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The paper considers the class of matrix polytopes with a dominant vertex and the class of uncertain dynamical systems defined
in discrete time and continuous time, respectively, by such polytopes. We analyze the standard concept of stability in the sense
of Schur—abbreviated as SS (resp., Hurwitz—abbreviated as HS), and we develop a general framework for the investigation of
the diagonal stability relative to an arbitrary Hölder 𝑝-norm, 1 ≤ 𝑝 ≤ ∞, abbreviated as SDS𝑝 (resp., HDS𝑝). Our framework
incorporates, as the particular case with 𝑝 = 2, the known condition of quadratic stability satisfied by a diagonal positive-definite
matrix, i.e. SDS2 (resp., HDS2) means that the standard inequality of Stein (resp., Lyapunov) associated with all matrices of the
polytope has a common diagonal solution. For the considered class of matrix polytopes, we prove the equivalence between SS and
SDS𝑝 (resp., HS and HDS𝑝), 1 ≤ 𝑝 ≤ ∞ (fact which is not true for matrix polytopes with arbitrary structures). We show that the
dominant vertex provides all the information needed for testing these stability properties and for computing the corresponding
robustness indices. From the dynamical point of view, if an uncertain system is defined by a polytope with a dominant vertex, then
the standard asymptotic stability ensures supplementary properties for the state-space trajectories, which refer to special types of
Lyapunov functions and contractive invariant sets (characterized through vector 𝑝-norms weighted by diagonal positive-definite
matrices). The applicability of the main results is illustrated by two numerical examples that cover both discrete- and continuous-
time cases for the class of uncertain dynamics studied in our paper.

1. Introduction

1.1. Research Context and Objective. Consider the matrix
polytope

A = {A ∈ R𝑛×𝑛 | A =
𝐾

∑

𝑘=1

𝛾𝑘A𝑘, 𝛾𝑘 ≥ 0,
𝐾

∑

𝑘=1

𝛾𝑘 = 1} , (1)

where {A1,A2, . . . ,A𝐾} is a finite set of real 𝑛 × 𝑛 matrices.
The Schur (resp., Hurwitz) stability—abbreviated as SS (resp.,
HS)—has been investigated for matrix polytope (1) starting
with the 80s, by papers 4such as [1–13]. Research was strongly
motivated by the dynamics analysis of linear systems with
model uncertainties (which inherently occur due to incom-
plete or approximate information on process parameters).
Description (1) is also referred to as a “polytopic matrix”,

and from the modeling-power point of view, it incorporates
the class of “interval matrices,” defined by hyperrectangles in
R𝑛×𝑛, i.e.

A
𝐼
= {A ∈ R𝑛×𝑛 | A0 − R ≤ A ≤ A0 + R} ,

A0,R ∈ R
𝑛×𝑛
, R ≥ 0,

(2)

where the inequalities have a componentwise meaning. Sig-
nificant results on Schur and Hurwitz stability of interval
matrices have been reported in [10, 14–24].

Also starting with the 80s the linear algebra literature
developed studies on a stronger type of matrix stability,
called “diagonal stability”; pioneering works such as [25, 26]
should be mentioned. In accordance with the monograph
[27], a square matrix is Schur (resp., Hurwitz) diagonally
stable if the Stein (resp., Lyapunov), inequality associated
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with that matrix has diagonal positive-definite solutions. As a
natural expansion, our work [28] introduced the Stein (resp.,
Lyapunov), inequalities relative to a Hölder𝑝-norm, 1 ≤ 𝑝 ≤
∞, and generalized the aforementioned diagonal stability
concept to “Schur (resp., Hurwitz) diagonal stability relative
to a Hölder 𝑝-norm”—abbreviated as SDS𝑝 (resp., HDS𝑝).
For 𝑝 = 2, the framework proposed by [28] coincides with
the classic approach presented by [27].

The SDS𝑝 (resp., HDS𝑝), 1 ≤ 𝑝 ≤ ∞, has been recently
explored by our papers [29, 30] for interval matrices and for
arbitrary polytopic matrices, respectively. It is worth saying
that the monograph [27] addressed the standard case of
diagonal stability (i.e. SDS2 and HDS2 in our nomenclature)
for interval matrices.

During the last decade, diagonal stability ensured a vis-
ible research potential for systems and control engineering,
mainly related to the simpler form of the Lyapunov function
candidates, as outlined byworks such as [27–29, 31–35].These
works use the same terminology “diagonal stability” in the
sense of a system property that is induced by the original
matrix property discussed in the previous paragraphs.

Our current paper focuses on the stability of a class
of matrix polytopes of form (1) called “with a dominant
vertex”—the concept is to be rigorously introduced by
Definition 3 in the next section. We also study the dynamics
of the polytopic systems associated with this class of matrix
polytopes, described by the following equations:

(i) in the discrete-time case,

x (𝑡 + 1) = Ax (𝑡) , A ∈ A, x (𝑡0) = x0, 𝑡, 𝑡0 ∈ Z+, 𝑡 ≥ 𝑡0,
(3-S)

(ii) in the continuous-time case,

ẋ (𝑡) = Ax (𝑡) , A ∈ A, x (𝑡0) = x0, 𝑡, 𝑡0 ∈ R+, 𝑡 ≥ 𝑡0.
(3-H)

In both models (3-S) and (3-H), the entries of matrix A
are considered fixed (not time varying); they are uncertain in
the sense that their values are incompletely known but surely
satisfy the condition A ∈ A. In other words, a single matrix
A is used for modeling a certain evolution of the process,
whereas for modeling two different evolutions (taking place
separately) two distinct matricesA1 ̸=A2,A1,A2 ∈ Amay be
needed.

1.2. Paper Structure. For a matrix polytope (1) with a dom-
inant vertex, we prove that SS (resp., HS) is equivalent to
SDS𝑝 (resp., HDS𝑝), 1 ≤ 𝑝 ≤ ∞, unlike the case of an
arbitrary matrix polytope (e.g., [30]) where (i) SDS𝑝 (resp.,
HDS𝑝) is more conservative than SS (resp., HS) and (ii)
results on SDS𝑝

1

and SDS𝑝
2

(resp., HDS𝑝
1

and HDS𝑝
2

) may
be different for 𝑝1 ̸= 𝑝2, 1 ≤ 𝑝1, 𝑝2 ≤ ∞. These aspects
are discussed by Section 2 of our work. Section 3 analyzes
the implications of Section 2 for the dynamics of a polytopic
system (3-S), respectively (3-H), defined by amatrix polytope
with a dominant vertex.We show that the asymptotic stability
of such a system is equivalent to the existence of Lyapunov

functions and contractive invariant sets expressed in terms
of any Hölder 𝑝-norm, by using an appropriate weighting
matrix of diagonal form (whose positive entries depend on
the chosen norm).The utility of ourmain results is illustrated
in Section 4 by numerical examples, covering Schur (resp.,
Hurwitz) stability for matrix polytopes with a dominant
vertex, as well as the implications for the dynamics of
discrete-time (resp., continuous-time), polytopic systems.

Throughout the text, in equation numbering we use the
extension S (resp., H), for referring to Schur (resp., Hurwitz)
stability and/or to discrete-time (resp., continuous-time),
dynamics—as in the above equation (3-S) (resp., (3-H)). The
extensions (S) and (H) play the same role for the labels of
definitions and theorems.

To ensure the fluent presentation of our results, their
proofs are given in the Appendix.

1.3. Notations and Nomenclature. Let x = [𝑥1 ⋅ ⋅ ⋅ 𝑥𝑛]
𝑇, y =

[𝑦1 ⋅ ⋅ ⋅ 𝑦𝑛]
𝑇
∈ R𝑛 be vectors.

(i) ‖x‖𝑝 is the Hölder vector 𝑝-norm defined by ‖x‖𝑝 =
[|𝑥1|
𝑝
+ ⋅ ⋅ ⋅ + |𝑥𝑛|

𝑝
]
1/𝑝 for 1 ≤ 𝑝 < ∞ and by ‖x‖∞ =

max1≤𝑖≤𝑛|𝑥𝑖| for 𝑝 = ∞.

(ii) “x ≤ y”, “x < y” mean componentwise inequalities,
i.e. 𝑥𝑖 ≤ 𝑦𝑖, 𝑥𝑖 < 𝑦𝑖, 𝑖 = 1, . . . , 𝑛.

LetM = [𝑚𝑖𝑗],Q = [𝑞𝑖𝑗] ∈ R𝑛×𝑛 be square matrices.

(iii) ‖M‖𝑝 is the matrix norm induced by the vector 𝑝-
norm through ‖M‖𝑝 = sup

𝑥 ̸= 0
(‖Mx‖𝑝/‖x‖𝑝) =

max‖x‖
𝑝
=1‖Mx‖𝑝.

(iv) 𝜇𝑝(M) = limℎ↓0ℎ
−1
(‖𝐼 + ℎM‖𝑝 − 1) is the matrix

measure [36, page 41], based on thematrix norm ‖ ‖𝑝.

(v) If D = diag{𝑑1, . . . , 𝑑𝑛}, 𝑑𝑖 > 0, 𝑖 = 1, . . . , 𝑛, then the
following regions of the complex plane𝐺𝑐

𝑗
(D−1MD) =

{𝑧 ∈ C | |𝑧 − 𝑚𝑗𝑗| ≤ ∑
𝑛

𝑖=1,𝑖 ̸= 𝑗
((𝑑𝑗/𝑑𝑖)|𝑚𝑖𝑗|)}, 𝑗 =

1, . . . , 𝑛, are called the generalized Gershgorin’s disks
ofM defined withD for columns.

(vi) If D = diag{𝑑1, . . . , 𝑑𝑛}, 𝑑𝑖 > 0, 𝑖 = 1, . . . , 𝑛, then the
following regions of the complex plane𝐺𝑟

𝑖
(D−1MD) =

{𝑧 ∈ C | |𝑧 − 𝑚𝑖𝑖| ≤ ∑
𝑛

𝑗=1,𝑗 ̸= 𝑖
((𝑑𝑗/𝑑𝑖)|𝑚𝑖𝑗|)}, 𝑖 =

1, . . . , 𝑛, are called the generalized Gershgorin’s disks
ofM defined withD for rows.

(vii) 𝜎(M) = {𝑧 ∈ C | det(𝑧I −M) = 0} is the spectrum of
M, and𝜆𝑖(M) ∈ 𝜎(M), 𝑖 = 1, . . . , 𝑛, are the eigenvalues
ofM.

(viii) If 𝜎(M) ⊂ C𝑆 = {𝑧 ∈ C | |𝑧| < 1}, then matrix M is
said to be Schur stable (abbreviated as SS).

(ix) If 𝜎(M) ⊂ C𝐻 = {𝑧 ∈ C | Re 𝑧 < 0}, then matrixM is
said to be Hurwitz stable (abbreviated as HS).

(x) If M is nonnegative (all entries are nonnegative), its
spectral radius is a positive eigenvalue, denoted by
𝜆max(M), such that |𝜆𝑖(M)| ≤ 𝜆max(M), 𝑖 = 1, . . . , 𝑛.
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(xi) IfM is essentially nonnegative (all off-diagonal entries
are nonnegative), then it has a real eigenvalue,
denoted by𝜆max(M), such that Re{𝜆𝑖(M)} ≤ 𝜆max(M),
𝑖 = 1, . . . , 𝑛—for example, Lemma 1 in [28].

(xii) If M is symmetrical, then all its eigenvalues are real
and there exists an eigenvalue denoted by 𝜆max(M),
such that 𝜆𝑖(M) ≤ 𝜆max(M), 𝑖 = 1, . . . , 𝑛.

(xiii) “M ≻ 0”, “M ≺ 0” mean thatM is a positive-definite,
negative-definite matrix.

(xiv) If the oriented graph of M is strongly connected,
then M is called irreducible; otherwise M is called
reducible.

(xv) For 𝑝 ∈ {1, 2,∞}, the matrix norms ‖M‖𝑝 and matrix
measures 𝜇𝑝(M) have the following expressions:

‖M‖𝑝 =

{{{{{{{{{{

{{{{{{{{{{

{

max
1≤𝑗≤𝑛

{

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑚𝑖𝑗
󵄨󵄨󵄨󵄨󵄨
} , 𝑝 = 1,

√𝜆max (M𝑇M), 𝑝 = 2,

max
1≤𝑖≤𝑛

{

{

{

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑚𝑖𝑗
󵄨󵄨󵄨󵄨󵄨

}

}

}

, 𝑝 = ∞,

(4-S)

𝜇𝑝 (M) =

{{{{{{{{{{{

{{{{{{{{{{{

{

max
1≤𝑗≤𝑛

{

{

{

𝑚𝑗𝑗 +

𝑛

∑

𝑖=1,𝑖 ̸= 𝑗

󵄨󵄨󵄨󵄨󵄨
𝑚𝑖𝑗
󵄨󵄨󵄨󵄨󵄨

}

}

}

, 𝑝 = 1,

1

2
𝜆max (M +M𝑇) , 𝑝 = 2,

max
1≤𝑖≤𝑛

{

{

{

𝑚𝑖𝑖 +

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

󵄨󵄨󵄨󵄨󵄨
𝑚𝑖𝑗
󵄨󵄨󵄨󵄨󵄨

}

}

}

, 𝑝 = ∞.

(4-H)

(xvi) |M| denotes the matrix built with the absolute values
of the entries ofM.

(xvii) M𝑆 ∈ R𝑛×𝑛 (𝑆 superscript from Schur) denotes the
nonnegative matrix defined byM𝑆 = |M|.

(xviii) M𝐻 ∈ R𝑛×𝑛 (𝐻 superscript from Hurwitz) denotes
the essentially nonnegative matrix defined by M𝐻 =
M𝑑 + |M𝑜|, where M𝑑 = diag{𝑚11, ..., 𝑚𝑛𝑛} and M𝑜 =
M −M𝑑.

(xix) “M ≤ Q”, “M < Q” mean componentwise inequali-
ties, i.e.𝑚𝑖𝑗 ≤ 𝑞𝑖𝑗,𝑚𝑖𝑗 < 𝑞𝑖𝑗, 𝑖, 𝑗 = 1, . . . , 𝑛.

Throughout the text we shall write “X (resp., Y)” wherever
“X” and “Y” are referred to in parallel.

2. Results on Matrix Polytopes

The current section explores the stability of matrix polytopes
with a dominant vertex. For this class of polytopes, the
standard Schur (Hurwitz) stability is proved to be equivalent
to stronger stability properties, namely, diagonal stability
relative to arbitrary Hölder 𝑝-norms 1 ≤ 𝑝 ≤ ∞.

2.1. Preliminaries

Definition 1 (S). Let us consider: 1 ≤ 𝑝 ≤ ∞; an arbitrary
matrix A ∈ R𝑛×𝑛; a matrix polytope A of form (1); a
nonsingular matrixQ ∈ R𝑛×𝑛.

(a) The inequality

󵄩󵄩󵄩󵄩󵄩
Q−1AQ󵄩󵄩󵄩󵄩󵄩𝑝 < 1 (5-S)

is called the Stein-type inequality relative to the 𝑝-norm
associated with matrix A; matrix Q is said to be a solution
to this inequality.

(b) Matrix Q is said to be a solution to the Stein-type
inequality relative to the𝑝-norm associatedwith the polytope
A if the following condition is fulfilled:

∀A ∈ A :
󵄩󵄩󵄩󵄩󵄩
Q−1AQ󵄩󵄩󵄩󵄩󵄩𝑝 < 1. (6-S)

Definition 1 (H). Let us consider: 1 ≤ 𝑝 ≤ ∞; an arbitrary
matrix A ∈ R𝑛×𝑛; a matrix polytope A of form (1); a
nonsingular matrixQ ∈ R𝑛×𝑛.

(a) The inequality

𝜇𝑝 (Q
−1AQ) < 0 (5-H)

is called the Lyapunov-type inequality relative to the 𝑝-norm
associated with matrix A; matrixQ is said to be a solution to
this inequality.

(b) MatrixQ is said to be a solution to the Lyapunov-type
inequality relative to the𝑝-norm associatedwith the polytope
A if the following condition is fulfilled:

∀A ∈ A : 𝜇𝑝 (Q
−1AQ) < 0. (6-H)

Remark 1. (i) The terminology introduced by Definition
1(S)(a) (resp., Definition 1(H)(a)) is motivated by the fact that
inequality (5-S) (resp., (5-H)) with 𝑝 = 2 is equivalent to the
standard Stein inequality

A𝑇PA − P ≺ 0, P = (Q−1)
𝑇

(Q−1) , (7-S)

respectively the standard Lyapunov inequality

A𝑇P + PA ≺ 0, P = (Q−1)
𝑇

(Q−1) . (7-H)

Indeed, for (5-S)with 𝑝 = 2wemay write that ‖Q−1AQ‖2 < 1
is equivalent to

∀𝑖 = 1, . . . , 𝑛 : 𝜆𝑖 (Q
𝑇A𝑇(Q−1)

𝑇

Q−1AQ) < 1

⇐⇒ 𝜆𝑖 (Q
𝑇A𝑇(Q−1)

𝑇

Q−1AQ − I) < 0

⇐⇒ 𝜆𝑖 (A
𝑇
(Q−1)

𝑇

(Q−1)A − (Q−1)
𝑇

(Q−1)) < 0,
(8-S)

which means the fulfillment of (7-S).
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Similarly, for (5-H) with 𝑝 = 2 we may write that
𝜇2(Q−1AQ) < 0 is equivalent to

∀𝑖 = 1, . . . , 𝑛 : 𝜆𝑖 (Q
𝑇A𝑇(Q−1)

𝑇

+Q−1AQ) < 0

⇐⇒ 𝜆𝑖 (A
𝑇
(Q−1)

𝑇

(Q−1) + (Q−1)
𝑇

(Q−1)A) < 0,
(8-H)

which means the fulfillment of (7-H).
(ii) The existence of P ≻ 0 solving the standard

Stein inequality (7-S) (resp., Lyapunov inequality (7-H)) is
equivalent to Schur (resp., Hurwitz) stability of matrix A.

(iii) Conditions (6-S) (resp., (6-H)) with 𝑝 = 2 in
Definition 1(S)(b) (resp., Definition 1(H)(b)) represent the
definition of Schur (resp., Hurwitz) quadratic stability of the
matrix polytopeA, for example, [37, page 213].

Definition 2 (S). LetA be a matrix polytope of form (1).
(a)A is called Schur stable (abbreviated as SS) if

∀A ∈ A : A is SS. (9-S)

(b) Let 1 ≤ 𝑝 ≤ ∞. A is called Schur diagonally stable
relative to the 𝑝-norm (abbreviated as SDS𝑝) if there exists
a diagonal positive-definite matrix D ≻ 0 that satisfies the
Stein-type inequality relative to the 𝑝-norm associated with
the polytopeA, i.e.

∀A ∈ A :
󵄩󵄩󵄩󵄩󵄩
D−1AD󵄩󵄩󵄩󵄩󵄩𝑝 < 1. (10-S)

Definition 2 (H). LetA be a matrix polytope of form (1).
(a)A is called Hurwitz stable (abbreviated as HS) if

∀A ∈ A : A is HS. (9-H)

(b) Let 1 ≤ 𝑝 ≤ ∞.A is called Hurwitz diagonally stable
relative to the 𝑝-norm (abbreviated as HDS𝑝) if there exists
a diagonal positive-definite matrix D ≻ 0 that satisfies the
Lyapunov-type inequality relative to the 𝑝-norm associated
with the polytopeA, i.e.

∀A ∈ A : 𝜇𝑝 (D
−1AD) < 0. (10-H)

Remark 2. (i) If A is a trivial polytope defined by a single
matrix A (i.e. A1 = A, 𝐾 = 1, in (1)), then Definition 2(S)(b)
(resp., Definition 2(H)(b)) coincides withDefinition 1 in [28].

(ii) Let 1 ≤ 𝑝 ≤ ∞. IfA is a proper polytope (i.e. ∃𝑘1 ̸= 𝑘2,
𝑘1, 𝑘2 ∈ {1, . . . , 𝐾}: A𝑘

1

̸=A𝑘
2

in (1)), then Definition 2(S)(b)
(resp., Definition 2(H)(b)) proposes a meaningful extension
of Definition 1 in [28]. Indeed, the simple use of Definition 1
in [28] does not necessarily imply the existence of a unique
diagonal matrix D ≻ 0 that satisfies inequality (10-S) (resp.,
(10-H)) for all matrices A ∈ A.

(iii) Let 1 ≤ 𝑝 ≤ ∞. The SDS𝑝 (resp., HDS𝑝) is a property
ofA stronger than SS (resp., HS). Indeed, each matrixA ∈ A
is SS (resp., HS) once it is SDS𝑝 (resp., HDS𝑝) in accordance
with Remark 2 in [28].

(iv) Let 𝑝 = 2. Definition 2(S)(b) (resp., Definition
2(H)(b)) expresses a particular case of Schur (resp., Hurwitz)

quadratic stability of the matrix polytope A—see Remark
1(iii). Subsequently, the quadratic stability is a property ofA
stronger than SS (resp.,HS) but, at the same time,weaker than
SDS2 (resp., HDS2).

Definition 3 (S). Let A be a matrix polytope of form (1). If
there exists a subscript 𝑘∗ ∈ {1, . . . , 𝐾}, such that the vertex
A𝑘∗ fulfills one of the following two sets of componentwise
inequalities:

A𝑆
𝑘
≤ A𝑘∗ , 𝑘 ̸= 𝑘

∗
, 𝑘 = 1, . . . , 𝐾, (11-S-1)

A𝑆
𝑘
≤ −A𝑘∗ , 𝑘 ̸= 𝑘

∗
, 𝑘 = 1, . . . , 𝐾, (11-S-2)

thenA is called amatrix polytopewith an S-dominant vertex,
and A𝑘∗ is called the S-dominant vertex of A. (The notation
M𝑆 is introduced in Section 1.3.)

Definition 3 (H). If there exists a subscript 𝑘∗ ∈ {1, . . . , 𝐾},
such that the vertex A𝑘∗ fulfills the componentwise inequali-
ties:

A𝐻
𝑘
≤ A𝑘∗ , 𝑘 ̸= 𝑘

∗
, 𝑘 = 1, . . . , 𝐾, (11-H)

then A is called a matrix polytope with an H-dominant
vertex, and A𝑘∗ is called the H-dominant vertex of A. (The
notationM𝐻 is introduced in Section 1.3.)

Remark 3. (i) If A is a matrix polytope with an S-dominant
(resp., H-dominant) vertex A𝑘∗ , then Definition 3(S) (resp.,
Definition 3(H)) shows that matrix A𝑘∗ is nonnegative—
inequalities (11-S-1) or nonpositive—inequalities (11-S-2)
(resp., essentially nonnegative—inequalities (11-H)).

(ii) In the remainder of the text, we mainly address
the case of the S-dominant vertex defined by inequalities
(11-S-1). The case based on inequalities (11-S-2) does not
require a separate approach, since all the results we are
going to use for A𝑘∗ nonnegative remain valid for −A𝑘∗
nonnegative.

(iii) A matrix polytope A may have two S-dominant
vertices denoted as A𝑘∗ , A𝑘∗∗ in the particular case when
A𝑘∗ = − A𝑘∗∗ ,A𝑘∗ ≥ 0 satisfies inequalities (11-S-1),A𝑘∗∗ ≤ 0
satisfies inequalities (11-S-2).We still can refer toA as having
“an S-dominant vertex,” since the stability properties of A
induced by A𝑘∗ and by A𝑘∗∗ are identical, as resulting from
the further development of our paper.

2.2. Stability Analysis

Theorem 1 (S). Let us consider: 1 ≤ 𝑝 ≤ ∞; a matrix polytope
A with an S-dominant vertex A𝑘∗ .

The following statements are equivalent.

(i) A𝑘∗ is SS.
(ii) A is SS.
(iii) There exists a 𝑝, 1 ≤ 𝑝 ≤ ∞, such thatA is SDS𝑝.
(iv) A is SDS𝑝 for all 𝑝, 1 ≤ 𝑝 ≤ ∞.
(v) There exists a diagonal matrix D ≻ 0 such that the

union for all A ∈ A of the generalized Gershgorin’s
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disks written for columns is located inside the unit circle
of the complex plane, i.e. ⋃A∈A⋃

𝑛

𝑗=1
𝐺
𝑐

𝑗
(D−1AD) ⊂

C𝑆.

(vi) There exists a diagonal matrix D ≻ 0 such that the
union for all A ∈ A of the generalized Gershgorin’s
disks written for rows is located inside the unit, circle of
the complex plane, i.e.⋃A∈A⋃

𝑛

𝑖=1
𝐺
𝑟

𝑖
(D−1AD) ⊂ C𝑆.

Proof. See the Appendix.

Theorem1 (H). Let us consider: 1 ≤ 𝑝 ≤ ∞; amatrix polytope
A with an H-dominant vertex A𝑘∗ .

The following statements are equivalent.

(i) A𝑘∗ is HS.

(ii) A is HS.

(iii) There exists a 𝑝, 1 ≤ 𝑝 ≤ ∞, such thatA is HDS𝑝.

(iv) A is HDS𝑝 for all 𝑝, 1 ≤ 𝑝 ≤ ∞.

(v) There exists a diagonal matrix D ≻ 0 such that the
union for all A ∈ A of the generalized Gershgorin’s
disks written for columns is located in the left half plane
of the complex plane, i.e. ⋃A∈A⋃

𝑛

𝑗=1
𝐺
𝑐

𝑗
(D−1AD) ⊂

CH.

(vi) There exists a diagonal matrix D ≻ 0 such that the
union for all A ∈ A of the generalized Gershgorin’s
disks written for rows is located in the left half plane of
the complex plane, i.e.⋃A∈A⋃

𝑛

𝑖=1
𝐺
𝑟

𝑖
(D−1AD) ⊂ C𝐻.

Proof. See the Appendix.

2.3. Diagonal Solutions to Stein-Type and Lyapunov-Type
Inequalities. TheS-dominant (resp., H-dominant) vertexA𝑘∗
of a matrix polytope A can be used not only for testing
the properties SDS𝑝 (resp., HDS𝑝) of A but also for find-
ing concrete diagonal matrices D ≻ 0 that satisfy the
inequality (10-S) in Definition 2(S) (resp., inequality (10-H)
in Definition 2(H)).

Theorem 2 (S). Let us consider: 1≤𝑝≤∞; a matrix polytope
A with an S-dominant vertex A𝑘∗ ; a diagonal positive-definite
matrix D ≻ 0.

Matrix D is a solution to (10-S) (i.e. D satisfies the Stein-
type inequality relative to the 𝑝-norm associated with the
polytopeA) if and only if

󵄩󵄩󵄩󵄩󵄩
D−1A𝑘∗D

󵄩󵄩󵄩󵄩󵄩𝑝
< 1 (12-S)

(i.e.D satisfies the Stein-type inequality relative to the 𝑝-norm
associated with the S-dominant vertex A𝑘∗).

Proof. See the Appendix.

Theorem 2 (H). Let us consider: 1≤𝑝≤∞; a matrix polytope
Awith anH-dominant vertexA𝑘∗ ; a diagonal positive-definite
matrix D ≻ 0.

Matrix D is a solution to (10-H) (i.e. D satisfies the
Lyapunov-type inequality relative to the 𝑝-norm associated
with the polytopeA) if and only if

𝜇𝑝 (D
−1A𝑘∗D) < 0 (12-H)

(i.e. D satisfies the Lyapunov-type inequality relative to the 𝑝-
norm associated with the H-dominant vertex A𝑘∗ ).

Proof. See the Appendix.

Remark 4. Let 1 ≤ 𝑝 ≤ ∞. Whenever A𝑘∗ is SS (resp., HS)
diagonal matrices D ≻ 0 that satisfy (12-S) (resp., (12-H) <
?cmd? >) can be built along the lines of Lemma 3 and Remark
3 in [28]. Further comments are available in the next section
that discloses the role ofD ≻ 0 in the dynamics of a polytopic
system of form (3-S) (resp., (3-H)).

2.4. Stability Margins. The S-dominant (resp., H-dominant)
vertex A𝑘∗ of a matrix polytopeA also allows one to develop
a robustness analysis for SS and SDS𝑝 ofA defined by (1) and
(11-S-1) or (11-S-2) (resp., HS and HDS𝑝 ofA defined by (1)
and (11-H)).

Definition 4 (S). Let A be a matrix polytope with an S-
dominant vertex A𝑘∗ .

(a) If A𝑘∗ is SS, then
𝜌SS (A𝑘∗) = 1 − max

𝑖=1,...,𝑛

󵄨󵄨󵄨󵄨𝜆𝑖 (A𝑘∗)
󵄨󵄨󵄨󵄨 = 1 − 𝜆max (A𝑘∗)

(13-S)

is called the SS margin of A𝑘∗ .
(b) IfA is SS, then

𝜌SS (A) = 1 −max
𝐴∈A

max
𝑖=1,...,𝑛

󵄨󵄨󵄨󵄨𝜆𝑖 (𝐴)
󵄨󵄨󵄨󵄨 (14-S)

is called the SS margin of A.
(c) Let 1 ≤ 𝑝 ≤ ∞. IfA is SDS𝑝, then

𝜌SDS
𝑝
(A) = 1 − inf

D≻0
diagonal

max
A∈A

󵄩󵄩󵄩󵄩󵄩
D−1AD󵄩󵄩󵄩󵄩󵄩𝑝 (15-S)

is called the SDS𝑝 margin ofA.

Definition 4 (H). Let A be a matrix polytope with an H-
dominant vertex A𝑘∗ .

(a) If A𝑘∗ is HS, then

𝜌HS (A𝑘∗) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
max
𝑖=1,...,𝑛

Re {𝜆𝑖 (A𝑘∗)}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨𝜆max (A𝑘∗)

󵄨󵄨󵄨󵄨 (13-H)

is called the HS margin of A𝑘∗ .
(b) IfA is HS, then

𝜌HS (A) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
max
A∈A

max
𝑖=1,...,𝑛

Re {𝜆𝑖 (A)}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(14-H)

is called the HS margin of A.
(c) Let 1 ≤ 𝑝 ≤ ∞. IfA is HDS𝑝, then

𝜌HDS
𝑝
(A) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

inf
D≻0

diagonal

max
A∈A

𝜇𝑝 (D
−1AD)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(15-H)

is called the HDS𝑝 margin ofA.
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Theorem 3 (S). Let A be a matrix polytope with an S-
dominant vertex A𝑘∗ . For any 𝑝, 1 ≤ 𝑝 ≤ ∞, the following
equalities hold:

𝜌SDS
𝑝
(A) = 𝜌SS (A) = 𝜌SS (A𝑘∗) . (16-S)

Proof. See the Appendix.

Theorem 3 (H). Let A be a matrix polytope with an H-
dominant vertex A𝑘∗ . For any 𝑝, 1 ≤ 𝑝 ≤ ∞, the following
equalities hold:

𝜌HDS
𝑝
(A) = 𝜌HS (A) = 𝜌HS (A𝑘∗) . (16-H)

Proof. See the Appendix.

Remark 5. (i) For each stability property of the polytope
A discussed in Section 2.2, the corresponding margin (also
called “degree” in the control-engineering literature) quanti-
fies the distance between a matrix A ∈ A representing the
“worst case” relative to that property and the “limit situation”
where that property is generically lost for an arbitrarymatrix.
Theorem 3(S) (resp., Theorem 3(H)) shows that the “worst
case” of A relative to SS and SDS𝑝 (resp., HS and HDS𝑝) is
defined by the S-dominant (resp., H-dominant) vertex.

(ii) For𝑝 = 1,Theorem 3(S) (resp.,Theorem 3(H)) ensure
the existence of a diagonal matrix D ≻ 0 such that the union
for allA ∈ A of the generalized Gershgorin’s disks written for
columns ⋃A∈A⋃

𝑛

𝑗=1
𝐺
𝑐

𝑗
(D−1AD) is located in the region of

the complex plane defined by |𝑧| ≤ 1−𝜌SS(A𝑘∗) (resp., Re 𝑧 ≤
−𝜌SS(A𝑘∗)). The same location also corresponds to the union
for all A ∈ A of the generalized Gershgorin’s disks written
for rows ⋃A∈A⋃

𝑛

𝑖=1
𝐺
𝑟

𝑖
(D−1AD), where the existence of the

diagonal matrix D ≻ 0 is guaranteed by Theorem 3(S) (resp.,
Theorem 3(H)) with 𝑝 = ∞. Obviously, the region |𝑧| ≤
1 − 𝜌SS(A𝑘∗) (resp., Re 𝑧 ≤ −𝜌SS(A𝑘∗)) refines the condition
formulated byTheorem 1(S)(v)-(vi) (resp., Theorem 1(H)(v)-
(vi)) for the location of the generalized Gershgorin’s disks.

(iii) The equality (16-S) (resp., (16-H)) plays an impor-
tant role in the characterization of the dynamic properties
exhibited by the polytopic system (3-S) (resp., (3-H)). Further
details on this role are available in Remark 6 of the next
section.

(iv) For an arbitrary polytope A (without a dominant
vertex), equality (16-S) (resp., (16-H)) does not hold true,
in general. If, for a given 𝑝, 1 ≤ 𝑝 ≤ ∞, A is SDS𝑝 (resp.,
HDS𝑝) then 𝜌SDS

𝑝

(A) ≤ 𝜌SS(A) (resp., 𝜌HDS
𝑝

(A) ≤ 𝜌HS(A)),
fact which was anticipated by Remark 2(iii) in general terms,
without using this specific language of “stability margins.”
Moreover, if for given 𝑝1 ̸= 𝑝2, 1 ≤ 𝑝1, 𝑝2 ≤ ∞, A is diag-
onally stable relative to both 𝑝1- and 𝑝2-norm, then we may
have 𝜌SDS

𝑝1

(A) ̸= 𝜌SDS
𝑝2

(A) (resp., 𝜌HDS
𝑝1

(A) ̸= 𝜌HDS
𝑝2

(A)),
as already suggested by our recent paper [30].

2.5. Particular Case of Interval Matrices with a Dominant
Vertex. Theorems 1(S), 2(S), and 3(S) generalize the results
reported in [27, Lemma 3.4.18], [29] for SS and SDS𝑝 of inter-
val matrices of form (2) withA0 or −A0 nonnegative, because
these two types of interval matrices represent particular cases

of matrix polytopes with an S-dominant vertex defined by
inequalities (11-S-1) or (11-S-2).

Similarly, Theorems 1(H), 2(H), and 3(H) generalize
results reported in [29] for HS and HDS𝑝 of interval matrices
of form (2) with A0 essentially nonnegative, since such inter-
val matrices represent a particular case of matrix polytopes
with an H-dominant vertex defined by inequalities (11-H).

3. Results on Polytopic Systems

The current section shows that a polytopic system defined
by a matrix polytope with a dominant vertex may exhibit
dynamical properties stronger than the standard concept
of asymptotic stability; these dynamical properties are cor-
related, by equivalence, to the algebraic properties of the
dominant vertex.

Theorem 4 (S). Let us consider: 1 ≤ 𝑝 ≤ ∞; a discrete-
time polytopic system of form (3-S) where polytope A has an
S-dominant vertex A𝑘∗ ; a positive-definite diagonal matrix
D ≻ 0; a constant 𝑟 satisfying 0 < 𝑟 < 1.

The following statements are equivalent:

(i)
󵄩󵄩󵄩󵄩󵄩
D−1A𝑘∗D

󵄩󵄩󵄩󵄩󵄩𝑝
≤ 𝑟. (17-S)

(ii) For the polytopic system (3-S), the functions

V
𝛼

𝑝
: R
𝑛
󳨀→ R+, V

𝛼

𝑝
(x) = 1

𝛼

󵄩󵄩󵄩󵄩󵄩
D−1x󵄩󵄩󵄩󵄩󵄩𝑝, 𝛼 > 0

(18-S)

are strong diagonal Lyapunov functions, with the dec-
reasing rate 𝑟, i.e.

∀x (𝑡) is a trajectory of system (3-S) ,

∀𝑡 ∈ Z+, 𝑡 ≥ 𝑡0 :V
𝛼

𝑝
(x (𝑡 + 1)) ≤ 𝑟V𝛼

𝑝
(x (𝑡)) .

(19-S)

(iii) The contractive sets

X
𝛼

𝑝
(𝑡; 𝑡0) = {x ∈ R

𝑛
|
󵄩󵄩󵄩󵄩󵄩
D−1x󵄩󵄩󵄩󵄩󵄩𝑝 ≤ 𝛼𝑟

(𝑡−𝑡
0
)
} ,

𝑡, 𝑡0 ∈ Z+, 𝑡 ≥ 𝑡0, 𝛼 > 0

(20-S)

are invariant with respect to the state-space trajectories
(solutions) of the polytopic system (3-S), i.e.

∀𝛼 > 0, ∀𝑡, 𝑡0 ∈ Z+, 𝑡 ≥ 𝑡0, ∀x0 = x (𝑡0) ∈ R
𝑛
:

󵄩󵄩󵄩󵄩󵄩
D−1x0

󵄩󵄩󵄩󵄩󵄩𝑝
≤ 𝛼 󳨐⇒

󵄩󵄩󵄩󵄩󵄩
D−1x (𝑡; 𝑡0, x0)

󵄩󵄩󵄩󵄩󵄩𝑝
≤ 𝛼𝑟
(𝑡−𝑡
0
)
.

(21-S)

Proof. See the Appendix.

Theorem 4 (H). Let us consider: 1 ≤ 𝑝 ≤ ∞; a continuous-
time polytopic system of form (3-H) where polytope A has an
H-dominant vertex A𝑘∗ ; a positive-definite diagonal matrix
D ≻ 0; a constant 𝑟 satisfying 𝑟 < 0.
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The following statements are equivalent:
(i)

𝜇𝑝 (D
−1A𝑘∗D) ≤ 𝑟. (17-H)

(ii) For the polytopic system (3-H), the functions

V
𝛼

𝑝
: R
𝑛
󳨀→ R+, V

𝛼

𝑝
(x) = 1

𝛼

󵄩󵄩󵄩󵄩󵄩
D−1x󵄩󵄩󵄩󵄩󵄩𝑝, 𝛼 > 0

(18-H)

are strong diagonal Lyapunov functions, with the dec-
reasing rate 𝑟, i.e.

∀x (𝑡) is a trajectory of system (3-H) , ∀𝑡 ∈ R+, 𝑡 ≥ 𝑡0 :

𝐷
+
V
𝛼

𝑝
(x (𝑡)) = lim

ℎ↓0

1

ℎ
[V
𝛼

𝑝
(x (𝑡 + ℎ)) −V𝛼

𝑝
(x (𝑡))]

≤ 𝑟V
𝛼

𝑝
(x (𝑡)) .

(19-H)

(iii) The contractive sets

X
𝛼

𝑝
(𝑡; 𝑡0) = {x ∈ R

𝑛
|
󵄩󵄩󵄩󵄩󵄩
D−1x󵄩󵄩󵄩󵄩󵄩𝑝 ≤ 𝛼𝑒

𝑟(𝑡−𝑡
0
)
} ,

𝑡, 𝑡0 ∈ R+, 𝑡 ≥ 𝑡0, 𝛼 > 0

(20-H)

are invariant with respect to the state-space trajectories
(solutions) of the polytopic system (3-H), i.e.

∀𝛼 > 0, ∀𝑡, 𝑡0 ∈ R+, 𝑡 ≥ 𝑡0, ∀x0 = x (𝑡0) ∈ R
𝑛
:

󵄩󵄩󵄩󵄩󵄩
D−1x0

󵄩󵄩󵄩󵄩󵄩𝑝
≤ 𝛼 󳨐⇒

󵄩󵄩󵄩󵄩󵄩
D−1x (𝑡; 𝑡0, x0)

󵄩󵄩󵄩󵄩󵄩
≤ 𝛼𝑒
𝑟(𝑡−𝑡
0
)
.

(21-H)

Proof. See the Appendix.

Remark 6. (i) Let 1 ≤ 𝑝 ≤ ∞. The exploration of the
dynamical properties of a polytopic system viaTheorem 4(S)
(resp., Theorem 4(H)) outlines the importance of the con-
crete value 0 < 𝑟 < 1 (resp., 𝑟 < 0) in the right hand side
of inequality (17-S) (resp., (17-H)).This concrete value 𝑟 does
not appear explicitly in the Stein-type inequality (12-S) (resp.,
Lyapunov-type inequality (12-H)); the existence of a diagonal
matrix D ≻ 0 that solves inequality (12-S) (resp., (12-H))
represents a necessary and a sufficient condition for the SDS𝑝
(resp., HDS𝑝) of a matrix polytopeA. For a polytopic system
(3-S) (resp., (3-H)) a complete description of the dynamics
implies the knowledge of pairs formed by 𝑟 andD that satisfy
Theorem 4(S) (resp., Theorem 4(H)).

(ii) The constant 0 < 𝑟 < 1 (resp., 𝑟 < 0) in Theorem 4(S)
(resp., Theorem 4(H)) represents a decreasing rate for the
diagonal Lyapunov functions and for the contractive invari-
ant sets. We are going to prove that for any 𝑝, 1 ≤ 𝑝 ≤

∞, the value of the fastest decreasing rate is given by the
𝜆max(A𝑘∗), regardless of the discrete-time or continuous-time
nature of the dynamics. Indeed, for 𝑟 < 𝜆max(A𝑘∗), there
exists no diagonal matrix D ≻ 0 satisfying inequality (17-S)
(resp., (17-H)). For 𝑟 ≥ 𝜆max(A𝑘∗), we use Lemma 3 and
Remark 3 in [28] that yield the following discussion on the
irreducibility/reducibility of A𝑘∗ .

Case 1 (matrix A𝑘∗ is irreducible). (The definition of an
irreducible matrix is introduced in Section 1.3.) Denote by
k = [V1 ⋅ ⋅ ⋅ V𝑛]

𝑇
> 0 and w = [𝑤1 ⋅ ⋅ ⋅ 𝑤𝑛]

𝑇
> 0 its

right and left Perron eigenvectors, respectively. Given 𝑝,
1 ≤ 𝑝 ≤ ∞, we construct the diagonal matrix D𝑝 =

diag{V1/𝑞
1
/𝑤
1/𝑝

1
, . . . , V1/𝑞

𝑛
/𝑤
1/𝑝

𝑛
} ≻ 0, where (i) (1/𝑝)+(1/𝑞) = 1

if 1 < 𝑝 < ∞; (ii) 1/𝑝 = 1, 1/𝑞 = 0 if 𝑝 = 1; (iii) 1/𝑝 = 0,
1/𝑞 = 1 if 𝑝 = ∞. Matrix D𝑝 ≻ 0 fulfills the following
equality:

(i) ‖D−1
𝑝
A𝑘∗D𝑝‖𝑝 = 𝜆max(A𝑘∗) if A𝑘∗ is nonnegative, i.e.

A𝑘∗ is defined by (11-S-1);

(ii) ‖D−1
𝑝
A𝑘∗D𝑝‖𝑝 = 𝜆max(−A𝑘∗) ifA𝑘∗ is nonpositive, i.e.

A𝑘∗ is defined by (11-S-2);

(iii) 𝜇𝑝(D−1𝑝 A𝑘∗D𝑝) = 𝜆max(A𝑘∗) if A𝑘∗ is essentially
nonnegative, i.e. A𝑘∗ is defined by (11-H).

Case 2 (matrix A𝑘∗ is reducible). For any 𝑟 > 𝜆max(A𝑘∗),
there exists 𝜀 > 0 such that 𝜆max(A𝑘∗) < 𝜆max(A𝑘∗ +𝜀J) < 𝑟,
where J is the 𝑛 by 𝑛 matrix with all its entries 1. We apply
the procedure presented by Case 1 to the irreducible matrix
A𝑘∗ + 𝜀J, and the resulting diagonal matrix D𝑝 ≻ 0 fulfills
‖D−1
𝑝
(A𝑘∗+𝜀J)D𝑝‖𝑝 = 𝜆max(A𝑘∗+𝜀J)<𝑟,𝜇𝑝(D−1𝑝 (A𝑘∗+𝜀J)D𝑝)=

𝜆max(A𝑘∗ + 𝜀J) < 𝑟, respectively. On the other hand, we have
the norm inequality ‖D−1

𝑝
A𝑘∗D𝑝‖𝑝 ≤ ‖D−1

𝑝
(A𝑘∗ + 𝜀J)D𝑝‖𝑝,

the measure inequality 𝜇𝑝(D−1𝑝 A𝑘∗D𝑝) ≤ 𝜇𝑝(D−1𝑝 (A𝑘∗ +
𝜀J)D𝑝), respectively. Subsequently, we obtain 𝜆max(A𝑘∗) <
‖D−1
𝑝
A𝑘∗D𝑝‖𝑝 < 𝑟, 𝜆max(A𝑘∗) < 𝜇𝑝(D−1𝑝 A𝑘∗D𝑝) < 𝑟, respec-

tively.
Thus, for any 𝑝, 1 ≤ 𝑝 ≤ ∞, we can construct a diagonal

matrix D𝑝 ≻ 0 such that inequality (17-S) (resp., (17-H)) is
fulfilled with 𝑟 = 𝜆max(A𝑘∗)—for A𝑘∗ irreducible and with
𝑟 > 𝜆max(A𝑘∗) but as close to 𝜆max(A𝑘∗) as we want—for A𝑘∗
reducible.

(iii) The fastest decreasing rate of the diagonal Lya-
punov functions and of the contractive invariant sets can
be expressed in terms of the stability margins (discussed
in Section 2.4), as 1 − 𝜌SS(A𝑘∗) for the discrete-time case
and −𝜌SS(A𝑘∗) for the continuous-time case. This point of
view shows that the stability margins provide an algebraic
characterization for the polytopeA and, concomitantly, allow
the evaluation of the dynamical properties of the polytopic
system (3-S) (resp., (3-H)).

(iv) For an arbitrary polytope A (without a dominant
vertex), the fastest decreasing ratemay dependon the𝑝-norm
that defines the Lyapunov function and the invariant sets (if
exist). If, for a given 𝑝, 1 ≤ 𝑝 ≤ ∞, A is SDS𝑝 (resp.,
HDS𝑝) then the fastest decreasing rate corresponding to the
𝑝-norm of the polytopic system can be expressed in terms
of the stability margins as 1 − 𝜌SDS

𝑝

(A) (resp., −𝜌HDS
𝑝

(A)).
The fastest decreasing rate corresponding to the 𝑝-norm can
be fairly estimated by a computational procedure based on a
bisection method presented in [30].
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4. Illustrative Examples

This section presents two examples that illustrate the use-
fulness of the theoretical results developed by our work.
Example 1 explores (i) the stability of a matrix polytope with
an S-dominant vertex of form (1) and (11-S-1); (ii) the
dynamical properties of the discrete-time polytopic system
of form (3-S) defined by the considered polytope. Example 2
explores (i) the stability of a matrix polytope with an H-
dominant vertex of form (1) and (11-H); (ii) the dynamical
properties of the continuous-time polytopic system of form
(3-H) defined by the considered polytope.

Example 1. It is adapted from [27]. Let

S
[−1,1]

= {S ∈ R𝑛×𝑛 | S = diag {𝑠1, . . . , 𝑠𝑛} ,
󵄨󵄨󵄨󵄨𝑠𝑖
󵄨󵄨󵄨󵄨 ≤ 1, 𝑖 = 1, . . . , 𝑛}

= {S ∈ R𝑛×𝑛 | |S| ≤ I𝑛}
(22)

be the set of diagonalmatriceswhose elements are subunitary.
S[−1,1] is the convex hull generated by the set of 2𝑛 vertices
Ssgn = {S ∈ R𝑛×𝑛 | |S| = I𝑛}, also called the class of signature
matrices.

Given a nonnegative matrix A∗ ∈ R𝑛×𝑛, the set

A =R (A∗) = {A = A∗S | S ∈ S[−1,1]} (23)

is a matrix polytope of form (1) with the vertices A𝑖 = A∗S𝑖,
where S𝑖 ∈ Ssgn, 𝑖 = 1, . . . , 2

𝑛. The setA =R(A∗) defined by
(23) is a matrix polytope with an S-dominant vertex because
matrix A∗ is a vertex that satisfies condition (11-S-1).

Theorem 1(S) shows that the Schur stability of A∗ is a
necessary and a sufficient condition for the Schur diagonal
stability of the polytopeA = R(A∗) relative to any 𝑝-norm,
1 ≤ 𝑝 ≤ ∞. According to Theorem 2(S), a diagonal positive-
definite matrix D𝑝 ≻ 0 satisfies the Stein-type inequality
relative to the 𝑝-norm associated with A = R(A∗) if and
only if D𝑝 ≻ 0 satisfies the Stein-type inequality relative to
the 𝑝-norm associated withA∗. This property ofA =R(A∗)
is guaranteed for any 𝑝-norm by Theorem 2(S), whereas
Proposition 2.5.8 in [27] can guarantee only the particular
case corresponding to 𝑝 = 2.

IfA∗ is Schur stable, then the eigenvalue 𝜆max(A∗) allows
one to investigate the following properties: (i) for the polytope
A = R(A∗), the SDS𝑝 margins are given by relation (16-S)
in Theorem 3(S) i.e. 𝜌SDS

𝑝

(R(A∗)) = 1 − 𝜆max(A∗), for any
𝑝, 1 ≤ 𝑝 ≤ ∞; (ii) for the discrete-time polytopic system
of form (3-S) defined by A = R(A∗), regardless of the 𝑝-
norm considered inTheorem 4(S) for the Lyapunov function
(18-S), and for the contractive invariant sets (20-S), the fastest
decreasing rate is 𝜆max(A∗) ifA∗ is irreducible and arbitrarily
close to 𝜆max(A∗) if A∗ is reducible—as per Remark 6(ii).

Finally, we notice that the nonpositive matrixA∗∗ = −A∗
is also a vertex of the polytopeA =R(A∗) and it satisfies the
dominance condition (11-S-2). This means that the polytope
A = R(A∗) fits in the particular context commented by

Remark 3(iii). It is obvious that the analysis presented by the
current example is complete, in the sense that the vertexA∗∗≤
0 brings no supplementary information (since the matrix
−A∗∗ is nonnegative, there exists 𝜆max(−A∗∗) = 𝜆max(A∗),
and for all 𝑝, 1 ≤ 𝑝 ≤ ∞, the equality ‖D−1A∗∗D‖𝑝 =
‖D−1A∗D‖𝑝 holds true).

The above approach applies mutatis-mutandis to the
investigation of the matrix polytope L(A∗) = {A = SA∗ |
S ∈ S[−1,1]}. In this case, Theorem 2(S) generalizes for 1 ≤
𝑝 ≤ ∞ the result that can be obtained when 𝑝 = 2 by using
Proposition 2.5.9 in [27] for matrix A∗ and polytopeL(A∗).

Example 2. Let us consider the interval matrix [14]:

A = {A ∈ R2×2 | A = A0 + Δ, |Δ| ≤ R} ,

A0 = [
−3.8 1.6

0.6 −4.2
] , R = 0.17 [1 1

1 1
] ,

(24)

that is a matrix polytope with𝐾 = 24 vertices:

A𝑘 = A0 + Δ 𝑘, 𝑘 = 1, . . . , 16, whereΔ 𝑘 = 0.17 [
±1 ±1

±1 ±1
] .

(25)

A has an H-dominant vertex

A∗ = A0 + R = [
−3.63 1.77

0.77 −4.03
] , (26)

which satisfies inequalities (11-H). Note thatA∗ is essentially
positive and has the Perron-Frobenius eigenvalue𝜆max(A∗) =
−2.6456. Theorem 1(H) shows that the Hurwitz stability of
A∗ ensures the Hurwitz diagonal stability of the polytope A
relative to any 𝑝-norm, 1 ≤ 𝑝 ≤ ∞.

The stability margins of the polytope A are given by
relation (16-H) in Theorem 2, i.e. 𝜌HDS

𝑝

(A) = 𝜌HS(A) =

𝜌HS(A∗) = |𝜆max(A∗)| = 2.6456, for any 𝑝, 1 ≤ 𝑝 ≤ ∞.
For the qualitative analysis of the continuous-time poly-

topic system defined by (3-H) and (24), we can apply
Theorem 4(H). Remark 6(ii) shows that for any 𝑝, 1 ≤ 𝑝 ≤
∞, the fastest decreasing rate for the diagonal Lyapunov
functions and for the contractive invariant sets is exactly
𝜆max(A∗) = −2.6456, sinceA∗ is irreducible. We apply Case 1
of the procedure presented in Remark 6(ii) and relying on the
right and left Perron eigenvectors of A∗ (k = [1 0.5562]

𝑇

and w = [0.7822 1]
𝑇), we construct the diagonal matrices

D𝑝 ≻ 0 corresponding to the fastest decreasing rate. For 𝑝 ∈
{1, 2,∞}, these diagonal matrices are D1 = diag{1.2785, 1},
D2 = diag{1.1307, 0.7458}, and D∞ = diag{1, 0.5562}, and
they satisfy Theorem 4(H) with 𝑟 = 𝜆max(A∗) = −2.6456.

Note that all the above results remain valid if instead ofA
defined by (24), we consider the matrix polytope

A
󸀠
= {A ∈ R2×2 | A− ≤ A ≤ A∗} ,

A∗ = [−3.63 1.77

0.77 −4.03
] , A− = [𝑎 𝑏

𝑐 𝑑
] ,

𝑎 ≤ −3.63, |𝑏| ≤ 1.77, |𝑐| ≤ 0.77, 𝑑 ≤ −4.03,

(27)

which has the same dominant vertex A∗ (26).
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5. Conclusions

The paper provides analysis instruments for the stability of
matrix polytopes with a dominant vertex, as well as for the
dynamics of discrete- and continuous-timeuncertain systems
defined by such polytopes. These analysis instruments are
formulated as necessary and sufficient conditions exclusively
based on the characteristics of the dominant vertex. Thus,
the dominant vertex represents the only test matrix used for
studying the following properties of a matrix polytope and
its associated dynamical system: (i) Schur (resp., Hurwitz)
stability (including the computation of the corresponding
margin); (ii) Schur (resp., Hurwitz) diagonal stability relative
to a𝑝-norm (including the computation of the corresponding
margin); (iii) existence of diagonal positive-definite matrices
solving the Stein-type (resp., Lyapunov-type) inequalities
relative to a𝑝-norm; (iv) existence of diagonal-type Lyapunov
functions and contractive invariant sets defined by a 𝑝-norm
and decreasing with a given rate. A global result of our work
is the proof that stability and diagonal stability relative to an
arbitrary 𝑝-norm are equivalent for the considered class of
matrix polytopes (fact which is not true for general matrix
polytopes).

Appendix

Proof of Theorem 1(S). (i)⇒(ii).
It results from the following:

∀A ∈ A : A =
𝐾

∑

𝑘=1

𝛾𝑘A𝑘 󳨐⇒ A ≤ A𝑆 ≤
𝐾

∑

𝑘=1

𝛾𝑘A
𝑆

𝑘

≤

𝐾

∑

𝑘=1

𝛾𝑘A𝑘∗ = (
𝐾

∑

𝑘=1

𝛾𝑘)A𝑘∗ = A𝑘∗

󳨐⇒ max
𝑖=1,...,𝑛

󵄨󵄨󵄨󵄨𝜆𝑖 (A)
󵄨󵄨󵄨󵄨 ≤ 𝜆max (A𝑘∗) < 1,

(A.1)

since A𝑆, A𝑘∗ are nonnegative and we can apply Theorem
8.1.18 and Corollary 8.1.19 in [38].

(ii)⇒(i) It is obvious, because A𝑘∗ ∈ A.
(i)⇒(iv) Let 1 ≤ 𝑝 ≤ ∞. Lemma 3 in [28] ensures the

existence of a diagonal matrix D ≻ 0 such that 𝜆max(A𝑘∗) =
𝜆max(D−1A𝑘∗D) ≤ ‖D−1A𝑘∗D‖𝑝 < 1. On the other hand, we
have the implication

∀A ∈ A : A =
𝐾

∑

𝑘=1

𝛾𝑘A𝑘 󳨐⇒
󵄩󵄩󵄩󵄩󵄩
D−1AD󵄩󵄩󵄩󵄩󵄩𝑝 ≤

󵄩󵄩󵄩󵄩󵄩
D−1A𝑆D󵄩󵄩󵄩󵄩󵄩𝑝

≤

𝐾

∑

𝑘=1

𝛾𝑘
󵄩󵄩󵄩󵄩󵄩
D−1A𝑆

𝑘
D󵄩󵄩󵄩󵄩󵄩𝑝 ≤

𝐾

∑

𝑘=1

𝛾𝑘
󵄩󵄩󵄩󵄩󵄩
D−1A𝑘∗D

󵄩󵄩󵄩󵄩󵄩𝑝

= (

𝐾

∑

𝑘=1

𝛾𝑘)
󵄩󵄩󵄩󵄩󵄩
D−1A𝑘∗D

󵄩󵄩󵄩󵄩󵄩𝑝
=
󵄩󵄩󵄩󵄩󵄩
D−1A𝑘∗D

󵄩󵄩󵄩󵄩󵄩𝑝
,

(A.2)

as per Lemma 4 in [28]. We conclude that for all A ∈ A :

‖D−1AD‖𝑝 < 1.

(iv)⇒(iii) It is obvious.
(iii)⇒(ii) It follows from Remark 2(iii).
(v)⇔(iii) with 𝑝 = 1. It results from the equivalence

∀A ∈ A : 𝐺
𝑐

𝑗
(D−1AD) ⊂ C𝑆, 𝑗 = 1, . . . , 𝑛

⇐⇒ −1 < 𝑎𝑗𝑗 −

𝑛

∑

𝑖=1,𝑖 ̸= 𝑗

𝑑𝑗

𝑑𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗
󵄨󵄨󵄨󵄨󵄨
,

𝑎𝑗𝑗 +

𝑛

∑

𝑖=1,𝑖 ̸= 𝑗

𝑑𝑗

𝑑𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗
󵄨󵄨󵄨󵄨󵄨
< 1, 𝑗 = 1, . . . , 𝑛

⇐⇒
󵄩󵄩󵄩󵄩󵄩
D−1AD󵄩󵄩󵄩󵄩󵄩𝑝 < 1.

(A.3)

(vi)⇔(iii) with 𝑝 = ∞. It is similar to (v)⇔(iii) with
𝑝 = 1.

Proof of Theorem 1(H). (i)⇒(ii).
It results from the following:

∀A ∈ A : A =
𝐾

∑

𝑘=1

𝛾𝑘A𝑘 󳨐⇒ A ≤ A𝐻 ≤
𝐾

∑

𝑘=1

𝛾𝑘A
𝐻

𝑘

≤

𝐾

∑

𝑘=1

𝛾𝑘A𝑘∗ = (
𝐾

∑

𝑘=1

𝛾𝑘)A𝑘∗ = A𝑘∗ .

(A.4)

Take 𝑠 > 0 so that 𝑠I + A𝐻 ≥ 0. Hence, |𝑠I + A| = 𝑠I + A𝐻 ≤
𝑠I + A𝑘∗ . By applying Theorem 8.1.18 and Corollary 8.1.19 in
[38], we get 𝑠 +max𝑖=1,...,𝑛 Re{𝜆𝑖(A)} ≤ 𝑠 + 𝜆max(A𝑘∗), which
implies that max𝑖=1,...,𝑛 Re{𝜆𝑖(A)} ≤ 𝜆max(A𝑘∗) < 0.

(ii)⇒(i) It is obvious, because A𝑘∗ ∈ A.
(i)⇒(iv) Let 1 ≤ 𝑝 ≤ ∞. Lemma 3 in [28] ensures

the existence of a diagonal matrix D ≻ 0 such that
𝜆max(A𝑘∗) ≤ 𝜇𝑝(D−1A𝑘∗D) < 0. On the other hand, we have
the implication

∀A ∈ A : A =
𝐾

∑

𝑘=1

𝛾𝑘A𝑘 󳨐⇒ 𝜇𝑝 (D
−1AD) ≤ 𝜇𝑝 (D

−1A𝐻D)

≤

𝐾

∑

𝑘=1

𝛾𝑘 𝜇𝑝 (D
−1A𝐻
𝑘
D) ≤

𝐾

∑

𝑘=1

𝛾𝑘𝜇𝑝 (D
−1A𝑘∗D)

= (

𝐾

∑

𝑘=1

𝛾𝑘)𝜇𝑝 (D
−1A𝑘∗D) = 𝜇𝑝 (D

−1A𝑘∗D) ,

(A.5)

as per Lemma 4 in [28]. We conclude that for all A ∈ A :

𝜇𝑝(D−1AD) < 0.
(iv)⇒(iii) It is obvious.
(iii)⇒(ii) It follows from Remark 2(iii).
(v)⇔(iii) with 𝑝 = 1. It results from the equivalence

∀A ∈ A : 𝐺
𝑐

𝑗
(D−1AD) ⊂ C𝐻, 𝑗 = 1, . . . , 𝑛

⇐⇒ 𝑎𝑗𝑗 +

𝑛

∑

𝑖=1,𝑖 ̸= 𝑗

𝑑𝑗

𝑑𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗
󵄨󵄨󵄨󵄨󵄨
< 0, 𝑗 = 1, . . . , 𝑛

⇐⇒ 𝜇1 (D
−1AD) < 0.

(A.6)
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(vi)⇔(iii) With 𝑝 = ∞. It is similar to (v)⇔(iii) with
𝑝 = 1.

Proof of Theorem 2(S). From the proof (i)⇒(iv) of
Theorem 1(S), we can write ‖D−1AD‖𝑝 ≤ ‖D−1A𝑘∗D‖𝑝
for all A ∈ A. Thus, if D ≻ 0 satisfies inequality (12-S) (i.e.
the Stein-type inequality relative to the 𝑝-norm associated
with the matrix A𝑘∗), then D ≻ 0 satisfies inequality
(10-S) (i.e. the Stein-type inequality relative to the 𝑝-norm
associated with the polytope A). The converse part is
obvious, since A𝑘∗ ∈ A.

Proof of Theorem 2(H). From the proof (i)⇒(iv) of Theorem
1(H), we can write 𝜇𝑝(D−1AD) ≤ 𝜇𝑝(D−1A𝑘∗D) for all
A ∈ A. Thus, if D ≻ 0 satisfies inequality (12-H) (i.e. the
Lyapunov-type inequality relative to the 𝑝-norm associated
with the matrix A𝑘∗), then D ≻ 0 satisfies inequality (10-H)
(i.e. the Lyapunov-type inequality relative to the 𝑝-norm
associatedwith the polytopeA).The converse part is obvious,
since A𝑘∗ ∈ A.

Proof of Theorem 3(S). From the proof (i)⇒(ii) of Theorem
1(S), we have 𝜌SS(A) ≥ 𝜌SS(A𝑘∗), and from A𝑘∗ ∈ A,
we get 𝜌SS(A) ≤ 𝜌SS(A𝑘∗), such that we can conclude that
𝜌SS(A) = 𝜌SS(A𝑘∗). Let 1 ≤ 𝑝 ≤ ∞ and 𝜀 > 0. Lemma
3 in [28] ensures the existence of a diagonal matrix D ≻

0 such that 𝜆max(A𝑘∗) ≤ ‖D−1A𝑘∗D‖𝑝 < 𝜆max(A𝑘∗) + 𝜀.
At the same time, from the proof (i)⇒(iv) of Theorem 1(S)
we have ‖D−1AD‖𝑝 ≤ ‖D−1A𝑘∗D‖𝑝 for all A ∈ A. As
A𝑘∗ ∈ A, we may write inf D≻0

diagonal
maxA∈A‖D−1AD‖𝑝 =

inf D≻0
diagonal

‖D−1A𝑘∗D‖𝑝 = 𝜆max(A𝑘∗) and, subsequently,

𝜌SDS
𝑝

(A) = 𝜌SS(A𝑘∗).

Proof of Theorem 3(H). From the proof (i)⇒(ii) of
Theorem 1(H), we have 𝜌HS(A) ≥ 𝜌HS(A𝑘∗), and from
A𝑘∗ ∈ A, we get 𝜌HS(A) ≤ 𝜌HS(A𝑘∗), such that we can
conclude that 𝜌HS(A) = 𝜌HS(A𝑘∗). Let 1 ≤ 𝑝 ≤ ∞ and 𝜀 > 0.
Lemma 3 in [28] ensures the existence of a diagonal matrix
D ≻ 0 such that 𝜆max(A𝑘∗) ≤ 𝜇𝑝(D−1A𝑘∗D) < 𝜆max(A𝑘∗) + 𝜀.
At the same time, from the proof (i)⇒(iv) of Theorem 1(H),
we have 𝜇𝑝(D−1AD) ≤ 𝜇𝑝(D−1A𝑘∗D) for all A ∈ A. As
A𝑘∗ ∈ A, we may write |inf D≻0

diagonal
maxA∈A𝜇𝑝(D−1AD)| =

|inf D≻0
diagonal

𝜇𝑝(D−1A𝑘∗D)| = |𝜆max(A𝑘∗)| and, subsequently,

𝜌HDS
𝑝

(A) = 𝜌HS(Ak∗).

Proof of Theorem 4(S). Inequality (17-S) is equivalent to the
statement ‖D−1AD‖𝑝 ≤ 𝑟 for all A ∈ A. This results from the
inequality ‖D−1AD‖𝑝 ≤ ‖D−1A𝑘∗D‖𝑝, for all A ∈ A that was
obtained in the proof for (i)⇒(iv) of Theorem 1(S). Then we
applyTheorem 2 in [28] to all matricesA inA, and we get the
equivalence (17-S) ⇔(19-S)⇔(21-S).

Proof of Theorem 4(H). Inequality (17-H) is equivalent to the
statement 𝜇𝑝(D−1AD) ≤ 𝑟 for all A ∈ A. This results from
the inequality 𝜇𝑝(D−1AD) ≤ 𝜇𝑝(D−1A𝑘∗D), for all A ∈ A
that was obtained in the proof for (i)⇒(iv) of Theorem 1(H).

Then, we applyTheorem 2 in [28] to all matrices A inA, and
we get the equivalence (17-H)⇔(19-H) ⇔(21-H).
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