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ASYMPTOTIC INFERENCE IN SOME HETEROSCEDASTIC
REGRESSION MODELS WITH LONG MEMORY DESIGN

AND ERRORS

BY HONGWEN GUO AND HIRA L. KOUL

Michigan State University

This paper discusses asymptotic distributions of various estimators of the
underlying parameters in some regression models with long memory (LM)
Gaussian design and nonparametric heteroscedastic LM moving average er-
rors. In the simple linear regression model, the first-order asymptotic distrib-
ution of the least square estimator of the slope parameter is observed to be de-
generate. However, in the second order, this estimator is n1/2-consistent and
asymptotically normal for h + H < 3/2; nonnormal otherwise, where h and
H are LM parameters of design and error processes, respectively. The finite-
dimensional asymptotic distributions of a class of kernel type estimators of
the conditional variance function σ 2(x) in a more general heteroscedastic
regression model are found to be normal whenever H < (1 + h)/2, and non-
normal otherwise. In addition, in this general model, log(n)-consistency of
the local Whittle estimator of H based on pseudo residuals and consistency
of a cross validation type estimator of σ 2(x) are established. All of these
findings are then used to propose a lack-of-fit test of a parametric regression
model, with an application to some currency exchange rate data which exhibit
LM.

1. Introduction. This paper discusses asymptotic distributions of some esti-
mators of the underlying parameters in some heteroscedastic regression models
with LM in design and errors. This is of interest partly for the purpose of regres-
sion model diagnostics and partly for the sake of some large sample inference in
these models. Regression models with LM in both design and error variables are
useful when LM in the given response variable is not fully explained by LM in the
given design variable; see [26].

For the sake of clarity of exposition, we first focus on a simple linear regression
model where one observes a strictly stationary bivariate process (Xt , Yt ), t ∈ Z :=
{0,±1, . . .}, both having finite and positive variances and obeying the model

Yt = β0 + β1Xt + σ(Xt)ut , for some (β0, β1) ∈ R
2,(1.1)

ut :=
∞∑

j=0

bj εt−j , bj ∼ Cj−(3/2−H),

(1.2)
as j → ∞, for some 1

2 < H < 1.
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Here, εt are standardized i.i.d. r.v.’s, independent of the Xt -process and the con-
stant C is such that

∑∞
j=0 b2

j = 1. Under this set up, σ 2(x) = Var(Y0|X0 = x),

x ∈ R, and Eσ 2(X0) < ∞.
For a stationary second-order process ξt , t ∈ Z, let fξ (γξ ) denote its spectral

density (auto-covariance function). We also assume that {Xt } is a Gaussian process
with mean μ, variance γ 2 := γX(0), and

γX(k) ∼ GXθ(h)

k2(1−h)
as k → ∞, for some 1/2 < h < 1,(1.3)

where θ(h) := 2�(2 − 2h) cos(π(1 − h)) and GX > 0 is a constant. The sequence
bj is also assumed to satisfy bj → 0, as j → ∞ and for some a < ∞, bj+1 ≤
bj (1 + j−1a), for all sufficiently large j . This condition, for example, is satisfied
by FARIMA(0,H − 1/2,0) model where bj = �(j +H − 1/2)/�(j + 1)�(H −
1/2). As pointed out in [24], page 1632, under this condition,

fu(λ) ∼ Guλ
1−2H , λ → 0+;

(1.4)
γu(k) ∼ Guθ(H)k−2(1−H), k → ∞,

where Gu is a positive constant.
Several authors have discussed regression models with LM errors when

σ(x) ≡ c, a constant. The asymptotic distributions of the least squares estima-
tor (LSE) and M- and R-estimators in nonrandom design linear regression models
with LM errors are established in [12, 17, 18, 33, 34] and for nonlinear regression
models in [19]. The asymptotic distribution of the generalized LSE (GLSE) in
certain polynomial regression models is discussed in [6] and [16]. The errors in
[6] are assumed to be LM Gaussian, while in [16] a function of a long memory
moving average (LMMA) process.

In the context of homoscedastic multiple linear regression models with LM in
both covariates and errors and when the error process has a known parametric spec-
tral density, the GLSE of the slope parameter vector is known to be n1/2-consistent
and asymptotically normal with the Gauss–Markov variance; see [26]. This result
is adapted in [15] to the case where the error spectral density is semi-parametric
as in (1.4). A crucial result needed here is the availability of a preliminary n1/2-
consistent estimator of the slope parameter vector. In [26] it was also noted that the
LSE is n1/2-consistent for certain values of H,h. In a simulation study reported
in [15] it was found that the adaptive estimator where LSE was used as a pre-
liminary estimator had smaller MSE compared to the one where GLSE was used.
This partly motivates the need to understand asymptotic behavior of the LSE in
the current set up, for were one to carry out an analogous adaptation program here,
even to get started one would need a preliminary n1/2-consistent estimator of β1
in order to estimate σ(x) and fu(λ) nonparametrically. And at least for those val-
ues of H and h for which the LSE is n1/2-consistent, its use in constructing such
adaptive estimators would be justified. Other reasons are to be able to estimate Gu
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and H and to understand asymptotic behavior of some lack-of-fit tests for fitting a
heteroscedastic linear regression model. Currently there is a void on this topic in
the literature which this paper is attempting to fill. Because of its simplicity, it is
desirable to use the LSE for these purposes.

Section 2 discusses asymptotic distribution of the LSE β̂ := (β̂0, β̂1)
′ of β :=

(β0, β1)
′ in the models (1.1) and (1.2). The weak limit of n1−H(β̂ −β) is shown to

be a bivariate normal distribution, for all 1/2 < H, h < 1. But if μ = EX = 0 and
σ(x) is an even function, then this asymptotic distribution of β̂1 is degenerate. In
this case we further obtain that if H + h < 3/2, n1/2(β̂1 − β1) converges weakly
to a normal r.v. On the other hand, in the case H ∧ h := min(H,h) > 3/4, and
even when both ut and Xt are Gaussian, β̂1 has a nonnormal weak limit with the
normalization n2−H−h.

To implement the proposed lack-of-fit test for fitting a regression model or to
carry out some inference about β and σ 2(x), one needs consistent estimators of
σ(x), Gu and a ln(n)-consistent estimator of H . Section 3 derives asymptotic dis-
tributions of a class of kernel type estimators σ̂ 2(x) of σ 2(x) in the regression
model

Yt = β ′r(Xt) + σ(Xt)ut , β ∈ R
q,(1.5)

where r(x) is a vector of some known q functions and the rest of the entities are
as in (1.2) and (1.3). It is proved that when H < (1 + h)/2, the finite-dimensional
distributions of n1−h(σ̂ 2 − σ 2) converge weakly to k-variate normal distributions,
while for H > (1 + h)/2, the weak limit of n2−2H (σ̂ 2(x) − σ 2(x)) is nonnormal.

Using the approach in [25], the local Whittle estimator of H based on the pseudo
residuals Yt − β̃ ′r(Xt) in the model (1.5) is shown to be log(n)-consistent, where
β̃ is the LSE. This is unlike the case of nonparametric heteroscedastic regression
model with Xt = t/n, 1 ≤ t ≤ n, and LMMA errors, where it is necessary to base
estimators of H on the standardized residuals; see [11].

An important inference problem is to assess the accuracy of an assumed re-
gression model. Let (X,Y ) denote a copy of (X0, Y0) and μ(x) := E(Y |X = x).
Consider the problem of testing H0 :μ(x) = β ′r(x), for some β ∈ R

q and for all
x ∈ R, against the alternative that H0 is not true. In the 1990’s, several authors
found that tests of H0 based on the marked empirical process

Ṽn(x) =
n∑

t=1

(
Yt − β̃ ′r(Xt)

)
I (Xt ≤ x), x ∈ R̄ := [−∞,∞],

have desirable level and power properties against a broad class of alternatives; see,
for example, [1, 21, 29, 30, 31], among others. See [1], pages 132–134 of [13],
and [29] for more motivation about using this process for lack-of-fit testing. In the
presence of long memory in design and/or errors and when σ(x) ≡ c, some tests
based on this process have been studied in [20].
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Under the current set up, Theorem 5.1 below proves that, under H0, n−H Ṽn(x)

converges weakly to Jσ (x)ψ1Z, in D(R̄) and uniform metric, where Z is a N(0,1)

r.v., ψ2
1 := Guθ(H)/H(2H − 1), Jσ (x) := E[σ(X)−E(σ(X)r(X))′A−1r(X)]×

I (X ≤ x), and A−1 is assumed to exist. Thus, to use Ṽn for testing H0, we need
a uniformly consistent estimator of Jσ (x) and a consistent estimator of ψ1. A uni-
formly consistent estimator of Jσ , under H0, based on the leave-one-observation-
out estimator of σ(x), is given in Section 5. The regular kernel type estimator is
not useful here because of the unstable behavior of σ̂ 2(Xt). The estimators of Gu

and H constructed in Section 4 are used to provide a consistent estimator of ψ1

under H0.
Section 6 includes a finite sample simulation and an application to some

monthly currency exchange rate data that exhibits long memory. The last section
is the Appendix consisting of some proofs and necessary lemmas.

In this paper all limits are taken as n → ∞, unless specified otherwise. For
any two sequences of real numbers, an ∼ bn means that an/bn → 1, →d stands
for the convergence in distribution of a sequence of r.v.’s, while 
⇒ denotes the
weak convergence of a sequence of stochastic processes, and up(1) denotes a se-
quence of stochastic processes that tends to zero uniformly over its time domain, in
probability. Henceforth, the independence of Xt and ut processes is used without
mention.

2. Asymptotics of the LSE. This section discusses asymptotic distribution of
the LSE in the model (1.1)–(1.3). For this purpose, we need the following result.
Let ν be a real valued function on R with Eν2(X) < ∞. Set ν0 := Eν(X). By
(A.20) below, there is a C < ∞ such that |E(ν(X0) − ν0)u0(ν(Xt) − ν0)ut | ≤
Ct−4+2H+2h, for all sufficiently large and positive t . Hence, ∀1/2 < h,H < 1,

n−H
n∑

i=1

ν(Xi)ui = ν0n
−H

n∑
i=1

ui + n−H
n∑

i=1

(
ν(Xi) − ν0

)
ui

(2.1)

= ν0n
−H

n∑
i=1

ui + op(1).

Next, let D(a) := θ(a)/a(2a −1),1/2 < a < 1, and Z1,Z2 be two independent
r.v.’s, Zj having N(0,ψj ) distribution, j = 1,2, where ψ2

1 = GuD(H), ψ2
2 =

GXD(h). Let σ0 := Eσ(X), J := EXσ(X), γ 2�1 := (J −μσ0) = Cov(X,σ(X))

and �0 := σ0 − [(J − μσ0)μ/γ 2]. From [8], we obtain

Zn1 := n−H
n∑

i=1

ui
d→Z1, n−h

n∑
i=1

(Xi − μ)/γ
d→Z2.(2.2)
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Now, let σt := σ(Xt), et := σtut , nX̄ := ∑n
t=1 Xt , nū := ∑n

t=1 ut , nȲ :=∑n
t=1 Yt , nē := ∑n

t=1 et , ns2 := ∑n
t=1(Xt − X̄)2. Recall that the LSE satisfies

β̂1 − β1 = 1

s2

(
n−1

n∑
t=1

Xtet − X̄ē

)
, β̂0 − β0 := ē − X̄(β̂1 − β1).(2.3)

From (2.1) and (2.2) applied to ν(x) ≡ σ(x) we obtain that ē = Op(nH−1), X̄−
μ = Op(nh−1). These facts and (2.3) yield that n1−H (β̂0 − β0) = �0Zn1 + op(1),

n1−H(β̂1 − β1) = �1Zn1 + op(1) and hence, the following:

LEMMA 2.1. Under (1.1)–(1.3), n1−H (β̂0 − β0, β̂1 − β1) →d (�0,�1)Z1.

But �1 = 0 if either σ(x) ≡ c, a constant or μ = 0 and σ(x) is an even function
of x. Since in these cases the weak limit of n1−H (β̂1 − β1) is degenerate at zero,
it is pertinent to investigate higher-order approximation to the distribution of β̂1.
The former case has been discussed in [20]. We shall next discuss the second-order
result under the following:

ASSUMPTION 1. σ(x) is an even function of x ∈ R and μ := E(X) = 0.

Let a(z) := ∫ 1
0 uz−3/2(1 − u)1−2z du, 1/2 < z < 1, C̃ := ( GuGX

a(H)a(h)
)1/2 and

Z2 := C̃

∫ ∫ 1

0

[
(s − x1)

−(3−2H)/2(s − x2)
−(3−2h)/2]

(2.4)

× I (x1 < s,x2 < s)ds dB1(x1) dB2(x2),

where B1 and B2 are the two Wiener random measures; see [32]. We also
need to define Zn2 := n1−H−h ∑n

t=1 Xtut/γ , Zn2 := n−h ∑n
i=1 Xi/γ , and c1 :=

E(X2σ(X)). We are now ready to state and prove the following:

LEMMA 2.2. Suppose (1.1)–(1.3) and Assumption 1 hold. Then,

n1−H−h
n∑

t=1

Xtσtut = γ c1Zn2 + op(1),(2.5)

n2−H−hX̄ē = γ σ0Zn1Zn2 + op(1) ∀1/2 < h,H < 1.(2.6)

Moreover, for H + h > 3/2, Correl(Zn2,Zn1Zn2) converges to
√

2(2H + 2h − 3)(2H + 2h − 2)

(2H + 2h − 1)

√
Hh

(2H − 1)(2h − 1)
.(2.7)

PROOF. Let Hj denote the j th Hermite polynomial, j ≥ 1; see, for example,
[32]. The Hermite expansion of the function xσ(x) is

∑∞
j=0

cj

j ! Hj(x), where cj :=
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E(Xσ(X)Hj (X)), j ≥ 0. Since under Assumption 1, c0 = 0, c1 = EX2σ(X) �= 0,
the Hermite rank min{j ≥ 1; cj �= 0} of xσ(x) is 1. Hence, in L2,

n−1
n∑

t=1

Xtσtut = c1

n

n∑
t=1

Xtut + n−1
n∑

t=1

ut

∞∑
j=2

cj

j !Hj(Xt) =: Sn + Tn.(2.8)

Using the independence of Xi ’s and ui ’s, we obtain VarSn = O(n−4+2H+2h). Be-
cause of the orthogonality of the Hermite polynomials,

Var(Tn) = n−2
n∑

s=1

n∑
t=1

EusutE

{ ∞∑
j=2

cj

j !Hj(Xs)

∞∑
k=2

ck

k!Hk(Xt)

}

≤ Cn−2
n∑

s=1

n∑
t=1

|s − t |2H−2|s − t |4h−4

≤ Cn−6+2H+4h lnn = o(VarSn).

This fact and (2.8) readily yield (2.5). The claim (2.6) is proved similarly, using
the fact that under Assumption 1, the Hermite rank of σ(x) is 2.

To prove (2.7), let κ1 = GXGuθ(H)θ(h). By (2.1) and (2.8),

Var

(
n∑

t=1

Xtet/n

)
∼ c2

1 Var

(
n∑

t=1

Xtut/n

)
∼ 2c2

1κ1n
2H+2h−4

(2H + 2h − 3)(2H + 2h − 2)
,

Var(X̄ē) ∼ σ 2
0 Var(X̄ū) ∼ σ 2

0 κ1n
2H+2h−4

(2H − 1)(2h − 1)Hh
.

Next, by the Hermite expansion of xσ(x) and σ(x), we obtain

E

(
n−1

n∑
t=1

Xtet X̄ē

)
∼ c1σ0n

−3
n∑

t=1

n∑
s=1

n∑
k=1

E(XtXs)E(utuk)

∼ c1σ0κ1n
−3+2H+2h−4

n∑
t=1

n∑
s=1

n∑
k=1

∣∣∣∣ tn − s

n

∣∣∣∣2H−2∣∣∣∣ tn − k

n

∣∣∣∣2h−2

∼ 4κ1c1σ0n
2H+2h−4

(2H − 1)(2h − 1)(2H + 2h − 1)
.

This proves (2.7). �

The following theorem gives a nonstandard second-order limiting distribution
of β̂1 when H ∧ h > 3/4, where Z2 is as in (2.4) with B1 and B2 independent.

THEOREM 2.1. Suppose (1.1)–(1.3) and Assumption 1 hold, with εj ’s being
N(0,1) r.v.’s. Then, for h ∧ H > 3/4,

n2−H−h(β̂1 − β1) →d γ −1[c1Z2 − σ0Z1Z2].(2.9)



464 H. GUO AND H. L. KOUL

PROOF. Lemma 2.2 combined with (2.3) yields that

n2−H−h(β̂1 − β1) = 1

γ
[c1Zn2 − σ0Zn1Zn2] + op(1) ∀1/2 < h,H < 1.

Using the derivations similar to those in the proof of Theorems 6.1 and 6.2 in [10],
one verifies that (Zn2,Zn1,Zn2) →d (Z2,Z1,Z2). Upon identifying D1,D2 there
with 2(1 − h),2(1 − H), respectively, one sees the condition 0 < D1,D2 < 1/2
is equivalent to h ∧ H > 3/4. These facts together with (2.3) complete the proof
of (2.9). �

Consistent estimates of c1, σ0 and γ are
∑n

i=1 X2
i Vi(Xi)/n,

∑n
i=1 Vi(Xi)/n and

s, respectively, where Vi ’s are defined in (5.2) below. However, the distribution of
the limiting r.v. in (2.9) is not easy to determine and, hence, any decent inference
about β1 based on β̂1 appears to be infeasible in this case.

We shall next discuss asymptotic distribution of β̂1 when ut ’s form the moving
average (1.2) and H + h < 3/2. This in turn is facilitated by the following lemma
where Un := n−1/2 ∑n

t=1 ν(Xt)ut and γν(k) = Eν0νk .

LEMMA 2.3. Suppose (1.1)–(1.3) holds. In addition, suppose ν is a measur-
able function such that Eν(X) = 0, Eν2(X) < ∞, the Hermite rank of ν(X) is 1,
and

max{0≤x≤lnn} |ν(x)|/n1/2−η → 0, for some 0 < η < 1/2.(2.10)

Then, for H + h < 3/2, Un →d N(0, κ2), where κ2
2 = limn→∞ EU2

n =
γν(0)γu(0) + 2 limn→∞

∑n−1
k=1 γν(k)γu(k).

PROOF. The proof uses the truncation method similar to the one used in [26].
The main idea here is to approximate Un by a weighted partial sum of the i.i.d.
r.v.’s {εi}. Fix H,h such that H + h < 3/2. Let νt := ν(Xt) and M = Mn >

n(2h−1)/(2−2H), and define

Un,M := n−1/2
n∑

t=1

νt

n∑
j=−M

bt−j εj .

Because the Hermite rank of νt is 1, by (A.20) below,

E(Un − Un,M)2 = n−1
−M−1∑
j=−∞

E

(
n∑

t=1

νtbt−j

)2

(2.11)
≤ Cn2h−1M−2+2H → 0.

Hence, it suffices to show that (a) EU2
n,M → κ2

2 and (b) Un,M →d N(0, κ2).
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Let F := σ -{Xt, t ≥ 1}. The claim (a) is implied by E(U2
n,M |F ) →p κ2

2 .

Let dn,j := 1√
n

∑n
t=1 νtbt−j . Then, Un,M = ∑n

j=−M dn,j εj and E(U2
n,M |F ) =∑n

j=−M d2
n,j . Recall γu(k) = Eu0uk = ∑∞

j=0 bjbj+k . Rewrite E(U2
n,M |F ) = A+

2B , where

A = n−1
n∑

j=−M

n∑
t=1

ν2
t b2

t−j , B = n−1
n∑

j=−M

n−1∑
s=1

n∑
t=s+1

νtνsbt−j bs−j .

But A = A1 + A2, where

A1 = n−1
n∑

j=−M

n∑
t=1

(
ν2
t − γν(0)

)
b2
t−j ,

= n−1
n∑

t=1

(
ν2
t − γν(0)

)( ∞∑
k=0

b2
k −

∞∑
k=t+M+1

b2
k

)
p→0,

A2 := γν(0)n−1
n∑

j=−M

n∑
t=1

b2
t−j

= γν(0)n−1
n∑

t=1

( ∞∑
k=0

b2
k −

∞∑
k=t+M+1

b2
k

)
→ γν(0)γu(0),

because
∑∞

k=M b2
k → 0,

∑n
t=1(ν

2
t − γν(0))/n → 0 and

∑n
t=1 |ν2

t − γν(0)|/n →
C < ∞, a.s., by the Ergodic Theorem. Also, supn E|A1| ≤ Cγν(0) < ∞. Hence,
E|A1| → 0 and E|A − γν(0)γu(0)| → 0.

Next, let gj := n−1 ∑n−j
t=1 νtνt+j . Then, one can rewrite B = B1 − B2, where

B1 := ∑n−1
k=1 gkγu(k) and B2 := ∑n−1

k=1 gk

∑∞
j=k+M+1 bk+j bj . By (2.11), EB2

2 →
0. For the term B1, we have

B1 =
n−1∑
k=1

[gk − γν(k)]γu(k) +
n−1∑
k=1

γν(k)γu(k) =: B11 + B12 say.

By applying Theorem 6 of [3] and the fact that the Hermite rank of the bivariate
function νtνt+k − γν(k) is 2, we obtain supk E|gk − γν(k)| ≤ Cn2h−2, for 1/2 <

h < 1, and hence, for H + h < 3/2,

E|B11| ≤ Cn2h−2
n−1∑
k=1

|γu(k)| = O(n2H+2h−3) → 0.

Also, note that limn B12 exists for H + h < 3/2. These facts and the fact that
κ2

2 = γν(0)γu(0) + 2 limn B12 complete the proof of (a).
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The claim (b) is proved by showing that the conditional distribution of Un,M ,
given F , converges weakly to N(0, κ2). In view of the fact (a), by the Lindeberg–
Feller theorem, this is equivalent to showing

P

(
max−M≤j≤n

|dn,j | > δ

)
→ 0 for all δ > 0.(2.12)

To prove this, recall from [5] that max1≤t≤n |Xt | = Op(lnn). By the Cauchy–
Schwarz (C–S) inequality, we obtain that, for any integer l > 0,

max−M≤j≤n
|dn,j | = max−M≤j≤n

n−1/2
n∑

t=1

νtbt−j

(
I (|t − j | > l) + I (|t − j | ≤ l)

)

≤ n−1/2

(
n∑

t=1

ν2
t

)1/2

max−M≤j≤n

(
n∑

t=1

b2
t−j I (|t − j | > l)

)1/2

+ n−1/2 max
1≤t≤n

|νt | max−M≤j≤n

n∑
t=1

|bt−j |I (|t − j | ≤ l)

= Op

(
l−1+H + n−1/2

(
max{0≤x≤lnn} |ν(x)|

)
lH−1/2

)
.

In view of (2.10), this upper bound is op(1), for any l = O(n2η/(2H−1)). Hence,
(2.12) follows, thereby completing the proof of the lemma. �

Now, take ν(x) = xσ(x) in the above lemma. Because σ is an even function,
the Hermite rank of ν(x) is 1. Also, the fact max1≤t≤n |Xt | = Op(lnn) and (2.6)
imply X̄ē = op(n−1/2) for H + h < 3/2. Hence, we readily obtain the following:

THEOREM 2.2. Suppose (1.1) – (1.3), and Assumption 1 hold. In addition,
suppose EX2σ 2(X) < ∞ and (2.10) holds with ν(x) = xσ(x). Then, for H +h <

3/2, n1/2(β̂1 − β1) →d N(0, κ2/γ ), where now κ2
2 = limn

∑n
k=0 E{X0σ(X0)

Xkσ(Xk)}E(u0uk).

An estimate of κ2 is obtained as follows. Because, under Assumption 1,
|Cov(X0σ(X0)u0,Xkσ(Xk)uk)| ≤ Ck−4+2H+2h, for all sufficiently large k, the
process Xtσ(Xt)ut is weakly dependent when H + h < 3/2. Thus, one may use
the block bootstrap method to estimate κ2 here using XtVt (Xt)(Yt − β̂0 − β̂1Xt),

1 ≤ t ≤ n, see [22], where Vt is as in (5.2) below. Although we do not prove it
here, such an estimator should be consistent for κ2.

3. Asymptotic distribution of σ̂ 2(x). In this section we shall investigate as-
ymptotic distribution of the kernel type estimator σ̂ 2(x) of σ 2(x) in regression
model (1.5) under the following:
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ASSUMPTION 2. E‖r(X)‖2 < ∞ and A := Er(X)r(X)′ is nonsingular.

An example of r := (r1, . . . , rq) satisfying this condition is rj (x) = xj , j =
1, . . . , q .

To define σ̂ 2(x), let K be a density function on [−1,1], b = bn be se-
quence of positive numbers, φ denote the density of the N(0,1) r.v., ϕ(x) :=
γ −1φ((x − μ)/γ ), and ϕn(x) := s−1φ((x − X̄)/s). Let Kb(x) ≡ K(x/b)/b,
Kbt(x) := Kb(x − Xt), and define the kernel type estimator of σ 2(x) to be

σ̂ 2(x) := 1

nϕn(x)

n∑
t=1

Kbt(x)ẽ2
t , ẽt := Yt − β̃ ′r(Xt).

Now fix an x ∈ R and consider the following additional assumptions.

ASSUMPTION 3. The density K is symmetric around zero.

ASSUMPTION 4. The function σ 2 is twice continuously differentiable in a
neighborhood of x.

ASSUMPTION 5. The bandwidth b satisfies b → 0, n2h−1(lnn)−1b → ∞ for
1/2 < h ≤ 3/4, n2−2hb → ∞ for 3/4 < h < 1.

To describe our results, we need to introduce Z∗
n2 := n1−2H ∑n

t=1(u
2
t − 1),

μrσ := Er(X)σ(X). The proof of the following theorem is given in the Appen-
dix. In it, Z∗

2 is the Z2 of (2.4) with B1 = B2 and ψ := (ψ2
1 + ψ2

2 )1/2.

THEOREM 3.1. Suppose (1.2), (1.3), (1.5), Assumptions 2, 3 and 5 hold and
Eε4 < ∞.

(a) In addition, suppose x1, . . . , xk are k ≥ 1 points at which Assumption 4 holds
and r is continuous, H < (1 + h)/2, and

n1−hb2 → 0.(3.1)

Then, {n1−h(σ̂ 2(xj ) − σ 2(xj )), j = 1, . . . , k} converges in distribution to

{ (xj−μ)

γ
σ 2(xj ), j = 1, . . . , k}ψZ.

(b) In addition, suppose x is a point at which r is continuous and Assumption 4
holds, H > (1 + h)/2 and

n1−Hb → 0.(3.2)

Then,

n2−2H (
σ̂ 2(x) − σ 2(x)

)
= σ 2(x)Z∗

n2 + [μ′
rσA−1r(x)r(x)′A−1μrσ(3.3)

+ μ′
rσA−1r(x)σ (x)]Z2

n1 + op(1).

Moreover, (Z∗
n2,Zn1) →d (Z∗

2,Z) and Correl(Z∗
n2,Z

2
n1) → 2H

4H−1

√
4H−3
2H−1 .
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Consistent estimators of ψ1,ψ2 are obtained by plugging in the estimators of
H,Gu,GX and h in there while that of μrσ is n−1 ∑n

i=1 r(Xi)Vi(Xi).

REMARK 3.1. Suppose we choose b = O(n−δ). Then Assumption 5 and (3.1)
hold, for all δ in the range (1 − h)/2 < δ < 2(1 − h) whenever h > 3/4; and for
all δ in the range (1 − h)/2 < δ < 2h − 1, whenever h ≤ 3/4 in the case (a).
Similarly, in the case (b), Assumption 5 and (3.2) hold for 1 − H < δ < 2h − 1
whenever h < 3/4; and for 1 − H < δ < 2 − 2h whenever h > 3/4.

We also note here that by using the truncation method as in [2], the above The-
orem 3.1 will continue to hold for a symmetric density kernel function K with
noncompact support and finite variance, for example, normal density.

4. Estimation of H . In this section we consider the problem of estimating
Gu,H in the model (1.5) based on ẽt := Yt − β̃ ′r(Xt), 1 ≤ t ≤ n.

For a process ξt ,1 ≤ t ≤ n, let wξ(λ) := (2πn)−1/2 ∑n
t=1 ξte

itλ, Iξ (λ) :=
|wξ(λ)|2, λ ∈ [−π,π ], denote its discrete Fourier transform and periodogram, re-
spectively, where i := (−1)1/2. Fix 1/2 < a1 < a2 < 1. With λj := 2πj/n and an
integer m ∈ [1, n/2), for a1 ≤ ψ ≤ a2, let

Q(ψ) := 1

m

m∑
j=1

λ
2ψ−1
j Iẽ(λj ), R(ψ) = logQ(ψ) − (2ψ − 1)

m∑
j=1

logλj .

Then the local Whittle estimators of Gu and H in the model (1.1) based on {ẽt }
are defined to be Ĝu = Q(Ĥ ), Ĥ = arg minψ∈[a1,a2] R(ψ), respectively.

The log(n) consistency of an analog of Ĥ and consistency of an analog of Ĝu

in nonparametric homoscedastic regression models with Xt = t/n, t = 1, . . . , n is
proved in [25]. The following theorem shows that these results continue to hold
in the regression model (1.5) under much simpler restrictions on m than those
required in [25], partly due to the parametric nature of the model and partly due to
random design.

THEOREM 4.1. Suppose, in addition to (1.2), (1.3), (1.5), Assumptions 2
and 5, the following holds:

(lnn)4
((

m

n

)2H−1
+ m2(H−h)

n1+H−2h

)
→ 0.(4.1)

Then, ln(n)(Ĥ − H) →p 0, Ĝ − Gu →p 0.

The proof of this theorem is sketched in the Appendix. We note here that if
m = Cna for an 0 < a < 1, then (4.1) holds for H ≥ h. In the case H < h, it holds
for any a > (2h−H − 1)/(2h− 2H). In particular, in the case of Gaussian {ut }’s,
[14] shows that the optimal bandwidth m equals Cn4/5, which always satisfies
(4.1).
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5. Regression model diagnostics. In this section we investigate the weak
convergence of Ṽn under H0 and the assumptions (1.2)–(1.3). The following
Glivenko–Cantelli type result is used repeatedly in this connection: for a mea-
surable real valued function g, with E|g(X)| < ∞,

sup
x∈R̄

∣∣∣∣∣n−1
n∑

t=1

g(Xt)I (Xt ≤ x) − Eg(X)I (X ≤ x)

∣∣∣∣∣ a.s−→0.(5.1)

We are now ready to state and prove the following:

THEOREM 5.1. Under (1.2), (1.3), (1.5) and Assumption 2,

sup
x∈R̄

|n−H Ṽn(x) − Jσ (x)Zn1| = op(1).

Hence, under H0, n−H Ṽn(x) 
⇒ Jσ (x)ψ1Z, in D(R̄), and uniform metric.

PROOF. Let Zn = ∑n
t=1 r(Xt)σtut , nĀn := An, and for an x ∈ R̄, let α(x) :=

Er(X)I (X ≤ x), L(x) := Eσ 2(X)I (X ≤ x),

ᾱn(x) := n−1
n∑

t=1

r(Xt)I (Xt ≤ x), Fσ (x) := Eσ(X)I (X ≤ x),

Vn(x) :=
n∑

t=1

σtut I (Xt ≤ x), Un(x) :=
n∑

t=1

ut {σtI (Xt ≤ x) − Fσ (x)}.

Now, assume H0 holds. Using the Hermite expansion argument, we have
E(n−H [Un(x) − Un(y)])2 ≤ Cn−2(1−h)|L(y) − L(x)|, for all x, y ∈ R̄. Then
the chaining argument of [9] yields that supx∈R̄

|Un(x)| = op(1), and hence,
n−HVn(x) = Fσ (x)Zn1 + up(1). By (2.1), we also have n−HZn = μrσZn1 +
op(1), Ān = A + op(1), and by (5.1), supx∈R̄

‖ᾱn(x) − α(x)‖ = op(1). Note also
that Jσ (x) = Fσ (x) − μ′

rσA−1α(x). From these facts we readily obtain

n−H Ṽn(x) := n−H
n∑

t=1

[Yt − β̃ ′r(Xt)]I (Xt ≤ x)

= n−HVn(x) − n−HZ′
nĀ

−1
n ᾱn(x) = Jσ (x)Zn1 + up(1).

This, uniform continuity of Jσ and (2.2) complete the proof. �

In order to implement the above result, we need a uniformly consistent estimator
of Jσ (x). One of the unknown entities in Jσ is σ(X). Because of unstable behavior
of σ̂ (Xt ), we shall use an alternate estimator of σ(x) based on the ideas of cross
validation method that leave one observation out each time. For this purpose, we
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assume the design density is known, that is, μ,γ are known and take them to be
0,1 without the loss of generality. Let

�̂−i (x) :=
(

1

n − 1

n∑
t �=i

Kbt (x)ẽ2
t

)1/2

, Vi(x) := �̂−i (x)φ−1/2(x),(5.2)

for i = 1, . . . , n. Note that Vi(x) is an estimator of σ(x) and that of Jσ (x) is

Ĵn(x) = n−1
n∑

t=1

Vt(Xt)I (Xt ≤ x) − n−1
n∑

t=1

r(Xt)Vt (Xt )Ā
−1
n ᾱn(x).

To prove its uniform consistency, we need the following:

ASSUMPTION 6. The function σ has continuous first derivative.

THEOREM 5.2. Suppose (1.2), (1.3), (1.5), and Assumptions 2 and 6 hold and
that μ = 0, γ = 1. In addition, suppose b → 0, b−1n2h−2 = O(1), E‖r(2X)‖2 <

∞, Eσ 2k(X)r4
j (X) < ∞, for j = 1, . . . , q , k = 0,1, and Eσ 2(X)φ1/2(X) < ∞.

Then, under H0, supx∈R̄
|Ĵn(x) − Jσ (x)| = op(1).

The proof of this theorem follows from the following lemma. Let �̃2−t (x) =
(n − 1)−1 ∑n

i �=t Kbi(x)σ 2
i u2

i .

LEMMA 5.1. Under the conditions of Theorem 5.2,

max
1≤t≤n

E{�̃2−t (Xt ) − σ 2
t φ(Xt)}2 → 0,(5.3)

n−1
n∑

t=1

∣∣�̂−t (Xt ) − �̃−t (Xt )
∣∣2φ−1/2(Xt)

p→ 0.(5.4)

The proof of this lemma appears in the Appendix. We have the following:

COROLLARY 5.1. Under the conditions of Theorem 5.2,

max
1≤t≤n

E|�̃−t (Xt ) − σtφ
1/2(Xt)|4 → 0,(5.5)

n−1
n∑

t=1

∣∣[Vt(Xt) − σt

]
rj (Xt)

∣∣ p→ 0, j = 1, . . . , q.(5.6)

PROOF. The claim (5.5) follows from (5.3) and the inequality |a1/2 −b1/2|2 ≤
|a − b|, a ∧ b ≥ 0. We shall prove (5.6) for j = 1 only, it being similar for j =
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2, . . . , q . It suffices to show that

n−1
n∑

t=1

|�̂−t (Xt ) − �̃−t (Xt )||r1(Xt)|φ−1/2(Xt) = op(1),(5.7)

n−1
n∑

t=1

|�̃−t (Xt )φ
−1/2(Xt) − σ(Xt)||r1(Xt)| = op(1).(5.8)

By the Hölder inequality, the expectation of the l.h.s. of (5.8) is bounded
above by

∑n
t=1 E1/3{�̃−t (Xt ) − σ(Xt)φ

1/2(Xt)}3E2/3{r3/2
1 (Xt)φ

−3/4(Xt)}/n.

Since E|r1(X)|3/2/φ3/4(X) = E|r1(2X)|3/2 < ∞, (5.8) follows from (5.5).
Next, by the C–S inequality, the l.h.s. of (5.7) is bounded above by

n−1

{
n∑

t=1

|�̂−t (Xt ) − �̃−t (Xt )|2φ−1/2(Xt) ·
n∑

t=1

r2
1 (Xt)φ

−1/2(Xt)

}1/2

.

But because n−1 ∑n
t=1

r2
1 (Xt )√
φ(Xt )

→a.s. E
r2
1 (X)√
φ(X)

≤ CEr2
1 (2X) < ∞, (5.7) follows

from this bound and (5.4). �

PROOF OF THEOREM 5.2. The proof follows from (5.6), the triangle inequal-
ity, the facts that ‖Ā−1

n −A−1‖ = op(1), and supx ‖ᾱn(x)−α(x)‖ = op(1) implied
by (5.1), in a routine fashion. �

A consequence of the above results is that whenever supx |Jσ (x)| �= 0, the test
that rejects H0, whenever, with ψ̂1 := Ĝuθ(Ĥ )/Ĥ (2Ĥ − 1),

Dn := 1

nĤ ψ̂1 supx |Ĵn(x)| sup
x

|Ṽn(x)| ≥ zα/2,(5.9)

is of the asymptotic size α. Here zα is the 100(1 − α)% percentile of the N(0,1)

d.f. In the simple linear regression model with nonzero intercept, that is, when
r(x) = (1, x)′, Jσ (x) ≡ 0 if and only if σ(x) is constant in x. In the case of a
polynomial regression through the origin, supx |Jσ (x)| �= 0. In particular, the above
test is applicable when fitting a heteroscedastic polynomial.

Proving consistency of the proposed test against a fixed alternative is a delicate
matter. However, suppose Gu,H and σ are known such that supx |Jσ (x)| �= 0.

Then the test that rejects H0 whenever supx |Ṽn(x)| ≥ nHzα/2ψ1 supx |Jσ (x)| will
be consistent against the alternative μ(x) = β ′r(x) + �(x), for all x, where � is
such that E�2(X) < ∞ and

sup
x∈R̄

|E[�(X) − E(r(X)�(X))′Ā−1r(X)]I (X ≤ x)| �= 0.

In the case these parameters are unknown, the above test (5.9) will be consistent
against this alternative, provided estimators of these parameters continue to be
consistent under the given alternative.
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6. Numerical results. This section contains a simulation study and a real data
application.

6.1. A simulation study. In this simulation we take r(x) = (1, x)′, β0 = 0,
β1 = 2 and σ 2(x) = 1+x2. The errors {ut } are taken to be FARIMA(0,H −1/2,0)
with standardized Gaussian innovations and {Xt } is taken to be fractional Gaussian
noise with the LM parameter h. The values of H,h range in the interval [0.6,0.95]
with increments of 0.05. These processes were generated using the codes given in
Chapter 12 of [4].

We first concentrate on the properties of β̂1 and Ĥ . Table 1 provides the root
mean square errors (RMSE) of the LSE β̂1 with sample size 500 and 2000 repli-
cations. As can be seen from this table, when H + h increases, so does the RMSE
of β̂1. Typically, when H + h < 3/2, the RMSE is small.

Table 2 provides the RMSE’s of the local Whittle estimator Ĥ of H based on
ε̂t = Yt − β̂1Xt , 1 ≤ t ≤ 500, repeated 1000 times. From this table, we observe
that, for H ≤ 0.85, the overall RMSE is less than 0.072 and stable regardless of
the values of h.

Next, to assess the finite sample behavior of σ̂ 2, we simulated the estimator
σ̂ 2(x) for the values of x in the grid x1 = −1.50, x2 = −1.49, . . . , x301 = 1.50, and
for 0.65 ≤ H,h ≤ 0.95. We used the built-in smoothing function of the R program
with normal kernel and sample size 500 repeated 500 times. The ranges for δ in
the bandwidths b = Cn−δ are given in Table 3 according to the Remark 3.1. The
symbols (a) and (b) indicate “Case a” and “Case b” of Theorem 3.1, respectively.
Based on Table 3, for convenience, we used δ = 0.2, b = Cn−.2 in our simulations
for all cases of H and h considered except when h = 0.95. In this case, we used
δ = 0.099. The constant C is adjusted for different values of H and h according to
the average squared errors: ASE := ∑301

k=1(σ̂
2(xk)/σ

2(xk) − 1)2/301. We record
those C values which possibly make ASE the smallest. Some summary statistics of
ASE are reported in Tables 4–7. It can be seen that the estimator σ̂ 2(x) is relatively
stable for the values of H,h ≤ 0.85. Similar results are observed when we replace

TABLE 1
RMSE of the LSE β̂1 for sample size n = 500

H \ h 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.60 0.00873 0.00864 0.00881 0.00980 0.01046 0.01151 0.01352 0.01922
0.65 0.00843 0.00950 0.01074 0.01170 0.01231 0.01345 0.01758 0.02473
0.70 0.01039 0.01011 0.01141 0.01354 0.01463 0.01760 0.02150 0.03410
0.75 0.01082 0.01212 0.01354 0.01545 0.01942 0.02273 0.03036 0.04653
0.80 0.01229 0.01395 0.01765 0.01924 0.02438 0.03328 0.04788 0.07352
0.85 0.01407 0.01776 0.02180 0.02828 0.03621 0.04875 0.07040 0.12540
0.90 0.01859 0.02369 0.03099 0.03984 0.05404 0.08341 0.12010 0.20873
0.95 0.02572 0.03406 0.05188 0.06472 0.11374 0.17622 0.27383 0.49624
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TABLE 2
RMSE of Ĥ based on Yt − β̂1Xt for sample size n = 500

H \ h 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.60 0.03964 0.03867 0.03931 0.03870 0.03774 0.03940 0.03985 0.03938
0.65 0.04276 0.04273 0.04402 0.04261 0.04330 0.04511 0.04158 0.04317
0.70 0.04808 0.04750 0.04770 0.04819 0.05041 0.04856 0.04746 0.04690
0.75 0.05357 0.05478 0.05537 0.05473 0.05382 0.05075 0.05290 0.04940
0.80 0.06228 0.06303 0.06231 0.05918 0.05822 0.05973 0.05813 0.05509
0.85 0.07076 0.07202 0.07075 0.06699 0.06584 0.06310 0.06217 0.05773
0.90 0.08334 0.08323 0.08078 0.07803 0.076877 0.07237 0.06785 0.06508
0.95 0.11288 0.11096 0.10891 0.10300 0.09456 0.08519 0.07816 0.06718

TABLE 3
Ranges for δ of the bandwidths for estimation σ

H \ h 0.65 0.75 0.85 0.95

0.65 (a) (0.175, 0.3) (a) (0.125, 0.5) (a) (0.075, 0.3) (a) (0.025, 0.1)
0.75 (a) (0.175, 0.3) (a) (0.125, 0.5) (a) (0.075, 0.3) (a) (0.025, 0.1)
0.85 (b) (0.15, 0.3) (a) (0.125, 0.5) (a) (0.075, 0.3) (a) (0.025, 0.1)
0.95 (b) (0.05, 0.3) (b) (0.05, 0.5) (b) (0.05, 0.3) (a) (0.025, 0.1)

TABLE 4
Summary of ASE(σ̂ 2) for H = 0.65

h\ Summary Bandwidth Q1 Median Mean Q3

0.65 3n−0.2 0.0261 0.0369 0.0424 0.0512
0.75 3.5n−0.2 0.0256 0.0383 0.0432 0.0557
0.85 4n−0.2 0.0273 0.0417 0.0595 0.0617
0.95 1.5n−0.099 0.0366 0.0663 0.1138 0.1058

TABLE 5
Summary of ASE(σ̂ 2) for H = 0.75

h\ Summary Bandwidth Q1 Median Mean Q3

0.65 4n−0.2 0.0442 0.0711 0.0887 0.1127
0.75 4n−0.2 0.0465 0.0652 0.0888 0.1076
0.85 4n−0.2 0.04667 0.0774 0.1043 0.1252
0.95 2n−0.099 0.0627 0.0995 0.2190 0.1902
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TABLE 6
Summary of ASE(σ̂ 2) for H = 0.85

h\ Summary Bandwidth Q1 Median Mean Q3

0.65 4.5n−0.2 0.1562 0.2724 0.5402 0.5584
0.75 6n−0.2 0.1594 0.3113 0.5449 0.6330
0.85 5n−0.2 0.1625 0.3252 0.5475 0.6103
0.95 2.5n−0.099 0.1704 0.3155 0.7092 0.6235

the normal kernel by the kernel function K(x) = 0.5(1 + cos(xπ))I (|x| ≤ 1) or
the uniform kernel.

6.2. Application to a foreign exchange data set. In this section we shall apply
the above proposed lack-of-fit test to fit a simple linear regression model with
heteroscedastic errors to some currency exchange rate data obtained from www.
federalreserve.gov/releases/H10/hist/. The data are noon buying rates in New York
for cable transfers payable in foreign currencies. We use the currency exchange
rates of the United Kingdom Pounds (UK£) vs. US$ and the Switzerland Franc
(SZF) vs. US$ from January 4, 1971 to December 2, 2005. We first delete missing
values and obtain 437 monthly observations. The symbols X = dlUK and Y =
dlSZ stand for differenced log exchange rate of UK£vs. US$ and SZF vs. US$,
respectively. We obtain

mean(dlUK) = −0.0001775461, Stdev(dlUK) = 0.001701488,

mean(dlSZ) = −0.00004525129, Stdev(dlSZ) = 0.001246904.

The local Whittle estimates of the LM parameters of dlUK and dlSZ processes,
respectively, are 0.6610273 and 0.7147475. In computing these estimates we used
m = [n/8] = 54.

Comparing the X-process with a simulated fractional Gaussian noise with ĥ =
0.6610273 and n = 437, Figure 1 suggests that the marginal distribution of X is
Gaussian.

TABLE 7
Summary of ASE(σ̂ 2) for H = 0.95

h\ Summary Bandwidth Q1 Median Mean Q3

0.65 6n−0.2 1.153 3.214 16.24 11.83
0.75 7n−0.2 1.137 3.078 14.75 11.25
0.85 7.5n−0.2 1.018 2.611 12.77 11.59
0.95 4.5n−0.099 1.136 3.374 12.57 11.85

www.federalreserve.gov/releases/H10/hist/
www.federalreserve.gov/releases/H10/hist/
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FIG. 1. QQ-plot of dlUK.

Next, we regress Y on X, using the normal density kernel regression function
estimator and a simple linear regression model. Both of these estimates are de-
picted in Figure 2. They display a negative association between X and Y . The
estimated linear equation is Ŷ = −0.000118775 − 0.4141107X, with a residual
standard error of 0.00102992.

FIG. 2. Kernel estimation of r(x).
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FIG. 3. Kernel estimation of σ(x).

Figure 3 provides the nonparametric kernel estimator of σ(x) when regressing
Y on X with K(x) = 0.5(1 + cos(xπ))I (|x| ≤ 1).

The estimators of H based on ε̂ = Y − β̂X and û = (Y − β̂X)/σ̂ (X) are equal to
0.6046235 and 0.6246576, respectively. This again suggests the presence of long
memory in the error process.

Finally, to check if the regression of Y on X is simple linear, we obtain
Dn = 0.4137897 with the asymptotic p-value 66%. As expected, this test fails
to reject the null hypothesis that there exists a linear relationship between these
two processes.

APPENDIX

This section contains some preliminaries and proofs. To begin with we give a
reduction principle involving the kernel function Kb. Let G := {ν :Eν2(X) < ∞},
μ = EX, γ 2 = Var(X) and Z = (X − μ)/γ . Then Hermite expansion of a ν ∈ G
is equal to

∑
j≥0(cj /j !)Hj (Z), where now cj = Eν(γZ + μ)Hj(Z). We also

need the fact that for any auto-covariance function c(k) ∼ Ck−2(1−δ), k → ∞,
1/2 < δ < 1,

n−2
n∑

t=1

∑
s �=t

c2(|t − s|) = O

(
1

n

)
+ O

(
logn

n

)
I (δ = 3/4)

(A.1)
+ O(n4δ−4)I (3/4 < δ < 1).

We are now ready to state and prove the following:
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LEMMA A.1. Let Xt, t ∈ Z, be a stationary Gaussian process with μ = EX

and γ 2 = Var(X). Let ξ be a real valued measurable function on R, K be a density
kernel on R, and b = bn be a sequence of positive numbers, b → 0. In addition,
suppose x ∈ R is such that

sup
n≥1

∫
K2(v)ξ2(x − bv)ϕ(x − bv)dv < ∞.(A.2)

Let μb(x) = EKb(x − X)ξ(X). Then,

n−1
n∑

t=1

(
Kbt(x)ξ(Xt ) − μb(x)

) − ξ(x)
x − μ

γ
ϕ

(
x − μ

γ

)
n−1

n∑
t=1

(
Xt − μ

γ

)

= Op

(
1√
nb

)
, 1/2 < h < 3/4,

= Op

(
1√
nb

)
+ Op

((
log(n)

nb

)1/2)
, h = 3/4,

= Op

(
1√
nb

+ 1√
bn4−4h

)
, 3/4 < h < 1.

PROOF. Without loss of generality, assume μ = 0, γ = 1. Let x be as in (A.2).
Let νn(X) := √

b[Kb(x − X)ξ(X) − μb(x)]. For each n ≥ 1, Eνn(X) ≡ 0, and
Eν2

n(X) ≤ bEK2
b (x −X)ξ2(X) = ∫

K2(v)ξ2(x − bv)ϕ(x − bv)dv. Hence, under
(A.2), sup{Eν2

n(X),n ≥ 1} < ∞, so that νn(X) ∈ G, ∀n ≥ 1. This in turn implies
that supn≥1

∑∞
j=1 c2

nj /j ! < ∞, where, ∀j ≥ 1,

cnj := √
b

∫
Kb(x − y)ξ(y)Hj (y)ϕ(y) dy = √

b{Hj(x)ξ(x)ϕ(x) + o(1)}.
Hence,

E

{
1

n

n∑
t=1

[νn(Xt) − cn1Xt ]
}2

= 1

n2

n∑
s=1

n∑
t=1

∞∑
j=2

c2
nj

j !2 EHj(Xs)Hj (Xt)

≤
∞∑

j=2

c2
nj

j !
{

1

n
+ 1

n2

n∑
t=1

∑
s �=t

γ 2
X(|t − s|)

}
.

This and (A.1) applied to c(k) = γX(k) complete the proof. �

We also need to recall the following result from [11]. Suppose {ut } is as in (1.2)

with Eε4 < ∞. Then, for all 1/2 < H < 1,

E(u2
0 − 1)(u2

t − 1) = 2D2t2(2H−2) + o
(
t2(2H−2)), t → ∞,(A.3)

Eu0us(u
2
t − 1) ∼ 2γu(t)γu(t − s), |t − s| → ∞,(A.4)
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and for s, t, r such that |t − s|, |r − t | and |s − r| all tending to infinity,

Eu0usutur ∼ γu(s)γu(r − t) + γu(t)γu(r − s) + γu(r)γu(t − s).(A.5)

Use (A.3)–(A.4), and argue as in the proof of Lemma A.1 with ξ as in there, to
obtain the following two facts under Assumptions 3 and 5, and (A.2):

E

{
n−1

n∑
t=1

(
Kbt (x)ξ(Xt) − νb

)
ut

}2

= O

(
1

nb

)
+ o

(
1

n2−2H

)
,(A.6)

E

{
n−1

n∑
t=1

(
Kbt(x)ξ(Xt) − νb

)
(u2

t − 1)

}2

= O

(
1

nb

)
+ o

(
1

n4−4H

)
.(A.7)

Note that if K is supported on [−1,1] and ξ is continuous at x, then (A.2)
holds, for in this case the l.h.s. of (A.2) is bounded above by C max|z|≤b ξ2(x −
z) → Cξ2(x) < ∞. It also holds if ξ is bounded and K is square integrable on
R. In particular, under Assumptions 3 and 4 and continuity of r at x, it holds for
ξ(y) = σ 2(y) and ξ(y) = σ(y)r(y), y ∈ R.

Next, we give some inequalities that are useful in approximating an average
of certain covariances of a square integrable function of a Gaussian vector by
the corresponding average where the components of the Gaussian vector are i.i.d.
Accordingly, let E0

k denote the expectation of a standard k-dimensional normal
random vector. Let A0,s,t be the covariance matrix of X0,Xs,Xt , 0 ≤ s ≤ t , and
B0,s,t = A0,s,t − I3 = ((bi,j (s, t))), where I3 is the 3 × 3 identity matrix. Let �s,t

denote the largest eigen value of B0,s,t . From [23], Chapter 6.2, page 194, we
obtain that �s,t ≤ maxi

∑3
j=1 |bi,j (s, t)|. This in turn implies that

�s,t ≤ 3|γX(t − s)| ∨ |γX(s)| ∨ |γX(t)| ∀s ≤ t, s, t ∈ Z.(A.8)

For a square integrable function g of k r.v.’s, let ‖g‖0
k := (E0

kg
2)1/2 and

τ3(τ2) denote the Hermite rank of g(X0,X1,X2)−Eg(X0,X1,X2) (g(X0,X1)−
Eg(X0,X1)). Since both τ3 ∧ τ2 ≥ 1, Theorem 2.1 of [27] yields that, for suffi-
ciently large |s − i|, |t − i| and |t − s|, ∃ a C < ∞ free of i, s, t , such that

|Eg(Xi,Xs,Xt) − E0g(Xi,Xs,Xt)|
(A.9)

≤ C‖g‖0
3�

τ3/2
|s−i|,|t−i| ≤ C|γX(t − s)| ∨ |γX(s − i)| ∨ |γX(t − i)|,

|Eg(Xs,Xt) − E0g(Xs,Xt)|
(A.10)

≤ C‖g‖0
2γ

τ2/2
X (t − s).

In turn, (A.9) implies that, uniformly in i = 1, . . . , n,

(n − 1)−2
∑
t �=i

∑
s �=i

(
Eg(Xi,Xs,Xt) − E0g(Xi,Xs,Xt)

) → 0.(A.11)



HETEROSCEDASTIC REGRESSION AND LONG MEMORY 479

PROOF OF THEOREM 3.1. Let x be a point at which r is continuous and
Assumption 4 holds. Let d̃ := (β̃ − β), σ̃ 2(x) := ∑n

t=1 Kbt (x)σ 2
t u2

t /nϕ(x),

Sn := 1

nϕ(x)

n∑
t=1

Kbt(x)σt rtut , �n := 1

nϕ(x)

n∑
t=1

Kbt (x)rt r
′
t .

Rewrite σ̂ 2(x) − σ 2(x) as the sum(
σ̃ 2(x) − σ 2(x)

) + ϕ(x)

ϕn(x)
[d̃ ′�nd̃ − 2d̃ ′Sn] +

[
ϕ(x)

ϕn(x)
− 1

]
σ̃ 2(x)

=: I ∗ + II∗ + III∗.

Now let νb := EKb(x − X)σ 2(X) and rewrite I ∗ = I + II, where

I := 1

nϕ(x)

n∑
t=1

Kbt(x)σ 2
t (u2

t − 1), II = II1 + II2,

II1 = 1

nϕ(x)

n∑
t=1

[Kbt(x)σ 2
t − νb], II2 = νb

ϕ(x)
− σ 2(x).

First consider the term II. Use Assumption 4 to verify that

II2 ≤ Cb2.(A.12)

Assumption 5 implies that n2−2h = o(nb). By Lemma A.1 applied to ξ(y) =
σ 2(y), we obtain that, under Assumptions 3–5,

n1−hII1 = γ −1(x − μ)σ 2(x)Zn1 + op(1) ∀1/2 < h < 1.(A.13)

Now consider the term I . Because EI = 0, (A.6)–(A.7) applied to ξ(y) = σ 2(y)

yield that EI 2 = O((nb)−1), for 1/2 < H < 3/4, EI 2 = O((nb)−1 +n4H−4), for
3/4 < H < 1, and I = Op((nb)−1/2 ln1/2(n)), for H = 3/4. We summarize these
results here: Under Assumptions 2–5, and Eε4 < ∞,

I = Op

(
1√
nb

+ n2H−2I (H > 3/4) +
√

ln(n)√
nb

I (H = 3/4)

)
,

(A.14)
II = Op(nh−1 + b2).

Next, consider Sn. By (A.3) with ξ(y) = σ(y)rj (y), j = 1, . . . , q , we obtain

n1−HSn = r(x)σ (x)n−H
n∑

t=1

ut + op(1).(A.15)

Note also that E(�n) → r(x)r ′(x).
Lemma A.1 applied to ξ(y) = (r(y)r ′(y))i,j , i, j = 1, . . . , q , yields

�n − E(�n) = Op(nh−1).(A.16)
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To deal with the III∗ term, by (A.1) applied with c(k) = γX(k), we have

s2 − γ 2 = 1

n

n∑
t=1

[(Xt − μ)2 − γ 2] − (X̄ − μ)2 = op(nh−1).

This and the identity s − γ = (s2 − γ 2)/(s + γ ) yield that s − γ = op(nh−1). In
turn, this fact, the continuity of ϕ and the Taylor expansion yield that

n1−h

(
ϕ(x)

ϕn(x)
− 1

)
= x − μ

γ
n1−h(X̄ − μ)/γ + op(1).(A.17)

PROOF OF (a). Here H < (1 + h)/2. From (A.12) and (A.14), one sees that in
this case n1−hI = op(1) = n1−hII2. Hence, by (A.13) and Assumption 5,

n1−hI ∗ = x − μ

γ
σ 2(x)Zn1 + op(1).

By (A.15) and (A.16), II∗ is negligible, because

II∗ = Op

(
n2(H−1) + n(2H−2)+(h−1) + n2(H−1)) = op(nh−1).

These results, (A.17) and the fact that σ̃ 2(x) →p σ(x) yield

n1−h(
σ̂ 2(x) − σ 2(x)

) = x − μ

γ
σ 2(x)(Zn1 + Zn2) + op(1),(A.18)

where now Zn2 = n−h ∑n
t=1(Xt − μ)/γ . By the independence of Xt ’s and ut ’s,

Zn1 and Zn2 are independent. Clearly, under the assumed conditions, (A.18) holds
for each x1, . . . , xk given in part (a). Hence, part (a) follows from (2.2) and the
Cramér–Wold device.

PROOF OF (b). In this case, 2H − 2 > h − 1. Let a = 2 − 2H . Then, by (A.17),
naIII∗ = op(1). By (2.1) applied with ν(x) = r(x)σ (x),

n1−H d̃ = n−HA−1
n

n∑
t=1

rtσtut = AμrσZn1 + op(1).(A.19)

By (A.16), because 2H − 2 > h − 1,

n2−2H d̃ ′�nd̃ = n2−2H d̃ ′[r(x)r(x)′]d̃ + op(1)

= μ′
rσA−1[r(x)r(x)′]A−1μrσZ2

n1 + op(1).

By (A.15) and (A.19), n2−2H d̃ ′Sn = μ′
rσA−1r(x)σ (x)Z2

n1 + op(1). Since ϕn(x)

→p ϕ(x) > 0, we thus obtain

n2−2H II∗ = μ′
rσA−1r(x)[r(x)′A−1μrσ + σ(x)]Z2

n1 + op(1).

Next, consider I ∗ = I + II. Because h > 1/2, H > (1 + h)/2 implies
that H > 3/4. Hence, here the term I is the dominating term. Recall Z∗

n2 =
n1−2H ∑n

t=1(u
2
t − 1). By (A.7) applied with ξ(y) = σ 2(y), we obtain

n2−2HI ∗ = n2−2HI + op(1) = μb

ϕ(x)
Z∗

n2 + op(1).
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Upon combining these results, we obtain (3.3) in the case (b). The claim (Z∗
n2,

Zn1) →d (Z∗
2,ψ1Z) is proved as in [28].

To prove the claim about Correl(Z∗
n2,Z

2
n1), note that E(n1−H ū)2 → ψ2

1 , and
by (A.5),

E(ū)4 = 4

n4

n−1∑
t=1

n−t∑
s1=1

n−t∑
s2=1

n−t∑
s3=1

Eu0us1us2us3

∼ 4

n4

n−1∑
t=1

n−t∑
s1=1

n−t∑
s2=1

n−t∑
s3=1

{γu(s1)γu(s3 − s2)

+ γu(s2)γu(s1 − s3) + γu(s3)γu(s2 − s1)}

∼ 12GXθ(H)

n4

n−1∑
t=1

n−t∑
s1=1

γu(s1)
(n − t)2H

H(2H − 1)
∼ 3ψ2

1 n4H−4.

Hence, Var(ū2) ∼ 2ψ2
1 n−4+4H . By (A.3) and (A.4), similar calculations yield

E

(
ū2n−1

n∑
t=1

(u2
t − 1)

)
∼ 4G2θ2(H)

(2H − 1)2(4H − 1)
n−4+4H ,

Var

(
n−1

n∑
t=1

(u2
t − 1)

)
∼ 2G2θ2(H)

(4H − 3)(2H − 1)
n−4+4H .

This completes the proof of Theorem 3.1. �

Next, to prove Theorem 4.1, we need the following preliminaries. Let ξ be
an arbitrary function such that Eξ(X) = 0,Eξ2(X) = 1. Let ξt := ξ(Xt) and
cj := Eξ(γZ + μ)Hj(Z), j ≥ 1. Let ρk := γX(k)/γ 2 and τ ≥ 1 be the Her-
mite rank of ξ(X). Then, the auto-covariance function of the process ξ is γξ (k) =
γX(k)τ (

c2
τ

τ ! + ∑∞
j=τ

c2
j+1

(j+1)!γX(k)j+1−τ ), where the second term is bounded above

by
∑

j≥1 c2
j /j ! = 1. Therefore, there exists a constant C = C(τ,GX) free of k,

such that

γξ (k) ∼ Cρτ
k , k → ∞.(A.20)

LEMMA A.2. With ξt as above and ut as in (1.2), let Iξu denote the peri-
odogram of ξtut . Then, as λ → 0,

EIξu(λ) =
{

O
(
λτ(2−2h)+1−2H

)
, 0 < τ(2 − 2h) + (2 − 2H) < 1;

O(logn), τ (2 − 2h) + (2 − 2H) ≥ 1.

PROOF. From (v.2.1), page 186 of [35] we obtain that, for any 0 < α < 1,
n∑

t=1

t−αeitλ → λα−1�(1 − α)

(
sin

π

2
α + i cos

π

2
α

)
, λ → 0.(A.21)
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Since γu(k) ∼ Ck2H−2, by (1.4), (A.20), (A.21) with 0 < α = τ(2 − 2h) + (2 −
2H) < 1 and the independence of ξt and ut , imply that, as λ → 0,

EIξu(λ) = 1

2πn

n∑
j=1

n∑
k=1

γξ (j − k)γu(j − k)ei(j−k)λ

∼ Cn−1
n∑

k=1

k−1∑
t=k−n

t−[τ(2−2h)+(2−2H)]eitλ ≤ Cλτ(2−2h)+1−2H .

In the case τ(2 − 2h)+ (2 − 2H) ≥ 1, EIξu(λ) ≤ C logn, for all λ ∈ [−π,π ]. �

The following fact proved in [7] is also needed for the proof of Theorem 4.1.
Under (1.2) and when m = o(n),

sup
0<v≤1

[vm]−1
[vm]∑
j=1

Iu(λj )/fj → 1 a.s. m → ∞.(A.22)

PROOF OF THEOREM 4.1. The basic proof is the same as in [25], with some
difference in technical details. So we shall be brief, indicating only the main dif-
ferences. With σ0 = Eσ(X), r0 := Er(X), let ηt := et − σ0ut , ξ := (β − β̃)′r0
and ζt := (β − β̃)′r(Xt). Then ẽt = ξζt + ηt + σ0ut . Let fj = λ1−2H

j and Dj =:
[Iẽ(λj ) − σ 2

0 Iu(λj )]/fj . According to the proof of Theorem 3 in [25], to prove
Theorem 4.1 for 1/2 < H < 1, it suffices to verify the following three claims:

m−1∑
i=1

(
i

m

)2(a1−H)+1 1

i2

∣∣∣∣∣
i∑

j=1

Dj

∣∣∣∣∣ p→ 0,(A.23)

(logn)2
m−1∑
i=1

(
i

m

)1−2δ 1

i2

∣∣∣∣∣
i∑

j=1

Dj

∣∣∣∣∣ p→ 0 for some small δ > 0,(A.24)

(logn)2

m

m∑
j=1

Dj
p→ 0.(A.25)

We use the following elementary inequalities in verifying these conditions:

|Iẽ(λ) − σ 2
0 Iu(λ)| ≤ 2σ0|Iu(λ)IV (λ)|1/2 + IV (λ),

(A.26)
IV (λ) ≤ 3

(
Iξ (λ) + Iζ (λ) + Iη(λ)

) ∀λ ∈ [−π,π ],
where Vt := ξ + ζt + ηt . Let IY,j := IY (λj ) for any process Yt .

Recall that for the Dirichlet kernel Dk(λ) := ∑k
t=1 eitλ, |Dk(λ)| ≤ C/λ, for all

λ ∈ [−π,π ], k ≥ 1. Also by (2.2) and (A.19),

n1−H‖β − β̃‖ = Op(1).(A.27)
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These bounds imply that Iξ,j

fj
= Op(n2H−3λ2H−3

j ), uniformly in 1 ≤ j ≤ m.
Now, consider the terms ζt . Assumption 2 implies that the Hermite ranks of

rj (X) − r0j , j = 1,2, . . . , q , are at least one. Hence, by (A.26), (A.27) and (1.4),
we obtain that, uniformly for 1 ≤ j ≤ m,

Iζ,j

fj

= Op

(
λ

2(H−h)
j nH−1)

.(A.28)

Similarly, using Lemma A.2 and the fact that the Hermite rank τ of σ(X) − σ0

is at least 1, we obtain, uniformly for 1 ≤ j ≤ m,

Iη,j

fj

=
{

Op

(
λ

τ(2−2h)
j

)
, 0 < τ(2 − 2h) + (2 − 2H) < 1;

Op(λ2H−1
j logn), τ (2 − 2h) + (2 − 2H) ≥ 1.

(A.29)

Now we are ready to verify (A.23)–(A.25). Let αH := 2(a1 − H). By
changing the order of summation, the l.h.s. of (A.23) is bounded above by
Cm−αH −1 ∑m

j=1 jαH |Dj |, for H > a1, and by Cm−1 logm
∑m

j=1 |Dj |, for H =
a1. But, by (A.26) and the C–S inequality,

m∑
j=1

jαH |Dj | ≤ C

m∑
j=1

jαH
σ0|Iu,j IV,j |1/2 + IV,j

fj

≤ C

[(
m∑

j=1

jαH
|Iu,j |
fj

m∑
j=1

jαH
|IV,j |
fj

)1/2

+
m∑

j=1

j2αH
|IV,j |
fj

]
.

We also have the following facts where cm := m−αH −1:

m∑
j=1

jaH
Iξ,j

fj

=
m∑

j=1

jcm
Iη,j

fj

=
m∑

j=1

jcm
Iζ,j

fj

= op(c−1
m ).

These bounds together with (A.22), (A.28) and (A.29) imply (A.23) for H > a1.
The proof of (A.23) for H = a1 is similar. The conditions (A.24) and (A.25) are
verified similarly. �

PROOF OF LEMMA 5.1. To prove (5.3), it suffices to show

max
1≤t≤n

E

(
1

n − 1

n∑
j �=t

Kbj (Xt)σ
2
j (u2

j − 1)

)2

→ 0,(A.30)

max
1≤t≤n

E

(
1

n − 1

n∑
j �=t

Kbj (Xt)σ
2
j − σ 2

t φ(Xt)

)2

→ 0.(A.31)
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To prove (A.30), the expectation in the l.h.s. of (A.30) equals An,t +Bn,t , where
An,t := (n − 1)−2 ∑

j �=t E{K2
bj (Xt)σ

4
j }E(u2

j − 1)2, and

Bn,t =: 1

(n − 1)2

n∑
j �=t

n∑
k �=t,k �=j

E{Kbj (Xt)Kbk(Xt)σ
2
j σ 2

k }

× E(u2
j − 1)(u2

k − 1).

Apply (A.9) and (A.11) to g(Xt ,Xj ,Xk) = Kbj (Xt)Kbk(Xt)σ
2
j σ 2

k . Note that for

this g, ‖g‖0
3 ≤ Cb−1. Hence, uniformly in t ,

|Bn,t | ≤ C

(n − 1)2

×
n∑

j �=t

n∑
k �=t,k �=j

{
E0Kbj (Xt)Kbk(Xt)σ

2
j σ 2

k

(A.32)
+ Cb−1�

1/2
|t−j |,|t−k|

}|E(u2
j − 1)(u2

k − 1)|
≤ Cn4H−4 + Cb−1/2nh−1+4H−4 → 0,

by (A.3). Similarly, by (A.10), we obtain that, uniformly in t , An,t ≤ C(nb)−1.
Hence, (A.30) holds. To prove (A.31), rewrite the l.h.s. of (A.31) as

E(n − 1)−2
n∑

j,k �=t

Kbj (Xt)Kbk(Xt)σ
2
j σ 2

k

− 2E(n − 1)−1σ 2(Xt)φ(Xt)

n∑
j �=t

Kbj (Xt)σ
2
j + Eσ 4(X)φ2(X)

=: Cn,t − 2Dn,t + Eσ 4(X)φ2(X), say.

Similar to the argument in (A.32), by (A.9) and (A.10), the terms Cn,t and Dn,t

tend to Eσ 4(X)φ2(X) uniformly in t , thereby proving (A.31). This completes the
proof of (5.3).

Next consider (5.4). Arguing as for (5.5), it suffices to show that

n−1
n∑

t=1

|�̂2−t (Xt ) − �̃2−t (Xt )|φ−1/2(Xt)
p→0.(A.33)

But
∣∣�̂2−t (Xt ) − �̃2−t (Xt )

∣∣ is equal to∣∣∣∣∣ 1

n − 1

n∑
i �=t

Kbi(Xt )[(β − β̂)′r(Xi)]2 + 2(β − β̂)′r(Xi)σiui

∣∣∣∣∣.
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Moreover, (A.10) implies that, for k = 0,1,2, 1 ≤ j ≤ q ,

E

∣∣∣∣∣ 1

n(n − 1)

n∑
t=1

n∑
i �=t

Kbi(Xt )σiuir
k
j (Xi)φ

−1/2(Xt)

∣∣∣∣∣
≤ C

n(n − 1)

n∑
t=1

n∑
i �=t

∫ ∫
Kb(x − y)σ (y)|rj (y)|kφ−1/2(x)φi,t (x, y) dx dy

≤ C

n(n − 1)

n∑
t=1

n∑
i �=t

∫ ∫
Kb(x − y)σ (y)|rj (y)|kφ1/2(x)φ(y) dx dy

+ C

n1−hb1/2 = O(1),

E
1

n(n − 1)

n∑
t=1

n∑
i �=t

Kbi(Xt )|rj (Xi)|kφ−1/2(Xt)

≤ C

n(n − 1)

n∑
t=1

n∑
i �=t

∫ ∫
Kb(x − y)|rj (y)|kφ1/2(x)φ(y) dx dy + C

n1−hb1/2

= O(1).

In the above we used the assumptions Er4
j (X) < ∞, j = 1, . . . , q . Therefore,

(A.33) holds because ‖β − β̃‖ →p 0. �
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