
Research Article
Some Notes about the Continuous-in-Time Financial Model

Tarik Chakkour

Universite Bretagne-Sud, UMR 6205, LMBA, 56000 Vannes, France

Correspondence should be addressed to Tarik Chakkour; tarik.chakkour@univ-ubs.fr

Received 19 January 2017; Accepted 15 February 2017; Published 21 March 2017

Academic Editor: Sergei V. Pereverzyev

Copyright © 2017 Tarik Chakkour. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we investigate the properties of operators in the continuous-in-time model which is designed to be used for the
finances of public institutions. These operators are involved in the inverse problem of this model. We discuss this inverse problem
in Schwartz space that we prove the uniqueness theorem.

1. Introduction

Linear inverse problems arise whenever throughout engi-
neering and the mathematical sciences. In most applications,
these problems are ill-conditioned or underdetermined. Con-
sequently, over the last twodecades, the theory andpractice of
inverse problems is rapidly growing, if not exploding inmany
scientific domains. The fundamental reason is that solutions
to inverse problems describe important properties of solution
in this theory and the development of sophisticated numeri-
cal techniques for its treating on a level of high complexity.We
mention the paper [1] introduced by Hadamard in the field of
ill-posed problems.

We built in previous work [2, 3] the continuous-in-
time model which is designed to be used for the finances
of public institutions. This model uses measures over time
interval to describe loan scheme, reimbursement scheme,
and interest payment scheme. Algebraic Spending Measure𝜎̃ and LoanMeasure 𝜅𝐸 are financial variables involved in the
model. Measure 𝜎̃ is defined such that the difference between
spending and incomes required to satisfy the current needs.
Assume that measures 𝜎̃ and 𝜅𝐸 are absolutely continuous
with respect to the Lebesguemeasure𝑑𝑡.Thismeans that they
read 𝜎(𝑡)𝑑𝑡 and 𝜅𝐸(𝑡)𝑑𝑡, where 𝑡 is the variable in R. We call𝜎 and 𝜅𝐸 time densities.

Let 𝐹 and 𝐺 be normed spaces. Throughout this paper,
L : 𝐹 → 𝐺 is a continuous linear application (in short, an
operator). We say that the following problem:

Given 𝜎 ∈ 𝐺,

find 𝜅𝐸 ∈ 𝐹
such that 𝜎 = L [𝜅𝐸] ,

(1)

is well-posed if L is invertible and its inverse L−1: 𝐺 → 𝐹
is continuous. In other words, the problem is said to be well-
posed if

𝜎 = L [𝜅𝐸] ; ∀𝜎 ∈ 𝐺, ∃!𝜅𝐸 ∈ 𝐹 (2)

the solution 𝜅𝐸 depends continuously on 𝜎. (3)

Existence and uniqueness of a solution for all 𝑔 ∈ 𝐺
(condition (2)) are equivalent to surjectivity and injectivity
of L, respectively. Stability of the solution (condition (3))
amounts to continuity of L−1. Conditions (2) and (3) are
referred to as the Hadamard conditions. A problem which
is not well-posed is said to be ill-posed. Operator L links
between Algebraic Spending Density 𝜎 and Loan Density𝜅𝐸. If this operator is not invertible, solutions of the posed
inversion problem can be brought.

In the recent papers [2, 4], we study the inverse problem
stability of the continuous-in-time model. We discuss this
study with determining Loan Measure 𝜅𝐸 from Algebraic
Spending Measure 𝜎̃ in Radon measure space, that is, 𝐹 =
M([𝑡I, Θmax − Θ𝛾]) and 𝐺 = M([𝑡I, Θmax]), and in Hilbert
space, that is, 𝐹 = L2([𝑡I, Θmax−Θ𝛾]) and𝐺 = L2([𝑡I, Θmax]),
when they are density measures. For this inverse problem we
prove the uniqueness theorem in [4]; we obtain a procedure
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for constructing the solution and provide necessary and
sufficient conditions for the solvability of the inverse problem.

We are motivated by a recently developed nonlinear
inverse scale in Schwartz space. We refer the reader to [5,
6], for applications of fast inversion formulas to inverse
problems. Bauer and Lukas investigate in [5] some different
frameworks for regularization of linear inverse problems
when error is expected to be decreased at infinity. In the
paper [6], Hansen investigates the approximation properties
of regularized solutions to discrete ill-posed. They average
decay to zero faster than the generalized singular values.

We show in this paper some results of this inverse
problem in Schwartz space. We sketch the theoretical results
that justify the mathematical well-posedness under some
assumptions. The main result of this paper is to study the
existence and uniqueness of solutions. We give an overview
of properties for operator L, describing the computation of
its image.

The rest of this paper is arranged as follows. In Section 2
we introduce the definition of operator L and others, and
themathematical properties of these operators are shown.We
treat in Section 3 the spectrum of some operators involved
in the model by determining the inverse of operator under
some hypothesis. It is followed by enrichment of the model
of variable rate in Section 4. In Section 5, we examine the
concept of ill-posedness in Schwartz space in order to obtain
interesting and useful solutions.

2. Properties of Operators

This section is devoted to explore mathematical properties of
some operators involved in the model. Those properties will
be useful for some aspects of the model implementation to
come in the following.These operators are acting onmeasures
over R. For that, we will also consider that M([𝑡I, Θmax]) is
the set of RadonMeasures overR, supported in [𝑡I, Θmax]. In
the sequel, we consider the case when allmeasures are density
measures. The purpose is to compute the adjoint of these
operators. We will be able to use some specific mathematical
tools as inner product.

We proceed by denoting L2([𝑡I, Θmax]) the space of
square-integrable functions over R having their support in[𝑡I, Θmax]. We state the Repayment Pattern Density 𝛾 as
follows:

𝛾 ∈ L
2 ([0, Θ𝛾]) , (4)

where Θ𝛾 is a positive number such that

Θ𝛾 < Θmax − 𝑡I. (5)

We recall that we have shown the balanced equation given
by equality (14) in [2]. This equality consists in writing Loan
Density 𝜅𝐸 as a sum of Algebraic Spending Density 𝜎 and
densities associated with quantities that have to be repaid or

paid. This equality yields with convolution equality defined
by (9) in [2] to express density 𝜎:
𝜎 (𝑡) = 𝜅𝐸 (𝑡) − (𝜅𝐸 ⋆ 𝛾) (𝑡) − 𝛼∫𝑡

𝑡I

(𝜅𝐸 − 𝜅𝐸 ⋆ 𝛾) (𝑠) 𝑑𝑠
− 𝛼∫Θmax

𝑡
𝜌IK (𝑠) 𝑑𝑠 − 𝜌IK (𝑡) .

(6)

From this, linear term of density 𝜎 is defined by linear
operatorL acting on Loan Density 𝜅𝐸 ∈ L2([𝑡I, Θmax − Θ𝛾])
given by

L [𝜅𝐸] (𝑡) = 𝜅𝐸 (𝑡) − (𝜅𝐸 ⋆ 𝛾) (𝑡)
− 𝛼∫𝑡
𝑡I

(𝜅𝐸 − 𝜅𝐸 ⋆ 𝛾) (𝑠) 𝑑𝑠. (7)

The aim here is to compute operator L∗. For that, we
will compute inner product ⟨L[𝜅𝐸], 𝜅𝐹⟩ for any densities𝜅𝐸 and 𝜅𝐹 in, respectively, spaces L2([𝑡I, Θmax − Θ𝛾]) and
L2([𝑡I, Θmax]) defined by

⟨L [𝜅𝐸] , 𝜅𝐹⟩ = ∫Θmax

𝑡I

L [𝜅𝐸] (𝑥) 𝜅𝐹 (𝑥) 𝑑𝑥
= ∫Θmax

𝑡I

𝜅𝐸 (𝑥) 𝜅𝐹 (𝑥) 𝑑𝑥
− ∫Θmax

𝑡I

(𝜅𝐸 ⋆ 𝛾) (𝑥) 𝜅𝐹 (𝑥) 𝑑𝑥
− 𝛼∫Θmax

𝑡I

(∫𝑥
𝑡I

𝜅𝐸 (𝑦) 𝑑𝑦) 𝜅𝐹 (𝑥) 𝑑𝑥
+ 𝛼∫Θmax

𝑡I

(∫𝑥
𝑡I

𝜅𝐸 ⋆ 𝛾 (𝑦) 𝑑𝑦) 𝜅𝐹 (𝑥) 𝑑𝑥.

(8)

We will simplify inner product ⟨L[𝜅𝐸], 𝜅𝐹⟩ given by
relation (8) in function of four terms. Since first term∫Θmax

𝑡I
𝜅𝐸(𝑥)𝜅𝐹(𝑥)𝑑𝑥 is already simplified, we simplify the

second one as follows:

∫Θmax

𝑡I

(𝜅𝐸 ⋆ 𝛾) (𝑥) 𝜅𝐹 (𝑥) 𝑑𝑥
= ∫Θmax

𝑡I

(∫𝑥
𝑡I

𝛾 (𝑥 − 𝑦) 𝜅𝐸 (𝑦) 𝑑𝑦) 𝜅𝐹 (𝑥) 𝑑𝑥
= ∫Θmax

𝑡I

(∫Θmax

𝑡I

𝛾 (𝑥 − 𝑦) 𝜅𝐸 (𝑦) 1{𝑦≤𝑥}𝑑𝑦) 𝜅𝐹 (𝑥) 𝑑𝑥
= ∫Θmax

𝑡I

𝜅𝐸 (𝑦) (∫Θmax

𝑦
𝛾 (𝑥 − 𝑦) 𝜅𝐹 (𝑥) 𝑑𝑥)𝑑𝑦.

(9)



Abstract and Applied Analysis 3

Next, we simplify the third one as follows:

∫Θmax

𝑡I

(∫𝑥
𝑡I

𝜅𝐸 (𝑦) 𝑑𝑦) 𝜅𝐹 (𝑥) 𝑑𝑥
= ∫Θmax

𝑡I

(∫Θmax

𝑡I

𝜅𝐸 (𝑦) 1{𝑦≤𝑥}𝑑𝑦) 𝜅𝐹 (𝑥) 𝑑𝑥
= ∫Θmax

𝑡I

𝜅𝐸 (𝑦) (∫Θmax

𝑦
𝜅𝐹 (𝑥) 𝑑𝑥)𝑑𝑦.

(10)

The last one is simplified as follows:

∫Θmax

𝑡I

(∫𝑥
𝑡I

𝜅𝐸 ⋆ 𝛾 (𝑦) 𝑑𝑦) 𝜅𝐹 (𝑥) 𝑑𝑥
= ∫Θmax

𝑡I

(∫𝑥
𝑡I

(∫𝑦
𝑡I

𝛾 (𝑦 − 𝑡) 𝜅𝐸 (𝑡) 𝑑𝑡) 𝑑𝑦) 𝜅𝐹 (𝑥) 𝑑𝑥
= ∫Θmax

𝑡I

(∫Θmax

𝑡I

1{𝑦≤𝑥} (∫Θmax

𝑡I

𝛾 (𝑦 − 𝑡) 𝜅𝐸 (𝑡) 1{𝑡≤𝑦}𝑑𝑡) 𝑑𝑦)
⋅ 𝜅𝐹 (𝑥) 𝑑𝑥

= ∫Θmax

𝑡I

(∫Θmax

𝑡I

𝜅𝐸 (𝑡) 1{𝑡≤𝑥} (∫Θmax

𝑡I

𝛾 (𝑦 − 𝑡) 1{𝑡≤𝑦≤𝑥}𝑑𝑦)𝑑𝑡)
⋅ 𝜅𝐹 (𝑥) 𝑑𝑥

= ∫Θmax

𝑡I

(∫Θmax

𝑡I

𝜅𝐹 (𝑥) 1{𝑡≤𝑥} (∫Θmax

𝑡I

𝛾 (𝑦 − 𝑡) 1{𝑡≤𝑦≤𝑥}𝑑𝑦)𝑑𝑥)
⋅ 𝜅𝐸 (𝑡) 𝑑𝑡.

(11)

According to relations (9), (10), and (11), expression (8) of
inner product ⟨L[𝜅𝐸], 𝜅𝐹⟩ reads

⟨L [𝜅𝐸] , 𝜅𝐹⟩ = ∫Θmax

𝑡I

𝜅𝐸 (𝑦) (𝜅𝐹 (𝑦)
− ∫Θmax

𝑦
𝛾 (𝑥 − 𝑦) 𝜅𝐹 (𝑥) 𝑑𝑥 − 𝛼∫Θmax

𝑦
𝜅𝐹 (𝑥) 𝑑𝑥

+ 𝛼∫Θmax

𝑦
𝜅𝐹 (𝑥) (∫𝑥

𝑦
𝛾 (𝑧 − 𝑦) 𝑑𝑧) 𝑑𝑥)𝑑𝑦.

(12)

Since operatorL∗ is one such that

⟨L [𝜅𝐸] , 𝜅𝐹⟩ = ⟨𝜅𝐸,L∗ [𝜅𝐹]⟩ ,
∀𝜅𝐸 ∈ L

2 ([𝑡I, Θmax − Θ𝛾]) , ∀𝜅𝐹 ∈ L
2 ([𝑡I, Θmax]) , (13)

and, according to relation (12), operatorL∗ is defined by

L
∗ [𝜅𝐹] (𝑦) = 𝜅𝐹 (𝑦) − ∫Θmax

𝑦
𝛾 (𝑥 − 𝑦) 𝜅𝐹 (𝑥) 𝑑𝑥

− 𝛼∫Θmax

𝑦
𝜅𝐹 (𝑥) 𝑑𝑥 + 𝛼∫Θmax

𝑦
𝜅𝐹 (𝑥)

⋅ (∫𝑥
𝑦
𝛾 (𝑧 − 𝑦) 𝑑𝑧)𝑑𝑥

= 𝜅𝐹 (𝑦) − ∫Θmax

𝑦
𝜅𝐹 (𝑥)

⋅ (𝛾 (𝑥 − 𝑦) + 𝛼 − 𝛼∫𝑥
𝑦
𝛾 (𝑧 − 𝑦) 𝑑𝑧)𝑑𝑥.

(14)

Define linear operator D acting on Initial Debt Repayment
Density 𝜌IK ∈ L2([𝑡I, Θmax]) as

D [𝜌IK] (𝑡) = −𝛼∫Θmax

𝑡
𝜌IK (𝑠) 𝑑𝑠 − 𝜌IK (𝑡) . (15)

The integration by parts states that inner product ⟨D[𝜌IK],𝜅𝐹⟩ is computed for any densities 𝜌IK and 𝜅𝐹 in L2([𝑡I, Θmax])
as follows:

⟨D [𝜌IK] , 𝜅𝐹⟩ = ∫Θmax

𝑡I

D [𝜌IK] (𝑥) 𝜅𝐹 (𝑥) 𝑑𝑥
= −𝛼∫Θmax

𝑡I

(∫Θmax

𝑥
𝜌IK (𝑦) 𝑑𝑦) 𝜅𝐹 (𝑥) 𝑑𝑥

− ∫Θmax

𝑡I

𝜌IK (𝑥) 𝜅𝐹 (𝑥) 𝑑𝑥
= 𝛼∫Θmax

𝑡I

𝜌IK (𝑥) (∫Θmax

𝑥
𝜅𝐹 (𝑦) 𝑑𝑦)𝑑𝑥

+ 𝛼(∫Θmax

𝑡I

𝜌IK (𝑦) 𝑑𝑦)(∫Θmax

𝑡I

𝜅𝐹 (𝑦) 𝑑𝑦)
− ∫Θmax

𝑡I

𝜌IK (𝑥) 𝜅𝐹 (𝑥) 𝑑𝑥
= ∫Θmax

𝑡I

𝜌IK (𝑥) (𝛼∫Θmax

𝑥
𝜅𝐹 (𝑦) 𝑑𝑦

+ 𝛼∫Θmax

𝑡I

𝜅𝐹 (𝑦) 𝑑𝑦 − 𝜅𝐹 (𝑥)) 𝑑𝑥.

(16)

From this, operatorD∗ is defined by

D
∗ [𝜅𝐹] (𝑥) = 𝛼∫Θmax

𝑥
𝜅𝐹 (𝑦) 𝑑𝑦 + 𝛼∫Θmax

𝑡I

𝜅𝐹 (𝑦) 𝑑𝑦
− 𝜅𝐹 (𝑥) .

(17)

Operator L we set out in relation (7) considered a constant
rate. Nevertheless, if we consider in it a function 𝛼 that
depends on 𝑡, the model becomes a financial model with
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variable rate. The only modification to make is to enrich (7)
and (15) by writing

L [𝜅𝐸] (𝑡) = 𝜅𝐸 (𝑡) − (𝜅𝐸 ⋆ 𝛾) (𝑡)
− 𝛼 (𝑡) ∫𝑡

𝑡I

(𝜅𝐸 − 𝜅𝐸 ⋆ 𝛾) (𝑠) 𝑑𝑠. (18)

D [𝜌IK] (𝑡) = −𝛼 (𝑡) ∫Θmax

𝑡
𝜌IK (𝑠) 𝑑𝑠 − 𝜌IK (𝑡) . (19)

Once this enrichment is done, using a variable rate makes
operatorD∗ expressed in terms of densities 𝛼 and 𝛾:

L
∗ [𝜅𝐹] (𝑦) = 𝜅𝐹 (𝑦) − ∫Θmax

𝑦
𝜅𝐹 (𝑥) (𝛾 (𝑥 − 𝑦)

+ 𝛼 (𝑥) − 𝛼 (𝑥) ∫𝑥
𝑦
𝛾 (𝑧 − 𝑦) 𝑑𝑧) 𝑑𝑥. (20)

By definition 𝛼(𝑥) is the rate at time 𝑥. OperatorD∗ given by
relation (17) can be rewritten adding this enrichment

D
∗ [𝜅𝐹] (𝑥) = 𝛼 (𝑥) ∫Θmax

𝑥
𝜅𝐹 (𝑦) 𝑑𝑦

+ 𝛼 (𝑥) ∫Θmax

𝑡I

𝜅𝐹 (𝑦) 𝑑𝑦 − 𝜅𝐹 (𝑥) .
(21)

Lemma 1. The image of operatorL is such that

Im (L)⊥ = {0} . (22)

Proof. In order to show equality (22), we will show that the
kernel of operator L∗ is reduced to null set because of the
following property:

Im (L)⊥ = Ker (L∗) . (23)

According to (14), if density 𝜅𝐹 is in Ker(L∗), then, we get the
following equation:

𝜅𝐹 (𝑦) − ∫Θmax

𝑦
𝜅𝐹 (𝑥)

⋅ (𝛾 (𝑥 − 𝑦) + 𝛼 − 𝛼∫𝑥
𝑦
𝛾 (𝑧 − 𝑦) 𝑑𝑧) 𝑑𝑥 = 0. (24)

Deriving, we get the ODE that the solution 𝜅𝐹 is expressed as
follows:

𝜅󸀠𝐹 (𝑦) − (𝛼 + 𝛾 (0)) 𝜅𝐹 (𝑦) = 0. (25)

The general solution to (25) is given by

𝜅𝐹 (𝑦) = 𝜅𝐹 (𝑡I) 𝑒−(𝛼+𝛾(0))(𝑦−𝑡I), (26)

where initial condition 𝜅𝐹(𝑡I) stands for the value of density𝜅𝐹 at initial time 𝑡I. On the other hand, (24) is equivalent to

𝜅𝐹 (𝑦) − (𝛼 + 𝛾 (0)) ∫Θmax

𝑦
𝜅𝐹 (𝑥) 𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

First term 𝐼1

+ ∫Θmax

𝑦
(−𝛾 (𝑥 − 𝑦) + 𝛾 (0) + 𝛼∫𝑥

𝑦
𝛾 (𝑧 − 𝑦) 𝑑𝑧) 𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Second term 𝐼2

= 0.

(27)

Conversely, we will show that density 𝜅𝐹 is zero. In the first
place, replacing density 𝜅𝐹 given by (26) in first term 𝐼1 of
(27), we get

𝜅𝐹 (𝑦) − (𝛼 + 𝛾 (0)) ∫Θmax

𝑦
𝜅𝐹 (𝑥) 𝑑𝑥

= −𝛼𝜅𝐹 (𝑡I)𝛼 + 𝛾 (0) 𝑒−(𝛼+𝛾(0))(Θmax−𝑡I).
(28)

Secondly, the second term 𝐼2 is a constant function due to its
derivative which equals zero:

(∫Θmax

𝑦
(−𝛾 (𝑥 − 𝑦) + 𝛾 (0)

+ 𝛼∫𝑥
𝑦
𝛾 (𝑧 − 𝑦) 𝑑𝑧)𝑑𝑥)󸀠 = 0 − (−𝛾 (0)

+ 𝛾 (0) + 𝛼∫𝑦
𝑦
𝛾 (𝑧 − 𝑦) 𝑑𝑧)

= 0.

(29)

Consequently, the second term 𝐼2 is equal to a real constant𝐶 to be determined:

∫Θmax

𝑦
(−𝛾 (𝑥 − 𝑦) + 𝛾 (0) + 𝛼∫𝑥

𝑦
𝛾 (𝑧 − 𝑦) 𝑑𝑧) 𝑑𝑥

= 𝐶. (30)

The initial condition is obtained from integral equation
defined by (30) with replacing 𝑦 by Θmax, which implies that
constant 𝐶 is zero. It is concluded that

∫Θmax

𝑦
(−𝛾 (𝑥 − 𝑦) + 𝛾 (0) + 𝛼∫𝑥

𝑦
𝛾 (𝑧 − 𝑦) 𝑑𝑧)𝑑𝑥

= 0, ∀𝑦 ∈ [𝑡I, Θmax] .
(31)

Then, relations (27), (28), and (31) yield the following equal-
ity:

−𝛼𝜅𝐹 (𝑡I)𝛼 + 𝛾 (0) 𝑒−(𝛼+𝛾(0))(Θmax−𝑡I) = 0. (32)

From this, initial density 𝜅𝐹(𝑡I) or loan rate 𝛼 is zero since
exponential function is positive. It follows that if 𝜅𝐹(𝑡I) is
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zero, then, density 𝜅𝐹 is zero, which is obtained from relation
(26). In this case:

Ker (L∗) = {0} . (33)

If loan rate 𝛼 is zero, then, according to (24), we obtain
following integral equation:

𝜅𝐹 (𝑦) − ∫Θmax

𝑦
𝜅𝐹 (𝑥) 𝛾 (𝑥 − 𝑦) 𝑑𝑥 = 0, (34)

where expression of density 𝜅𝐹 is determined from equality
(26) as

𝜅𝐹 (𝑦) = 𝜅𝐹 (𝑡I) 𝑒−𝛾(0)(𝑦−𝑡I). (35)

If density 𝜅𝐹 given by (35) is coupled with (34), then, 𝜅𝐹(𝑡I)
is zero allowing zero density 𝜅𝐹. We showed that density 𝜅𝐹 is
zero in both cases. From this, we can deduce that (33) is true,
proving the lemma.

3. Spectrum of Operators

It is well known that the integral operators [7, 8] possess a
very rich structure theory, such that these operators played
an important role in the study of operators onHilbert Spaces.
The paper [9] and book [10] by Gil’ deal with the spectra
of a class of linear non-self-adjoint operators containing the
Volterra operators. Since this operator is involved in the
model, we use it in order to study the spectrum of some
operators. It is shown in [11] that the spectrum of Volterra
composition operator is consisting of zero only.

This section is devoted to explore the spectrum of some
operators involving the spectrum of Volterra. Defining linear
operator Ṽ : L2([𝑡I, Θmax − Θ𝛾]) → L2([𝑡I, Θmax]) by
operator that is acting on Loan Density 𝜅𝐸,

Ṽ [𝜅𝐸] (𝑡) = 𝜅𝐸 ⋆ 𝛾 (𝑡) + 𝛼∫𝑡
𝑡I

(𝜅𝐸 − 𝜅𝐸 ⋆ 𝛾) (𝑠) 𝑑𝑠. (36)

The canonical injection IdL2([𝑡I ,Θmax−Θ𝛾])→L
2([𝑡I ,Θmax])

is defined
from L2([𝑡I, Θmax − Θ𝛾]) to L2([𝑡I, Θmax]) as

IdL2([𝑡I ,Θmax−Θ𝛾])→L
2([𝑡I ,Θmax])

[𝜅𝐸] (𝑡) = [𝜅𝐸] (𝑡) , (37)

which is decomposed as a sum of operators L and Ṽ given
by relations (7) and (36), respectively:

L [𝜅𝐸] + Ṽ [𝜅𝐸] = IdL2([𝑡I ,Θmax−Θ𝛾])→L
2([𝑡I ,Θmax])

. (38)

Theorem 2. If density 𝛾 has upper bound 𝑀 − 2|𝛼| over its
support:

sup
𝑧∈[0,Θ𝛾]

{󵄨󵄨󵄨󵄨𝛾 (𝑧)󵄨󵄨󵄨󵄨} = 𝑀 − 2 |𝛼| , (39)

where𝑀 is a positive real satisfying

2 |𝛼| < 𝑀 < 1Θmax − 𝑡I ; (40)

then, operatorL is invertible, where its inverseL−1 is given by

L
−1 [𝜅𝐸] (𝑥) = 𝐽 ∘ (∑

𝑘≥0

(Ṽ ∘ 𝐽)(𝑘)) [𝜅𝐸] (𝑥) , (41)

where 𝐽 is an operator defined by

𝐽 : L2 ([𝑡I, Θmax])𝜅𝐸
󳨀→󳨃󳨀→ L2 ([𝑡I, Θmax − Θ𝛾])𝜅𝐸 (42)

Proof. Since operator Ṽ is defined from L2([𝑡I, Θmax − Θ𝛾])
to L2([𝑡I, Θmax]) and by using definition (42) of operator 𝐽,
we get

Ṽ ∘ 𝐽 (L2 ([𝑡I, Θmax])) ⊂ L
2 ([𝑡I, Θmax]) . (43)

From this, we get

(Ṽ ∘ 𝐽)(𝑘) (L2 ([𝑡I, Θmax])) ⊂ L
2 ([𝑡I, Θmax]) ,

∀𝑘 ∈ N, (44)

which implies that

𝐽 ∘ (∑
𝑘≥0

(Ṽ ∘ 𝐽)(𝑘))(L2 ([𝑡I, Θmax]))
⊂ L
2 ([𝑡I, Θmax − Θ𝛾]) .

(45)

Relation (45) shows that equality (41) is consistent due to the
inverse of operatorL being in L2([𝑡I, Θmax − Θ𝛾]). Next, we
can show that operator Ṽ ∘ 𝐽 can be written in the form

Ṽ ∘ 𝐽 [𝜅𝐸] (𝑥) = ∫𝑥
𝑡I

𝑘 (𝑥, 𝑦) 𝜅𝐸 (𝑦) 𝑑𝑦, (46)

where kernel 𝑘 is defined as

𝑘 (𝑥, 𝑦) = 𝛾 (𝑥 − 𝑦) + 𝛼 − 𝛼∫𝑥
𝑦
𝛾 (𝑡 − 𝑦) 𝑑𝑡. (47)

Following equality

{(𝑦, 𝑡) ∈ R
2/𝑡I ≤ 𝑦 ≤ 𝑡, 𝑡I ≤ 𝑡 ≤ 𝑥}

= {(𝑦, 𝑡) ∈ R
2/𝑡I ≤ 𝑦 ≤ 𝑥, 𝑦 ≤ 𝑡 ≤ 𝑥} (48)

yields with Fubini-Tonelli theorem to obtain

(Ṽ ∘ 𝐽)(2) [𝜅𝐸] (𝑥) = ∫𝑥
𝑡I

𝑘 (𝑥, 𝑡) (Ṽ ∘ 𝐽) [𝜅𝐸] (𝑡) 𝑑𝑡
= ∫𝑥
𝑡I

𝑘 (𝑥, 𝑡) (∫𝑡
𝑡I

𝑘 (𝑡, 𝑦) 𝜅𝐸 (𝑦) 𝑑𝑦)𝑑𝑡
= ∫𝑥
𝑡I

(∫𝑥
𝑦
𝑘 (𝑥, 𝑡) 𝑘 (𝑡, 𝑦) 𝑑𝑡) 𝜅𝐸 (𝑦) 𝑑𝑦.

(49)
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Consequently, operator (Ṽ∘𝐽)(2) is written in following form:

(Ṽ ∘ 𝐽)(2) [𝜅𝐸] (𝑥) = ∫𝑥
𝑡I

𝑘2 (𝑥, 𝑦) 𝜅𝐸 (𝑦) 𝑑𝑦, (50)

where

𝑘2 (𝑥, 𝑦) = ∫𝑥
𝑦
𝑘 (𝑥, 𝑡) 𝑘 (𝑡, 𝑦) 𝑑𝑡. (51)

We can verify by induction for 𝑛 ≥ 2 that the recurrence
expresses each operator (Ṽ ∘ 𝐽)(𝑛) as an integral operator
which is written in following form:

(Ṽ ∘ 𝐽)(𝑛) [𝜅𝐸] (𝑥) = ∫𝑥
𝑡I

𝑘𝑛 (𝑥, 𝑦) 𝜅𝐸 (𝑦) 𝑑𝑦, (52)

where kernel 𝑘𝑛 is given as

𝑘𝑛 (𝑥, 𝑦) = ∫𝑥
𝑦
𝑘 (𝑥, 𝑡) 𝑘𝑛−1 (𝑡, 𝑦) 𝑑𝑡. (53)

Now, we will show that 𝑀 is a maximum of kernel 𝑘 over[𝑡I, Θmax] × [𝑡I, Θmax − Θ𝛾] with using equality (39):

󵄨󵄨󵄨󵄨𝑘 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝛾 (𝑥 − 𝑦)󵄨󵄨󵄨󵄨 + |𝛼| 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
Θ𝛾

0
𝛾 (𝑧) 𝑑𝑡󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + |𝛼|

≤ 𝑀 − 2 |𝛼| + |𝛼| + |𝛼|
≤ 𝑀.

(54)

By a recurrence starting with initial state 𝑛 = 1 being true, it
is easy to prove that

󵄨󵄨󵄨󵄨𝑘𝑛 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑀𝑛 (𝑥 − 𝑦)𝑛−1(𝑛 − 1)! . (55)

If 𝑛 = 1, inequality (55) is true because𝑀 is the maximum of
the kernel 𝑘 over [𝑡I, Θmax] × [𝑡I, Θmax − Θ𝛾]. Assume that

inequality (55) is true for a case 𝑛 and show a case 𝑛 + 1.
According to (53), we get

󵄨󵄨󵄨󵄨𝑘𝑛+1 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ ∫𝑥
𝑦
|𝑘 (𝑥, 𝑡)| 󵄨󵄨󵄨󵄨𝑘𝑛 (𝑡, 𝑦)󵄨󵄨󵄨󵄨 𝑑𝑡

≤ 𝑀 × 𝑀𝑛(𝑛 − 1)! ∫
𝑥

𝑦
(𝑡 − 𝑦)𝑛−1 𝑑𝑡

≤ 𝑀 × 𝑀𝑛(𝑛 − 1)! × (𝑥 − 𝑦)𝑛𝑛
≤ 𝑀𝑛+1 (𝑥 − 𝑦)𝑛𝑛! .

(56)

Since 𝑥 − 𝑦 ∈ [0, Θ𝛾], we use inequality (55) to get
󵄨󵄨󵄨󵄨𝑘𝑛 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑀𝑛 Θ𝑛−1𝛾(𝑛 − 1)! . (57)

Applying Cauchy-Schwarz inequality at (Ṽ ∘ 𝐽)(𝑛) defined by
(52), we get following equality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨(Ṽ ∘ 𝐽)(𝑛) [𝜅𝐸] (𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

≤ (∫𝑥
𝑡I

󵄨󵄨󵄨󵄨𝑘𝑛 (𝑥, 𝑦)󵄨󵄨󵄨󵄨2 𝑑𝑦) 󵄩󵄩󵄩󵄩𝜅𝐸󵄩󵄩󵄩󵄩2L2([𝑡I ,Θmax−Θ𝛾])
. (58)

From this and using inequality (57), we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨(Ṽ ∘ 𝐽)(𝑛) [𝜅𝐸] (𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 ≤ ( 𝑀𝑛(𝑛 − 1)!)

2

⋅ (∫𝑥
𝑡I

(𝑥 − 𝑦)2(𝑛−1) 𝑑𝑦) 󵄩󵄩󵄩󵄩𝜅𝐸󵄩󵄩󵄩󵄩2L2([𝑡I ,Θmax−Θ𝛾])

≤ ( 𝑀𝑛(𝑛 − 1)!)
2 × (𝑥 − 𝑡I)2𝑛−12𝑛 − 1 󵄩󵄩󵄩󵄩𝜅𝐸󵄩󵄩󵄩󵄩2L2([𝑡I ,Θmax−Θ𝛾])

.
(59)

By integrating each term of (60) over interval [𝑡I, Θmax], we
get

󵄩󵄩󵄩󵄩󵄩󵄩󵄩(Ṽ ∘ 𝐽)(𝑛) [𝜅𝐸]󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

L2([𝑡I ,Θmax])
≤ ( 𝑀𝑛(𝑛 − 1)!)

2 × (Θmax − 𝑡I)2𝑛2𝑛 (2𝑛 − 1) 󵄩󵄩󵄩󵄩𝜅𝐸󵄩󵄩󵄩󵄩2L2([𝑡I ,Θmax−Θ𝛾])
. (60)

Consequently,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩(Ṽ ∘ 𝐽)(𝑛)󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2([𝑡I ,Θmax])
≤ ( 𝑀𝑛(𝑛 − 1)!) × (Θmax − 𝑡I)𝑛√2𝑛 . (61)

Inequality (61) gives

󵄩󵄩󵄩󵄩󵄩󵄩󵄩(Ṽ ∘ 𝐽)(𝑛)󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1/𝑛

L2([𝑡I ,Θmax])

≤ 𝑀(Θmax − 𝑡I) × (√2𝑛 (𝑛 − 1)!)−1/𝑛 .
(62)

Since the series ∑𝑘≥1 𝑎𝑘 of defined terms

𝑎𝑘 = (𝑀(Θmax − 𝑡I))𝑘√2𝑘 (𝑘 − 1)! (63)

is convergent, then quantity ∑𝑘≥0(Ṽ ∘ 𝐽)(𝑘) converges abso-
lutely in L2([𝑡I, Θmax]). Consequently, ∑𝑘≥0(Ṽ ∘ 𝐽)(𝑘) exists
and is finite in L2([𝑡I, Θmax]). We recall that we have

(IdL2([𝑡I ,Θmax])
− Ṽ ∘ 𝐽) ∘ ( 𝑁∑

𝑘=0

(Ṽ ∘ 𝐽)(𝑘)) [𝜅𝐸] (𝑥)
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= 𝑁∑
𝑘=0

(Ṽ ∘ 𝐽)(𝑘) [𝜅𝐸] (𝑥)
− 𝑁∑
𝑘=0

(Ṽ ∘ 𝐽)(𝑘+1) [𝜅𝐸] (𝑥)
= IdL2([𝑡I ,Θmax])

[𝜅𝐸] (𝑥) − Ṽ
(𝑁+1) [𝜅𝐸] (𝑥) .

(64)

Since we have √𝑛 ≤ (𝑛 − 1)! for all integer 𝑛 ≥ 2, inequality
(61) implies that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩(Ṽ ∘ 𝐽)(𝑛)󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2([𝑡I ,Θmax])
≤ ((𝑀(Θmax − 𝑡I))𝑛√2𝑛 ) . (65)

Coupling inequality (64) with the fact that ‖(Ṽ ∘𝐽)(𝑛)‖L2([𝑡I ,Θmax])
converges to 0 due to (40), we get

(IdL2([𝑡I ,Θmax])
− Ṽ ∘ 𝐽) ∘ (∑

𝑘≥0

(Ṽ ∘ 𝐽)(𝑘)) [𝜅𝐸] (𝑥)
= IdL2([𝑡I ,Θmax])

[𝜅𝐸] (𝑥) .
(66)

Composing operators defined by (38) with operator 𝐽, we get
L ∘ 𝐽 [𝜅𝐸] (𝑥) = IdL2([𝑡I ,Θmax−Θ𝛾])→L

2([𝑡I ,Θmax])

∘ 𝐽 [𝜅𝐸] (𝑥) − Ṽ ∘ 𝐽 [𝜅𝐸] (𝑥)
= IdL2([𝑡I ,Θmax])

[𝜅𝐸] (𝑥) − Ṽ

∘ 𝐽 [𝜅𝐸] (𝑥) .
(67)

According to (66) and (67), we get

(L ∘ 𝐽) ∘ (∑
𝑘≥0

(Ṽ ∘ 𝐽)(𝑘)) [𝜅𝐸] (𝑥)
= IdL2([𝑡I ,Θmax])

[𝜅𝐸] (𝑥) .
(68)

That is,

L ∘ (𝐽 ∘ (∑
𝑘≥0

(Ṽ ∘ 𝐽)(𝑘))) [𝜅𝐸] (𝑥)
= IdL2([𝑡I ,Θmax])

[𝜅𝐸] (𝑥) ,
(69)

achieving equality (41) of the lemma.

Let us characterize under assumption of Theorem 2 a
spectrum set Sp(Ṽ ∘ 𝐽) of operator Ṽ ∘ 𝐽. Defining spectrum
Sp(Ṽ ∘ 𝐽) as a set of reals 𝜇 such that Ṽ ∘ 𝐽 − 𝜇IdL2([𝑡I ,Θmax])

is
not invertible. Formally:

Sp (Ṽ ∘ 𝐽)
= {𝜇 ∈ R : Ṽ ∘ 𝐽 − 𝜇IdL2([𝑡I ,Θmax])

is not invertible} . (70)

Defining spectral radius 𝜌(Ṽ ∘ 𝐽) of operator Ṽ ∘ 𝐽 as
𝜌 (Ṽ ∘ 𝐽) = {|𝜆| : 𝜆 ∈ Sp (Ṽ ∘ 𝐽)} . (71)

Note that spectrum Sp(Ṽ ∘ 𝐽) is included in a disk of center 0
and radius ‖Ṽ ∘ 𝐽‖L2([𝑡I ,Θmax])

. That is to say

𝜌 (Ṽ ∘ 𝐽) ≤ 󵄩󵄩󵄩󵄩󵄩Ṽ ∘ 𝐽󵄩󵄩󵄩󵄩󵄩L2([𝑡I ,Θmax])
. (72)

Nowwewill compute spectral radius𝜌(Ṽ∘𝐽) of operator Ṽ∘𝐽
using following equality:

𝜌 (Ṽ ∘ 𝐽) = lim
𝑛→+∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩(Ṽ ∘ 𝐽)(𝑛)󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1/𝑛

L2([𝑡I ,Θmax])
. (73)

Since we have shown that ‖(Ṽ ∘ 𝐽)(𝑛)‖1/𝑛
L2([𝑡I ,Θmax])

converges to
0, equality (73) shows that spectral radius 𝜌(Ṽ ∘ 𝐽) is zero:

𝜌 (Ṽ ∘ 𝐽) = 0. (74)

Consequently, spectrum Sp(Ṽ ∘ 𝐽) is reduced to null set:

Sp (Ṽ ∘ 𝐽) = {0} . (75)

4. Extensions in the Model of Variable Rate

Webuilt in [2] the financialmodels that are used on simplified
problems in order to show how they can be used in reality.
This section is devoted to enrich the model in order to
account for this reality. In particular, we will express the
Algebraic Spending Density 𝜎I in the model with variable
rate. The mathematical consistency of this density 𝜎I is
analyzed.

The Current Debt Field KRD is related to Loan Measure𝜅𝐸 and Repayment Measure 𝜌K by the following Ordinary
Differential Equation:

𝑑KRD𝑑𝑡 = 𝜅𝐸 (𝑡) − 𝜌K (𝑡) − 𝜌IK (𝑡) . (76)

The solution of this ODE is expressed as follows:

KRD (𝑡) = KRD (𝑡I) + ∫𝑡
𝑡I

𝜅𝐸 (𝑠) 𝑑𝑠 − ∫𝑡
𝑡I

𝜌K (𝑠) 𝑑𝑠
− ∫𝑡
𝑡I

𝜌IK (𝑠) 𝑑𝑠
= ∫𝑡
𝑡I

𝜅𝐸 (𝑠) 𝑑𝑠 − ∫𝑡
𝑡I

𝜌IK (𝑠) 𝑑𝑠
+ ∫Θmax

𝑡
𝜌IK (𝑠) 𝑑𝑠.

(77)

Since the Interest Payment Density 𝜌I is related to the
Current Debt Field by a proportionality relation:

𝜌I (𝑡) = 𝛼 (𝑡)KRD (𝑡) ; (78)
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the Interest Payment Density 𝜌I can be expressed in terms of
Loan Density 𝜅𝐸:

𝜌I (𝑡) = 𝛼 (𝑡) ∫𝑡
𝑡I

𝜅𝐸 (𝑠) 𝑑𝑠 − 𝛼 (𝑡) ∫𝑡
𝑡I

(𝜅𝐸 ⋆ 𝛾) (𝑠) 𝑑𝑠
+ 𝛼 (𝑡) ∫Θmax

𝑡
𝜌IK (𝑠) 𝑑𝑠.

(79)

Since Density 𝜎 reads

𝜎 (𝑡) = L [𝜅𝐸] (𝑡) +D [𝜌IK] (𝑡) , (80)

where operators L and D are defined in relations (18) and
(19), respectively, we get equality (6). From this, we get the
following Ordinary Differential Equation:

𝜎 (𝑡) = 𝑑KRD (𝑡)𝑑𝑡 − 𝜌I (𝑡) . (81)

Defining 𝑘RD(𝑡, 𝑠) the Current Debt at time 𝑡 which is
associated with the amount borrowed at time 𝑠. 𝑘RD is related
to LoanDensity 𝜅𝐸 using Repayment PatternDensity 𝛾 by the
following Ordinary Differential Equation:

𝑑𝑘RD (𝑡, 𝑠)𝑑𝑡 = −𝛾 (𝑡 − 𝑠) 𝜅𝐸 (𝑠) , (82)

with initial condition 𝑘RD(𝑠, 𝑠) = 𝜅𝐸(𝑠) that expresses that
The Current Debt at time 𝑠 which is related to the borrowed
amount at time 𝑠 is the borrowed amount at time 𝑠. The
solution of this differential equation is expressed as

𝑘RD (𝑡, 𝑠) = 𝜅𝐸 (𝑠) − ∫𝑡
𝑠
𝛾 (𝑦 − 𝑠) 𝜅𝐸 (𝑠) 𝑑𝑦. (83)

Wewill use the expression (81) of density𝜎 in order to express
Algebraic Spending Density 𝜎I in the model with variable
rate. Quantity 𝜎I(𝑡, 𝑠) is defined such that the difference
between spending and income at time 𝑡 is associated with the
amount borrowed at time 𝑠. It is a time density with respect
to both variables 𝑠 and 𝑡. Relation (81) yields

𝜎I (𝑡, 𝑠) = 𝑑𝑘RD (𝑡, 𝑠)𝑑𝑡 + 𝑑𝑘RD (𝑠, 𝑠)𝑑𝑠 − 𝑟IK (𝑡, 𝑠)
− 𝑟I (𝑡, 𝑠) , (84)

where 𝑟I is the Interest Payment Density at time 𝑡 which is
associated with the borrowed amount at time 𝑠, and where𝑟IK is a repayment scheme at time 𝑡 which is associated with
the borrowed amount at time 𝑠.

In what follows, we will show that the definition of Alge-
braic Spending Density 𝜎I is consistent with the definition of
Algebraic Spending 𝜎 which is given in relation (6). Indeed,
Algebraic Spending Density 𝜎 can be expressed in terms
of 𝜎I. By integration over variable 𝑠 (which describes the
borrowed time), from 𝜎I(𝑡, 𝑠), Algebraic Spending Density𝜎 can be defined as follows:

𝜎 (𝑡) = ∫𝑡
𝑡I

𝜎I (𝑡, 𝑠) 𝑑𝑠 + 𝜎𝐼 (𝑡) , (85)

where density 𝜎𝐼 is to be determined, which is Algebraic
Spending Density associated with KRD(𝑡I) the known Cur-
rent Debt at initial time 𝑡I.

𝜎 (𝑡) = −∫𝑡
𝑡I

𝛾 (𝑡 − 𝑠) 𝜅𝐸 (𝑠) 𝑑𝑠 + ∫𝑡
𝑡I

𝑑𝜅𝐸
− ∫𝑡
𝑡I

𝑟IK (𝑡, 𝑠) 𝑑𝑠 − ∫𝑡
𝑡I

𝑟I (𝑡, 𝑠) 𝑑𝑠 + 𝜎𝐼 (𝑡) .
(86)

Replacing first term in relation (86) by −𝜅𝐸 ⋆ 𝛾 and using the
fact that the Interest Payment Density 𝜌I is expressed in [2]
as follows:

𝑟I (𝑡, 𝑠) = 𝛼 (𝑠) 𝜅𝐸 (𝑠) − 𝛼 (𝑠) ∫𝑡
𝑠
𝛾 (𝑦 − 𝑠) 𝜅𝐸 (𝑠) 𝑑𝑦, (87)

we get:

𝜎 (𝑡) = 𝜅𝐸 (𝑡) − 𝜅𝐸 ⋆ 𝛾 (𝑡) − 𝜅𝐸 (𝑡I) − ∫𝑡
𝑡I

𝑟IK (𝑡, 𝑠) 𝑑𝑠
− ∫𝑡
𝑡I

𝛼 (𝑠) 𝜅𝐸 (𝑠) 𝑑𝑠
+ ∫𝑡
𝑡I

𝛼 (𝑠) (∫𝑡
𝑠
𝛾 (𝑦 − 𝑠) 𝜅𝐸 (𝑠) 𝑑𝑦)𝑑𝑠

+ 𝜎𝐼 (𝑡) .

(88)

The integration of Density 𝑟IK over variable 𝑠 gives
𝜌IK (𝑡) = ∫𝑡

𝑡I

𝑟IK (𝑡, 𝑠) 𝑑𝑠 + 𝜌IK (𝑡I) . (89)

Expression (88) and consequently definition of Borrowed
Time Related Algebraic Spending Density 𝜎I are consistent
with the expression of Algebraic Spending Density 𝜎 given in
relation (6). Indeed, if the rate 𝛼(𝑡) is fixed with worth 𝛼, (88)
writes

𝜎 (𝑡) = 𝜅𝐸 (𝑡) − 𝜅𝐸 ⋆ 𝛾 (𝑡) − 𝜅𝐸 (𝑡I) − ∫𝑡
𝑡I

𝑟IK (𝑡, 𝑠) 𝑑𝑠
− 𝛼∫𝑡
𝑡I

𝜅𝐸 (𝑠) 𝑑𝑠
+ 𝛼∫𝑡
𝑡I

(∫𝑡
𝑠
𝛾 (𝑦 − 𝑠) 𝜅𝐸 (𝑠) 𝑑𝑦)𝑑𝑠 + 𝜎𝐼 (𝑡)

= 𝜅𝐸 (𝑡) − 𝜅𝐸 ⋆ 𝛾 (𝑡) − 𝜌IK (𝑡)
− 𝛼∫𝑡
𝑡I

(𝜅𝐸 (𝑠) − ∫𝑦
𝑡I

𝛾 (𝑦 − 𝑠) 𝜅𝐸 (𝑠) 𝑑𝑠) 𝑑𝑦
− 𝜅𝐸 (𝑡𝐼) + 𝜌IK (𝑡I) + 𝜎𝐼 (𝑡)

= 𝜅𝐸 (𝑡) − 𝜅𝐸 ⋆ 𝛾 (𝑡) − 𝛼∫𝑡
𝑡I

(𝜅𝐸 − 𝜅𝐸 ⋆ 𝛾) (𝑠) 𝑑𝑠
− 𝜌IK (𝑡) − 𝜅𝐸 (𝑡I) + 𝜌IK (𝑡I) + 𝜎𝐼 (𝑡) ,

(90)
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where density 𝜎𝐼 can be expressed as follows:

𝜎𝐼 (𝑡) = 𝜅𝐸 (𝑡I) − 𝜌IK (𝑡I) − 𝛼∫Θmax

𝑡
𝜌IK (𝑠) 𝑑𝑠. (91)

We will justify the expression (91) of density 𝜎𝐼 as follows.
Indeed, replacing time 𝑡 by initial time 𝑡I in expressions (6)
and (91) of Density 𝜎, we obtain the same expression 𝜎(𝑡I)
defined by

𝜎 (𝑡I) = 𝜅𝐸 (𝑡I) − 𝜅𝐸 ⋆ 𝛾 (𝑡I) − 𝜌IK (𝑡I)
− 𝛼∫Θmax

𝑡I

𝜌IK (𝑠) 𝑑𝑠. (92)

5. Inverse Problem of the Model in S(R+)
Denoting S(R+) the Schwartz space consists of smooth
functions whose derivatives (including the function itself)
decay at positive infinity faster than any power. We say, for
short, that Schwartz functions are rapidly decreasing. We
state the Repayment Pattern Density 𝛾 as follows:

𝛾 ∈ S (R+) . (93)

We use the Fourier Transform which are operators acting on
densities over R. Operators F stand for the Fourier Trans-
form, andF−1 stands for the Inverse Fourier Transform.

Lemma 3. If function 𝜅𝐸 is in S(R+) and if 𝛾 satisfies relation
(93), then we have the following equality:

(1 −F (𝛾))F (𝜅𝐸)
= F(L [𝜅𝐸] + 𝛼∫∙

𝑡I

L [𝜅𝐸] (𝑠) e𝛼(∙−𝑠)𝑑𝑠) . (94)

Proof. Integrating by parts states that

∫𝑡
𝑡I

(∫𝑠
𝑡I

(𝜅𝐸 − 𝜅𝐸 ⋆ 𝛾) (𝑦) 𝑑𝑦) × 𝛼 (𝑡) e𝛼(𝑡−𝑠)𝑑𝑠
= ∫𝑡
𝑡I

(𝜅𝐸 − 𝜅𝐸 ⋆ 𝛾) (𝑠) × e𝛼(𝑡−𝑠)𝑑𝑠
− ∫𝑡
𝑡I

(𝜅𝐸 − 𝜅𝐸 ⋆ 𝛾) (𝑠) 𝑑𝑠.
(95)

From this, we get the following equality:

∫𝑡
𝑡I

(𝜅𝐸 − 𝜅𝐸 ⋆ 𝛾) (𝑠) 𝑑𝑠 = ∫𝑡
𝑡I

((𝜅𝐸 − 𝜅𝐸 ⋆ 𝛾) (𝑠)
− 𝛼 (𝑡) ∫𝑠

𝑡I

(𝜅𝐸 − 𝜅𝐸 ⋆ 𝛾) (𝑦) 𝑑𝑦) × e𝛼(𝑡)(𝑡−𝑠)𝑑𝑠. (96)

Using definition (18) of operator L, equality in (96) is
multiplied by density 𝛼(𝑡) to give

𝛼 (𝑡) ∫𝑡
𝑡I

(𝜅𝐸 − 𝜅𝐸 ⋆ 𝛾) (𝑠) 𝑑𝑠
= 𝛼 (𝑡) ∫𝑡

𝑡I

L [𝜅𝐸] (𝑠) e𝛼(𝑡−𝑠)𝑑𝑠.
(97)

Replacing 𝛼(𝑡) ∫𝑡
𝑡I
(𝜅𝐸 − 𝜅𝐸 ⋆ 𝛾)(𝑠)𝑑𝑠 in relation (97) by (𝜅𝐸 −𝜅𝐸 ⋆ 𝛾)(𝑡) − L[𝜅𝐸](𝑡) which is possible because of (18), we

obtain the following equality:

𝜅𝐸 (𝑡) − 𝜅𝐸 ⋆ 𝛾 (𝑡) = L [𝜅𝐸] (𝑡)
+ 𝛼 (𝑡) ∫𝑡

𝑡I

L [𝜅𝐸] (𝑠) e𝛼(∙−𝑠)𝑑𝑠. (98)

Applying Fourier Transform to each term of equality (98), we
obtain equality (94), proving the lemma.

Lemma 4. Assuming (93), that implies that

∫+∞
0

𝑦𝛾 (𝑦) 𝑑𝑦 ̸= 0 (99)

is achieved and if functionL[𝜅𝐸] given by relation (7) satisfies
∫+∞
0

(L [𝜅𝐸] (𝑦) + 𝛼∫𝑦
0
L [𝜅𝐸] (𝑠) e𝛼(𝑦−𝑠)𝑑𝑠) 𝑑𝑦

= 0 (100)

and for a negative rate 𝛼
𝑡 󳨃󳨀→ ∫𝑡

0
L [𝜅𝐸] (𝑠) 𝑑𝑠 ∈ S (R+) , (101)

then,F(𝜅𝐸) ∈ L∞(R) and is such that
lim
𝜉→0

F (𝜅𝐸) (𝜉) = − 2Θ2𝛾 ∫
+∞

0
𝑦 × (L [𝜅𝐸] (𝑦)

+ 𝛼∫𝑦
0
L [𝜅𝐸] (𝑠) e𝛼(𝑦−𝑠)𝑑𝑠) 𝑑𝑦.

(102)

If L[𝜅𝐸] does not satisfy the equality in relation (100), then,
F(𝜅𝐸) has an infinite limit in 0.
Proof. AsL[𝜅𝐸] ∈ S(R+) and the fact that S(R+) ⊂ L1(R+),
we get

L [𝜅𝐸] + 𝛼∫∙
0
L [𝜅𝐸] (𝑠) e𝛼(∙−𝑠)𝑑𝑠 ∈ L

1 (R+) . (103)

Indeed, under assumption (101) the product of a bounded
function 𝑡 󳨃→ e𝛼(𝑡−𝑠) due to the negative rate 𝛼 by a function
in L1(R+) is a function in L1(R+). Then, using an order 1
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Taylor expansion of 𝑒−𝑖𝑦𝜉, we obtain the following expansion
of functionF(L[𝜅𝐸] + 𝛼 ∫∙

0
L[𝜅𝐸](𝑠)e𝛼(∙−𝑠)𝑑𝑠):

F(L [𝜅𝐸] + 𝛼∫∙
0
L [𝜅𝐸] (𝑠) e𝛼(∙−𝑠)𝑑𝑠) (𝜉)

= ∫+∞
0

(L [𝜅𝐸] (𝑦)
+ 𝛼∫𝑦
𝑡I

L [𝜅𝐸] (𝑠) e𝛼(𝑦−𝑠)𝑑𝑠) 𝑑𝑦 − 𝑖𝜉 ∫+∞
0

𝑦
× (L [𝜅𝐸] (𝑦)
+ 𝛼∫𝑦
0
L [𝜅𝐸] (𝑠) e𝛼(𝑦−𝑠)𝑑𝑠) 𝑑𝑦 + 𝑂 (𝜉2) .

(104)

Since operator L satisfies equality in relation (100), relation
(104) gives

F(L [𝜅𝐸] + 𝛼∫∙
𝑡I

L [𝜅𝐸] (𝑠) e𝛼(∙−𝑠)𝑑𝑠) (𝜉)
= −𝑖𝜉 ∫+∞

0
𝑦

× (L [𝜅𝐸] (𝑦) + 𝛼∫𝑦
𝑡I

L [𝜅𝐸] (𝑠) e𝛼(𝑦−𝑠)𝑑𝑠) 𝑑𝑦
+ 𝑂 (𝜉2) .

(105)

According to (93), function 1 −F(𝛾) is Taylor expanded in 0
until the order 1 to obtain

1 −F (𝛾) (𝜉) = 𝑖𝜉 ∫+∞
0

𝑦𝛾 (𝑦) 𝑑𝑦 + 𝑂 (𝜉2) . (106)

According to relations (94), (105), and (106), we get equality
(102). Moreover, according to relation (94), F(𝜅𝐸) is a finite
quantity outside of 0. Hence, it is concluded thatF(𝜅𝐸) is in
L∞(R). On the other hand, if equality in relation (100) is not
satisfied, then, according to relations (94), (104), and (106),
F(𝜅𝐸) has an infinite limit at 0. From this, the proof of the
lemma is achieved.

Theorem 5. If Repayment Pattern Density 𝛾 satisfies relation
(93) such that 󵄨󵄨󵄨󵄨F (𝛾)󵄨󵄨󵄨󵄨 < 1 (107)

and if Initial Debt Repayment Density 𝜌IK is in S(R+), then
for any Algebraic Spending Density 𝜎 in S(R+) satisfying the
following equality:

∫+∞
0

(𝜎 (𝑦) −D [𝜌IK] (𝑦)
+ 𝛼∫𝑦
0
(𝜎 (𝑠) −D [𝜌IK] (𝑠)) e𝛼(𝑦−𝑠)𝑑𝑠) 𝑑𝑦

= 0,
(108)

there exists an unique Loan Density 𝜅𝐸 inS(R+)which is given
in terms of 𝜎 by

𝜅𝐸 = F
−1(F (𝜎 −D [𝜌IK] + 𝛼 ∫∙

0
(𝜎 (𝑠) −D [𝜌IK] (𝑠)) e𝛼(∙−𝑠)𝑑𝑠)

1 −F (𝛾) ) . (109)

Proof. According to relation (107), we get

11 −F (𝛾) = ∑
𝑘≥0

F
𝑘 (𝛾) . (110)

In the first place, we will show that the left term given by
(110) is in S(R+). Indeed, since S(R+) is stable by Fourier
Transform, assumption (93) states that F(𝛾) is in S(R+).
From this, quantity 1/(1−F(𝛾)) is inS(R+) due to its stability
under power and infinite sum. Secondly, we will show that
density𝜎−D[𝜌IK]+𝛼𝐹 is inS(R+), where density𝐹 is defined
by

𝐹 (𝑡) = ∫𝑡
0
(𝜎 (𝑠) −D [𝜌IK] (𝑠)) e𝛼(𝑡−𝑠)𝑑𝑠. (111)

Because densities 𝜎 and D[𝜌IK] are in S(R+), density 𝜎 −
D[𝜌IK] is rapidly decreasing. Thus, for an integer 𝑁󸀠 there
exists a positive constant 𝐶𝑁󸀠 such that

𝜎 (𝑠) −D [𝜌IK] (𝑠) ≤ 𝐶𝑁󸀠(1 + 𝑠)𝑁󸀠 , ∀𝑠 ∈ R+. (112)

Since the derivative of density 𝐹 is equal to 𝜎 − D[𝜌IK],
inequality (112) gives

𝐹󸀠 (𝑠) ≤ 𝐶𝑁󸀠(1 + 𝑠)𝑁󸀠 , ∀𝑠 ∈ R+. (113)

Integrate inequality (113) over [0, 𝑡] to get
𝐹 (𝑡) ≤ 𝐶𝑁󸀠𝑁󸀠 − 1 (1 − 1(1 + 𝑡)𝑁󸀠−1) , ∀𝑡 ∈ R+. (114)
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Consequently, for an integer𝑁 there exists a positive constant𝐶𝑁 such that

𝐹 (𝑡) ≤ 𝐶𝑁(1 + 𝑡)𝑁 , ∀𝑡 ∈ R+. (115)

Inequality (115) states that 𝐹 is rapidly decreasing. Further-
more, since the (𝑙 + 1)-nd derivative of density 𝐹 is equal to
the 𝑙-nd derivative of density 𝜎 −D[𝜌IK],

𝐹(𝑙+1) (𝑡) = (𝜎 −D [𝜌IK])(𝑙) (𝑡) , ∀𝑙 ∈ N, ∀𝑡 ∈ R+, (116)

and the fact that space S(R+) is stable under the operation
of derivation, for any integer 𝑙 function 𝐹(𝑙+1) is rapidly
decreasing. Consequently,𝐹 is inS(R+), achieving the second
point of proof. We conclude that

F (𝜎 −D [𝜌IK] + 𝛼 ∫∙
0
(𝜎 (𝑠) −D [𝜌IK] (𝑠)) e𝛼(∙−𝑠)𝑑𝑠)

1 −F (𝛾)
∈ S (R+) ,

(117)

because it is the product of two functions in S(R+).
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