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A multi-dimensional prediction problem

By Murray ROSENBLATT*

1. Introduction

The problem of linear prediction for a weakly stationary stochastic process
has been discussed in considerable detail by Kolmogorov {3}, Wiener [6] and
others. Recently there has been increasing interest in - the linear prediction
problem for a vector-valued weakly stationary process. Aspects of this problem
have been treated in a heuristic manner by Whittle [5] and analytically by
Wiener [7]. The discussion in this paper is more probabilistic in orientation
and some attention is devoted to the problem of computing the prediction error
covariance matrix in a one-step prediction when the process is a two-vector.

2. Preliminary discussion
Let

12
Xy = : , f=---, —-1,0,1,,..,E’x,£0,
mZ¢

be an m-vector weakly stationary stochastic process. By this we mean that
the sequence of covariance matrices (mxm)

"‘t,1=Excx;=T:—r(1)

depends only on the difference t—7. It is then well known that the sequence
of covariance matrices 7, can be represented as the Fourier—Stieltjes coefficients

re= fei”dF(l) (1)

of a matrix-valued (mxm) non-decreasing function F(A). The function F(1) is
said to be non-decreasing since for any given m-vector »
v AP (o =v[F (4)—F (3)]0>0,
* Indiana University and New York University. Written for the David Taylor Model Basin

under ONR contract Nonr 285 (17).
1 Given the matrix 4, A" denotes the conjugated transpose of the matrix A.
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Ay=2;. The case of interest to us is that in which F (A1) is absolutely continu-
ous, i.e.

i
Fh)= [fwdp.

The matrix-valued function (mxm) f(A) is called the spectral density of the
process x;. Note that f(1) is non-negative, i.e. for any given m-vector v

v f(A)v=0.
Since f(A) is an mXxm matrix-valued function we shall write f{A) in the form

fA)={fix(A); j. k=1, ...,m}.

The function f;(A) is the spectral density of the jth component ;z; of the proc-
ess while f;(4), j=k, is the cross-spectral density of ,z, and x;. Since f(1)=0
it follows that f;;(A)=0. In general f;c(1), j=k, is complex-valued. The real
part of f;x(A), Re f;x(4), is called the cospectrum of jx;, ,x, while the imaginary
part of f;x(A), Im f;;.(A), is called the quadrature spectrum of x;, xZ:.

There is a random representation of the process z; itself analogous to the
representation (1)

m= [*dZ(R),

where Z(A) is an m-vector valued process with orthogonal increments

EdZ(A)dZ(u) =61, F (A)=6:,.(A)d A

3. The problem

Assume that the vector-valued process {z;} has been observed at times
t=n,n—1,... and that we are interested in predicting »>>0 steps ahead. In
particular the case of greatest interest to us will be that in which we predict
one step ahead. We limit ourselves to predictors linear in the observations
%n, Tpn_3, ... that is, to expressions

oo
Z A Tk,
k=0

where the a,’s are mXm matrices or to limits (in mean square) of such ex-
pressions. The best linear predictor z},, is the one whose error

*
Lty — Tnty

is smallest. In this context the error is smallest if the covariance matrix

E @iy —2540) (Tniw— T )
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of the error is smaller than that of the error obtained if any other linear pre-
dictor in terms of the observations x,, Z,_i, ... were used. The case of greatest
interest, as in the case of prediction for a one-dimensional process, is that in
which' the prediction error is positive, that is, the covariance matrix of the
prediction error is a positive definite matrix. A necessary condition for the
error to be positive will be obtained in section 5. In section 6 it will be
shown that the prediction error is positive if the spectral distribution function
is absolutely continuous and the spectral density function is continuous and non-
singular. The question of obtaining simple and explicit formulae for the pre-
dictor and the covariance matrix of the prediction error in terms of the spec-
trum is considered in section 7 when the process is two-dimensional and the
diagonal elements of the spectral density function are equal. This question is
one of practical interest and in general is difficult.

Now consider a context in which such a prediction problem arises naturally.
Even though the stationary processes here are continuous parameter stationary
processes, the prediction problem that arises is quite analogous to that discussed
above. W. J. Pierson Jr. has constructed the following model of a storm
generated ocean surface. The ocean surface is given by

oo n 2
n(u,v,t)= f f [cos (% (% cos 0+ v sin 0)—yt) adZ, (u, 0)
0 -=n

2
+sin (‘{-;— {u cos 0+ v sin 6)—,ut) dZ,(u, 6)] )

where (w, v) is the position on the ocean surface and ¢ is the time. Here yu is
the frequency and g is the gravitational constant. The random processes
Zy (s 0), Zy(u,0) are orthogonal to each other and are processes with orthogonal
increments, that is

EZI(,“) 0)=EZ2(‘LL, B)EO

EZy(u, 0) Zy(u', 01)=0
and

EdZ(u, 0)dZ;(u', 0') = Ouw Opo f(u, 0)dpud 0, i=1,2.

Thus dZ,(u,0), dZ,(u, 0) are the random amplitudes of long crested waves of
frequency u with direction of propagation at an angle 6 to the w-axis. The
ocean surface is a superposition of such waves. This process is stationary in
(#,v) and £ It can, of course, only be considered as a realistic model well
within the storm area and over time intervals short compared to the time length
of the storm. Assume that the sea surface is observed at the two points (u, v)
and (v+A,v) up to time ¢{=0 and that one wishes to predict the sea surface
at (u+A,v) at time v>0. The two-dimensional process

n(u+A, v, t))
Xy =
(17 (u, v, 1)
has the matrix (2x2) spectral density
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7

A s
ff(l, 6)d6 fe o f(4,0)d6

- ”"Acoso -
fe g {4, B)df)ff(l, 0)do

if A>=0. We define f(—2)=f(4). Note that the problem of predicting
nu+A, v, 1)

is the same as that of predicting #(w, v, 7) from the past of both processes.
In other words, it really is equivalent to that of predicting the two-vector x;
from its past.

4. Remarks on orthogonalization

Assume that z; is a process with an absolutely continuous spectral distribu-
tion function and a non-singular spectral density function f(1). Suppose that
Zn, Tn_1, ..., Tn—p have been observed and we wish to predict x,.1 by the best
linear predictor in terms of the least squares criterion we have adopted. The

predictor has the form
n

*
Tpi1= 2 Tk
k=0

and is such that

E (Tns1— x:—-l) (xn+1 - xz+1)’

b4 D ’
=min K (:vn+1— 2 bkxn_k) (xn.u— 2 bkxn-k) .
k=0

b; k=0

In terms of the spectral representation we can look at the prediction problem
as a minimization problem

E (Tn41— a7:+1) (Zns1— x:+1)l

7T

D ) ’
= f (I_ Z ay e—l(k-!—l)l) f(l) (I___ Z ay e—i(k+1)l) d}.
- k=0 k=0

; ? 14 ’
=min f (I — 2 b e‘”"“") f(2) (I— > b e—‘<’°+l>*) .
k=0 k=0

b

Now we will briefly discuss matrix-valued (mxm) orthogonal polynomials in
¢'* and then interpret aspects of our minimization problem in terms of these
polynomials. Consider generating the system g¢q(4), ¢, (4), ... of orthogonal poly-
nomials in e'* with weight function f(A) recursively by the Gram-Schmidt

orthogonalization procedure from I, ¢'*1,.... Then
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[ @i F ) pu (A dA=06pc 1.

Assume that ¢, (), ..., p, (1) have been generated and that we wish to approx-
imate a given function ¢(1) in the mean square by a linear combination of

¢0 (z')’ cssy ¢p (l)- NOW

fn[g(l éw; /1)] [ écf% ] L2

-7

=(9,9)+ go[cf—(g, @)1 [e;— (g, (p,)] g 7, 91) (9, 93)» (2)

where (g, k)= fg(l)f(l)h(l)’dl. The error (2) is minimized if we set
;= (g: ‘Pi)-

If in particular g(A)=¢'®P*P*], the best linear approximation in terms of
Po(A); s pp (4) s

r

2 (ETIL (1) 1 (2).

Note that
P
GEVAT S (G 0 () 95 (A) (3)

j=0

is orthogonal to @, (1), ..., ¢, (4). On normalizing (3) we obtain @,.1(4). Note that

A D
S [E0m S @00, 0) g0 a5 )

in the prediction problem spoken of at the beginning of this section. The
prediction error

E (®ni1—2541) (Tny1— x:“)'

is the square(l) of the inverse of the coefficient of ¢"*V*in ¢,,;(1). We have
in effect given here procedures which can be used to obtain the predictor and
predictor error in a computing program.

5. A necessary condition for positive prediction error

Let z, Bz, =0, t=---, —1,0,1, ... be a weakly stationary m-vector stochastic
process, i.e.

Toe=Ti = f DGR (A),

b2 4

1 The square of a matrix M is understood to be M M.
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where F (1) is a non-decreasing (mxm) matrix-valued function. It is clear that
one ought to assume r, non-singular, for if this were not true one could in any
case reduce z; to a weakly stationary process y; of lower dimension but equal
rank m'<m with a non-singular covariance matrix of lag zero. Consider the
projection of xz; on the closed linear manifold M, ; (!) generated by x;_1, %2, ... .
This projection z; is an m-vector whose components are the projections of the
components of x; on M;_, respectively. Note that the one-step prediction error

E@ —zf)(x— ) =min E(x;—y) (®:—y)'s 1Y -or my € Me_1,
Y

where y=\ :
mY,

Let n;=x,—2;. The 7 s are orthogonal to each other, i.e.
Emn;=0 if t=1.
Consider E#:7;. The case of interest to us is that in which the prediction error

is positive, that is, En,n; is a non-singular matrix (a matrix of rank m). Nor-
malize the random vector 7, Call the normalized vector &;

&= (E . 77:)_§77t-

Let c,=E’xt 5;_1.
o0

Then wy= 2 ¢; &+
=0

(-]
where v;€ (N M. Note that the process »; is orthogonal to the weakly sta-
t=—100

tionary process &. The process £; is a process of orthonormal random vectors

1 This closed linear manifold m¢—1 is simply the space of random variables which can be
obtained either as finite linear combinations of the components of z,_;,%; o, ... or as limits
in the mean square of such random variables. m:—1 is a linear space. The random variables
of m_1 can be considered points in M;_3. The distance between two points (random vari-
ables) in m¢.1 =,y is

lz-yll-8* |z-y )

Most of the usual techniques appropriate in the case of a finite dimensional space can be
carried over to this infinite dimensional space. In particular the notion of a projection on
a closed linear manifold is valid just as in the finite dimensional space, i.e. the projection
pz of a random variable z on mi_1 is the random variable in mi—1 which is closest to 2
using the distance (4). The difference between z and its projection on m¢—1 is orthogonal
to m;_1 (perpendicular to m;_1), i.e. the inner product of z—pz and any element = of m¢_1

(z—pz, )=E(z—pz)a’=0.7}

See Halmos {1] for a detailed discussion of these points. An m-vector ¥ is loosely spoken
of as being in the closed linear manifold m if all its components are in m.
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E& & =61

The process z; is called a purely non-deterministic process if v;==0.

The function c(z)= > ¢; 7
=0

is a matrix-valued (mxm) function of a complex argument z. The function
¢(z) is analytic in the unit circle |z|<1 since

> cici< oo, (8)

=0
Moreover (5) implies that

c(e**) = lim ¢ (re*%

r>1-

exists almost everywhere. We shall show that the determinant |c(z)| is mot zero
at any point in the unit circle |z2|<1. Now |c(0)|=]c,| is not zero since we
have assumed positive prediction error, that is, ¢, is assumed non-singular. If

¢(z) were singular at some point z,=0, |z,] <1, there would be some vector « such
that

oo
c{zg)a = 2 ¢izha=0.
i=0

(-]

Consider x= 3 zh & ja.
j=0

Now 2 €M, but not M,_,. However
Ef mix=8 3 c;zha=0
=0

for all vectors § so that x€ M;_; and we are thus led to a contradiction.
The processes z;, &, v, are weakly stationary. But &, »; have the reprensentation

Ei= [€%dZ,(2), EdZ;A)dZ:(u)=6uldp,

v= [€*dZ, (1), EdZ,(A)dZy(u) =8 dF,(2).

—n

We know that

(-]
= 2 ¢k _j+u
-0

[

-7

JeteleaZe M)+ [ dZ,(A).
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Because of the orthogonality of the & and v, processes, it is clear that

3

F)= f%c(e"“)c(e"")’ du + Fy(2).

-z

Since the components of &, are in M, it follows that

&= [P 0(1)dZ ()

= fe’”d)(l)c(e'”)dze(l)+ f"e‘“cb(z)dzv )

bt 4

The function |c(z)| is a power series in z that belongs to H, and hence it
follows that |[c(e™'*)| is not zero for almost all A (see G. Szego [4], p. 267).
But then c(e™**) is non-singular for almost all 1 (Lebesgue measure). Thus

ON)c(e =1
for almost all 2 (Lebesgue measure) and @ (1) =0 for almost all A (F, measure).
Thus
] . _1_ -il —id\s
F' (=g oo™

and le(e ) F=(2n)" | F'(A)].
Since |c(z)| has no zeros in the unit circle |z|<1, it follows that
log | F' (A)]

is integrable and that thé determinant of the one-step prediction error covariance
matrix
T

lc(0)P=]co|>=(27)" exp ‘—2—1; flog | F (l)ldl} (6)

-7

(see J. L. Doob [1], p. 577). We have thus shown that ¢f the prediction error
is positive, log | F' ()| s integrable and that the determinant of the prediction
error covariance is given by (6). Note that though the determinant of the pre-
diction error covariance matrix is easily obtained, this is in general not true of
the elements of the covariance matrix. It is the latter problem that is of
greatest interest.
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6. A sufficient condition for positive prediction error

We shall restrict ourselves in this section to an m-.vector weakly stationary
process z;, K x,=0, with an absolutely continuous spectral distribution function F (A).
Moreover the spectral density f(1) is assumed to be continuous and non-singular
for all . Under these conditions, the covariance matrix of the one-step predic-
tion will be shown to be positive definite.

First consider the case of a positive definite matrix-valued (mxm) polynomial
of finite order in e'*

f(A) = i cre**>0.

k=-p

Now one can construct a weakly stationary m-vector x;, Ex,=0, with spectral
density f(A). Consider the random vector zf whose components are the projec-
tions of the components of x; on T_;. Let

=12 — X
The random vectors #; are orthogonal, i.e.,

Enine=0 if t=1.

The random vectors 7; all have the same covariance matrix, let us say R.
From the form of f(A), it follows that the components of ; are orthogonal to

M ;. This means that

D
Xy = Z A Ne—k-
k=0

Now )

@ = fei“dzm, EdZ(A)AZ(u) =61 f(A)dA,
and _:

nt=fei”dz,,(z), EdZ,}(A)dZ,,(y)’=2%§Rdl.
Thus -

&
fl
—

»
radZ (A= axni_x
k=0

~ y 4
= f e”’lkzoak e **d Z, (1).

It then follows that
2

Z(A)= f éoak e 4 7, (). (7)
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On taking the covariance of both sides of equation (7) we have
2 1
14 . 1 14 . ’
ff(,u)dys f ( > ake"k") ——R( > ake'”“‘) du
_ k=0 2n k=0

so that

f(l);:%i( % ake—kl)R( % ay e—ikl)'.

k=0 k=0

Since f(A) is positive definite, B must be non-singular. But then the #,’s can
be normalized so as to obtain the &,’s

§:=R—km
E&t 5-:':6!.1-[-

Using the argument given above one can see that there are coefficients b
such that

p
Xy = Z b b
k=0

Thus
f(l) =_1_( i b e—-ilc/‘l) ( i b e—ikl)’.
2a\i% ¢ o ¢

xt—x?=bo&

Note that

and the &’s are constructed so that b,= (b, bo)? where b, by is the prediction
error. It is clear that the optimal one-step predictor is

¥4
xf = Z br&ik.
k=1

Note that b, is non-singular so that the prediction error covariance b, bo is
positive definite. Given the mode of construction of the coefficients b, it is
clear that

[b(z)| =0 for all |z|<1,

r
where b(z)= > biz"
k=0

We have in effect given a generalization of Fejér’s theorem, for we have
shown that given a matriz-valued (mxm) positive definite polynomial f (1) of order
.44
P in e

f().)= i Ck61k1>0

k=-p
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one can write (1) in the form

- S (S

k=0

b4
with by positive definite and |b(z)|+0 when |z|<1. Here b(z)= > byz*. This
k=0

representation is uniquue.

Now we use the generalization of Fejér’s theorem to obtain the desired result
for any positive definite continuous matrix-valued (mxm) function f(1). Given
any such function f(4), one can find a positive definite polynomial g(A) in e'*
of finite order such that f(A4)>g(2). The prediction error for a weakly stationary
process with spectral density ¢g(A) has positive definite covariance matrix and
hence this also must be true of a weakly stationary process with spectral den-
sity f(4). Using the argument of the previous section we can then show that
f(A) has the representation

f(@A)= 217:( 2 Gk e“”“) (éoak e—fu)'

with a, positive definite and |a (2)|+0 when |z|<1. Here a(z)= > axz*. More-
K50

over, this representation is unique.
It is worthwhile looking briefly at a process whose spectral density is the in-
verse of a matrix-valued (mxm) polynomial in e'* of finite order

1 P . -1
[0=5( 3 ™) >0

k=—p

From the result cited above it is clear that we can write

(= (B (Saee)

k=6

D
where a, is positive definite and |a(z){+0 when |z|<1. Here a(z)= > axz".
k=0
Now the process x; has the representation

43

x; = f ¢ rdZ(A).

-7

11

Let 5‘=f ”‘( > ax e—’“)dzm

-7

Then EE & =01
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Note that
» z P
E Qp Xy 3= fettz ( Z ax e‘*“) aZ(A=¢,
k=0 k=0
-7
r } 4
and Eft-’”l’f—j=‘1_ f@i“( Z ake“”‘;')f(}.) e~t¢-Niga
2n k=0
1 ol i s e“”‘l),_ld1=0
27z P’y

if j>0. Thus the best linear predictor of z. given x;_y, %z, ... is

-1
Qg A Xy x-

8
%

Il
M=

&
I
-

—ik2

One can obtain the function Z aye in the case of such a spectral density
k=

f(2) by the following procedure By the Gram-Schmidt orthogonalization pro-
cedure we obtain the polynomial in e'*

r
z bk e{kl
k=0

which is normalized and orthogonal to I, ¢'*1, ..., P*] with respect to the
weight function f(4). On multiplying this polynomlal by e *”* one obtains the
desired expression.

7. Computational aspects of the problem

It is interesting to examine the computational aspect of the prediction prob-
lem in the case of a two-dimensional process. We shall see that there are various
difficulties that arise in the attempt to get an explicit and s1mple representation
of c(e7t%) (see section 5) and the prediction error covariance in terms of f(4).

Before going on let us review a few aspects of the one-dimensional case. Let

x; be a one-dimensional weakly stationary process, t=---, —1,0,1, ..., Ex;=0,
with spectral density f(A). Let log f(4) be integrable.
Set

1 1+ze'®
D(f;z)=V2m exp {—2—7_;[1 wlogf :
Then |D(f;z)|+0 when |z|<1 and D(f;0)>0.
Now on setting )
c(e)=lim D(f;re)=D(f; e}
r—-1—
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one finds that fAy=|ec(e*H .

The prediction error variance for a one-step prediction is

T

27 exp {% flog f(l)dl’ .

—-7T

Thus there is a neat and elegant way of obtaining c(e™**) and the prediction
error variance in the one-dimensional case.

Consider a two-vector weakly stationary process x;, t=---, —1,0,1, ..., E2,=0,
with spectral density

AC
MN={"
@ (fz(m flm)

where f,(1)=0, (1) —|f(A)|2=|f(A)|=0, and log |f(4)] is integrable. If we try
to follow the procedure used in the one-dimensional case uniformly, we run
into difficulties very soon as the logarithm of a matrix does not satisfy the equation

log M N=1log M +log N

unless MN=NM. We shall therefore first limit ourselves to those spectral
densities f(4) which are such that f(4)f(u)=/F(u)f(4) for all A, u.

Given two matrices
A=(ﬂ “2), B=(l_)l b”)
oy Oy b, by

where A, B>0, the matrices 4, B commute if and only if a25;=a_262 or ayb,
is real. Let us now add the additional condition that

f1(A)=f(—4), fz(l)=f2(”‘l)

as this is satisfied by the spectral density of a process with real-valued com-

ponents and we are particularly interested in such processes. Now f,(4) f5{u)
is real for all 4, 4 if and only if either f,(1) is real-valued for all A or f,(4)
is pure imaginary for all . Thus the only cases in which commutativity holds
are those where there is either zero cospectrum (f,(4) pure imaginary) or zero
quadrature spectrum (f, (1) real).

First let us look at the case in which f,(4) is real so that

1A f(A)
A=
1 (fz (4) fl(l))

fL(A)+ 1 (2) 0 )
0 h(A)—f2(4)

Then
Uf(AU= (
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11
Ve lf
Now
Umw:(mfﬁcf)z;e—“) Dty fz: -“)(D(fﬁh’e D(fl—ofz;e“))'
Thus
=0 (M )

(D(f1+f2, et )+ D(fi—fsse _u) D(f1+f2;e_” —D(ty~fas e
D(f1+fz:e u D(fy—fs: e _“) D(f1+f2;e_”')+D (i—fs €

The covariance matrix of the error in a one-step prediction is

T

o f log (f,+ fz)dl} exp f log (fy+f.)dA

{
+exp {% f log (fl——fz)dl} —exp jo— f log (fi—f2)dA
|

e
Hk_ﬁa

log (fi +12) dl} exp

log (f,—f,) 44

|
|
Jrosvenes
ey

—exp {—2—1—7; f log (f,— d).} +exp

).

The prediction error variance that would have been obtained for the first com-

ponent if only the past of the first component of the process were used is

T

27 exp { L f log fldA}

-

(8)

The improvement in prediction accuracy can therefore be represented by the
ratio of the prediction variance using the past of both components to the

prediction variance (8), that is,
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%Pﬂ%fmmwwﬂw@gaﬁ%fﬁwﬂ/

- -

exp {21 f log fldl} <L

Now let us look at the case in which there is no cospectrum. Then we can

write
hd) inw)
2) =
f()(~HAM L)

where f,(4) is real and f,(A)= —f,(—4). Now

LA +f(A) 0 )
UHAU' =
" ( 0 ORI AT
1o
where . V2 l/2.
1 -
V2 V2
Thus
c(e—i/'l)
=0 (D(f1+f2§e_u‘) 0 )
0 D(f1—f2;e‘“)
:1 (D(,f1+fz;,e“il)+D(f1_fz§e—ll) 1 D(fi+ 1y e_”)“’:D(fl—fz;e‘“)) '
T\ Dt e D~ i) Difytfpe D+ D(h—hse™

Note that if we expand c(e**) as a series in e, all the coefficients are mat-
rices with real elements since f,(1)= —f,(—24). The covariance matrix of a
one-step prediction is

f log (f1+fs) dl}

(3]
a|"‘

exp {2—17; f log (f1+f2)d2.} i exp {

fMgm f)di

o
d"—‘

fMgm~Md4 —i exp

[\
al“‘

+ exp{

—1i exp

J log (fi+f)dA

ﬁH
[\0)
a|"

-7

& |
{ } exp { fnlog (fL +1s) dl}
+1% exp {2i f fg)dl} + exp { flog (f— dl}

-7

8
Do
:1(""
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=zn[eXp {%z f log (f?—f%)dz} ,, 0 ]
] 0 exp {% flog (f%—f%)dz}f

0

The cases discussed thus far are the commutative cases in which precise
analogues of one-dimensional techniques can be used and where, for example,
the covariance matrix for the one-step prediction error is given by

kg

27 exp {% f log f(4) dl} . 9)

-7

The cases of greatest interest are those in which one has non-commutativity
of f(A) with f(u), Asu, that is, when both the cospectrum and quadrature
spectrum are not zero. We consider a simple example of this type to show
that one can no longer expect results like (9) to hold generally in this context.

Consider a matrix-valued (2x2) spectral density f(4)>0 which can be factored
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non-singular in the unit circle. Then
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Then we can take
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We can now see that a necessary and sufficient condition that f(4) have such
a factorization is that f,(1)/f,(A) have the one-sided expansion
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The prediction error covariance matrix for a one-step prediction is
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Note that in the case of such a spectral density (which is not generally com-
mutative), the prediction error covariance is not of the same form as (9). Various
other special non-commutative cases can be treated similarly.

8. Some final remarks

Let us discuss the case in which there is no quadrature spectrum in the
context of Pierson’s model of storm-generated ocean waves. Assume that the
sea, surface is observed at two points separated by a distance A as in section
3 and that the quadrature spectrum of the observed two-vector process is zero.
What kind of spectrum f(A, ) of the sea surface is it that would lead to such
a situation? The quadrature spectrum of the observed process is

f sin ()%A cos 6) f(2, 0)d0=0. (10)
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An interesting sufficient condition for equation (10) to hold is given by the
restraint

{(2,0)+f(4, —0)=f(A,m—0)+](4,0—mn) (11)

on the sea spectrum f(4, ). It should be noted, however, that this is not a
necessary condition. It would be interesting to choose interesting spectra satis-
fying condition (11) and determine the optimal distance A between the points
of observation on the sea surface so as to minimize the prediction error.
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