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Contributed Discussion on Article by Müller
and Mitra

Comment by Murray Aitkin1 and Julia Polak2

Space restrictions limit our discussion to the first example.

The example analysis extrapolates from a zero-truncated observed count sample to
predict the zero count. Prediction outside the data range is always hazardous. As the
authors note, a general multinomial distribution on the observed data cannot predict
the zero count: a parametric model is essential for this, with the consequent strong
model-dependence of the prediction.

Nakatani and Sato (2008) have given a survey and discussion of the zero-truncated
Poisson, negative binomial and other discrete distributions for this extrapolation, and
a Bayesian analysis of the Poisson and negative binomial distributions can be found in
Vergne, Calavas, Cazeau, Durand, Dufour and Grosbois (2012). These authors point
out the limitation of the small sample size of their collected data that prevents them
from fitting more complicated models. Moreover, they explain why using alternative
nonparametric estimates is not suitable.

They used conventional parametric Bayesian methods, not the Dirichlet Process
(DP). We follow their analysis for the first example. With only four counts, the data
could be analysed by a truncated Poisson(µ) distribution. The MLE of µ is 0.86, and
with a flat prior on µ the posterior distribution of µ is easily computed. The median
is 0.876 and the 95% central credible interval is (0.60, 1.22). Transforming from µ to
55/(1 − e−µ) gives a posterior (Figure 1) for the total number N of T-cell types very
close to the authors’ Figure 1(b), with median 94 and 95% central credible interval
(78,122). What additional information does the DP analysis provide? The authors aim
to find a modeling approach between a “misleadingly precise” parametric model like
this one, and a fully general multinomial model which could not provide information
about the unobserved zero class.

The Dirichlet process with a Poisson base mass function leads to a truncated mixed
Poisson distribution for the observed data. With only four support points in the data,
no more than two components can be identified from the mixture likelihood, with two
extra parameters over the truncated Poisson. The authors give no details of the com-
plexity of their DP model, so it is unclear how it is related to the truncated Poisson or
two-component mixed Poisson models, or to the truncated negative binomial distribu-
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Figure 1: Posterior for number of T-cell types

tion which has one extra parameter. It seems therefore that the DP mixture leads to
something very close to the single truncated Poisson distribution.
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Is a more complex model needed? The truncated Poisson can be compared with
the saturated multinomial using the posterior deviance distributions of the competing
models (Aitkin 2010). The comparison of deviance cdfs for the truncated Poisson and
multinomial shows that they cross around the 70th percentile – there is no strong
preference for the more complex multinomial over the truncated Poisson. This supports
the adequacy of the truncated Poisson, when compared to the multinomial.

We see an analogy between the DP and the variance component model for small area
estimation. The variance component model expresses the variation in outcome y for
some given kernel density f(y | θ) across k small areas j, through a random parameter
aj whose variance σ2

A determines the extent of the variation. The DP expresses the
variation in outcome y for some given kernel density g(y | θ) through a “spawning”
parameter α whose value determines the unobserved number k of components in a
k-component mixture of the g distributions modeling y.

The important difference in these models is that the k small areas are known, while
the k components are not. This means that the variance component σ2

A is estimable
through the model likelihood, while the spawning parameter α is not: it has to have
an informative prior to provide an analysis. The number of components k is however
estimable through the likelihood.

We therefore see little point in the additional complexity of the DP analysis for
single samples, in which the spawning parameter is unidentifiable: the mixture of kernel
densities can be analysed by other Bayesian methods. Aitkin (2010) gives an extended
discussion of the normal mixture model for the well-known galaxy data set.

Whether or not embedded in the DP, the authors’ analysis does not in any way
support their zero class proportion inference – many other distributions (like the trun-
cated negative binomial) could be adequate as well, and could give a different zero class
probability inference.
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Comment by Julyan Arbel3 and Bernardo Nipoti4

In this discussion we focus on density estimation and show that BNP models naturally
provide a tool that is fairly stable under rescaling of the data. Müller and Mitra deal
with the flexibility of BNP models and show, through some examples, that their use can
be advantageous in common inference problems. As for density estimation, the paper
describes the DPM model by means of an application to inference on T-cell diversity,
where the observations are counts. The specific nature of the dataset ensures that the
scale of the data is not an issue. Nonetheless this is a ubiquitous concern in density
estimation problems with observations from continuous distributions. Clearly, it is
desirable that the estimates are not significantly affected by a rescaling of the data. A
closely related problem refers to the estimation of multidimensional densities in spaces
where different axes represent quantities with different physical dimensions. There is not
a natural way to define a metric on the product space and scaling constants need to be
set in order to relate units along different axes. This scenario arises, for example, with
astronomical observations consisting of position and velocity of stars (e.g., Ascasibar and
Binney 2005). Although we are not aware of existing BNP literature where this problem
is directly investigated, it is worth mentioning that, as a matter of fact, BNP models
have been used for density estimation in non–commensurable spaces. For example,
both Müller et al. (1996) and Hanson (2006) analyse the well-known ozone dataset and,
by means of DPM and MPT models respectively, deal with the problem of estimating
multivariate densities in, e.g., radiation and ozone concentration product space. In
the next section we illustrate, through a simulation study, that the flexibility of the
DPM model provides a natural answer to the problem of estimating densities in non–
commensurable spaces.

We investigate the performance of location-scale DPM models with multivariate
normal kernels (introduced in Müller et al. 1996) for density estimation through the
following synthetic example. We generate bivariate samples D(n) = (X(n),Y(n)), of
size n ∈ {50, 100, 150, 200}, from the mixture of two normals:
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The true density f and a scatter plot of 100 observations are shown in Figure 5. Then

we consider rescaled data D
(n)
c = (X(n), cY(n)) with varying scale parameter c. We use

a DPM model to estimate f , conditional on each sample D
(n)
c , and we let f̂

(n)
c denote

the estimated predictive distribution. Simulations are done by using the R package
DPpackage (see Jara et al. 2011) (10,000 iterations with a 5,000 burn–in period); the
prior specification we have set is standard and, importantly, does not take into account
the scale of the data. As a first argument in support of the stability of the model with
respect to rescaling, we show in Figure 5 the estimates obtained for n = 100 and two
scales, c = 0.1 and c = 10.
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Figure 2: (Middle) Contour of the true density f and scatter plot of 100 observations.

(Left and right) Contour of the estimates f̂
(100)
c for c = 0.1 and c = 10 respectively.

Additionally, for each n and c = 103k, where k ∈ {−2, . . . , 2}, we summarize in

Table 5 the fit of the estimate by computing the integrated squared error (ISE) for f̂
(n)
c

suitably rescaled, that is

ISE(D(n)
c ) :=

∫
R2

(
cf̂ (n)c (x, y/c)− f(x, y)

)2
dxdy.

It is apparent that the fit of f̂
(n)
c is not heavily affected by the choice of c. This feature is

even more evident when the sample size is large. It is worth stressing that the estimates
we got are pretty stable even when the model is tested on data severely rescaled (e.g.
c = 10−6 and c = 106).

n\c 10−6 10−3 1 103 106

50 4.73 4.77 4.87 5.25 5.24
100 2.29 2.27 2.25 2.68 2.65
150 1.90 1.92 1.93 2.17 2.35
200 1.07 1.07 1.06 1.13 1.17

Table 1: 103×ISE(D
(n)
c ) for varying data size n (in rows) and scale c (in columns).

This toy example suggests that the flexibility of DPM models makes them good
candidates for dealing with a whole range of density estimation problems for which
there is not a univocal scaling of the data.
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Comment by Bertrand S. Clarke5 and Gregory E. Holt5

We argue that the authors’ focus on nonparametric Bayes estimation, despite being
well executed, has led them to neglect the topic of nonparametric Bayes testing – a
topic many non-statisticians think is just as important as estimation. Leaving aside
whether estimation or testing is more important, our point here is that the arguments
in favor of NPB from a testing perspective appear to have been neglected in general. As
noted by Tokdar et al. (2010) ‘The Bayesian literature on these testing problems is still
rather meagre, unlike the case of nonparametric estimation...’ Despite Borgwardt and
Ghahramani (2009) and Holmes et al. (2012) our literature search did not turn up much
evidence to invalidate this observation. So, let us give a class of settings where NPB
hypothesis testing is likely to be better than parametric Bayes testing or Frequentist
testing. We will focus on testing the equality of two distributions.

Consider the following thought experiment. A scientist is interested in conducting a
clinical trial enrolling patients with end stage cancer who are otherwise out of treatment
options. Despite the need for comparisons to placebo based control groups, clinical
trialists realize patients do not enroll in studies where they may receive a placebo and
therefore most of these trials remain uncontrolled. Researchers often rely on historical
controls despite their known deficiencies.

As an alternative, to study therapeutic modalities in patients with terminal dis-
eases, researchers could enroll patients only seen in clinic on one defined day while
creating a control group formed from patients satisfying the same inclusion/exclusion
criteria but seen on an alternative clinic day. We refer to this sort of control group as
‘virtual’ since it is constructed artificially after the treatment group is enrolled. The
dependence between the treatment group and the virtual control group only comes from
the inclusion/exclusion criteria and from matching the distribution of the baseline vari-
ables (described below). Such virtual control groups should exhibit the same outcome
variable, here overall survival denoted Y , and Y should be a function of the baseline
variables for both the treatment and virtual control groups. In this procedure, the vir-
tual control group corresponds to patients receiving standard of care therapy so any
differences between treatment and control would suggest a treatment effect.

Although placebo controlled randomized trials would still be preferable, in settings
involving patients who typically avoid placebo controlled trials, this clinical trial design
may permit better comparisons than historical controls that do not take into account
current treatment practices or characteristics of the local population and treating physi-
cians. In these contexts, NPB testing of the equality of the distribution of the baseline
variables would be a better way to verify that a candidate virtual control group will
provide a suitable comparison for a treatment group than Frequentist or parametric
Bayes testing would be. At root, this follows because Bayes testing is better than Fre-
quentist testing, see Berger and Bayarri (2004), Berger (2003), and M. Eaton (2013)
among others, and nonparametric testing is more flexible than parametric testing.

To set up this testing problem, let us assume that all patients seen by a physician

5Department of Medicine, University of Miami, Miami, FL
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on a day of experimental enrollment (say Tuesday) or on a day of virtual control group
formation (say Thursday) have had the same basline tests. Now, in principle, we can
compare the baselines of the patients in the Tuesday group with a collection of Thursday
patients that we can use to form a virtual control group. More formally, suppose the
baseline measurements for the treatment group are represented as X = (X1, . . . , XK)T

and we have n outcomes DT = {x1, . . . ,xn}. To form a ‘virtual control group’ let
X′ be the same variables as X but measured on the Thursday patients and let DC =
{x′1, . . . ,x′n} be the resulting set of baseline measurements. The question is how to
choose DC so that we can compare the corresponding Y1, . . . , Yn from the treatment
group with the Y ′1 , . . . , Y

′
n from the control group.

One way to formulate this is as a hypothesis test. Let P be the distribution of X
and let Q be the distribution of X. We want to test

H0 : P 6= Q vs. H1 : P = Q. (1)

It is natural to use the Bayesian formulation. Foundationally, Bayesian techniques
are not probabilistic in the data on which one conditions, see Chen (1985) Sec. 3.1.
Specifically, the conditioning data need only form a well-defined deterministic sequence.
So, it is legitimate to search the Thursday patients to find the ones that will give a DC
that lets us reject H0, i.e., mimics DT well enough that the posterior probability of the
null is small enough.

The NPB solution is clear: Find a nonparametric prior distribution for the pair
(P,Q), for instance a bivariate DP as described in Walker and Muliere (2003) or a
bivariate MDP as in the present paper. Now, reinterpeting (1) as

H∗0 : d(P,Q) ≥ ε vs. H∗1 : d(P,Q) < ε, (2)

for some distance d and writing the prior as W , the Bayes test is based on

W (d(P,Q) ≤ ε|D)

W (d(P,Q) > ε|D)
(3)

where D = DT ∪DC . If (3) is large enough then we are led to accept the alternative in
(2) and therefore use DC as a ‘virtual control group’ for inference on Y and Y ′.

What would the nonparametric Frequentist solution be? First, (2) would be harder
to test than (1), so let us focus on (1). Frequentist Neyman-Pearson testing treats the
hypotheses asymmetrically and familiar two sample forms of tests such as Kolmogorov-
Smirnov, the Anderson-Darling test, and the Cramer-von Mises test treat H1 vs. H0,
the reverse of (1). To adapt such a test statistic to our present case requires that the
null be decomposed into a series of nulls that can be tested separately and then put
together by some kind of multiple comparisons procedure. That is, write

{P 6= Q} = ∪Jj=1B((Pj , Qj), η) ∪ S (4)

where B((Pj , Qj), η) is a collection of balls of radius η > 0 and S = [∪Jj=1B((Pj , Qj), η)]c

is a set of pairs of distributions deemed to be so far from the ‘line’ of distributions P = Q
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that they can be ignored. Now it is enough to consider the J composite vs. composite
tests H0,j : (P,Q) ∈ B((Pj , Qj), η) vs. H1 : P = Q. However, if η is small enough then

H0,j : (P,Q) ∈ B((Pj , Qj), η) ≈ H∗0,j : (P,Q) = (Pj , Qj),

and for each j we can reduce H1 to H1,j : (P̃j , Q̃j) = arg minP=Q d((Pj , Qj), (P,Q)).
So, to test (1), it is approximately enough to do the J simple vs. simple tests

H∗0,j : (P,Q) = (Pj , Qj) vs. H1,j : (P̃j , Q̃j).

Now, if we can reject in all J tests under a multiple comparisons procedure we have
a Frequentist test of (1). If we can’t reject all J nulls, problems remain. Overall, in
contrast to (3), Frequentist reasoning is too precious to be disturbed by refutation.

The Frequentist parametric approach will reduce J and so be simpler than the
Frequentist nonparametric approach – at the cost of specifying a parametric family.
The Bayes parametric approach is likewise simpler than the NPB approach but also has
the cost of specifying a parametric family. Neither parametric reduction is persuasive.

Thus, the NPB prescription for finding a virtual control group is to find sets DC that
let us reject in (1) or (2). This is easier to implement and interpret than a Frequentist
analysis and should also give better results – as Bayes tests commonly do.
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Comment by Andrew Gelman6

Müller and Mitra present an excellent motivation and overview of Bayesian nonpara-
metric models, and in fact their article could have gone on longer, to include models
such as Bayesian additive regression trees (Chipman, George, and McCulloch, 2010)
which have the potential to revolutionize the practice of causal inference by allowing
researchers to directly model potential outcomes (Hill, 2011), avoiding the traditional
and often counterproductive focus on average treatment effects and restricted domains
of inference. And I am sure there are many other areas of application where Bayesian
nonparametrics can allow for scientific advances by allowing researchers to focus on mod-
eling phenomena of interest rather than getting distracted by issues of identification and
functional forms.

Bayesian data analysis can be fruitfully considered as an iteration of three steps:
(1) model building, (2) inference, and (3) model checking. Compared to traditional
Bayesian methods, nonparametric Bayes represents an additional modeling investment
in step 1, with the gains coming in step 2 (more accurate models and predictions) and
in step 3 (better fit to data). Nonparametric models deserve more attention within
Bayesian statistics, and we have added several chapters on them for the upcoming third
edition of our book (Gelman et al., 2013).

For all their flexibility, however, nonparametric models are still models. They have
assumptions and their fit to data can be checked by comparing observed data to hy-
pothetical replicated datasets simulated from the fitted model (Rubin, 1984, Gelman,
Meng, and Stern, 1996). The good news is that, in an environment in which models
are fit using posterior simulations, it is typically trivial (in both the mathematical and
computational senses) to simulate replicated datasets. Based on our own experiences,
we think the most effective model checks are graphicalbut this is no problem either,
as such checks are a simple step forward beyond the graphical displays of inferences
and data that are becoming standard best practice in nonparametric inference (as il-
lustrated, for example, in Figures 1, 7, and 9 of the paper under discussion). The same
sorts of displays that are informative about data can directly be used to explore model
fit by comparison to simulated replications.
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Comment by Miroslav Kárný7,8

The authors have done a great job in describing the state of the art of Bayesian Non-
Parametrics and have illustrated the ideas by interesting examples. Their presentation
has one (quite wide-spread) methodological flaw I want to point to. Essentially, their
paper answers the question “how” and misleads in answering the question “why”. They
do not take seriously Box’s statement they cite (all models are wrong). Taking it
literally, it would mean that the prior distribution should have support out of the
model class (irrespectively of finite or massive parametrisation) and no inference would
be possible. Luckily enough, a straightforward inspection of the Bayes rule leads to the
Sanov-type view, Sanov (1957); Berec and Kárný (1997), that the posterior distribution
is to be interpreted as the probability that a model, within the considered model class,
which does not contain reality in the generic case, is the best projection of reality to
this class. Consequently,

� the non-parametric (massive parametric) inference is susceptible to the same prob-
lems as the standard parametrisation (for instance, ignoring continuity of the
estimated distribution can cause non-acceptable modelling errors);

� the information about concentration of the posterior distribution is the informa-
tion regarding how close we are to the best projection and not how close we are to
reality: it is increased due to the massive parametrisation but not due to better
information about closeness to reality;

� the entropy rate, which often reduces to the Kullback-Leibler divergence, is the
only adequate Bayes-rule induced measure of closeness.

Technically, the objection against mixture-type modelling is not completely correct as
progress in this respect is enormous and counteracts the curse of dimensionality (R.
Bellman, Bellman (1961)), which is an inherent barrier of non-parametric inference.
Please, take our work Kárný et al. (2006) as an example of a strong research and
development stream in this respect.

References
Bellman, R. (1961). Adaptive Control Processes. Princeton University Press, NJ.
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Comment by Michalis Kolossiatis9

By writing a condensed, but clear paper, the authors give an overview of Bayesian
nonparametric models, as well as cases where these models are particularly useful and
(should be) preferred over parametric ones.
The class of Bayesian nonparametric models is, of course, huge. I would like to draw
attention to a class of such models which can be used for the joint modelling of several
distributions. This class of models, introduced by Griffin et al. (2013), is called Corre-
lated Normalized Random Measures with Independent Increments (CNRMI) and it is
constructed by normalising sums of some underlying random measures with indepen-
dent increments. By using a selection matrix, the modeller can explicitly state which
of these underlying measures are shared by which of the distributions, according to the
problem in hand. Another interesting feature of this model is that, by using appro-
priate prior distributions for some of the parameters, a formal model selection can be
conducted. Two interesting subclasses are the Correlated Dirichlet Process (CDP) and
the Correlated Normalised Generalised Gamma Process (CNGG), where the underlying
processes are gamma and generalised gamma and the marginal processes are Dirichlet
and normalised generalised gamma, respectively. A similar model, for the case of two
distributions, and from a more theoretical perspective, was developed in Lijoi et al.
(2013).
In practice, this model will be used in an intermediate part of a larger hierarchical
model, as in most BNP models. Simulating from it can be done using standard MCMC
methods, for example the slice sampling algorithm for normalized random measure mix-
ture models of Griffin and Walker (2011). This answers, in general terms, the “how”
this model can be used. As to “why” it should be used, the reason is the possibility of
flexibly and jointly modelling an arbitrary number of correlated distributions, with a
direct method of modelling the common parts in any subset of those distributions, and
therefore the correlation between the distributions.
Regarding more tangible applications, Griffin et al. (2013) apply the proposed model
on survival data and on stochastic frontier data. In the latter case, we have a regres-
sion model with two additive error terms. The first set of errors is assigned a normal
distribution, whereas the distributions of the second error terms are assumed to follow
a CNGG. This model can also be naturally applied in the case of the prostate cancer
study data (Example 2 in the paper): the regression on the longitudinal covariate can
be applied in a similar fashion as in Zhang et al. (2010), whereas the distributions G1

and G2 can follow a CNRMI (or, more specifically, a CDP or a CNGG), without taking
into account the possibility of cure. In order to account for the event of cure, the model
can be naturally extended by adding a pair of degenerate processes, one for each of the
distributions of G1, G2 (for example, DPs with base distributions being atomic at tc,
the survival time assigned to cured individuals).

9School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, UK
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Comment by Athanasios Kottas10, Maria DeYoreo10 and
Valerie Poynor10

We commend the authors for an interesting review of applications of Bayesian nonpara-
metric modeling and inference. Here, we offer some additional discussion, results and
references on fully nonparametric regression, which we believe is a key success story of
Bayesian nonparametrics.

As the authors discuss in Section 4, two dominant trends in the Bayesian regression
literature have been to develop flexible regression function models and to accompany
the regression relationship with more comprehensive uncertainty quantification. For
problems involving a small to moderate number of random covariates, the curve fitting
regression approach is an appealing alternative. Specifically, a DP mixture model,
f(y,x;G) =

∫
k(y,x;θ)dG(θ), G ∼ DP(α,G0), is used for the joint distribution of the

response, y, and covariates, x, from which inference emerges for the conditional response
distribution, f(y | x;G). Modeling the joint response-covariate distribution is natural
for many applications, especially in the environmental and biomedical sciences.

Although the approach (based on normal mixtures) has been proposed in Müller
et al. (1996), it has been overlooked as a general nonparametric regression framework
until relatively recently. This may be attributed to the limitations of posterior predictive
estimation for full inference about the conditional distribution f(y | x;G). However,
with posterior simulation extended to the mixing distribution G, the DP mixture curve
fitting approach enables rich inference for response densities that can change in non-
trivial fashion across the covariate space, and for non-linear regression relationships
built from the mean or from percentiles of the response distribution (Taddy and Kot-
tas 2009, 2010). Moreover, the methodology can be extended to handle categorical
responses (Shahbaba and Neal 2009; Dunson and Bhattacharya 2011), and looking be-
yond the standard regression setting, to develop emulation and calibration techniques
for stochastic computer simulators (Farah 2011) as well as modeling for marked Poisson
processes (Taddy and Kottas 2012).

A particularly promising direction involves problems with (possibly multivariate)
ordinal responses, y, which can be represented as discretized versions of latent contin-
uous responses, z, with a DP mixture model employed for the joint distribution of z
and x. For continuous covariates, the mixture kernel can be built from a multivariate
normal which, in the presence of binary responses, requires identifiability restrictions
for its covariance matrix (DeYoreo and Kottas 2013). This modeling approach enables
flexible nonparametric inference for the implied response classification probabilities,
Pr(y = j | x;G), the number of which increases significantly in multivariate ordinal re-
gression problems rendering semiparametric modeling infeasible. Figure 3 illustrates the
capacity of the model to uncover both relatively standard and non-monotonic shapes for
the ordinal regression relationships as well as non-trivial interactions among covariates.

The curve fitting regression framework can be enhanced with hierarchically depen-

10Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA
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Figure 3: Ordinal regression example using data (available in R) on ozone concentration

(variable z measured in ppb), radiation (variable x1 in langley units) and temperature (variable

x2 in degrees Fahrenheit) recorded over 111 days from May to September of 1973 in New York.

Ozone concentration is discretized to construct an ordinal response, y, with classifications of

“low”, “medium”, and “high” concentration corresponding respectively to: y = 1 for z ≤ 50

ppb; y = 2 for 50 ppb < z ≤ 100 ppb; and y = 3 for z > 100 ppb. Inference results

are based on a trivariate normal DP mixture model for (z, x1, x2). The top and bottom

row panels include inference results for the “low” and “medium” categories; specifically, for

j = 1, 2, the left and middle columns show posterior mean and 95% interval estimates for

Pr(y = j | x1;G) and Pr(y = j | x2;G), and the right column plots the posterior mean

estimate of Pr(y = j | x1, x2;G).

dent nonparametric priors (e.g., Rodriguez et al. 2009). More generally, it can be uti-
lized complementary to DDP regression, with survival analysis providing a practically
important area of application. Survival regression problems typically include a treat-
ment categorical factor in addition to random covariates x. For instance, for a generic
treatment/control setting (indicated by s ∈ {T,C}), the joint response-covariate distri-
bution can be modeled with f(y,x;Gs) =

∫
k(y,x;θ)dGs(θ). The choice of the kernel

is important to ensure desirable properties for key functions of the survival response
distribution, such as the hazard and mean residual life functionals (Poynor and Kot-
tas 2013). Assigning a DDP prior to the pair of mixing distributions (GC , GT ) results
in related regression relationships through the dependent T/C response distributions
f(y | x;Gs). Here, a variable-weights DDP prior, Gs =

∑∞
h=1 πshδθ̃h , is an attractive
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Figure 4: Prostate cancer study (Example 2 of the paper). Inference results are based on

a gamma DDP mixture model, f(y;Gs) =
∫

gamma(y; θ, φ)dGs(θ, φ), where s ∈ {AA,CH},
with a variable-weights DDP prior assigned to (GAA, GCH), using one of the bivariate beta

distributions from Nadarajah and Kotz (2005) for the DDP stick-breaking weights. The left

panel plots the posterior mean and 95% uncertainty bands for the treatment AA density

function. The middle and right panels show the posterior mean estimates under the two

treatments for the survival functions and for the hazard rate functions, respectively.

alternative to the basic DDP model (expression (8) of the paper); incorporating de-
pendence through the DDP weights is invariant to the mixture kernel dimensionality,
and for this application, it may be more natural to envision similar mixture locations
with prevalence varying according to the T/C groups. To retain the DP marginally, we
need an appropriate bivariate beta distribution for the latent variables (υCh, υTh) that
define the stick-breaking weights. For an illustration, Figure 4 shows results based on
the portion of the data from the prostate cancer study made available on-line. Note
that the point estimates for the hazard functions suggest a non-proportional hazards
relationship for TTP under the two treatments providing further demonstration for
the practical utility of flexible Bayesian nonparametric modeling relative to traditional
parametric or semiparametric regression models.
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Comment by Susan M. Paddock11,12 and Terrance D. Sav-
itsky11,12

Müller and Mitra’s contribution regarding the practical whys and hows of non-parametric
Bayes (NPB) is welcome. In that spirit, we highlight one basic and one complex social
science example for which NPB is uniquely well-suited.

Depression symptoms scores were collected from n = 299 clients on three occasions
– pre-treatment, post-treatment, and follow-up – during a study of group therapy’s
effectiveness for treating depression. Clients completed up to four group therapy mod-
ules and could join the therapy group at start of a module. Therapy group-induced
correlations among client outcomes could thus be modeled using random module ef-
fects, which would be linked to post-treatment outcomes via multiple membership, and
client-specific growth parameters (e.g., random intercept, time, and quadratic time ef-
fects) could be specified for modeling within-client correlations and deviations from the
average depression score trajectory (Paddock and Savitsky 2013).

Basic use of NPB for a very common analytic problem. Randomly-sampled depres-
sion score trajectories for six clients show convex and concave patterns (Figure 5), so
including quadratic time effects in the model seems appropriate. However, for model
identifiability, conventional parametric growth curve modeling requires d + 2 repeated
observations for a polynomial trajectory of degree d (Bollen and Curran 2006). Ad-hoc
parameter constraints would thus be required, such as assuming the quadratic time
client random effect variance is 0 or setting variance terms equal to a constant (Little
et al. 2006), or imposing identifiability through the prior.

Paddock and Savitsky (2013) avoid making ad-hoc constraints by modeling the client
growth parameters using a Dirichlet process (DP). The positive probability of ties under
DP facilitates a useful parameter dimension reduction, providing a compromise between
assuming one trajectory applies equally well to everyone versus having n distinct trajec-
tories for all clients arising from a parametric distribution. There were about 10 unique
sets, or clusters, of growth parameters at each MCMC iteration in Paddock and Savit-
sky (2013). By ‘letting the data speak’ about which patterns existed in the data, the
DP approach captured both convex and concave growth curves, whereas the parametric
approach only captured concave curves. DP is particularly promising for such longitu-
dinal intervention studies, considering such typically small numbers of observations per
client. Example 6 of Müller and Mitra’s paper has similar features - e.g., three random
effects and three observations per tripeptide/tissue pair. We would be interested in the
authors’ comments on whether and how such dimension reduction played a role in the
parametric empirical Bayes versus semiparametric comparison.

More complex example. Paddock and Savitsky’s (2013) model would constrain mod-
ule random effects to be constant over time, not allowing for changes in correlations
among outcomes for clients who attend modules together. However, client outcomes

11RAND Corporation
12Supported by NIH/NIAAA Grant R01AA019663
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Figure 5: Depression symptoms scores for six randomly-selected clients at 0, 3, and 6
months post-baseline

might be more strongly correlated at different time points, such as immediately fol-
lowing group therapy versus at baseline or follow-up. Not all clients benefit similarly
from group therapy (Smokowski et al. 2001); module effects might change over time
and the effects of modules on participant outcome trajectories may vary across study
participants. Savitsky and Paddock (to appear)’s dependent Dirichlet process (DDP)
model for repeated measures multiple membership data accounts for this and improves
model fit. A set of random distributions for client random effect parameters is indexed
by therapy group module attendance sequences. Figure illustrates the heterogeneity in
the relative effectiveness of group therapy modules. There are clusters of clients whose
outcome trajectories vary across modules. Uncovering this variation motivates future
research to understand why such variation exists and for whom do module effects vary.
Savitsky and Paddock (to appear) found that a parametric additive model alternative
for both module and client effects that allowed for time variation failed to capture this
heterogeneity.
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correspond to the largest clusters of clients (from largest to smallest).

Little, T., Bovaird, J., and Slegers, D. (2006). “Methods for the Analysis of Change.”
In Mroczek, D. and Little, T. (eds.), Handbook of Personality Development, 181–211.
Mahwah, NJ: Erlbaum.

Paddock, S. M. and Savitsky, T. D. (2013). “Bayesian Hierarchical Semiparametric
Modeling of Longitudinal Post-treatment Outcomes from Open-enrollment Therapy
Groups.” Journal of the Royal Statistical Society, Series A: Statistics in Society ,
176(3): to appear.

Savitsky, T. and Paddock, S. (to appear). “Bayesian Non-Parametric Hierarchical Mod-
eling for Multiple Membership Data in Grouped Attendance Interventions.” Annals
of Applied Statistics.

Smokowski, P., Rose, S., and Bacallao, M. (2001). “Damaging experiences in therapeutic



345

groups: How vulnerable consumers become group casualties.” Small Group Research,
32(2): 223–251.



346

Comment by G. Parmigiani13 and L. Trippa13

We vividly congratulate Müller and Mitra for elucidating important motivations for
the application and theoretical development of Bayesian nonparametric (BNP) models,
using illuminating examples. Müller and Mitra make a compelling case for the whys
of BNP and illustrate the fascinating ease of computational implementations in many
of their examples. We find ourselves in agreement with much of the motivation of this
review. A point that may be worth reiterating is that the boundary between parametric
and nonparametric approaches is blurred in Bayesian modeling, even more than it is
elsewhere. First, many BNP solutions can be alternatively conceptualized as models
with very high dimensional parameter spaces. Also, practically, in any given data anal-
ysis, parametric and nonparametric elements can coexist, and in fact combinations of
parametric structures and simple Bayesian nonparametric tools are common and pow-
erful. These allow one to capture important, and sometime hidden, aspects of the data
without sacrificing the parametric models’ beauty: thoughtful assumptions, and inter-
pretable estimands. BNP modeling is a natural step when standard parametric tools
poorly represent the data; we can then choose to either embed the parametric model into
a more flexible BNP construction, or consider competing parametric models by adding
parameters; the latter strategy can be time consuming, and challenging from a model
selection perspective. BNP modeling versus non standard parametric distributions for
the error term in regression problems exemplify the two strategies.

Müller and Mitra emphasize the large spectrum of models and computational pro-
cedures developed in recent years. Dirichlet process mixtures and the use of basis
functions remain milestones, while several new probabilistic constructions such as re-
cent prior models for relational data Griffiths and Ghahramani (2011); Miller, Griffiths,
and Jordan (2009) support Bayesian nonparametric inference in new applied fields. An-
other aspect that is nicely captured in the review is the analytical tractability of some
BNP probabilistic constructions such as Polya Trees, Product partition models, and the
more recent Indian Buffet process. In our view, a further motivation to the increasing
popularity on BNP tools is in the close connections with established procedures such as
k-means clustering Kulis and Jordan (2011), support vector machines and kernel regres-
sion methods Schölkopf and Burges (1999). Such connections offer a fertile ground, not
only for the interpretation of a number of learning procedure, but also for applications,
and for conceiving novel methodologies.

The case studies discussed by Müller and Mitra concisely represent the spectrum
of problems and probability models in BNP. Fortunately, this spectrum is wide, and
growing wider: the inferential problems and the data types amenable to analysis through
BNP modeling is not constrained to any particular structure. We hope that their work
will further contribute to yet more creative modeling and a more widespread use of BNP
techniques in practice.

11Dana Farber Cancer Institute and Harvard School of Public Health, Boston, MA
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Comment by Franco̧is Perron14

The paper is well written. Several applications are discussed, interesting aspects are
explored, the review of the literature is good. As a researcher I will require that my
students read this paper, amongst others. I find the paper easy to read and the ex-
amples are very helpful. Some of the difficulties are presented and classical solutions
are given ( a.s. discreteness associated with the Dirichlet prior corrected with mix-
tures, similar things with Polya tree priors when aϵ = αG⋆(Bϵ) is corrected by fixing
aϵx = cmαG

⋆(Bϵx)/G
⋆(Bϵ), cm = cm2, the fact that it might be necessary to be clever

when the time comes to develop partitions in higher dimensions for the Polya tree pri-
ors, random partitions, etc. ). Representing a function through a Fourier series with a
fixed basis and unknown coefficients is interesting and clearly different from the other
parts of the paper. For that same reason, I would have liked it if the authors could
have talked about the method of sieves in Bayesian statistics. The section on asymp-
totics is soft. The authors should have said something about the Bernstein-von Mises
theorem, see Kleijn and van der Vaart (2012), Rivoirard and Rousseau (2012) for
instance. In practice, people will use finite Polya trees priors, the problem of truncation
is relevant, the authors should have said something about it. Is the choice of a prior
simply a mathematical tool or not? In many situations, Bayesian nonparametric meth-
ods require imagination. For example, a copula in dimension d is a probability measure
with uniform margins. A direct approach consists of developing a prior on the copula
space. An attempt has been made by Dortet-Bernadet (2005) using Polya trees but the
flexibility under this method is quite severe. The cumulative distribution function of a
random vector can be written in terms of marginal distribution functions and a copula.
Sklar’s theorem says that if the margins are continous then the copula is unique. The
transformation giving the copula C coming from a cdf F is known. Moreover, it is easy
to create a prior on the space of the cumulative distribution functions with continuous
margins ( using the ideas of Hanson for instance, see Hanson et al. (2012) ). There-
fore, we have an indirect approach inducing a prior on the copula space. In bivariate
extreme value theory there is the spectral measure which can be viewed as a probability
measure on [0, 1] with mean value 1/2. Building priors on the space of the cdf on [0, 1]
with median 1/2 is quite easy with Polya tree priors while fixing the mean value at 1/2
is not. Basically, Bayesian non parametric inference is appealing but it is not always
straightforward to implement.
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Comment by Christian P. Robert15 and Judith Rousseau15

We congratulate the authors for this very pleasant overview of the type of problems that
are currently tackled by Bayesian nonparametric inference and for demonstrating how
prolific this field has become. We do share the authors’ viewpoint that many Bayesian
nonparametric models allow for more flexible modelling than parametric models and
thus capture finer details of the data. BNP can be a good alternative to complex
parametric models in the sense that the computations are not necessarily more difficult
in Bayesian nonparametric models. However we would like to mitigate the enthusiasm
of the authors since, although we believe that Bayesian nonparametric inference has
proved extremely useful and interesting, we think they oversell the “nonparametric side
of the Force”! Our main point is that by definition, Bayesian nonparametric inference is
based on prior probabilities that live on infinite dimensional spaces and thus are never
completely swamped by the data. It is therefore crucial to understand which (or why!)
aspects of the model are strongly influenced by the prior and how.

As an illustration, when looking at Example 1 with the censored zeroth cell, our
reaction is that this is a problem with no proper solution, because it is lacking too much
information. In other words, unless some parametric structure of the model is known,
in which case the zeroth cell is related with the other cells, we see no way to infer about
the size of this cell. The outcome produced by the authors is therefore unconvincing to
us in that it seems to only reflect upon the prior modelling (α,G⋆) and not upon the
information contained in the data. Now, this prior modelling may be to some extent
justified based on side information about the medical phenomenon under study, however
its impact on the resulting inference is palpable.

Recently (and even less recently) a few theoretical results have pointed out this very
issue. E.g., Diaconis and Freedman (1986) showed that some priors could surprisingly
lead to inconsistent posteriors, even though it was later shown that many priors lead to
consistent posteriors and often even to optimal asymptotic frequentist estimators, see
for instance van der Vaart and van Zanten (2009) and Kruijer et al. (2010). The worry
about Bayesian nonparametrics truly appeared when considering (1) asymptotic fre-
quentist properties of semi-parametric procedures; and (2) interpretation of inferential
aspects of Bayesian nonparametric procedures. It was shown in various instances that
some nonparametric priors which behaved very nicely for the estimation of the whole
parameter could have disturbingly suboptimal behaviour for some specific functionals
of interest, see for instance Arbel et al. (2013) and Rivoirard and Rousseau (2012). We
do not claim here that asymptotics is the answer to everything however bad asymptotic
behaviour shows that something wrong is going on and this helps understanding the
impact of the prior. These disturbing bad results are an illustration that in these infi-
nite dimensional models the impact of the prior modelling is difficult to evaluate and
that although the prior looks very flexible it can in fact be highly informative and/or
restrictive for some aspects of the parameter. It would thus be wrong to conclude that
every aspect of the parameter is well-recovered because some are. This has been a well-
known fact for Bayesian parametric models, leading to extensive research on reference

15Université Paris-Dauphine, Paris, France
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and other types of objective priors. It is even more crucial in the nonparametric world.
No (nonparametric) prior can be well-suited for every inferential aspect and it is impor-
tant to understand which aspects of the parameter are well-recovered and which ones
are not.

We also concur with the authors that Dirichlet mixture priors provide natural clus-
tering mechanisms, but one may question the “natural” label as the resulting clustering
is quite unstructured, growing in the number of clusters as the number of observations
increases and not incorporating any prior constraint on the “definition” of a cluster,
except the one implicit and well-hidden behind the non-parametric prior. In short, it is
delicate to assess what is eventually estimated by these clustering methods.

These remarks are not to be taken as criticisms of the overall Bayesian nonparametric
approach, just the contrary. We simply emphasize (or recall) that there is no such thing
as a free lunch and that we need to post the price to pay for potential customers. In
these models, this is far from easy and just as far from being completed.
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Comment by James G. Scott16

I wish both to congratulate and to thank Drs. Müller and Mitra for their excellent
review article. This area moves fast—especially the “how” part of it!—and it is frankly
hard for us non-experts to keep up with. In making that task a bit easier, the authors
have done us a great service.

Nonetheless, this paper provides an occasion to ring a note of skepticism regarding a
very common practice: the use of nonparametric Bayesian models to make statements
about clusters and cluster membership. Clustering, like any Bayesian model-selection
problem, is very hard. Yet I have heard it glibly asserted—certainly not by Müller
and Mitra, but by others who shall remain nameless—that Bayesian nonparametric
methods “solve the problem.” Surely I am not the only reader of Bayesian Analysis to
have encountered this claim, nor am I the only one to view it with circumspection.

Müller and Mitra certainly do not endorse the use of BNP methods for answering
the “how many clusters” question. They argue that the mere “side effect of creating
a random partition” is insufficient to support inference about clusters, as “the prior
p(ρn) [over number of clusters] includes several often inappropriate features” under the
commonly used models. They go on to cite the implicit geometric decay in cluster
size as one such inappropriate feature. I wish to draw attention to another: namely,
that nonparametric Bayesian priors are not, and cannot be, predictively matched across
mixture models of differing size. This fact contra-indicates their use as an “assumption-
free” clustering tool.

The notion of predictive matching is simple and appealing, especially in nested-
model cases like the clustering problem. One requires p observations y = (y1, . . . , yp)
to identify a p-dimensional sampling model M1 having parameter space Θ1. Imagine
starting with no prior knowledge and observing such a y, called a minimal training
sample. Having used the information in y to (only just!) identify the larger model,
no degrees of freedom remain for comparing M1 with some smaller nested model M0

having parameter space Θ0 ⊂ Θ1. Therefore, for any y of size p, it should be the case
that the two marginal likelihoods are equal:∫

Θ1

p(y | θ1) dΠ(θ1) =
∫
Θ0

p(y | θ0) dΠ(θ0) .

If Π(Θ1) and Π(Θ0) are such that this holds for all minimal training samples, they are
said to be predictively matched (see, e.g. Berger and Pericchi 2001). If they are not, then
we are forced to claim that one model seems better in light of y. Yet where can this
information have come from, given that we have only just identified the parameters of the
larger model? Assuming the two models have equal prior probability, the information
must have been in Π(θ0), Π(θ1), or both—distributions about which we claimed to know
nothing at all.

Using predictively mismatched priors for model selection is not wrong per se. But

16University of Texas at Austin, McCombs School of Business and Division of Statistics and Scientific
Computing, Austin, TX
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doing so does contribute a bias to the Bayes factor for comparing M1 and M0. By
“bias”, I mean information that arises not from data but from priors over model-specific
parameters. This bias is desirable when it reflects real prior belief. It is undesirable
when it is an artifact of convenience.

Now to the Dirichlet process, where a simple example illustrates the problem. Data
y arrives from a univariate distribution G. We believe that G is a discrete mixture, and
therefore model it with a DPM of simple parametric forms:

(yi | θi) ∼ p(θi) , θi ∼ G , G ∼ DP (α,G0) .

Under this model, the marginal distribution for the singleton observation y1 is the same
as the marginal distribution for y1 under the base measure G0, regardless of the total
mass parameter α. Said another way, the marginal likelihood p(y1 | α) is flat as a
function of α. The corollary is that, for even two observations, the marginal likelihood
p(y1, y2 | α) is not flat in α (see, e.g. Basu and Chib 2003).

But of course it is α that controls the number of mixture components in the model.
We therefore conclude that the Dirichlet process mixture model is predictively matched–
in the sense of giving the same posterior probabilities across different clustering
parameters–to a single observation! For the purpose of model selection, this is startlingly
inappropriate. It implies that, after having seen only two observations, one must state
a definite opinion about whether one mixture component or two is more likely. Upon
what available information can such an opinion rest?

The larger problem, of course, is that predictive matching cannot hold across an
infinite family of discrete mixture models. If one simply must entertain all such models,
there is no choice but to encode, via the joint prior over the base measure and α, a
definite set of beliefs regarding the number and sizes of clusters one expects to see in
the data.

In many applications of nonparametric Bayes that I have encountered, it appears
customary to obscure these beliefs, but surely impossible to avoid them. The work of
Müller and Mitra is a notable exception to this, and would serve as an example worthy
of emulation.
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Comment by Surya T. Tokdar17

The authors have done a commendable job of showcasing models and examples that
champion the cause of Bayesian Nonparametrics for applied statistics. However, as to
be expected with any review of a rapidly growing discipline, some gaps remain. This
discussion attempts to fill one such gap: estimating non-crossing quantile curves for
which Bayesian Nonparametrics has provided practical solutions to some 35 year old
problems.

Quantile curve estimation is a regression technique where efforts are spent on di-
rectly modeling and estimating conditional quantiles. For a proportion τ ∈ (0, 1) let
QY (τ |X) = inf{a : P (Y ≤ a|X) ≥ τ} denote the τ -th conditional quantile of a response
Y given a predictor vector X. Koenker and Bassett (1978) introduced the linear quan-
tile regression model: QY (τ |X) = β0(τ) +XTβ(τ). “Linear” only refers to linearity in
the model parameters, X may include non-linear and interaction terms of the original
covariates. The intercept and slope parameters are easily estimated by linear program-
ming and the estimates are consistent, asymptotically Gaussian and robust against
outliers. Current literature on quantile regression (QR) is both deep and diverse, with
wide ranging applications in economics, public health, ecology, etc.; see Koenker (2005)
for a comprehensive overview.

Most scientific applications of QR require inference over a dense grid of τ values,
which is usually done by assimilating inference from single-τ model fits (e.g., Elsner
et al. 2008). Figure 7(a) shows estimated conditional quantile curves for several τ
values for the well-known motorcycle data with Y = “head acceleration” and X = B-
splines (df = 15) transforms of “time from impact”. The estimates do a great job of
capturing heteroskedasticity, i.e., quick changes in the response distribution’s shape and
spread against time. But a closer look reveals several issues: the curves cross each other
violating laws of probability; the waviness and the local optima of the curves change
wildly across τ reflecting poor borrowing of information; all quantile curves nearly
collapse to a single point at the boundary, where uncertainty should have been high due
to data scarcity. Rearrangement (Chernozhukov et al. 2011) avoids the embarrassing
issue of crossing (Figure 7(b)), but the other two problems persist.

Reich et al. (2011) and Tokdar and Kadane (2012) use Bayesian Nonparametrics
to provide two practicable solutions to jointly estimating non-crossing quantile curves.
Both solutions are based on non-parametric priors (a Bernstein basis polynomial prior
and a transformed Gaussian process prior, respectively) on the function valued param-
eters β0(τ), β(τ), τ ∈ (0, 1) constrained to β̇0(τ) + xT β̇(τ) > 0 for all τ ∈ (0, 1) and all
x in a pre-specified predictor space. Figure 7(c) shows quantile curves for the motor-
cycle data estimated with the Tokdar and Kadane approach. The problems of quantile
crossing, poor borrowing of information and boundary collapsing are all gone!

Non-crossing quantile curves could also be derived from an estimate of the condi-
tional density of Y given X. However, existing conditional density estimation tech-
niques struggle against heterosckedasticity. Figure 7(d) illustrates this for the Linear

17Department of Statistical Science, Duke University, Durham , NC
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DDP method (De Iorio et al. 2004). The logistic GP approach of Tokdar et al. (2010)
gives similar results. Bayesian nonparametric QR provides better quality estimates at
a fraction of the computing cost.
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Figure 7: Estimated quantile curves at τ ∈ {0.1, 0.2, · · · , 0.9} (gray lines) and at τ ∈
{0.25, 0.5, 0.75} (black lines) for motorcycle data (open circles). Single QR fits were
done with the rqss() function of the quantreg R-package. Rearrangement was done
by obtaining single QR fits over the dense grid τ ∈ {0.01, 0.02, · · · , 0.99}. Joint QR
fits with the transformed GP method of Tokdar and Kadane (2012) was implemented
on the same dense grid with codes available at http://www.stat.duke.edu/~st118/
Software/. Linear DDP was implemented with the R-package DPpackage of Jara et al.
(2011).

http://www.stat.duke.edu/~st118/Software/
http://www.stat.duke.edu/~st118/Software/
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