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We introduce the Szász and Chlodowsky operators based on Gould-Hopper polynomials and study the statistical convergence of
these operators in a weighted space of functions on a positive semiaxis. Further, a Voronovskaja type result is obtained for the
operators containing Gould-Hopper polynomials. Finally, some graphical examples for the convergence of this type of operator are
given.

1. Introduction

In [1], Jakimovski and Leviatan introduced and investigated
some approximation properties of the Favard-Szász type
operator, by using Appell polynomials 𝑝𝑘(𝑥) ≥ 0 which
satisfy the identity

𝑔 (𝑡) 𝑒𝑡𝑥 = ∞∑
𝑘=0

𝑝𝑘 (𝑥) 𝑡𝑘, (1)

where 𝑔(𝑧) = ∑∞𝑘=0 𝑎𝑘𝑧𝑘 is an analytic function in the disc|𝑧| < 𝑅, (𝑅 > 1) and 𝑔(1) ̸= 0,
𝐽 (𝑓; 𝑥) = 𝑒𝑛𝑥𝑔 (1)

∞∑
𝑘=0

𝑝𝑘 (𝑛𝑥) 𝑓(𝑘𝑛𝑏𝑛) , 𝑥 ∈ [0,∞) . (2)

Varma et al. constituted a link between orthogonal polyno-
mials and the positive linear operators. In [1], they proposed
Szász operators involving the Brenke polynomials defined by

𝑇𝑛 (𝑓; 𝑥) = 1𝐴 (1) 𝐵 (𝑛𝑥)
∞∑
𝑘=0

𝑝𝑘 (𝑛𝑥) 𝑓(𝑘𝑛) , (3)

where 𝑥 ≥ 0 and 𝑛 ∈ N.
Recently, Büyükyazıcı et al. in [2] introduced the

Chlodowsky variant of operators (3). Inspired by this work,

we give the Szász-Chlodowsky type operators including
Gould-Hopper polynomials. The generating functions for
these Gould-Hopper polynomials are given by

𝑒ℎ𝑡𝑑+1𝑒𝑥𝑡 = ∞∑
𝑘=0

𝑔𝑑+1𝑘 (𝑥, ℎ) 𝑡𝑘𝑘! (4)

and the explicit representations

𝑔𝑑+1𝑘 (𝑥, ℎ) = [𝑘/𝑑+1]∑
𝑘=0

𝑘!𝑠! (𝑘 − (𝑑 + 1) 𝑠)!ℎ𝑠𝑥𝑘−(𝑑+1)𝑠, (5)

where [⋅] denotes the integer part. Now, let us define Szász-
Chlodowsky type generalization of the Szász operators with
the help of generating function (4), as follows:

G
(𝑑)
𝑛,ℎ (𝑓; 𝑥) = 𝑒−𝑛𝑥/𝑏𝑛−ℎ ∞∑

𝑘=0

𝑔𝑑+1𝑘 (𝑛𝑥/𝑏𝑛, ℎ)𝑘! 𝑓(𝑘𝑛𝑏𝑛) ,
𝑥 ∈ [0,∞) ,

(6)

where ℎ ≥ 0 and 𝑏𝑛 is a positive increasing sequence with the
properties

lim
𝑛→∞

𝑏𝑛 = ∞,
lim
𝑛→∞

𝑏𝑛𝑛 = 0. (7)
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The generalization of Szász type operators has been studied
in [3–10].

The aim of the this paper is to study some direct results in
terms of the modulus of continuity of the second order, con-
vergence of derivative operators to derivative functions, the
weighted space, and the degree of approximation of𝑓 byG(𝑑)

𝑛,ℎ
.

We also study the statistical convergence. The rate of con-
vergence of the operators G(𝑑)

𝑛,ℎ
to a certain function is also

illustrated through graphics using Matlab.

2. Notations and Auxiliary Results

Let us denote𝐶𝐸[0,∞) fl {𝑓 ∈ 𝐶[0,∞) : |𝑓(𝑡)| ≤ 𝑀𝑒𝑁𝑡, 𝑡 ∈[0,∞), for some 𝑀,𝑁 > 0}. The following notations and
lemmas are needed to prove the main results.

In what follows, let 𝑒𝑖(𝑡) = 𝑡𝑖, 𝑖 ∈ 𝑁0, be the test functions.
Lemma 1. From (4), one has

(i) ∑∞𝑘=0(𝑔𝑑+1𝑘 (𝑛𝑥/𝑏𝑛, ℎ)/𝑘!) = 𝑒𝑛𝑥/𝑏𝑛+ℎ = 𝜅1(𝑥);
(ii) ∑∞𝑘=0(𝑘𝑔𝑑+1𝑘 (𝑛𝑥/𝑏𝑛, ℎ)/𝑘!) = 𝑒𝑛𝑥/𝑏𝑛+ℎ(𝑛𝑥/𝑏𝑛 + ℎ(𝑑 +1)) = 𝜅2(𝑥);
(iii) ∑∞𝑘=0(𝑘2𝑔𝑑+1𝑘 (𝑛𝑥/𝑏𝑛, ℎ)/𝑘!) = 𝑒𝑛𝑥/𝑏𝑛+ℎ(𝑛2𝑥2/𝑏2𝑛 + (𝑛𝑥/𝑏𝑛)(2ℎ(𝑑 + 1) + 1) + ℎ(𝑑 + 1)2(ℎ + 1)) = 𝜅3(𝑥);
(iv) ∑∞𝑘=0(𝑘3𝑔𝑑+1𝑘 (𝑛𝑥/𝑏𝑛, ℎ)/𝑘!) = 𝑒𝑛𝑥/𝑏𝑛+ℎ(𝑛3𝑥3/𝑏3𝑛 +(3𝑛2𝑥2/𝑏2𝑛 )(ℎ(𝑑 + 1) + 1) + (3𝑛𝑥/𝑏𝑛)(ℎ(𝑑 + 1)(ℎ(𝑑 +1) + 𝑑 + 2) + 1/3) + ℎ(𝑑 + 1)3(ℎ2 + 3ℎ + 1)) = 𝜅4(𝑥);
(v) ∑∞𝑘=0(𝑘4𝑔𝑑+1𝑘 (𝑛𝑥/𝑏𝑛, ℎ)/𝑘!) = 𝑒𝑛𝑥/𝑏𝑛+ℎ(𝑛4𝑥4/𝑏4𝑛 +(2𝑛3𝑥3/𝑏3𝑛 )(2ℎ(𝑑 + 1) + 3) + (6𝑛2𝑥2/𝑏2𝑛 )(ℎ2(𝑑 + 1)2 +ℎ(𝑑+1)(𝑑+3)+7/6) + (2𝑛𝑥/𝑏𝑛)(3ℎ2(𝑑+1)2(2𝑑+3)+ℎ(𝑑 + 1)(2𝑑2 + 7𝑑 + 7) + 2ℎ3(𝑑 + 1)3 + 1/2) + ℎ(𝑑 +1)4(ℎ3 + 6ℎ2 + 7ℎ + 1)) = 𝜅5(𝑥).

Lemma 2. For the operatorsG(𝑑)
𝑛,ℎ
, one has

(i) G(𝑑)
𝑛,ℎ
(𝑒0; 𝑥) = 1;

(ii) G(𝑑)
𝑛,ℎ
(𝑒1; 𝑥) = 𝑥 + (𝑏𝑛/𝑛)ℎ(𝑑 + 1);

(iii) G(𝑑)
𝑛,ℎ
(𝑒2; 𝑥) = 𝑥2+(𝑏𝑛𝑥/𝑛)(2ℎ(𝑑+1)+1)+(𝑏2𝑛/𝑛2)ℎ(ℎ+1)(𝑑 + 1)2;

(iv) G(𝑑)
𝑛,ℎ
(𝑒3; 𝑥) = 𝑥3 + (3𝑏𝑛𝑥2/𝑛)(ℎ(𝑑 + 1) + 1) + (3𝑏2𝑛𝑥/𝑛2)(ℎ(𝑑 + 1)(ℎ(𝑑 + 1) + 𝑑 + 2) + 1/3) + (3𝑏3𝑛/𝑛3)ℎ(𝑑 +1)2((𝑑 + 1)(ℎ2 + 1) + ℎ(2𝑑 + 1));

(v) G(𝑑)
𝑛,ℎ
(𝑒4; 𝑥) = 𝑥4 + (2𝑏𝑛𝑥3/𝑛)(2ℎ(𝑑 + 1) + 3) + (6𝑏2𝑛𝑥2/𝑛2)(ℎ2(𝑑 + 1)2 + ℎ(𝑑 + 1)(𝑑 + 3) + 7/6) + (2𝑏3𝑛𝑥/𝑛3)(3ℎ2(𝑑+1)2(2𝑑+3)+ℎ(𝑑+1)(2𝑑2+7𝑑+7)+2ℎ3(𝑑+1)3 + 1/2) + (𝑏4𝑛/𝑛4)(ℎ(𝑑 + 1)4(ℎ3 + 6ℎ2 + 7ℎ + 1)).

Proof. From Lemma 2 and by definition ofG(𝑑)
𝑛,ℎ
, we have

G
(𝑑)
𝑛,ℎ (𝑒0; 𝑥) = 𝑒−𝑛𝑥/𝑏𝑛−ℎ𝜅1 (𝑥) = 1,

G
(𝑑)
𝑛,ℎ (𝑒1; 𝑥) = 𝑏𝑛𝑛 𝑒−𝑛𝑥/𝑏𝑛−ℎ𝜅2 (𝑥) = 𝑥 + 𝑏𝑛𝑛 ℎ (𝑑 + 1) .

(8)

Now, we consider the caseG(𝑑)
𝑛,ℎ
(𝑒2; 𝑥) as follows:

G
(𝑑)
𝑛,ℎ (𝑒2; 𝑥) = 𝑏3𝑛𝑛3 𝑒−𝑛𝑥/𝑏𝑛−ℎ𝜅4 (𝑥)

= 𝑥2 + 𝑏𝑛𝑥𝑛 (2ℎ (𝑑 + 1) + 1)
+ 𝑏2𝑛𝑛2 ℎ (ℎ + 1) (𝑑 + 1)2 .

(9)

For 𝑒3, we have
G
(𝑑)
𝑛,ℎ (𝑒3; 𝑥) = 𝑏2𝑛𝑛2 𝑒−𝑛𝑥/𝑏𝑛−ℎ𝜅3 (𝑥)
= 𝑥3 + 3𝑏𝑛𝑥2𝑛 (ℎ (𝑑 + 1) + 1)
+ 3𝑏2𝑛𝑥𝑛2 (ℎ (𝑑 + 1) (ℎ (𝑑 + 1) + 𝑑 + 2) + 13)
+ 3𝑏3𝑛𝑛3 ℎ (𝑑 + 1)2 ((𝑑 + 1) (ℎ2 + 1) + ℎ (2𝑑 + 1)) ,

(10)

and, finally,

G
(𝑑)
𝑛,ℎ (𝑒4; 𝑥) = 𝑏4𝑛𝑛4 𝑒−𝑛𝑥/𝑏𝑛−ℎ𝜅5 (𝑥) = 𝑥4
+ 2𝑏𝑛𝑥3𝑛 (2ℎ (𝑑 + 1) + 3) + 6𝑏2𝑛𝑥2𝑛2 (ℎ2 (𝑑 + 1)2
+ ℎ (𝑑 + 1) (𝑑 + 3) + 76)
+ 2𝑏3𝑛𝑥𝑛3 (3ℎ2 (𝑑 + 1)2 (2𝑑 + 3)
+ ℎ (𝑑 + 1) (2𝑑2 + 7𝑑 + 7) + 2ℎ3 (𝑑 + 1)3 + 12)
+ 𝑏4𝑛𝑛4 (ℎ (𝑑 + 1)4 (ℎ3 + 6ℎ2 + 7ℎ + 1)) .

(11)

Lemma 3. Let 𝜂𝑑𝑛,𝑠(𝑥) = G
(𝑑)
𝑛,ℎ
((𝑒1 − 𝑥)𝑠; 𝑥), and then, for every𝑥 ∈ [0,∞), one has

(i) 𝜂(𝑑)𝑛,1 (𝑥) = (𝑏𝑛/𝑛)ℎ(𝑑 + 1);
(ii) 𝜂(𝑑)𝑛,2 (𝑥) = 𝑏𝑛𝑥/𝑛 + (𝑏2𝑛/𝑛2)ℎ(ℎ + 1)(𝑑 + 1)2;
(iii) 𝜂(𝑑)𝑛,4 (𝑥) = 3𝑏2𝑛𝑥2/𝑛2 + (2𝑏3𝑛𝑥/𝑛3)((𝑑 + 1)3ℎ(−2ℎ2 + 3ℎ−3)+ℎ(𝑑+1)2(−3ℎ+7−12ℎ𝑑+2𝑑2)+1/2)+(𝑏4𝑛/𝑛4)ℎ(𝑑+1)4(ℎ3 + 6ℎ2 + 7ℎ + 1).

Theorem 4. Let 𝑓 ∈ 𝐶𝐸[0,∞). Then, lim𝑛→∞G
(𝑑)
𝑛,ℎ
(𝑓; 𝑥) =𝑓(𝑥), uniformly on each compact subset of [0,∞).

Proof. By Lemma 2, lim𝑛→∞G
(𝑑)
𝑛,ℎ
(𝑒𝑖; 𝑥), 𝑖 = 0, 1, 2, uniformly

on every compact subset of [0,∞). So, by Bohman-Korovkin
theorem, the result follows.
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Figure 1

Example 5. For 𝑛 = 50, 100, and 500, 𝑑 = 0.5, and 𝑏𝑛 =√𝑛, the convergence of G(𝑑)
𝑛,ℎ
(𝑓; 𝑥) to 𝑓(𝑥) = 𝑥 cos(𝑥 + 1) is

illustrated in Figure 1(a).

Example 6. For 𝑛 = 50, 100, and 500, 𝑑 = 0.5, and 𝑏𝑛 =√𝑛, the convergence of G(𝑑)
𝑛,ℎ
(𝑓; 𝑥) to 𝑓(𝑥) = 𝑥2/√𝑥2 + 1 is

illustrated in Figure 1(b).

Theorem 7. Let𝑓 ∈ 𝐶𝐸[0,∞), and then for any 𝑥 ∈ [0, 𝑐] one
has
󵄨󵄨󵄨󵄨󵄨G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑓 (𝑥)󵄨󵄨󵄨󵄨󵄨
≤ {{{1 +

√𝑐 + 𝑏𝑛𝑛 ℎ (ℎ + 1) (𝑑 + 1)2}}}𝜔(𝑓;
√ 𝑏𝑛𝑛 ) .

(12)

Proof. By using Lemma 3 case (ii) and the well-known
properties of the modulus of continuity, we have

󵄨󵄨󵄨󵄨󵄨G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑓 (𝑥)󵄨󵄨󵄨󵄨󵄨 ≤ G
(𝑑)
𝑛,ℎ (󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓 (𝑘𝑛𝑏𝑛) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ; 𝑥)
≤ {1 + 1𝛿G(𝑑)𝑛,ℎ (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑘𝑛𝑏𝑛 − 𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ; 𝑥)}𝜔 (𝑓; 𝛿) .

(13)

Recalling the Cauchy-Schwarz inequality, we obtain the
formula below:
󵄨󵄨󵄨󵄨󵄨G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑓 (𝑥)󵄨󵄨󵄨󵄨󵄨
≤ {1 + 1𝛿 (G(𝑑)𝑛,ℎ ((𝑘𝑛𝑏𝑛 − 𝑥)

2 ; 𝑥))1/2}𝜔 (𝑓; 𝛿)
= {1 + 1𝛿√G(𝑑)𝑛,ℎ ((𝑡 − 𝑥)2 ; 𝑥)} .

(14)

By means of Lemma 3 case (ii), for 0 ≤ 𝑥 ≤ 𝑐, one gets
G
(𝑑)
𝑛,ℎ ((𝑒1 − 𝑥)2 ; 𝑥) ≤ 𝑏𝑛𝑐𝑛 + 𝑏2𝑛𝑛2 ℎ (ℎ + 1) (𝑑 + 1)2 . (15)

Using (22) and taking 𝛿 = √𝑏𝑛/𝑛 in (19), we obtain the desired
result.

The theorem below shows that the derivative(𝑑𝑟/𝑑𝑥𝑟)G(𝑑)
𝑛,ℎ
(𝑓; 𝑥) is also an approximation process for𝑑𝑟𝑓/𝑑𝑥𝑟.

Theorem 8. Let 𝑓 ∈ 𝐶𝐸[0,∞). If 𝑓(𝑟) exists at a point 𝑥 ∈ (0,∞), then one has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑
𝑟

𝑑𝑥𝑟G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑑𝑟𝑑𝑥𝑟𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑟!{{{1 +
√𝑐 + 𝑏𝑛𝑛 ℎ (ℎ + 1) (𝑑 + 1)2}}}𝜔(𝑓;

√ 𝑏𝑛𝑛 )
+ 𝜔( 𝑑𝑟𝑑𝑥𝑟𝑓; 𝑟𝑏𝑛𝑛 ) ,

(16)

where 𝜔(𝑑𝑟𝑓/𝑑𝑥𝑟, ⋅) is the modulus of continuity of 𝑑𝑟𝑓/𝑑𝑥𝑟.
Proof. By simple calculations, the following formula is
obtained:

𝑑𝑟𝑑𝑥𝑟G(𝑑)𝑛,ℎ (𝑓; 𝑥) = ( 𝑛𝑏𝑛)
𝑟

G
(𝑑)
𝑛,ℎ (Δ𝑟𝑏𝑛/𝑛𝑓; 𝑥) , (17)

where Δ𝑟𝑏𝑛/𝑛𝑓((𝑘/𝑛)𝑏𝑛) is the difference of order 𝑟 of 𝑓 corre-
sponding to the increment 𝑏𝑛/𝑛. Using the relation between
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finite difference and divided difference, the derivative of order𝑟 of the operators is represented as follows:

𝑑𝑟𝑑𝑥𝑟G(𝑑)𝑛,ℎ (𝑓; 𝑥) = 𝑟!G(𝑑)𝑛,ℎ (
Δ𝑟𝑏𝑛/𝑛𝑓𝑟! (𝑏𝑛/𝑛)𝑟 ; 𝑥)

= 𝑟!𝑒−𝑛𝑥/𝑏𝑛−ℎ ∞∑
𝑘=0

𝑔𝑑+1𝑘 (𝑛𝑥/𝑏𝑛, ℎ)𝑘! [𝑘𝑛𝑏𝑛, 𝑘 + 1𝑛
⋅ 𝑏𝑛, . . . , 𝑘 + 𝑟𝑛 𝑏𝑛; 𝑓] = 𝑟!G(𝑑)𝑛,ℎ (𝜇; 𝑥) ,

(18)

where 𝜇(𝑥) = [𝑥, 𝑥 + 𝑏𝑛/𝑛, . . . , 𝑥 + 𝑟(𝑏𝑛/𝑛); 𝑓]. Then, using
Theorem 4, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑
𝑟

𝑑𝑥𝑟G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑑𝑟𝑑𝑥𝑟𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑟! 󵄨󵄨󵄨󵄨󵄨G(𝑑)𝑛,ℎ (𝜇; 𝑥) − 𝜇 (𝑥)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟!𝜇 (𝑥) − 𝑑𝑟𝑑𝑥𝑟𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑟!{{{1 +
√𝑐 + 𝑏𝑛𝑛 ℎ (ℎ + 1) (𝑑 + 1)2}}}𝜔(𝑓;

√ 𝑏𝑛𝑛 )
+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟!𝜇 (𝑥) − 𝑑𝑟𝑑𝑥𝑟𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(19)

By using the mean value theorem and some known classical
properties of the modulus of continuity [11], one has

󵄨󵄨󵄨󵄨𝜇 (𝑥 + 𝛿) − 𝜇 (𝑥)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨[𝑥 + 𝛿, 𝑥 + 𝛿 + 𝑏𝑛𝑛 , . . . , 𝑥 + 𝛿 + 𝑟𝑏𝑛𝑛 ; 𝑓]
− [𝑥, 𝑥 + 𝑏𝑛𝑛 , . . . , 𝑥 + 𝑟𝑏𝑛𝑛 ; 𝑓]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 1𝑟!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑
𝑟

𝑑𝑥𝑟𝑓(𝑥 + 𝛿 + 𝑟𝑏𝑛𝑛 𝜙1)
− 𝑑𝑟𝑑𝑥𝑟𝑓(𝑥 + 𝑟𝑏𝑛𝑛 𝜙2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 1𝑟!𝜔( 𝑑𝑟𝑑𝑥𝑟𝑓; 𝛿
+ 𝑟𝑏𝑛𝑛 󵄨󵄨󵄨󵄨𝜙1 − 𝜙2󵄨󵄨󵄨󵄨) ≤ 1𝑟!𝜔( 𝑑𝑟𝑑𝑥𝑟𝑓; 𝛿 + 𝑟𝑏𝑛𝑛 ) ,

(20)

where 𝜙1, 𝜙2 ∈ (0, 1).Hence, we obtain
𝜔 (𝜇, 𝛿) ≤ 1𝑟!𝜔( 𝑑𝑟𝑑𝑥𝑟𝑓; 𝛿 + 𝑟𝑏𝑛𝑛 ) . (21)

On the other hand,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟!𝜇 (𝑥) − 𝑑𝑟𝑑𝑥𝑟𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟! [𝑥, 𝑥 + 𝑏𝑛𝑛 , . . . , 𝑥 + 𝑟𝑏𝑛𝑛 ; 𝑓] − 𝑑𝑟𝑑𝑥𝑟𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑
𝑟

𝑑𝑥𝑟𝑓(𝑥 + 𝑟𝑏𝑛𝑛 𝜙3) − 𝑑𝑟𝑑𝑥𝑟𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜔( 𝑑𝑟𝑑𝑥𝑟𝑓; 𝜙3𝑟𝑏𝑛𝑛 ) ≤ 𝜔( 𝑑𝑟𝑑𝑥𝑟𝑓; 𝑟𝑏𝑛𝑛 ) ,
(22)

where 𝜙3 ∈ (0, 1). Using the estimates in (15), we have the
desired result.

3. Weighted Approximation

Let𝐷𝜓[0,∞) be the space of all functions𝑓defined on [0,∞)
satisfying the condition |𝑓(𝑥)| ≤ 𝑀𝑓𝜓(𝑥), where 𝑀𝑓 is a
positive constant depending only on 𝑓 and 𝜓(𝑥) = 1 + 𝑥2
is a weight function. By 𝐶𝜓[0,∞), we denote the subspace
of all continuous functions 𝑓 ∈ 𝐷𝜓[0,∞) with the norm‖𝑓‖𝜓 = sup𝑥∈[0,∞)(|𝑓(𝑥)|/(1 + 𝑥2)) and 𝐶∗𝜓[0,∞) = {𝑓 ∈𝐶𝜓[0,∞) : lim𝑛→∞(𝑓(𝑥)/(1 + 𝑥2)) < ∞}.
Theorem 9. Let 𝑓 ∈ 𝐶𝜓[0,∞), and let 𝜓 = 1 + 𝑥2 be a
weighted function; then, the inequality

󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝜓; 𝑥)󵄩󵄩󵄩󵄩󵄩𝜓 ≤ 1 +𝑀𝑓 (23)

is satisfied.

Proof. Using Lemma 2, one has

󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑓; 𝑥)󵄩󵄩󵄩󵄩󵄩𝜓 = sup
𝑥≥0

11 + 𝑥2 {1 + 𝑥2

+ 𝑏𝑛𝑥𝑛 (2ℎ (𝑑 + 1) + 1) + 𝑏2𝑛𝑛2 ℎ (ℎ + 1) (𝑑 + 1)2}
≤ {1 + 𝑏𝑛𝑛 (2ℎ (𝑑 + 1) + 1)
+ 𝑏2𝑛𝑛2 ℎ (ℎ + 1) (𝑑 + 1)2} .

(24)

Since lim𝑛→∞(𝑏𝑛/𝑛) = 0, there exists constant𝑀𝑓 such that

󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝜓; 𝑥)󵄩󵄩󵄩󵄩󵄩𝜓 ≤ 1 +𝑀𝑓. (25)

This proof is complete.

From [12], for 𝑓 ∈ 𝐶∗𝜓[0,∞), the weighted modulus of
continuity of 𝑓 is defined by

Ω𝜓 (𝑓; 𝛿)
= sup
0≤|𝜓(𝑥)−𝜓(𝑡)|<𝛿,𝑥,𝑡∈[0,∞)

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑡)󵄨󵄨󵄨󵄨[󵄨󵄨󵄨󵄨𝜓 (𝑥) − 𝜓 (𝑡)󵄨󵄨󵄨󵄨 + 1] 𝜓 (𝑥) ,
(26)

where 𝜓 is a continuously differentiable function on [0,∞),𝜓(0) = 0, and inf𝑥≥0𝜓󸀠(𝑥) ≥ 1. Now, we define following
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sequence of positive linear operators P(𝑑)
𝑛,ℎ

defined with the
help ofG(𝑑)

𝑛,ℎ
defined in (6):

P
(𝑑)
𝑛,ℎ (𝑓; 𝑥) = 𝑒−𝑛𝑥/𝑏𝑛−ℎ𝜓2 (𝑥)
⋅ ∞∑
𝑘=0

𝑔𝑑+1𝑘 (𝑛𝑥𝑏𝑛 , ℎ)
1𝜓2 ((𝑘/𝑛) 𝑏𝑛) 𝑘!𝑓(

𝑘𝑛𝑏𝑛) ,
𝑥 ∈ [0,∞) .

(27)

Theorem 10 (see [12]). Let (𝐿𝑛) be the sequences of linear
positive operators and 𝜂(𝑥) ≤ 𝜓𝑘(𝑥), 𝑘 = 1, 2, 3. If

󵄩󵄩󵄩󵄩𝐿𝑛1 − 1󵄩󵄩󵄩󵄩𝜓1 = 𝛼𝑛,󵄩󵄩󵄩󵄩𝐿𝑛𝜌 − 𝜌󵄩󵄩󵄩󵄩𝜓2 = 𝛽𝑛,󵄩󵄩󵄩󵄩󵄩𝐿𝑛𝜌2 − 𝜌2󵄩󵄩󵄩󵄩󵄩𝜓3 = 𝛾𝑛,
(28)

where 𝜓(𝑥) = max{𝜓1, 𝜓2, 𝜓3} and 𝛼𝑛, 𝛽𝑛, and 𝛾𝑛 tend to zero
as 𝑛 → ∞, then, for all functions 𝑓 ∈ 𝐶∗𝜓[0,∞), the inequality

󵄩󵄩󵄩󵄩𝐿𝑛 (𝑓; 𝑥) − 𝑓󵄩󵄩󵄩󵄩𝜓𝜌2 ≤ Ω𝜌 (𝑓;√𝛼𝑛 + 𝛽𝑛 + 𝛾𝑛)
+ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝜌 𝛼𝑛

(29)

holds for 𝑛 large enough.
Theorem 11. Let P

(𝑑)
𝑛,ℎ

be the sequences of linear positive
operators defined by (27) and 𝜂(𝑥) = 1 + 𝑥2. If 𝑓 ∈ 𝐶∗𝜓[0,∞),
then the inequality

󵄩󵄩󵄩󵄩󵄩P(𝑑)
𝑛,ℎ (𝑓; 𝑥) − 𝑓󵄩󵄩󵄩󵄩󵄩𝜓4𝜂 ≤ 16Ω𝜓 (𝑓;√𝛼𝑛 + 2𝛽𝑛)

+ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝜓 𝛼𝑛
(30)

is satisfied, where 𝛼𝑛 = (2ℎ(𝑑 + 1) + 1)(𝑏𝑛/𝑛) + (𝑏𝑛/𝑛)2ℎ(ℎ +1)(𝑑 + 1)2 and 𝛽𝑛 = (𝑏𝑛/𝑛)ℎ(𝑑 + 1).
Proof. By simple calculation, we have

P
(𝑑)
𝑛,ℎ (1; 𝑥) − 1 = 𝜓2 (𝑥) [𝑒−𝑛𝑥/𝑏𝑛−ℎ ∞∑

𝑘=0

𝑔𝑑+1𝑘 (𝑛𝑥𝑏𝑛 , ℎ)
⋅ 1𝜓2 ((𝑘/𝑛) 𝑏𝑛) 𝑘!𝑓(

𝑘𝑛𝑏𝑛) − 1𝜓2 (𝑥)] ,
(31)

P
(𝑑)
𝑛,ℎ (𝑡; 𝑥) − 𝑥 = 𝜓2 (𝑥) [𝑒−𝑛𝑥/𝑏𝑛−ℎ ∞∑

𝑘=0

𝑔𝑑+1𝑘 (𝑛𝑥𝑏𝑛 , ℎ)
⋅ 1𝜓 ((𝑘/𝑛) 𝑏𝑛) 𝑘!𝑓(

𝑘𝑛𝑏𝑛) − 1𝜓 (𝑥)] ,
(32)

P
(𝑑)
𝑛,ℎ (𝜓2; 𝑥) − 𝜓2 (𝑥) = 0. (33)

From Lemma 2, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑛𝑥/𝑏𝑛−ℎ

∞∑
𝑘=0

𝑔𝑑+1𝑘 (𝑛𝑥𝑏𝑛 , ℎ)
⋅ 1𝜓2 ((𝑘/𝑛) 𝑏𝑛) 𝑘!𝑓(

𝑘𝑛𝑏𝑛) − 1𝜓2 (𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜂 = 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑛𝑥/𝑏𝑛−ℎ

∞∑
𝑘=0

𝑔𝑑+1𝑘 (𝑛𝑥𝑏𝑛 , ℎ)
⋅ 1𝜓 ((𝑘/𝑛) 𝑏𝑛) 𝑘!𝑓(

𝑘𝑛𝑏𝑛) − 1𝜓 (𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜓 = 0.

(34)

Using Lemma 2 and (31), we obtain

󵄩󵄩󵄩󵄩󵄩P(𝑑)
𝑛,ℎ (1; 𝑥) − 1󵄩󵄩󵄩󵄩󵄩𝜓2𝜂 = lim

𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑛𝑥/𝑏𝑛−ℎ

∞∑
𝑘=0

𝑔𝑑+1𝑘 (𝑛𝑥𝑏𝑛 , ℎ)
⋅ 1𝜓2 ((𝑘/𝑛) 𝑏𝑛) 𝑘!𝑓(

𝑘𝑛𝑏𝑛) − 1𝜓2 (𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜂 ≤ (2ℎ (𝑑

+ 1) + 1) 𝑏𝑛𝑛 + (𝑏𝑛𝑛 )
2 ℎ (ℎ + 1) (𝑑 + 1)2 = 𝛼𝑛.

(35)

By means of Lemma 2 and (32), one gets
󵄩󵄩󵄩󵄩󵄩P(𝑑)

𝑛,ℎ (𝜓; 𝑥) − 𝜓󵄩󵄩󵄩󵄩󵄩𝜓2𝜂
= lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑛𝑥/𝑏𝑛−ℎ

∞∑
𝑘=0

𝑔𝑑+1𝑘 (𝑛𝑥𝑏𝑛 , ℎ)
⋅ 1𝜌 ((𝑘/𝑛) 𝑏𝑛) 𝑘!𝑓(

𝑘𝑛𝑏𝑛) − 1𝜓 (𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜂 ≤

𝑏𝑛𝑛 ℎ (𝑑 + 1)
= 𝛽𝑛.

(36)

Finally, from (33), we obtain
󵄩󵄩󵄩󵄩󵄩P(𝑑)

𝑛,ℎ (𝜓2; 𝑥) − 𝜓2󵄩󵄩󵄩󵄩󵄩𝜓2𝜂 = 0 = 𝛾𝑛. (37)

If we apply Theorem 10, we obtain the desired result.

4. 𝐴-Statistical Convergence
Now, let 𝐴 = [𝑎𝑗𝑛], 𝑗, 𝑛 ∈ N, be an infinite summability
matrix. For a given sequence (𝑥𝑛), the 𝐴-transform of 𝑥,
denoted by ((𝐴𝑥)𝑗), is given by

(𝐴𝑥)𝑗 = ∞∑
𝑛=1

𝑎𝑗𝑛𝑥𝑛 (38)

which provides the converging series for each 𝑗 ∈ N.We say
that 𝐴 is a regular if lim𝑗(𝐴𝑥)𝑗 = 𝐿 whenever lim𝑛(𝑥𝑛) = 𝐿.
A sequence (𝑥𝑛) is called𝐴-statistically convergent to 𝐿 if, for
every 𝜖 > 0, lim𝑗∑𝑛:|𝑥𝑛−𝐿|≥𝜖 𝑎𝑗𝑛 = 0.This limit is denoted by
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𝑠𝑡𝐴 − lim𝑛𝑥𝑛 = 𝐿. Replacing 𝐴 by 𝐶1, the Cesàro matrix of
order one in (6), from 𝐴-statistical convergence, is reduced
to statistical convergence. Similarly, if we take 𝐴 = 𝐼, the
identitymatrix, then𝐴-statistical convergence coincides with
the ordinary convergence. Kolk [13] proved that, in the case
of lim𝑗max𝑛 = 0, 𝐴-statistical convergence is stronger than
ordinary convergence.

Further, we will first obtain the following weighted
Korovkin theorem via 𝐴-statistical convergence.
Theorem 12. Let (𝑎𝑛𝑘) be a nonnegative regular infinite sum-
mability matrix and 𝑥 ∈ [0,∞). Let 𝜓𝛾 ≥ 1 be a continuous
function such that

lim
𝑛→∞

𝜓 (𝑥) 𝜓−1𝛾 (𝑥) = 0. (39)

Then, for all 𝑓 ∈ 𝐶∗𝜓[0,∞), we have
𝑠𝑡𝐴 − lim

𝑛→∞

󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑓󵄩󵄩󵄩󵄩󵄩𝜓𝛾 = 0. (40)

Proof. From [14], for any 𝑓 ∈ 𝐶∗𝜓[0,∞), it is enough to prove
that

𝑠𝑡𝐴 − lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑒𝑖; 𝑥) − 𝑒𝑖󵄩󵄩󵄩󵄩󵄩𝜓𝛾 = 0,
for 𝑒𝑖 = 𝑡𝑖, 𝑖 = 0, 1, 2.

(41)

So, by Lemma 2, we can easily get

𝑠𝑡𝐴 − lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑒0; 𝑥) − 𝑒0󵄩󵄩󵄩󵄩󵄩𝜓𝛾 = 0. (42)

Again, by using Lemma 2, we have

󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑒1; 𝑥) − 𝑒1󵄩󵄩󵄩󵄩󵄩𝜓 = 𝑏𝑛𝑛 ℎ (𝑑 + 1) sup
𝑥∈[0,∞)

11 + 𝑥2
≤ 𝑏𝑛𝑛 ℎ (𝑑 + 1) .

(43)

Now, for every given 𝜖 > 0, let us define the following sets:
𝑆 = {𝑛 : 󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑒1; 𝑥) − 𝑒1󵄩󵄩󵄩󵄩󵄩𝜓 ≥ 𝜖} ,
𝑆1 = {𝑛 : 𝑏𝑛𝑛 ℎ (𝑑 + 1) ≥ 𝜖} .

(44)

It is clear that 𝑆 ⊆ 𝑆1.Hence, for all 𝑛 ∈ 𝑁, we get

∑
𝑘∈𝑆

𝑎𝑛𝑘 ≤ ∑
𝑘∈𝑆1

𝑎𝑛𝑘. (45)

Therefore, 𝑠𝑡𝐴 − lim𝑛→∞‖G(𝑑)𝑛,ℎ(𝑒1; 𝑥) − 𝑒1‖𝜓𝛾 = 0.

Similarly, we have

󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑒2; 𝑥) − 𝑒2󵄩󵄩󵄩󵄩󵄩𝜓
= sup
𝑥∈[0,∞)

𝑥1 + 𝑥2 𝑏𝑛𝑛 (2ℎ (𝑑 + 1) + 1)
+ 𝑏2𝑛𝑛2 ℎ (ℎ + 1) (𝑑 + 1)2 sup

𝑥∈[0,∞)

11 + 𝑥2
≤ (2ℎ (𝑑 + 1) + 1) 𝑏𝑛𝑛 + (𝑏𝑛𝑛 )

2 ℎ (ℎ + 1) (𝑑 + 1)2 .

(46)

Now, we define the following sets:

𝑈 = {𝑛 : 󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑒2; 𝑥) − 𝑒2󵄩󵄩󵄩󵄩󵄩𝜓 ≥ 𝜖} ,
𝑈1 = {𝑛 : (2ℎ (𝑑 + 1) + 1) 𝑏𝑛𝑛 ≥ 𝜖2} ,
𝑈2 = {𝑛 : (𝑏𝑛𝑛 )

2 ℎ (ℎ + 1) (𝑑 + 1)2 ≥ 𝜖2} .
(47)

In view of (46), it is clear that 𝑈 ⊆ 𝑈1 ∪ 𝑈2, which yields

∑
𝑘∈𝑈

𝑎𝑛𝑘 ≤ ∑
𝑘∈𝑈1

𝑎𝑛𝑘 + ∑
𝑘∈𝑈2

𝑎𝑛𝑘. (48)

Thus, we get 𝑠𝑡𝐴 − lim𝑛→∞‖G(𝑑)𝑛,ℎ(𝑒2; 𝑥) − 𝑒2‖𝜓𝛾 = 0.
Similarly, from Lemma 3, we have

𝑠𝑡𝐴 − lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩𝜂(𝑑)𝑛,𝑠 (𝑥)󵄩󵄩󵄩󵄩󵄩𝜓 = 0, 𝑠 = 1, 2, 3, 4. (49)

Now, we give a Voronovskaja type relation for the operators
G
(𝑑)
𝑛,ℎ
.

Theorem 13. Let 𝐴 = (𝑎𝑛𝑘) be a nonnegative regular infinite
summability matrix. Then, for every 𝑓 ∈ 𝐶∗𝜓[0,∞) such that𝑓󸀠, 𝑓󸀠󸀠 ∈ 𝐶∗𝜓[0,∞), one has

𝑠𝑡𝐴 − lim
𝑛→∞

𝑛𝑏𝑛 (G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑓 (𝑥))
= ℎ (𝑑 + 1) 𝑓󸀠 (𝑥) + 𝑥2𝑓󸀠󸀠 (𝑥)

(50)

uniformly with respect to 𝑥 ∈ [0, 𝐸], (𝐸 > 0).
Proof. Let 𝑥 ≥ 0, and 𝑓󸀠, 𝑓󸀠󸀠 ∈ 𝐶∗𝜓[0,∞).Define the function𝜃 by

𝜃 (𝑡, 𝑥) = {{{{{
𝑓 (𝑡) − 𝑓 (𝑥) − (𝑡 − 𝑥) 𝑓󸀠 (𝑥) − (1/2) (𝑡 − 𝑥)2 𝑓󸀠󸀠 (𝑥)(𝑡 − 𝑥)2 , if 𝑡 ̸= 𝑥,
0, if 𝑡 = 𝑥. (51)
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Then, by assumption, we get 𝜃(𝑥, 𝑥) = 0 and 𝜃(⋅, 𝑥) ∈ 𝐶∗𝜓[0,∞).
By the linearity of G(𝑑)

𝑛,ℎ
applied to the last equality, we

obtain 𝑛𝑏𝑛 (G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑓 (𝑥))
= 𝑛𝑏𝑛 𝜂(𝑑)𝑛,1 (𝑥) 𝑓󸀠 (𝑥) +

12 𝑛𝑏𝑛 𝜂(𝑑)𝑛,2 (𝑥) 𝑓󸀠󸀠 (𝑥)
+ 𝑛𝑏𝑛G(𝑑)𝑛,ℎ (𝜃 (𝑡, 𝑥) (𝑡 − 𝑥)2 ; 𝑥) .

(52)

In view of Lemma 2, we get

𝑠𝑡𝐴 − lim
𝑛→∞

𝑛𝑏𝑛 𝜂(𝑑)𝑛,1 (𝑥) = ℎ (𝑑 + 1) ,
𝑠𝑡𝐴 − lim

𝑛→∞

𝑛𝑏𝑛 𝜂(𝑑)𝑛,2 (𝑥) = 𝑥,
𝑠𝑡𝐴 − lim

𝑛→∞

𝑛2𝑏2𝑛 𝜂(𝑑)𝑛,4 (𝑥) = 3𝑥2.
(53)

For the last term of the right hand side in (52), using Cauchy-
Schwarz inequality, we are led to

𝑛𝑏𝑛G(𝑑)𝑛,ℎ (𝜃 (𝑡, 𝑥) (𝑒1 − 𝑥)2 ; 𝑥)
≤ √G(𝑑)

𝑛,ℎ
(𝜉2 (𝑡, 𝑥) ; 𝑥)√ 𝑛2𝑏2𝑛 𝜂(𝑑)𝑛,4 (𝑥).

(54)

We observe that 𝜃2(𝑥, 𝑥) = 0, and 𝜃2(⋅, 𝑥) ∈ 𝐶∗𝛾 [0,∞). In view
of Theorem 4,

𝑠𝑡𝐴 − lim
𝑛→∞

G
(𝑑)
𝑛,ℎ (𝜃2 (𝑡, 𝑥) ; 𝑥) = 𝜃2 (𝑥, 𝑥) = 0. (55)

Then, it follows from (32) that

𝑠𝑡𝐴 − lim
𝑛→∞

𝑛𝑏𝑛G(𝑑)𝑛,ℎ (𝜃 (𝑡, 𝑥) (𝑒1 − 𝑥)2 ; 𝑥) = 0 (56)

uniformly in 𝑥 ∈ [𝑎, 𝑏]. Combining (27), (31), and (46), we
get the desired result.

Let 𝐶𝐵[0,∞) denote the space of all real-valued bounded
and uniformly continuous functions 𝑓 on [0,∞), endowed
with the norm ‖𝑓‖ = sup𝑥∈[0,∞)|𝑓(𝑥)|. Further, the appropri-
ate Peetre𝐾-functional is given by

𝐾2 (𝑓; 𝛿) = inf
𝑔∈𝑊2

{󵄩󵄩󵄩󵄩𝑓 − 𝑔󵄩󵄩󵄩󵄩 + 𝛿 󵄩󵄩󵄩󵄩󵄩𝑔󸀠󸀠󵄩󵄩󵄩󵄩󵄩} , (57)

where Δ2 = {𝑔 ∈ 𝐶𝐵[0,∞) : 𝑔󸀠, 𝑔󸀠󸀠 ∈ 𝐶𝐵[0,∞)}. By [15,
Theorem 4] we can find a constant 𝐶 > 0 such that

𝐾2 (𝑓; 𝛿) ≤ 𝐶𝜔2 (𝑓;√𝛿) , (58)

where 𝜔2(𝑓;√𝛿) is the second-order modulus of continuity
of𝑓 ∈ 𝐶𝐵[0,∞).Now, we obtain the rate of𝐴-statistical con-
vergence for the operators G(𝑑)

𝑛,ℎ
with the help of Peetre’s 𝐾-

functional.

Theorem 14. Let 𝑓 ∈ Δ2.Then, one has

𝑠𝑡𝐴 − lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑓󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞) = 0. (59)

Proof. By the linearity property of G(𝑑)
𝑛,ℎ

operators and using
the local Taylor formula to the function 𝑓 ∈ Δ2, we have

G
(𝑑)
𝑛,ℎ (𝑓; 𝑥) − 𝑓 (𝑥) = 𝜂(𝑑)𝑛,1 (𝑥) 𝑓󸀠 (𝑥)

+ 12𝜂(𝑑)𝑛,2 (𝑥) 𝑓󸀠󸀠 (𝜉) ,
(60)

where 𝜉 ∈ (𝑡, 𝑥).
Thus, we get

󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑓󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞)
= 󵄩󵄩󵄩󵄩󵄩𝑓󸀠󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞) 󵄩󵄩󵄩󵄩󵄩𝜂(𝑑)𝑛,1 (𝑥)󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞)
+ 12 󵄩󵄩󵄩󵄩󵄩𝑓󸀠󸀠󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞) 󵄩󵄩󵄩󵄩󵄩𝜂(𝑑)𝑛,2 (𝑥)󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞) .

(61)

In view of (49) for 𝜖 > 0, we have
lim
𝑛

∑
𝑘∈𝑁:𝐼1≥𝜖/2

𝑎𝑛𝑘 = 0,
lim
𝑛

∑
𝑘∈𝑁:𝐼2≥𝜖/2

𝑎𝑛𝑘 = 0. (62)

From (61), one can write the following:

∑
𝑘∈𝑁:‖G(𝑑)

𝑛,ℎ
(𝑓;𝑥)−𝑓‖𝐶𝐵[0,∞)

𝑎𝑛𝑘 ≤ ∑
𝑘∈𝑁:𝐼1≥𝜖/2

𝑎𝑛𝑘 + ∑
𝑘∈𝑁:𝐼2≥𝜖/2

𝑎𝑛𝑘
= 0.

(63)

Hence, taking the limit as 𝑛 → ∞, we get the desired result.

The following theorem contains quantitative estimates by
means of Peetre’s𝐾-functional.
Theorem 15. Letting 𝑓 ∈ 𝐶𝐵[0,∞), one has the estimate

󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑓󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞) ≤ 𝑀𝜔2 (𝑓;√𝛿𝑛) , (64)

where 𝛿𝑛 = ‖𝜂(𝑑)𝑛,1 (𝑥)‖𝐶𝐵[0,∞) + ‖𝜂(𝑑)𝑛,2 (𝑥)‖𝐶𝐵[0,∞).
Proof. Letting 𝑔 ∈ Δ2, by (61), we have
󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑓󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞)
= 󵄩󵄩󵄩󵄩󵄩𝑓󸀠󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞) 󵄩󵄩󵄩󵄩󵄩𝜂(𝑑)𝑛,1 (𝑥)󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞)
+ 12 󵄩󵄩󵄩󵄩󵄩𝑓󸀠󸀠󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞) 󵄩󵄩󵄩󵄩󵄩𝜂2𝑛,𝑠 (𝑥)󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞)

≤ {󵄩󵄩󵄩󵄩󵄩𝜂(𝑑)𝑛,1 (𝑥)󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞) + 12 󵄩󵄩󵄩󵄩󵄩𝜂(𝑑)𝑛,2 (𝑥)󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞)} 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩Δ2 .

(65)
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Using the last inequality for 𝑓 ∈ 𝐶𝐵[0,∞), and 𝑔 ∈ Δ2, we
get

󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑓󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞)
= 󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑓; 𝑥) −G

(𝑑)
𝑛,ℎ (𝑔)󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞)

+ 󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑔; 𝑥) − 𝑔󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞) + 󵄩󵄩󵄩󵄩𝑔 − 𝑓󵄩󵄩󵄩󵄩𝐶𝐵[0,∞)
≤ 󵄩󵄩󵄩󵄩𝑔 − 𝑓󵄩󵄩󵄩󵄩𝐶𝐵[0,∞) + 󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑔; 𝑥) − 𝑔󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞)
≤ 2 󵄩󵄩󵄩󵄩𝑔 − 𝑓󵄩󵄩󵄩󵄩𝐶𝐵[0,∞) + 𝛿𝑛 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑊2 .

(66)

Taking the infimum on the right sides of the above inequality
for all functions 𝑔 ∈ Δ2, so

󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑓󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞) ≤ 𝐾2 (𝑓; 𝛿𝑛) . (67)

By using the relation between Peetre’s 𝐾-functional and the
second modulus of smoothness given in [15], we get

󵄩󵄩󵄩󵄩󵄩G(𝑑)𝑛,ℎ (𝑓; 𝑥) − 𝑓󵄩󵄩󵄩󵄩󵄩𝐶𝐵[0,∞)
≤ 𝑀{𝜔2 (𝑓;√𝛿𝑛) +min (1, 𝛿𝑛) 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝐶𝐵[0,∞)} .

(68)

From (49), we get 𝑠𝑡𝐴 − lim𝑛→∞𝛿𝑛 = 0, and hence 𝑠𝑡𝐴 −
lim𝑛→∞𝜔2(𝑓;√𝛿𝑛) = 0. Therefore, we get the rate of 𝐴-
statistical convergence of the sequence G

(𝑑)
𝑛,ℎ

to 𝑓(𝑥) in the
space 𝐶𝐵[0,∞).
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