCP

n in this case. Then Corollary 6.1 and the computations leading to Proposition 6.6 in [26] imply the following
Berry–Esseen bound.

Corollary 6.2. Let N be a standard Gaussian random variable. Then there is a constant 0 < C < ∞ such that

dK

(
SfCP

n ,N
) ≤ Cn−1/(2m)

for all n ≥ 1.

Remark 6.1. The rate in Corollary 6.2 for the Kolmogorov distance is the same as in Proposition 6.6 in [26], where
the authors considered a probability metric based on twice differentiable test functions.

6.3. Traces of powers of Bernoulli matrices

As an application of Corollary 5.1 we consider the normal approximation of a vector of traces of powers of a Bernoulli
random matrix. This task has already been accomplished in [22] for more general classes of random matrices whose
entries are independent and obey certain moment conditions. In this paper the authors used universality results for
homogeneous sums established in [25]. Our Corollary 5.1 offers a bound for the multivariate normal approximation
for the special case of Bernoulli random matrices without resorting to universality results. For related limit theorems
dealing with traces of random matrices we refer to [1,12] and the references cited therein.

As already indicated in [26] the results of discrete Malliavin calculus and Stein’s method extend to Rademacher
random variables indexed by arbitrary discrete sets. We make use of this possibility by considering a doubly indexed
collection of i.i.d. Rademacher random variables (Xij )i,j∈N. The object of interest is the Bernoulli random matrix

Xn :=
(

Xij√
n

)
1≤i,j≤n

.

Let us denote by

trace
(
X

q
n

) := n−q/2
n∑

i1,i2,...,iq=1

Xi1i2Xi2i3 · · ·Xiqi1

the trace of the qth power of Xn. Recall the definition of the d4-distance in (2.20).

Theorem 6.3. Let d ≥ 2 and 1 ≤ q1 < · · · < qd be integers. Define the random vector

Fn = (
trace

(
X

q1
n

) −E
[
trace

(
X

q1
n

)]
, . . . , trace

(
X

qd
n

) −E
[
trace

(
X

qd
n

)])
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and let N be a centred Gaussian random vector with covariance matrix Σ = (σij )
d
i,j=1 such that σii = qi for 1 ≤ i ≤ d

and σij = 0 for 1 ≤ i 
= j ≤ d . Then

d4(Fn,N) ≤ Cn−1/4 (6.3)

for a constant 0 < C < ∞ depending only on q1, q2, . . . , qd and d .

Proof. In order to apply Corollary 5.1 we have to express trace(Xqi
n ) in terms of elements of some fixed Rademacher

chaos. To this end, the following decomposition taken from [22] is crucial. It holds that

trace
(
X

q
n

) = n−q/2
∑

(i1,...,iq )∈D
(q)
n

Xi1i2Xi2i3 · · ·Xiqi1 + n−q/2
∑

(i1,...,iq )/∈D
(q)
n

Xi1i2Xi2i3 · · ·Xiqi1,

where

D
(q)
n = {

(i1, . . . , iq) ∈ {1, . . . , n}q : (ia, ia+1) 
= (ib, ib+1) for a 
= b
}

with iq+1 := i1. This separation of the range of summation is necessary due to the fact that multiple integrals are
defined only for kernels that are symmetric and vanish on diagonals. One has

n−q/2
∑

(i1,...,iq )∈D
(q)
n

Xi1i2Xi2i3 · · ·Xiqi1 = Jq

(
f

(q)
n

)
,

where f
(q)
n := f̃q,n is the canonical symmetrization of

fq,n

(
(a1, b1), . . . , (aq, bq)

) := n−q/2
∑

(i1,...,iq )∈D
(q)
n

1{i1=a1,i2=b1}1{i2=a2,i3=b2} · · ·1{iq=aq ,i1=bq }.

Let Jn = (J1, . . . , Jd) denote the random vector (Jq1(f
(q1)
n ), . . . , Jqd

(f
(qd )
n )). Then the triangle inequality for the

d4-distance implies that

d4(Fn,N) ≤ d4(Fn,Jn) + d4(Jn,N). (6.4)

From [22], Equation (3.9), one has∣∣qi −E
[
Jqi

(
f

(qi )
n

)2]∣∣ = O
(
n−1), (6.5)

as n → ∞ for all i = 1, . . . , d . This has actually been established in [22] for random matrices with independent
Gaussian entries. But it is easily checked that the estimate continues to hold for Rademacher random variables. This
together with the isometry (2.14) of discrete multiple stochastic integrals implies the information on the covariance
structure of Fn.

Next, from [22], equation (3.6), one has∥∥f
(q)
n �r

r f
(q)
n

∥∥
�2(N)⊗2(q−r) = O

(
n−1/2) (6.6)

for all r = 1, . . . , q − 1 in the limit, as n → ∞. In view of (6.5) and (6.6), Corollary 5.1 yields

d4(Jn,N) = O
(
n−1/4). (6.7)

Furthermore, Proposition 4.1 in [22] states that for all 1 ≤ i ≤ d ,

E
[
(Fi − Ji)

2]
= E

[(
n−qi/2

∑
(i1,...,iqi

)/∈D
(qi )
n

(
Xi1i2Xi2i3 · · ·Xiqi

i1 −E[Xi1i2Xi2i3 · · ·Xiqi
i1]

))2]
= O

(
n−1). (6.8)
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Let g :Rd → R be an admissible test function for the d4-distance. Then, writing ‖ · ‖Rd for the standard Euclidean
norm in Rd , we find that

∣∣Eg(Fn) −Eg(Jn)
∣∣ ≤ M1(g)E

[‖Fn − Jn‖Rd

] ≤ E

[(
d∑

i=1

(Fi − Ji)
2

)1/2]

≤
(

d∑
i=1

E
[
(Fi − Ji)

2])1/2

= O
(
n−1/2), (6.9)

for a constant 0 < C < ∞ which is independent of n. Here, we have used the fact that M1(g) ≤ 1, the Cauchy–Schwarz
inequality and (6.8). The decomposition (6.4) together with (6.7) and (6.9) proves the assertion. �

Remark 6.2. The rate of convergence obtained in Theorem 6.3 by means of the Malliavin–Stein method for
Rademacher sequences is of the same order of magnitude as the rate in [22], which is based on the universality results
in [25]. The only difference is that for technical reasons we had to assume a slightly higher degree of differentiability
for the test functions in the probability metric.

Remark 6.3. For the proof of Theorem 6.3 we have used the second inequality in Corollary 5.1, which involves square-
roots of contraction norms. One might hope to improve (6.3) by using the first inequality in Corollary 5.1. For this, one
would need to extend (6.6) to an estimate for norms of mixed contractions. We expect that this requires considerable
effort since already the proof of (6.6) relies on involved combinatorial decompositions and identities.
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