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We study the existence ofmild solution of a class of nonlinear nonautonomous fractional integrodifferential equationswith nonlocal
conditions in a separable Banach space 𝑋. Combining the techniques of operator semigroup, noncompactness measures, and the
fixed point theory, we obtain new existence of mild solution without the assumptions that the nonlinearity 𝑓 satisfies a Lipschitz
type condition and the semigroup {exp(−𝑡𝐴(𝑠))} generated by {−𝐴(𝑠)}

𝑠∈[0,𝑇]
is compact. An application of the abstract result is also

given.

1. Introduction

In this paper, we denote that 𝐶 is a positive constant and
assume that a family of closed linear operators {𝐴(𝑡)}

𝑡∈[0,𝑇]

satisfies the following.

(A1) The domain𝐷(𝐴) of {𝐴(𝑡)}
𝑡∈[0,𝑇]

is dense in a Banach
space𝑋 and independent of 𝑡.

(A2) The operator [𝐴(𝑡) + 𝜆]−1 exists in 𝐿(𝑋) (the Banach
space of all linear and bounded operators on 𝑋) for
any 𝜆 with Re 𝜆 ≥ 0 and

󵄩󵄩󵄩󵄩󵄩
[𝐴 (𝑡) + 𝜆]

−1
󵄩󵄩󵄩󵄩󵄩
≤
𝐶

|𝜆| + 1
, 𝑡 ∈ [0, 𝑇] . (1)

(A3) There exist constants 𝛾 ∈ (0, 1] and 𝐶 such that
󵄩󵄩󵄩󵄩󵄩
[𝐴 (𝑡

1
) − 𝐴 (𝑡

2
)] 𝐴

−1

(𝑠)
󵄩󵄩󵄩󵄩󵄩
≤ 𝐶
󵄨󵄨󵄨󵄨𝑡1 − 𝑡2

󵄨󵄨󵄨󵄨

𝛾

,

𝑡
1
, 𝑡
2
, 𝑠 ∈ [0, 𝑇] .

(2)

Under condition (A2), each operator −𝐴(𝑠), 𝑠 ∈ [0, 𝑇],
generates an analytic semigroup exp(−𝑡𝐴(𝑠)), 𝑡 > 0, and there
exists a constant 𝐶 such that

󵄩󵄩󵄩󵄩𝐴
𝑛

(𝑠) exp (−𝑡𝐴 (𝑠))󵄩󵄩󵄩󵄩 ≤
𝐶

𝑡𝑛
, (3)

where 𝑛 = 0, 1, 𝑡 > 0, 𝑠 ∈ [0, 𝑇] ([1]).

Moreover, ‖𝐴(𝑡)𝐴−1(𝑠)‖ ≤ 𝐶, which follows from condi-
tion (A2), where 𝑡, 𝑠 ∈ [0, 𝑇] and𝐶 is a positive constant inde-
pendent of both 𝑡 and 𝑠.

This paper is concerned with existence result for nonau-
tonomous fractional integrodifferential equations with non-
local conditions in a separable Banach space𝑋:

𝑑
𝑞V (𝑡)

𝑑𝑡𝑞
= −𝐴 (𝑡) V (𝑡) + 𝑓(𝑡, ∫

𝑡

0

𝐾 (𝑡, 𝑠) V (𝑠) 𝑑𝑠, V (𝑡)) ,

𝑡 ∈ [0, 𝑇] ,

V (0) = 𝐴
−1

(0) 𝑔 (V) ,

(4)

where𝑇 > 0, 0 < 𝑞 < 1, {𝐴(𝑡)}
𝑡∈[0,𝑇]

is a family of closed linear
operators in 𝑋 and satisfies (A1)–(A3), 𝐾 ∈ 𝐶(Δ,R+) with
Δ = {(𝑡, 𝑠) ∈ R2 : 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇} and

sup
𝑡∈[0,𝑇]

∫

𝑡

0

𝐾 (𝑡, 𝑠) 𝑑𝑠 < ∞, (5)

𝑓 : [0, 𝑇] ×𝑋×𝑋 → 𝑋, 𝑔 are given functions to be specified
later. The fractional derivative is understood here in the
Riemann-Liouville sense.

Fractional calculus is a generalization of ordinary differ-
entiation and integration to arbitrary noninteger order. The
field of the application of fractional calculus is very broad.
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We can see it in the study of the memorial materials, earth-
quake analysis, robots, electric fractal network, fractional sine
oscillator, electrolysis chemical, fractional capacitance theory,
electrode electrolyte interface description, fractal theory,
especially in the dynamic process description of porous
structure, fractional controller design, vibration control of
viscoelastic system and pliable structure objects, fractional
biological neurons, and probability theory. For details, see the
monographs of Kilbas et al. [2], Kiryakova [3], Lakshmikan-
tham andVatsala [4],Miller andRoss [5], Samko et al. [6] and
Podlubny [7], and the references therein. Some recent con-
tributions to the theory of fractional differential equations
can be seen in [8–20] and the references therein. Among the
previous researches,most of researchers focus on the case that
the differential operators (possibly unbounded) in the main
parts are independent of time 𝑡. However, when treating some
parabolic evolution problems, it is usually assumed that the
partial differential operators depend on time 𝑡 (i.e., it is
the case of the problems under considerations being nonau-
tonomous), since this class of operators appears frequently in
the applications (see [21] and the references therein).

Moreover, since the work of Byszewski [22], the nonlocal
Cauchy problems have been investigated in many papers (cf.,
e.g., [13–15, 20, 23–25] and the references therein). The non-
local conditions give a better description in applications than
standard ones, and the Cauchy problem with nonlocal initial
condition can be applied in physics with better effect than the
classical Cauchy problem with traditional initial conditions.
The existence of mild solutions of nonautonomous fractional
evolution equations with nonlocal conditions of the form
(4) is an untreated original topic, which in fact is the main
motivation of the present paper.

In this paper, using a pair of evolution families {𝜓(𝑡, 𝑠)}
and {𝜑(𝑡, 𝑠)} associatedwith the semigroup {exp(−𝑡𝐴(𝑠))} (𝑡 >
0), we give a reasonable concept of solution to problem (4) in
Section 2. Moreover, in general, the semigroup {exp(−𝑡𝐴(𝑠))}
(𝑡 > 0) generated by −𝐴(𝑠) (𝑠 ∈ [0, 𝑇]) is not compact,
so we obtain the main result based on the theory of mea-
sures of noncompactness and the condensing maps. These
techniques are often used to deal with abstract integer order
differential equations but rarely used in abstract fractional
order differential equations(e.g., [8–20] and the references
therein). We will study (4) under suitable hypotheses based
on a special noncompactness measure and the properties of
fixed points set of condensing operators [26, 27] and establish
a new existence result for (4) without the assumptions that
the nonlinearity 𝑓 satisfies a Lipschitz type condition and the
semigroup {exp(−𝑡𝐴(𝑠))} generated by −𝐴(𝑠) is compact (see
Theorem 14). As one can see, our result is obtained under
assumptions weaker than those required previously in the
similar literature.The result is new even for the case of𝐴(𝑡) ≡
𝐴 (autonomous). Moreover, an example is given to show an
application of the abstract result.

2. Preliminaries

Throughout this paper, we set 𝐽 = [0, 𝑇], a compact interval in
R. We denote by 𝑋 a separable Banach space with norm ‖ ⋅ ‖,
by 𝐿(𝑋) the Banach space of all linear and bounded operators

on𝑋, and by𝐶([𝑎, 𝑏], 𝑋) the space of all𝑋-valued continuous
functions on [𝑎, 𝑏] with the supremum norm as follows:

‖𝑥‖
[𝑎, 𝑏]
= ‖𝑥‖

𝐶([𝑎,𝑏],𝑋)
= sup {‖𝑥 (𝑡)‖ : 𝑡 ∈ [𝑎, 𝑏]} ,

for any 𝑥 ∈ 𝐶 ([𝑎, 𝑏] , 𝑋) .
(6)

Moreover, we abbreviate ‖𝑢‖
𝐿
𝑝
([0,𝑇],R+) with ‖𝑢‖𝐿𝑝 , for any 𝑢 ∈

𝐿
𝑝

([0, 𝑇],R+).
We set

𝐺V (𝑡) := ∫
𝑡

0

𝐾 (𝑡, 𝑠) V (𝑠) 𝑑𝑠,

𝐺
∗

:= sup
𝑡∈𝐽

∫

𝑡

0

𝐾 (𝑡, 𝑠) 𝑑𝑠 < ∞.

(7)

Next, we recall the definition of the Riemann-Liouville
integral.

Definition 1 (see [6]). The fractional (arbitrary) order integral
of the function 𝐹 ∈ 𝐿1(R+,R) of order 𝛼 > 0 is defined by

𝐼
𝛼

𝐹 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐹 (𝑠) 𝑑𝑠, (8)

where Γ is the Gamma function. Moreover, 𝐼𝛼1𝐼𝛼2 = 𝐼𝛼1+𝛼2 ,
for all 𝛼

1
, 𝛼
2
> 0.

Remark 2. We have (1) 𝐼𝛼 : 𝐿1[0, 𝑇] → 𝐿1[0, 𝑇] [6].

(2) Obviously, for 𝐹 ∈ 𝐿1(𝐽,R), it follows from Defini-
tion 1 that

∫

𝑡

0

∫

𝜂

0

(𝑡 − 𝜂)
𝑞−1

(𝜂 − 𝑠)
𝛾−1

𝐹 (𝑠) 𝑑𝑠 𝑑𝜂

= 𝐵 (𝑞, 𝛾) ∫

𝑡

0

(𝑡 − 𝑠)
𝑞+𝛾−1

𝐹 (𝑠) 𝑑𝑠,

(9)

where 𝐵(𝑞, 𝛾) is a beta function.

Definition 3 (see [7]). The Riemann-Liouville derivative of
order 𝑞with the lower limit zero for a function 𝐹 ∈ 𝐴𝐶[0,∞)
can be written as

𝐿

𝐷
𝑞

𝑡
𝐹 (𝑡) =

1

Γ (1 − 𝑞)

𝑑

𝑑𝑡
∫

𝑡

0

(𝑡 − 𝑠)
−𝑞

𝐹 (𝑠) 𝑑𝑠,

𝑡 > 0, 0 < 𝑞 < 1.

(10)

Based on thework in [12], we give the following definition
of the operator family {𝜓(𝑡, 𝑠)}.

Definition 4. Let 𝜉
𝑞
be a probability density function defined

on (0,∞) such that its Laplace transform is given by

∫

∞

0

𝑒
−𝜎𝑥

𝜉
𝑞
(𝜎) 𝑑𝜎 =

∞

∑

𝑗=0

(− 𝑥)
𝑗

Γ (1 + 𝑞𝑗)
, 0 < 𝑞 ≤ 1, 𝑥 > 0.

(11)

We define operator families {𝜓(𝑡, 𝑠)} by the semigroup
exp(−𝑡𝐴(𝑠)) associated with 𝐴(𝑠) as follows:

𝜓 (𝑡, 𝑠) = 𝑞∫

∞

0

𝜃𝑡
𝑞−1

𝜉
𝑞
(𝜃) exp (−𝑡𝑞𝜃𝐴 (𝑠)) 𝑑𝜃. (12)
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By using the family {𝜓(𝑡, 𝑠)}, we denote

𝜑
1
(𝑡, 𝑠) = [𝐴 (𝑡) − 𝐴 (𝑠)] 𝜓 (𝑡 − 𝑠, 𝑠) ,

𝜑
𝑘+1
(𝑡, 𝑠) = ∫

𝑡

𝑠

𝜑
𝑘
(𝑡, 𝜃) 𝜑

1
(𝜃, 𝑠) 𝑑𝜃, 𝑘 = 1, 2, . . . ,

(13)

and construct the family {𝜑(𝑡, 𝑠)} by

𝜑 (𝑡, 𝑠) =

∞

∑

𝑘=1

𝜑
𝑘
(𝑡, 𝑠) . (14)

Lemma 5 (see [12]). The operator-valued functions 𝜓(𝑡 − 𝑠, 𝑠)
and 𝐴(𝑡)𝜓(𝑡 − 𝑠, 𝑠) are continuous in uniform topology in the
variables 𝑡, 𝑠, where 0 ≤ 𝑠 ≤ 𝑡 − 𝜀, 0 ≤ 𝑡 ≤ 𝑇, for any 𝜀 > 0.
Clearly,

󵄩󵄩󵄩󵄩𝜓 (𝑡 − 𝑠, 𝑠)
󵄩󵄩󵄩󵄩 ≤ 𝐶(𝑡 − 𝑠)

𝑞−1

. (15)

Moreover, we have
󵄩󵄩󵄩󵄩𝜑 (𝑡, 𝑠)

󵄩󵄩󵄩󵄩 ≤ 𝐶(𝑡 − 𝑠)
𝛾−1

. (16)

A mild solution of (4) can be defined as follows.

Definition 6. A function V ∈ 𝐶(𝐽, 𝑋) satisfying the equation

V (𝑡) = 𝐴
−1

(0) 𝑔 (V) + ∫
𝑡

0

𝜓 (𝑡 − 𝑠, 𝑠) 𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝜓 (𝑡 − 𝑠, 𝑠) 𝑈 (𝑠) 𝑔 (V) 𝑑𝑠

+ ∫

𝑡

0

∫

𝜂

0

𝜓 (𝑡 − 𝜂, 𝜂) 𝜑 (𝜂, 𝑠) 𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠)) 𝑑𝑠 𝑑𝜂

(17)

is called a mild solution of (4), where

𝑈 (𝑡) = −𝐴 (𝑡) 𝐴
−1

(0) − ∫

𝑡

0

𝜑 (𝑡, 𝑠) 𝐴 (𝑠) 𝐴
−1

(0) 𝑑𝑠, (18)

‖ 𝑈 (𝑡) ‖≤ 𝐶 + 𝐶𝑡
𝛾

. (19)

We will need the following facts from the theory of meas-
ures of noncompactness and condensing maps (see, e.g., [26,
27]) which are used later in this paper.

Definition 7. Let 𝐸 be a Banach space, 2𝐸 the family of all
nonempty subsets of 𝐸, (A, ≥) a partially ordered set, and
] : 2𝐸 → A. If, for every Ω ∈ 2𝐸,

] (co (Ω)) = ] (Ω) , (20)

then we say that ] is a measure of noncompactness (MNC) in
𝐸.

As an example of the MNC, we may consider the Haus-
dorff MNC:

𝜒 (Ω) = inf {𝜀 > 0 : Ω has a finite 𝜀-net} . (21)

We know that 𝜒 is monotone, nonsingular, invariant with
respect to union with compact sets, algebraically semiaddi-
tive, and regular. This means that

(i) for anyΩ
0
, Ω

1
∈ 2

𝐸 withΩ
0
⊂ Ω

1
, 𝜒(Ω

0
) ≤ 𝜒(Ω

1
),

(ii) for any 𝑎
0
∈ 𝐸,Ω ∈ 2𝐸, 𝜒({𝑎

0
} ∪ Ω) = 𝜒(Ω),

(iii) for every relatively compact set 𝐷 ⊂ 𝐸, Ω ∈ 2𝐸,
𝜒({𝐷} ∪ Ω) = 𝜒(Ω),

(iv) for each Ω
0
, Ω

1
∈ 2

𝐸, 𝜒(Ω
0
+ Ω

1
) ≤ 𝜒(Ω

0
) + 𝜒(Ω

1
),

(v) ](Ω) = 0 is equivalent to the relative compactness of
Ω.

In Section 3, we will establish an existence result to the
problem (4) using the following assertion about 𝜒-estimates
for a multivalued integral (Theorem 4.2.3 of [27]).

LetG : [0, ℎ̃] → 2𝐸 be a multifunction. It is called

(i) integrable, if it admits a Bochner integrable selection
g : [0, ℎ̃] → 𝐸, g(𝑡) ∈ G(𝑡) for a.e. 𝑡 ∈ [0, ℎ̃];

(ii) integrably bounded, if there exists a function 󰜚 ∈
𝐿
1

([0, ℎ̃], 𝐸) such that

‖G (𝑡)‖ := sup {‖g‖ : g ∈ G (𝑡)} ≤ 󰜚 (𝑡) a.e. 𝑡 ∈ [0, ℎ̃] .
(22)

Proposition 8. For an integrable, integrably bounded multi-
function G : [0, ℎ̃] → 2

𝑋 where 𝑋 is a separable Banach
space, let

𝜒 (G (𝑡)) ≤ q (𝑡) , 𝑓𝑜𝑟 𝑎.𝑒. 𝑡 ∈ [0, ℎ̃] , (23)

where q ∈ 𝐿1
+
([0, ℎ̃]). Then 𝜒(∫𝑡

0

G(𝑠)𝑑𝑠) ≤ ∫
𝑡

0

q(𝑠)𝑑𝑠 for all
𝑡 ∈ [0, ℎ̃].

Let 𝐸 be a Banach space and ] a monotone nonsingular
MNC in 𝐸.

Definition 9. A continuous map B : 𝑌 ⊆ 𝐸 → 𝐸 is called
condensing with respect to aMNC ] (or ]-condensing) if, for
every bounded setΩ ⊆ 𝑌 which is not relatively compact, we
have

] (B (Ω)) ̸≥ ] (Ω) . (24)

The application of the topological degree theory for con-
densing maps (see, e.g., [26, 27]) yields the following fixed
point principle which will be used later.

Theorem 10. Let M be a bounded convex closed subset of 𝐸
andB :M → M a ]-condensing map.Then fixB = {𝑥 : 𝑥 =
B(𝑥)} is nonempty.

3. Main Result

We need the hypotheses as follows.

(H1) Function 𝑓 : 𝐽 ×𝑋 ×𝑋 → 𝑋 satisfies that 𝑓(⋅, 𝑢, 𝑤) :
𝐽 → 𝑋 is measurable for all (𝑢, 𝑤) ∈ 𝑋 × 𝑋 and
𝑓(𝑡, ⋅, ⋅) : 𝑋×𝑋 → 𝑋 is continuous for a.e. 𝑡 ∈ 𝐽, and
there exists a function 𝜇(⋅) ∈ 𝐿𝑝(𝐽,R+) (𝑝 > 1/𝑞 > 1)
such that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢, 𝑤)
󵄩󵄩󵄩󵄩 ≤ 𝜇 (𝑡) (‖𝑢‖ + ‖𝑤‖) ,

(𝑡, V, 𝑤) ∈ 𝐽 × 𝑋 × 𝑋,
(25)

for almost all 𝑡 ∈ 𝐽.
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(H2) There exists a function 𝛿 ∈ 𝐿𝑝(𝐽,R+) such that, for
any bounded set𝐷 ⊂ 𝑋,

𝜒 (𝑓 (𝑡, 𝐺𝐷,𝐷)) ≤ 𝛿 (𝑡) 𝜒 (𝐷) , a.e. 𝑡 ∈ [0, 𝑇] , (26)

where 𝑝 > max{1/𝑞, 1/𝛾} > 1.
(H3) The function 𝑔 is completely continuous and there

exists a positive constant 𝑏 such that
󵄩󵄩󵄩󵄩𝑔 (V)

󵄩󵄩󵄩󵄩 ≤ 𝑏, V ∈ 𝐶 (𝐽, 𝑋) . (27)

Define the operatorF : 𝐶(𝐽, 𝑋) → 𝐶(𝐽,𝑋) as follows:

(FV) (𝑡) = 𝐴
−1

(0) 𝑔 (V) + ∫
𝑡

0

𝜓 (𝑡 − 𝑠, 𝑠) 𝑈 (𝑠) 𝑔 (V) 𝑑𝑠

+ ∫

𝑡

0

𝜓 (𝑡 − 𝑠, 𝑠) 𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

∫

𝜎

0

𝜓 (𝑡 − 𝜎, 𝜎) 𝜑 (𝜎, 𝑠)

× 𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠)) 𝑑𝑠 𝑑𝜎.

(28)

It is clear that the operatorF is well defined. For someMNC
], we will show that the operatorF is ]-condensing on every
bounded subset of 𝐶(𝐽,𝑋). To this end, we divided the proof
into three propositions.

Proposition 11. The operatorF is continuous.

Proof. Let {V
𝑛
}
𝑛∈N be a sequence such that V

𝑛
→ V in𝐶(𝐽,𝑋)

as 𝑛 → ∞. Since 𝑓 satisfies (H1), for almost every 𝑡 ∈ 𝐽 and
(𝑡, 𝑠) ∈ Δ, we have

𝑓 (𝑡, 𝐺V
𝑛
(𝑡) , V

𝑛
(𝑡)) 󳨀→ 𝑓 (𝑡, 𝐺V (𝑡) , V (𝑡)) , as 𝑛 󳨀→ ∞.

(29)

For 𝑡 ∈ 𝐽, we can prove thatF is continuous. In fact, noting
(H1) and V

𝑛
→ V in 𝐶(𝐽,𝑋), we know that there exists 𝜀 > 0

such that ‖V
𝑛
− V‖

𝐽
≤ 𝜀 for 𝑛 sufficiently large. Therefore, we

get
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝐺V𝑛 (𝑡) , V𝑛 (𝑡)) − 𝑓 (𝑡, 𝐺V (𝑡) , V (𝑡))

󵄩󵄩󵄩󵄩

≤ 𝜇 (𝑡) (𝐺
∗

+ 1) [
󵄩󵄩󵄩󵄩V𝑛 − V

󵄩󵄩󵄩󵄩𝐽
+ 2‖V‖

𝐽
]

≤ 𝜇 (𝑡) (𝐺
∗

+ 1) [𝜀 + 2‖V‖
𝐽
] .

(30)

In view of (15) and (16), we obtain

∫

𝑡

0

󵄩󵄩󵄩󵄩𝜓 (𝑡 − 𝑠, 𝑠) [𝑓 (𝑠, 𝐺V𝑛 (𝑠) , V𝑛 (𝑠))

−𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠))]
󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫

𝑡

0

∫

𝜎

0

󵄩󵄩󵄩󵄩𝜓 (𝑡 − 𝜎, 𝜎) 𝜑 (𝜎, 𝑠)

× [𝑓 (𝑠, 𝐺V
𝑛
(𝑠) , V

𝑛
(𝑠))

−𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠))]
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝐶∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

×
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝐺V𝑛 (𝑠) , V𝑛 (𝑠))

− 𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠

+ 𝐶
2

∫

𝑡

0

∫

𝜎

0

(𝑡 − 𝜎)
𝑞−1

(𝜎 − 𝑠)
𝛾−1

×
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝐺V𝑛 (𝑠) , V𝑛 (𝑠))

− 𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠

󳨀→ 0, as 𝑛 󳨀→ ∞.
(31)

Therefore, the fact ‖𝐴−1(0)‖ ≤ 𝐶 (by (A2)), (H3), and the
Lebesgue dominated convergence theorem ensure that

󵄩󵄩󵄩󵄩(FV
𝑛
) (𝑡) − (FV) (𝑡)

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞. (32)

Therefore, we deduce that

lim
𝑛→∞

󵄩󵄩󵄩󵄩FV
𝑛
−FV

󵄩󵄩󵄩󵄩𝐽
= 0. (33)

Proposition 12. The operatorF transforms bounded sets into
equicontinuous ones.

Proof. For any 𝑟 > 0, we set 𝐵
𝑟
= {V ∈ 𝑋 : ‖V‖

𝐽
≤ 𝑟}. Let

0 < 𝑡
2
< 𝑡

1
< 𝑇 and V ∈ 𝐵

𝑟
. Then

󵄩󵄩󵄩󵄩(FV) (𝑡
1
) − (FV) (𝑡

2
)
󵄩󵄩󵄩󵄩 ≤

6

∑

𝑖=1

𝐼
𝑖
, (34)

where

𝐼
1
= ∫

𝑡2

0

󵄩󵄩󵄩󵄩[𝜓 (𝑡1 − 𝑠, 𝑠) − 𝜓 (𝑡2 − 𝑠, 𝑠)] 𝑈 (𝑠) 𝑔 (V)
󵄩󵄩󵄩󵄩 𝑑𝑠,

𝐼
2
= ∫

𝑡1

𝑡2

󵄩󵄩󵄩󵄩𝜓 (𝑡1 − 𝑠, 𝑠) 𝑈 (𝑠) 𝑔 (V)
󵄩󵄩󵄩󵄩 𝑑𝑠,

𝐼
3
= ∫

𝑡2

0

󵄩󵄩󵄩󵄩[𝜓 (𝑡1 − 𝑠, 𝑠) − 𝜓 (𝑡2 − 𝑠, 𝑠)]

×𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠,

𝐼
4
= ∫

𝑡1

𝑡2

󵄩󵄩󵄩󵄩𝜓 (𝑡1 − 𝑠, 𝑠) 𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠,

𝐼
5
= ∫

𝑡2

0

∫

𝜎

0

󵄩󵄩󵄩󵄩[𝜓 (𝑡1 − 𝜎, 𝜎) − 𝜓 (𝑡2 − 𝜎, 𝜎)]

×𝜑 (𝜎, 𝑠) 𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠 𝑑𝜎,

𝐼
6
= ∫

𝑡1

𝑡2

∫

𝜎

0

󵄩󵄩󵄩󵄩𝜓 (𝑡1 − 𝜎, 𝜎) 𝜑 (𝜎, 𝑠) 𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠 𝑑𝜎.

(35)
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For 𝐼
1
,

𝐼
1
= (∫

𝑡2−𝜀

0

+∫

𝑡2

𝑡2−𝜀

)

×
󵄩󵄩󵄩󵄩[𝜓 (𝑡1 − 𝑠, 𝑠) − 𝜓 (𝑡2 − 𝑠, 𝑠)] 𝑈 (𝑠) 𝑔 (V)

󵄩󵄩󵄩󵄩 𝑑𝑠

= 𝐼
󸀠

1
+ 𝐼

󸀠󸀠

1
.

(36)

It follows from Lemma 5, (19), and (H3) that 𝐼󸀠
1
→ 0 as 𝑡

2
→

𝑡
1
. For 𝐼󸀠󸀠

1
, from (15) and (19),

𝐼
󸀠󸀠

1
≤ 𝐶

2

𝑏 {∫

𝑡2

𝑡2−𝜀

[(𝑡
1
− 𝑠)

𝑞−1

+ (𝑡
2
− 𝑠)

𝑞−1

] (1 + 𝑠
𝛾

) 𝑑𝑠}

󳨀→ 0, as 𝑡
2
󳨀→ 𝑡

1
, 𝜀 󳨀→ 0.

(37)

Similarly, 𝐼
3
, 𝐼
5
→ 0, as 𝑡

2
→ 𝑡

1
and 𝜀 → 0. For 𝐼

2
, from

(15) and (19), we have

𝐼
2
≤ 𝑏∫

𝑡1

𝑡2

𝐶
2

(𝑡
1
− 𝑠)

𝑞−1

(1 + 𝑠
𝛾

) 𝑑𝑠 󳨀→ 0, as 𝑡
2
󳨀→ 𝑡

1
.

(38)

Similarly, 𝐼
4
, 𝐼
6
→ 0, as 𝑡

2
→ 𝑡

1
.

So, the set {(FV)(⋅) : V ∈ 𝐵
𝑟
} is equicontinuous.

Proposition 13. The operatorF is ]-condensing.

Proof. Noting that, for any 𝜙 ∈ 𝐿1(𝐽, 𝑋), we have

lim
𝐿→+∞

sup
𝑡∈𝐽

∫

𝑡

0

𝑒
−𝐿(𝑡−𝑠)

𝜙 (𝑠) 𝑑𝑠 = 0, (39)

so, we can take the appropriate 𝐿 such that

𝐶
2

(
𝑝 − 1

𝑝𝛾 − 1
)

(𝑝−1)/𝑝

× ‖𝛿‖
𝐿
𝑝sup
𝑡∈𝐽

∫

𝑡

0

(𝑡 − 𝜎)
𝑞−1

𝜎
𝛾−1/𝑝

𝑒
−𝐿(𝑡−𝜎)

𝑑𝜎

= 𝐿
1
<
1

2
,

(40)

𝐶 sup
𝑡∈𝐽

∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝛿 (𝑠) 𝑒
−𝐿(𝑡−𝑠)

𝑑𝑠 = 𝐿
2
<
1

2
, (41)

𝐶 (𝐺
∗

+ 1) sup
𝑡∈𝐽

∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝜇 (𝑠)

× (1 + 𝐶𝐵 (𝑞, 𝛾) (𝑡 − 𝑠)
𝛾

) 𝑒
−𝐿(𝑡−𝑠)

𝑑𝑠

= 𝐿
3
< 1.

(42)

For every bounded subset Ω ⊂ 𝐶(𝐽,𝑋), we consider
the measure of noncompactness ] in the space 𝐶(𝐽,𝑋) with
values in the cone R2

+
of the following way:

] (Ω) = (Ψ (Ω) ,mod
𝑐
(Ω)) , (43)

where mod
𝑐
(Ω) is the module of equicontinuity of Ω given

by

mod
𝑐
(Ω) = lim

𝜖→0

sup
V∈Ω

max
|𝑡1−𝑡2|≤𝜖

󵄩󵄩󵄩󵄩V (𝑡1) − V (𝑡2)
󵄩󵄩󵄩󵄩 ,

Ψ (Ω) = sup
𝑡∈𝐽

(𝑒
−𝐿𝑡

𝜒 (Ω (𝑡))) .

(44)

LetΩ ⊂ 𝐶(𝐽,𝑋) be a nonempty, bounded set such that

] (F (Ω)) ≥ ] (Ω) . (45)

For any 𝑡 ∈ [0, 𝜂], we set

F̂
1
(Ω) (𝑡) = {∫

𝑡

0

𝜑 (𝑡, 𝑠) 𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠)) 𝑑𝑠 : V ∈ Ω} .

(46)

We consider the multifunction 𝑠 ∈ [0, 𝑡]⊸𝐻(𝑠),

𝐻(𝑠) = {𝜑 (𝑡, 𝑠) 𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠)) : V ∈ Ω} . (47)

Obviously,𝐻 is integrable, and from (16) and (H1) it follows
that𝐻 is integrably bounded.Moreover, noting (H2), we have
the following estimate for a.e. 𝑠 ∈ [0, 𝑡]:

𝜒 (𝐻 (𝑠)) ≤ 𝐶(𝑡 − 𝑠)
𝛾−1

𝜒 (𝑓 (𝑠, 𝐺Ω (𝑠) , Ω (𝑠)))

≤ 𝐶(𝑡 − 𝑠)
𝛾−1

𝛿 (𝑠) 𝜒 (Ω (𝑠))

= 𝐶(𝑡 − 𝑠)
𝛾−1

𝛿 (𝑠) 𝑒
𝐿𝑠

𝑒
−𝐿𝑠

𝜒 (Ω (𝑠))

≤ 𝐶(𝑡 − 𝑠)
𝛾−1

𝛿 (𝑠) 𝑒
𝐿𝑠

Ψ (Ω) .

(48)

Applying Proposition 8, we have

𝜒 (F̂
1
(Ω) (𝑡)) = 𝜒(∫

𝑡

0

𝐻(𝑠) 𝑑𝑠)

≤ 𝐶∫

𝑡

0

(𝑡 − 𝑠)
𝛾−1

𝛿 (𝑠) 𝑒
𝐿𝑠

𝑑𝑠 ⋅ Ψ (Ω) .

(49)

Set

F̂
2
(Ω) (𝜎) = {𝜓 (𝑡 − 𝜎, 𝜎)

× ∫

𝜎

0

𝜑 (𝜎, 𝑠) 𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠)) 𝑑𝑠 : V ∈ Ω} .

(50)

Then from (49),

𝜒 (F̂
2
(Ω) (𝜎))

≤ 𝐶
2

(𝑡 − 𝜎)
𝑞−1

∫

𝜎

0

(𝜎 − 𝑠)
𝛾−1

𝛿 (𝑠) 𝑒
𝐿𝑠

𝑑𝑠 ⋅ Ψ (Ω) ,

a.e. 𝜎 ∈ [0, 𝑡] .

(51)
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Furthermore

𝜒(∫

𝑡

0

F̂
2
(Ω) (𝜎) 𝑑𝜎)

≤ 𝐶
2

∫

𝑡

0

(𝑡 − 𝜎)
𝑞−1

∫

𝜎

0

(𝜎 − 𝑠)
𝛾−1

𝛿 (𝑠) 𝑒
𝐿𝑠

𝑑𝑠 𝑑𝜎 ⋅ Ψ (Ω)

≤ 𝐶
2

∫

𝑡

0

(𝑡 − 𝜎)
𝑞−1

𝑒
𝐿𝜎

(∫

𝜎

0

(𝜎 − 𝑠)
𝛾−1

𝛿 (𝑠) 𝑑𝑠) 𝑑𝜎 ⋅ Ψ (Ω)

≤ 𝐶
2

(
𝑝 − 1

𝑝𝛾 − 1
)

(𝑝−1)/𝑝

× ‖𝛿‖
𝐿
𝑝 ∫

𝑡

0

(𝑡 − 𝜎)
𝑞−1

𝜎
𝛾−1/𝑝

𝑒
𝐿𝜎

𝑑𝜎 ⋅ Ψ (Ω) .

(52)

Therefore, combining with (40), we have

sup
𝑡∈𝐽

(𝑒
−𝐿𝑡

𝜒(∫

𝑡

0

F̂
2
(Ω) (𝜎) 𝑑𝜎))

≤ 𝐶
2

(
𝑝 − 1

𝑝𝛾 − 1
)

(𝑝−1)/𝑝

‖𝛿‖
𝐿
𝑝

× sup
𝑡∈𝐽

∫

𝑡

0

(𝑡 − 𝜎)
𝑞−1

𝜎
𝛾−1/𝑝

𝑒
−𝐿(𝑡−𝜎)

𝑑𝜎 ⋅ Ψ (Ω)

= 𝐿
1
Ψ (Ω) .

(53)

For any 𝑡 ∈ 𝐽, we set

F̂
3
(Ω) (𝑡) = {∫

𝑡

0

𝜓 (𝑡 − 𝑠, 𝑠) 𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠)) 𝑑𝑠 : V ∈ Ω}

(54)

and consider the multifunction 𝑠 ∈ [0, 𝑡]⊸𝐻̃(𝑠):

𝐻̃ (𝑠) = {𝜓 (𝑡 − 𝑠, 𝑠) 𝑓 (𝑠, 𝐺V (𝑠) , V (𝑠)) : V ∈ Ω} . (55)

Obviously, 𝐻̃ is integrable, and from (15) and (H1) it follows
that 𝐻̃ is integrably bounded. Moreover, for a.e. 𝑠 ∈ [0, 𝑡], we
can obtain

𝜒 (𝐻̃ (𝑠)) ≤ 𝐶(𝑡 − 𝑠)
𝑞−1

𝛿 (𝑠) 𝑒
𝐿𝑠

Ψ (Ω) ,

𝜒 (F̂
3
(Ω) (𝑡)) = 𝜒(∫

𝑡

0

𝐻̃ (𝑠) 𝑑𝑠)

≤ 𝐶∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝛿 (𝑠) 𝑒
𝐿𝑠

𝑑𝑠 ⋅ Ψ (Ω)

(56)

by the similar technique used in (49)–(53); then

sup
𝑡∈𝐽

(𝑒
−𝐿𝑡

𝜒 (F̂
3
(Ω) (𝑡)))

≤ 𝐶 sup
𝑡∈𝐽

∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝛿 (𝑠) 𝑒
−𝐿(𝑡−𝑠)

𝑑𝑠 ⋅ Ψ (Ω)

= 𝐿
2
Ψ (Ω) .

(57)

Now, from (53) and (57), 𝐿 > 0 can be chosen so that

Ψ (F (Ω)) ≤ (𝐿
1
+ 𝐿

2
) Ψ (Ω) = 𝐿̃Ψ (Ω) , (58)

where 0 < 𝐿̃ < 1. Then from (45), we have Ψ(Ω) = 0.
Further, from Proposition 12 we know that

mod
𝑐
(F(Ω)) = 0 and integrating with (45) one yields

mod
𝑐
(Ω) = 0. Hence ](Ω) = (0, 0).The regularity property of

] implies the relative compactness ofΩ. Now, it follows from
Definition 9 thatF is ]-condensing.

Theorem 14. Assume that (H1), (H2), and (H3) are satisfied;
then problem (4) has at least one mild solution on the interval
[0, 𝑇].

Proof. Let us introduce in the space 𝐶(𝐽,𝑋) the equivalent
norm defined as

‖V‖
∗
= sup

𝑡∈𝐽

(𝑒
−𝐿𝑡

‖V (𝑡)‖) . (59)

Consider the set

𝐵
𝑟
= {V ∈ 𝐶 (𝐽, 𝑋) : ‖V‖

∗
≤ 𝑟} . (60)

Next, we show that there exists some 𝑟 > 0 such that
F𝐵

𝑟
⊂ 𝐵

𝑟
. Suppose on the contrary that for each 𝑟 > 0 there

exist V
𝑟
(⋅) ∈ 𝐵

𝑟
and some 𝑡 ∈ 𝐽 such that ‖(FV

𝑟
)(𝑡)‖

∗
> 𝑟.

Combining with (H1)–(H3), Remark 2(2), and (15), (16)
and (19), we have

󵄩󵄩󵄩󵄩(FV
𝑟
) (𝑡)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐴
−1

(0) 𝑔 (V
𝑟
)
󵄩󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝜓 (𝑡 − 𝑠, 𝑠) 𝑈 (𝑠) 𝑔 (V𝑟)
󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝜓 (𝑡 − 𝑠, 𝑠) 𝑓 (𝑠, 𝐺V𝑟 (𝑠) , V𝑟 (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫

𝑡

0

∫

𝜎

0

󵄩󵄩󵄩󵄩𝜓 (𝑡 − 𝜎, 𝜎) 𝜑 (𝜎, 𝑠)

× 𝑓 (𝑠, 𝐺V
𝑟
(𝑠) , V

𝑟
(𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠 𝑑𝜎

≤ 𝐶𝑏 + 𝐶
2

𝑏∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(1 + 𝑠
𝛾

) 𝑑𝑠

+ 𝐶𝐺
∗

∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝜇 (𝑠) 𝑒
𝐿𝑠

𝑑𝑠 ⋅
󵄩󵄩󵄩󵄩V𝑟
󵄩󵄩󵄩󵄩∗

+ 𝐶∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝜇 (𝑠)
󵄩󵄩󵄩󵄩V𝑟 (𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠

+ 𝐶
2

𝐺
∗

𝐵 (𝑞, 𝛾) ∫

𝑡

0

(𝑡 − 𝑠)
𝑞+𝛾−1

𝜇 (𝑠) 𝑒
𝐿𝑠

𝑑𝑠 ⋅
󵄩󵄩󵄩󵄩V𝑟
󵄩󵄩󵄩󵄩∗

+ 𝐶
2

𝐵 (𝑞, 𝛾) ∫

𝑡

0

(𝑡 − 𝑠)
𝑞+𝛾−1

𝜇 (𝑠)
󵄩󵄩󵄩󵄩V𝑟 (𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠
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≤ 𝐶𝑏 + 𝐶
2

𝑏∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(1 + 𝑠
𝛾

) 𝑑𝑠

+ 𝐶 (𝐺
∗

+ 1) ⋅ 𝑟 ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝜇 (𝑠) 𝑒
𝐿𝑠

𝑑𝑠

+ 𝐶
2

(𝐺
∗

+ 1) ⋅ 𝑟𝐵 (𝑞, 𝛾) ∫

𝑡

0

(𝑡 − 𝑠)
𝑞+𝛾−1

𝜇 (𝑠) 𝑒
𝐿𝑠

𝑑𝑠.

(61)

Therefore

𝑟 < sup
𝑡∈𝐽

(𝑒
−𝐿𝑡 󵄩󵄩󵄩󵄩(FV

𝑟
) (𝑡)
󵄩󵄩󵄩󵄩)

≤ sup
𝑡∈𝐽

𝑀(𝑡) + 𝐶 (𝐺
∗

+ 1)

⋅ 𝑟 sup
𝑡∈𝐽

∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝜇 (𝑠) 𝑒
−𝐿(𝑡−𝑠)

𝑑𝑠

+ 𝐶
2

(𝐺
∗

+ 1) ⋅ 𝑟𝐵 (𝑞, 𝛾)

× sup
𝑡∈𝐽

∫

𝑡

0

(𝑡 − 𝑠)
𝑞+𝛾−1

𝜇 (𝑠) 𝑒
−𝐿(𝑡−𝑠)

𝑑𝑠,

(62)

where𝑀(𝑡) = 𝐶𝑏(1 + 𝐶∫𝑡
0

(𝑡 − 𝑠)
𝑞−1

(1 + 𝑠
𝛾

)𝑑𝑠).
Dividing both sides of (62) by 𝑟 and taking 𝑟 → ∞, we

have

𝐶 (𝐺
∗

+ 1) sup
𝑡∈𝐽

∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝜇 (𝑠)

× (1 + 𝐶𝐵 (𝑞, 𝛾) (𝑡 − 𝑠)
𝛾

) 𝑒
−𝐿(𝑡−𝑠)

𝑑𝑠 ≥ 1.

(63)

This contradicts (42). Hence for some positive number 𝑟,
F𝐵

𝑟
⊂ 𝐵

𝑟
. From Proposition 13 it follows that F is ]-con-

densing and we applyTheorem 10 to complete the proof.

4. Example

In this section, set𝑋 = 𝐿2([0, 1],R), and we consider the fol-
lowing integrodifferential problem:

𝜕
𝑞

𝜕𝑡𝑞
𝑢 (𝑡, 𝜉) = 𝑎 (𝑡, 𝜉)

𝜕
2

𝑢

𝜕𝜉2
(𝑡, 𝜉)

+ sin(∫
𝑡

0

(𝑡 − 𝑠) 𝑢 (𝑠, 𝜉) 𝑑𝑠)

+
1

𝑘
𝑘
√𝑡
⋅
𝑢 (𝑡, 𝜉)

1 + 𝑢 (𝑡, 𝜉)
,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) = 0,

𝑢 (0, 𝜉) = (𝑎 (0, 𝜉))
−1

×

𝑗

∑

𝑖=0

∫

1

0

𝑐
𝑖
(𝜉, 𝑦)

𝑢 (𝑡
𝑖
, 𝑦)

1 + 𝑢 (𝑡
𝑖
, 𝑦)
𝑑𝑦,

(64)

where 𝜕𝑞/𝜕𝑡𝑞 is the Riemann-Liouville fractional partial
derivative of order 0 < 𝑞 < 1, 𝑡 ∈ [0, 1], 𝜉 ∈ [0, 1], 𝑘 > 0
is a constant to be specified later. Also 0 < 𝑡

0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑗
<

1(𝑗 ∈ N+), 𝑐
𝑖
(⋅, ⋅) (𝑖 = 0, 1, . . . , 𝑗) are continuous functions

and there exists a positive constant 𝑏 such that
𝑗

∑

𝑖=0

∫

1

0

󵄩󵄩󵄩󵄩𝑐𝑖 (𝜉, 𝑦)
󵄩󵄩󵄩󵄩 𝑑𝑦 ≤ 𝑏.

(65)

𝑎(𝑡, 𝜉) is a continuous function and is uniformly Hölder con-
tinuous in 𝑡; that is, there exist 𝐶 > 0 and 𝛾 ∈ (0, 1) such
that

󵄩󵄩󵄩󵄩𝑎 (𝑡1, 𝜉) − 𝑎 (𝑡2, 𝜉)
󵄩󵄩󵄩󵄩 ≤ 𝐶

󵄨󵄨󵄨󵄨𝑡1 − 𝑡2
󵄨󵄨󵄨󵄨

𝛾

,

𝜉 ∈ [0, 1] , 0 ≤ 𝑡
1
≤ 𝑡

2
≤ 1.

(66)

Define 𝐴(𝑡) by

𝐷(𝐴 (𝑡)) = 𝐻
2

(0, 1) ∩ 𝐻
1

0
(0, 1) ,

𝐴 (𝑡) 𝑢 = −𝑎 (𝑡, 𝜉) 𝑢
󸀠󸀠

.

(67)

Then −𝐴(𝑠) generates an analytic semigroup exp(−𝑡𝐴(𝑠)) sat-
isfying assumptions (A1)–(A3) ([28]).

For 𝑡 ∈ (0, 1], 𝜉 ∈ [0, 1], we set
V (𝑡) (𝜉) = 𝑢 (𝑡, 𝜉) ,

𝑔 (V) (𝜉) =

𝑗

∑

𝑖=0

∫

1

0

𝑐
𝑖
(𝜉, 𝑦)

V (𝑡
𝑖
) (𝑦)

1 + V (𝑡
𝑖
) (𝑦)
𝑑𝑦,

𝐾 (𝑡, 𝑠) = 𝑡 − 𝑠,

𝑓 (𝑡, 𝐺V (𝑠) , V (𝑡)) (𝜉) = sin(∫
𝑡

0

(𝑡 − 𝑠) V (𝑠) (𝜉) 𝑑𝑠)

+
1

𝑘
𝑘
√𝑡
⋅

V (𝑡) (𝜉)

1 + V (𝑡) (𝜉)
,

(68)

where 1/ 𝑘√𝑡 ∈ 𝐿𝑝([0, 1],R+) (𝑝 > max{1/𝑞, 1/ 𝛾}) and

(𝐺V (𝑡)) (𝜉) = ∫
𝑡

0

(𝑡 − 𝑠) V (𝑠) (𝜉) 𝑑𝑠. (69)

Now 𝐺∗ = sup
𝑡∈[0,1]

∫
𝑡

0

(𝑡 − 𝑠)𝑑𝑠 = 1/2 < ∞.
Then (64) can be reformulated as the abstract (4).
Moreover,
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝐺V (𝑡) , V (𝑡)) (𝜉)

󵄩󵄩󵄩󵄩 ≤ ‖𝐺V (𝑡)‖ +
1

𝑘
𝑘
√𝑡
‖V (𝑡)‖ ,

≤ 𝜇 (𝑡) (‖𝐺V (𝑡)‖ + ‖V (𝑡)‖) ,

a.e. 𝑡 ∈ [0, 1] ,

(70)

where 𝜇(𝑡) = max{1, 1/𝑘 𝑘√𝑡}.
For V

1
, V
2
∈ 𝑋, we have
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝐺V1, V1) − 𝑓 (𝑡, 𝐺V2, V2)

󵄩󵄩󵄩󵄩

≤ ∫

𝑡

0

(𝑡 − 𝑠)
󵄩󵄩󵄩󵄩V1 (𝑠) − V2 (𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠

+
1

𝑘
𝑘
√𝑡

󵄩󵄩󵄩󵄩V1 − V2
󵄩󵄩󵄩󵄩 .

(71)
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Therefore, for any bounded set𝐷 ⊂ 𝑋, we have

𝜒 (𝑓 (𝑡, 𝐺𝐷,𝐷)) ≤ 𝛿 (𝑡) 𝜒 (𝐷) , for a.e. 𝑡 ∈ [0, 1] , (72)

where 𝛿(𝑡) = max{1/2, 1/𝑘 𝑘√𝑡 }. Now, Theorem 14 implies
that the problem (64) has at least a mild solution.

5. Conclusion

This paper deals with the existence of mild solution of a class
of nonlinear nonautonomous fractional integrodifferential
equationswith nonlocal conditions in an abstract space. Suffi-
cient conditions for the existence of mild solution are derived
with the help of the fixed point theorem for condensingmaps.
An example is provided to illustrate the obtained result.
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