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§ 1. Introduction

Suppose u is a o-finite complex-valued measure on the upper half-plane
R2={z=x+iy:y>0}. Then u is called a Carleson measure if

1
sup 7 (O, 1D = e <<=,
where the above supremum is taken over all intervals IcR, and where |-| denotes one-
dimensional Lebesgue measure. Invoking a fundamental theorem due to Carleson [6],

Hormander [21] showed that the d problem 8F=u has a solution F satisfying
|IF”L°°(R) s COII””C

where u is a Carleson measure. (Here and throughout the paper we denote by C,
various universal constants.) The proof of this was based on the duality between H'
and L*/H” and the fact that

“f*"LP = CO"f“m

where

f¥()= sup |fix+iy)|.
k—ti<y

Here HP, 0<p<o, denotes the classical (holomorphic) Hardy space of functions

holomorphic on R? and satisfying

% 1/;
sup( v<x+iy>|'>dx) * <A, <.

y>0

-
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For p=» we denote by H™ the ring of bounded holomorphic functions on R2
endowed with the supremum norm..We also denote by #”(R") the (real variables)
Hardy space of all complex-valued harmonic functions on R%*'={(x,y):x ER",y>0}

satisfying f* € LP(R"), where

f*@®)= sup |f(x,y)].
k—rf<y
(Notice that by our definitions, #”(R")=L*(R").)

L estimates for the 3 problem play a fundamental role in the H” theory. They are
present, either implicitly or explicitly, in the results of [8], [11], [18], (21], [22], [27],
[36]. Our purpose in this paper is to find explicit solution operators for the § problem
which yield L*(R) solutions from Carleson measure data. It is not hard to see that such
solution operators must be nonlinear. Indeed, the solution operators of Theorem 1 are
not even continuous. Our solution operators are also highly one-dimensional in form;
this reflects the fact that there exist, in the ball in C”, 3 closed forms satisfying a
Carleson condition but not admitting any L™ solutions. (See Theorem 3.1.2 of [36].)

The duality approach to finding solutions of 3F= is sufficient for many problems
arising in the HP theory. In certain situations, however, one would like to obtain more
information on the solutions than duality permits. We cite two examples of problems
where the classical duality proof does not immediately give satisfactory answers.

(i) Can one infer smoothness or L? behavior for F from the known properties of u?

(i) If ||u|]|c=<1 can one construct a linear operator S solving 3(S(w(Z)u))=w(z)u
such that ||S@(@)|| g =Collwll,-?

Our solution operators can be used to answer problems (i) and (ii). It should be
pointed out that A, Uchiyama (unpublished) has recently found another method for
solving (ii) which uses duality. A constructive proof of solving 3F=u is presented in
[22], where the solution F is given as (essentially) a convex combination of Blaschke
products. This approach is attractive in certain contexts (e. g., problems related to the
Chang-Marshall theorem [11], [27]) but the solutions are quite difficult to compute and
give little more regularity than the L”(R) estimate. We remark that problem (ii) above
can also be solved by combining Lemma 2.1 of [22] with P. Beurling’s interpolation
theorem [7]. (P. Beurling’s theorem is intimately connected with the construction of
our solution operators — this is discussed in section 5.) On the other hand, the
construction of our solution operators is extremely simple and flexible and should be
useful in situations where neither duality nor the Blaschke product methods of [22] can
be used. Using in part the ideas of this paper, Lennart Carleson [10] has recently been
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able to solve the corona problem for a certain class of planar domains. (His method is
necessarily much more complicated than ours.)
For a measure o on R? let

-1 =i ‘
Ko.29=7"7 exp{ff[mwﬂM(z_w + C_w)dlal(w)}

and let

Ko,=2 (Iﬂg) K(0,2,0),

x\z—-¢§

K(0,2,0)= ;r—exp {(i—l) \/ _z_% + \/7} K(o,z,0).

THEOREM 1. If u is a Carleson measure, then

S @ = f f Kl 2, ) du(®)
R}

and

5,00 (@) = j f K @lleller 2, &) du(®)
R

satisfy S, (u) (z)EL,‘oc on Rﬁ and éSk(;4)=/4 in the sense of distributions, k=0,1. If

xER, the above integrals converge absolutely and

f f Kl . ] dal© < Colllle, k=01,
R}

In particular,
15,60 @) < Collulle, k=0,1.

The solution operators Sg and S, differ only in the way that So(u) and §,(«) decay
when u is compactly supported. In that case So(x) decays like |z| =2, while S;(u) decays
faster than any polynomial in |z] '

Suppose 0<po<p<p;< and f€LP(R). For many purposes in analysis (e.g.,
Marcinkiewicz-type interpolation) one wants to be able to split f into Jo+fi, where
fo€ L™, L€ L, and where f, and f; have certain good properties. Our solution
operator S; allows us to obtain a decomposition of Marcinkiewicz type for functions
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fEHP, where f,€ H” and f, € H”'. Since decompositions of this type are known when
p1<® (see [17]), our results are stated only for p;=c. The proof we give, however,
extends to the general case.

THEOREM 2. Suppose 0<py<p<x and suppose f€EHP. If a>0, there is a Marcin-
kiewicz decomposition of f, f=F ,+f,, where F,€ H”, f,€ H*, and such that

IFP<C,, f PP
{f*>a}

and
£l < Coar.

Our results on the § problem yield some new results on interpolation of operators
on Hardy spaces. We consider two methods of interpolation, namely the real method as
described in [19], [32] and the complex method as described in Calderén [3]. In the real
method the intermediate spaces are denoted by (-, -)g, 4, Where 0<0<1 and 0<g=<o. In
the complex method the intermediate spaces are denoted by (-,')g, Where 0<8<1. A
full account of both of these methods can be found in [2]. When interpolating between
HP spaces where p<1 in the complex method, some minor modifications of Calderén’s
method are needed; these can be found in [25] and [30]. Let H?' 7 denote the class of all
functions f holomorphic on R2 and such that f* is in the Lorentz space L”9(R). Also let
%7 9(R") denote the class of all functions f harmonic on R%*' and such that f* € L”*9(R").

It is known (see [17] and [20]) that
(1-6)

4

HAR"), L*(R"), , = (#"(R"),BMO (R"), , = %”"(R"),% = 0< py< .

These results imply the relations

(lipoylfl)Oq:Hp'qt '1_= (1_0) +i’ 0<p0<pl<w'
' p Do 1A

For the complex method the known results are:

(Hpoalfpl)o=Hp; l=1_0+_€, 0<P0<P1<°°;
p Py P

("R, 3 R"), = °®Y), L=170,9 o0<p <p,<w;
p Dy D,
—L_ﬁ, 1<py<,

(L(R"), L*(R")), = (L"(R"), BMO (R")), = L’(R"), _;— -
0
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These last results can be found in respectively [33], [4], and [18]. Our next two theorems
complete the classification of the intermediate spaces (in the real and complex meth-
ods) between H® and H”' by allowing H™ to be an endpoint space. Applying the
reiteration theorem (see e.g. [2]), Theorems 3 and 4 yield as corollaries the one-
dimensional versions of the results listed above.

THEOREM 3. If 0<po<, then (H’,H"), ,.=H"% 1/p=(1-6)/p,.
THEOREM 4. If 0<po<, then (K", H”),=HP, /p=(1—-0)/p,.

The methods of [17], [18], and {33] do not apply in the context of Theorems 3 and 4
for two basic reasons. Firstly, f€Re H?, 0<p< if and only if f* € L”; this fails for
Re H™. Secondly, the Hilbert transform is bounded on L?, 1<p<w, while it is not
bounded on L”. The proof of Theorem 3 follows almost immediately from Theorem 2.
(A detailed proof would follow the lines of the argument given at the end of [17]).) The
proof of Theorem 4 requires a separate argument.

At this point it is perhaps appropriate to comment on an unfortunate typographical
error in [18], which was pointed out to this author by E. M. Stein. It is mistakenly
stated on page 157 of that paper that (#'(R"), LP(R™)g=LIR"), 1/g=1-0+6/p,
1<p<o, The mistake lies in the statement 1<p<o, which should read 1<p<w, In
other words, the methods of [18] do not identify (and the authors do not intend to)
the intermediate spaces ('(R"), L”(R"),. The idea of [18] is that if 1<p<oo,
then by duality, (¥'(R",L’(R"),=L%R") if (BMO(R",L” (R"),=L?(R"), where
l/p+1/p'=1/q+1/q'=1. Since the # function of [18] sends BMO to L™ and L” to L?',
the # function must send (BMO (R"), L” (R"),to (L™(R"), L* (R")),=L7(R"). An appli-
cation of Theorem 5 of [18] now yields the result (BMO (R"), L?(R"),=L?(R"). The
typographical error 1<p=< is all the more unfortunate since it seems to have become
“‘well known’’ and is stated, e.g., in [2] and [31]. Our Theorem 4 rectifies this situation
in dimension one.

THEOREM 5. Suppose X, equals either %'(R) or L'(R) and suppose X, equals either
H>+H”, L(R), or BMO (R). Then

(Xp X,)o= L"(R), —=1-0.

1
P

Proof. The statement (L'(R), L”(R)),=L”(R) is classical. By Theorem 4, L’(R)=
P ® HP=(H', H"), ® (H', H"), = (¥'(R), L"(R)), = (L'(R), L*(R)),=L’(R), and con-
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sequently (%'(R), L”(R)),=L"(R). The same reasoning shows (#'(R), H*+H"), and
(L'(R), H°+H"), equal L*(R). To calculate (3'(R), BMO (R)),, we first observe that
L’ R)=(3%'(R), L*(R)), = (¥'(R), BMO (R)),. Since #'(R) functions integrate both
functions in L*(R) and BMO (R), functions in (#'(R), BMO (R)), must integrate func-
tions in (L*(R), %'(R)),=L"(R). Consequently, (¥'(R), BMO (R)), = L”(R). The same
argument shows (L!(R), BMO (R))s=L”(R). We remark that one can use the above
reasoning plus Theorem 3.1 of [4] to identify (¥”(R), X,), as the appropriate Hardy
space when 0<p,<o. In a future paper the author and S. Janson will give generaliza-
tions of Theorem 5 to martingales and R”. This is done by carefully examining the
stopping time argument presented in §4.

The organization of the paper is as follows. Theorem 1 is proved in section 2. In
section 3 we give two applications of Theorem 1 to the Fefferman-Stein decomposition
of BMO (R). Theorems 2 and 4 are proved in section 4. In section 5 we discuss the
relation of H” interpolation to the 3 problem.

By conformal equivalence, analogues of all results contained in this paper hold on
the unit disk.

§2. Proof of Theorem 1

In this section we prove Theorem 1. Only the last claim of the theorem will be proved;
the other two claims follow easily from the proof given below. Let us consider the
solution operator So. By the form of Sy it is enough to prove the theorem for the case
where u=0 and ||u||c=1. We first note that if w, {ER? and Im w<Im ¢, then

R i =Im§+Imw\21mf‘;'
e( c—a'»> E-af = &~ ol

We also note that the function

__Im¢
flw) —_—(f—w)z

is in H! and its norm is independent of £. Consequently,

R 1 auwmlt<2] | ImE 4
AL, Easo )] o

o | el

S Co-
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Fix a point x ER. Since

Re( —i_ ) - —Im w’
x=@/)  |x-af
the proof of Theorem 1 for the operator S, will follow immediately from

LEMMA 2.1. Suppose 0=0 is a sigma-finite measure on Ri, and suppose xER.

Then,
1 —f exp{ff Ima;da(w)}da(C)sl.
R Ix Imw<im ¢ X— @

Proof. The lemma follows from comparing I, with the integral [; e’ dt. Sup-

pose for example that a=2j‘:1 ap;. is a finite weighted sum of Dirac measures, and
7

suppose Im¢,;<Im¢,<...<Imfy. Put B=(a; Img/x—Ef). Then since |x—&j=]x—¢],

Iasz}:, B; exp{— Ti_; B.}<1, because the last sum is a lower Riemann sum for

Jo €' dt. Standard measure theoretic arguments now complete the proof. The author

thanks Professors E. Gorin, S. Hruscev, and S. Vinogradov for pointing out the above
argument, which replaces a slightly longer one due to the author.
The proof of Theorem 1 for the operator S, now follows from the inequality

exp{(i—l),/x Rz§+\/—H$COImC| xER,LERZ,

We remark that there is nothing special about the formulae for the kernels K, Ko, and
K, of Theorem 1. Almost any reasonable kernels which look like K, K, K, will serve
the desired purpose. The reason we have introduced the kernel K, is because of the
following lemma which will be needed in a later section. For a general box Q=
Ix(0, |1]], let x; denote the center of 1.

LEMMA 2.2. If u is a Carleson measure, ||u||c=1, then

<cen|-(54)")

K (] 2, 2) du@) i

Sfor all x€R.
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The proof of Lemma 2.2 follows easily from Theorem 2 and the form of K. In the
proof of Theorem 4 we will also need

LEMMA 2.3. If u is a Carleson measure, ||u||c=1, and w is a bounded function,
then

f f 1K, 0 [w@] dal®) < G -
R

Sfor all xER.
Lemma 2.3 follows immediately from Theorem 1.

§3. Bounded mean oscillation

Theorem 1 can be used to obtain constructively the Fefferman-Stein decomposition
[18], [22] of functions in BMO(R). (A constructive method was first presented in [22].)
Let @ EBMO be real-valued and have compact support. Carleson [9] and Varopoulos
[36] have both found methods of producing a Carleson measure u and an L™ function v,
such that |llc, |[V]|, <, <Collplls, and such that

j F(x) (p(x)—v(x)) dx = J f F(z) du(z)
— R2+

for all FEH'nH™. With x4 and v as above, let u(x)=2iS;(u)(x). Then u; €L*(R),
(il Loy <Collglls, and @=Re wu,+H({Im u)+v, k=0, 1, where H denotes the Hilbert

transform. See [22] for details.

The above approach to the Fefferman-Stein decomposition is a bit more attractive
than the approach in [22] because it provides explicit formulae for 4 and v. We illustrate
this with another example. Suppose ¢: R: — C\ {0} is a conformal maping onto some
planar domain. Baernstein [1] has shown that then ¢ € BMO and ||¢||,<C,. (That is to
say, the boundary values of ¢ are in BMO.) Theorem 2 gives a formula for the
Fefferman-Stein decomposition of ¢. A simple argument using the classical distortion
estimates for conformal mappings (see [23]) shows that ¢'dxdy is a Carleson measure,
and ||@'dxdy||c<Co. Lety=Re @ and let u;=2i Si(3y), k=0, 1. Then there are con-
stants c; such that g=Re u;+iH(Re up)+i(Im u,+iH(Im uy))+cy, k=0, 1. Smoothness
in @ is clearly reflected in the smoothness of ux, k=0, 1. This argument also works when
€? is merely quasiconformal, because it is still the case that |Vgldxdy is a Carleson
measure. See [23].
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§4. Proofs of Theorems 2 and 4

Our proof of Theorem 2 is in much the same spirit as Koosis’ proof [24] of the
Burkholder-Gundy-Silverstein theorem. For a>0, let O,={x:f*(x)>a}. Being open,
O, may be written as U; I7 where the I} are disjoint open intervals. For each
Ilet T} R? denote the tent over I},i.e., T} is the open 45° isosceles triangle lying in
R% with base I. Also let 7 denote (T})NR?, i.e., # consists of the two sides of T}
not lying on R. Now put Hy(z)=f inside U; T and put H,(2)=0 outside of U; T;. Then
3H,, exists as a distribution and ||3H,||c <V 2 a. This is because 3H,, is supported on
U,¢* and |f]<a on U;#. Let G,=S,(5H,). We treat f as if its boundary values were a
locally integrable function, ignoring the (merely technical) problems arising when f{x) is
a distribution. Since |G,(x)|<Cpa, xER, the function f,=f—H,+G, satisfies f, € H”
and ||f,|| ,.<Co a. Since F,=H.—G, is analytic, we need only estimate its L” norm.
We present the argument only for the case where po<1; the case where py>1 follows

by interpolation between the estimates we give for ||G,,.. and ||G,]

L\(R) LR’

For each interval IJ‘.’, let

efo=[[ KA 03O
i

Then G,=%,g, ; and by Lemma 2.2,

fIGa|p°dxszf |ga’j|p°dx
j —co

< 2 Cpoapo'lll'zl
J
<c, f | F* dx.
Oﬂ

Consequently,

f |FofPdx< | (|H["+|G,|™)dx

s CPoL Uﬁk'pﬂdx’

and the theorem is proved.
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We remark that the above procedure can be used to provide atomic type decompo-
sitions of functions in H?, 0<p=1. Such atomic decompositions were first caried out by
Coifman [12] and since have been studied by many authors. See e.g., [13] and [26]. Let
fEH?, 0<p<l, and with F, as in the proof of Theorem 2 write

f= 2 (FpFp).

Each term in the sum can be easily decomposed into X; A, ; g, ;. Each g, ;€ H* and
satisfies '

|q,, )| < =" exp { —|I]""Jx—x,|"?},

where x; is the center of some interval I associated to g, ;. The constants 4, ; satisfy
L, A F<CIfI%,- As a consequence, one sees that the same ‘‘atoms’” can be used to
build all H? functions, 0<p=<1. this should be compared with [12] where the definition
of atoms .is different for different ranges of p. That an atomic decomposition of H”
should follow from Theorems 3-5 becomes clear upon the reading of [12], [17], [26],
and [28].

We now turn to the proof of Theorem 4. By the reiteration theorem it is only
necessary to treat the case where 0<po<1. We will give the proof for the case when
po=1, the proof for 0<py<1 is virtualy identical. Select 6€(0,1), p€(1, =), such that
1/p=1-6, and let f€ HP be continuous on R%, of rapid decrease at ©, and have norm
[Ifller=1. Let N be a large positive number and let Iy=(—N,N), Qo=I,Xx(0,2N].
Suppose o is a Carleson measure, ||o||c<100, and suppose o—y=0, where y is arc-
length measure on 8Q,. (For a set QcRl we define 3Q=(8Q)NR%1.) Let
Fy( z)=f(z)xQo(z) and let

Gy2) = ij1(0/||0||c’ 2, §) IF(%).

Then by Theorem 1 and Lemma 2.4, Fo—Go € HP and || f—(Fo—Go)||s#<e if N is large
enough. By a translation and a change of scale we may assume the above properties
hold for f with 1,=(0, 1), Qp=I,x(0, 1].

" We now run a stopping time argument. For a cube Q=IX(0,|/]] let T(Q)=IXx
({I/2,)1] denote the top half of Q. Let no be the integer satisfying 2"< sup 1o, 0)| f(2)|
<2™*'. We retain the notation used in the proof of Theorem 3 with the exception that
we use the (equivalent) maximal function f*(£)=sup;,_ ., |f(x+iy)|.
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Let mg=ng+1 be the smallest integer such that
{x €1y 5> 2")| = lfy N O o s%|10|.
Then

1
IIO n 02,,.0_1 >—i_ |Iol

Let W, = {7} be the dyadic Whitney decomposition of 02,,.0. Thenif JEW,, either
Jely or INIy=@. Let {IP}={JEW,,:J<ly} and let Q)=I'x(0, ], Ro=0,\{U;Q}}.
Because of the way we have defined f*, | f(z)|s2'"° on 3R, and consequently
|f(2)|=<2™, z€ Ry. Let Fo={Q)} be the cubes so formed at stage zero. At stage one,
consider the individual cubes Q,€ #. For such a cube Q;=I;x(0,|I{] let n; be that
integer satisfying 2"< sup Q) | j‘(z)lSZ"f+1 and let m;=n;+1 be the smallest integer
satisfying |I,n Ozmjlsélljl. Then ;0 02,,.1._.|>§|Ij| and since [,cO n,, it must be that m;>rmo.
Let W, = {J;’} be the dyadic Whitney decomposition of 02,,,}. and let {F}=
{JEW,,:JcL;}. For each such F let Q{=Fx(0,|I]] and let R=0\{U,Q}}. Then
If(2)|<2™, zER;. Let $,={Q;} be the collection of all such cubes formed at stage
one. Proceeding in this manner we decompose Qo into UR;. Each &, is contained in a
cube Q;=I,x(0, |I]], and |f(z)|<2™, z € R,. Furthermore

m>m, if LEI,
and
Ju AER
3 20
Since 9%, has arclength I(O%;)<6|I, our last inequality and an iteration argument show
that if o is arclength measure on U{3%)), then o is a Carleson measure and ||g||c<100.
Now let f(2)=R2)x 22). Since it is a telescoping series, I;3f;}=9F,. Let

g{={[K0/|ol|c,z,£)3f(). Then by Theorem 1 and Lemmas 2.2 and 2.3,
fi~&€H'NH” and ||fi—g)ll -<Cy2", || fi~gll,,<Cp2"|I;|. Now define the Banach

space (H'n H*) valued function k; ; on S={{:0<Re{<1} by

hj, C(Z) = (Zm’)a(;) (f}_gj) (Z)9
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where a(f)=p(1-{)~1. We consider the (holomorphic) function H,=Xh; ¢, {€S. If
E=1+it, then h, [ €H", || h; || ..<C,, and by Lemma 2.3,

Il Hll e < sup D |y 0 | <Cy.
R

(This is where we really use the measure 0.) Now consider the case where {=0+it.
Then for each j, h; ;€ H' and

175 ¢ll a1, < Co2” 1}

< C02""f|1j n Ozmj_.l
Recall that if I, & I}, then m;>m,. Consequently,
I H I o< D M1 Ay
J

<2 2|11 O
J

@

<G, X, 2"|o,|

n=-—-w
-]
<C,| |f*Pdx
—o
<c,.

At the point {=6 we have _
Hy=2 hj=Fy~ f f K (d/|| oll ¢, 2, £) OF(©),
i

because L;9f,=9F,. By a previous comment, ||f—Hgl| ,,<¢. Standard arguments now

complete the proof of Theorem 4.

§5. H™ interpolation

Our Theorem 1 is closely related to the study of H™ interpolating sequences. A
sequence {z;} of points in R? is called an (H™) interpolating sequence if whenever
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{a;} €1~ there is FE€ H” such that F(z)=a,. By a theorem due to Carleson [5], {z;} is
an interpolating sequence if and only if

Zj_zk
Zj_z-k

inf [ | =6>0. (5.1)

Jok

In [22] the interplay between Carleson measures and interpolating sequences is exploit-
ed to find L=(R) solutions of F=u. The purpose of this section is to show that our
Theorem 1 is equivalent to finding explicit solutions for the H~ interpolation problem.
To demonstrate this we first fix our attention on a remarkable result due to P. Beurling
[7]. For an interpolating sequence {z;} let

M= sup inf {||F| ..F(z)=a;}.
I{a}l==1 Fen 7 @)=
P. Beurling has shown that for {z;} and M as above there are functions F;€ H” such

that Fj(z,)=06; » and L;|F{z)|<M for all zeRi. Here 0;, denotes the Kronecker
delta. Our next result is an explicit formula for P. Beurling type functions. Let

B(z)= H a;
i

be the Blaschke product with simple zeros at {z;} and let

B(z)= H a,
k

k*j

i
Z—Z-k
be the Blaschke product with simple zeros at {z;:k=+j}. The a; are unimodular

coefficients chosen so as to make the products converge.

THEOREM 6. Suppose {z;} satisfies (5.1). Let

_ Yi \? —i Vi
= Bfa (z-—z‘-) exP{logZ/d 2, z—z'k}

£ V€Y

where

= —4 A St! i Y )
1= —4(B(z)) eXp{logm > Z,--Z'k}

Y EY;
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Then F{z)=9;, « and

log 2/
g |F@| <G5

for all ZERZ.

Theorem 6 provides for the first time a formula for H” interpolation. For other
proofs of Beurling’s theorem see Earl [16] and Varopoulos’ proof on page 298 of [19].
(Varopoulos’ theorem yields a slightly weaker estimate, but the result holds in a more
general setting.) The bound Cyd~'log(2/6) in Theorem 6 is known to be of optimal
order—see page 293 of [19]. Before proceeding to its proof, we observe that Theorem 6
is also related to Theorems 3 and 4. Suppose that {8;} €!' and put F(z)=L8;y; ! F{z),
where the F; are as in Theorem 6. Then F(z)=8;y;', FEH', and
IF1l,<ZIBy; IF)||,;<C()Z|B). By interpolating between the case where p=1 (above)
and p=c (Theorem 6) we see that if 1sp<» and {B;}€F, then for
F(2)=%g;y; "? F{z) one has F(z)=;y;'#, FEHP, and ||F||,<C(p,d)|| {8;}|| ,- This
is the interpolation theorem of Shapiro and Shields [34].

Proof of Theorem 6. We first estimate the quantities c;, By condition (5.1),
IB{(z)|~'<6~". Since ||Zy;0,[lc<Co log 2/0 (see pp. 287-290 of [19]), the proof of
inequality (2.1) shows

Re{ 2 ly"_ }sColog%.

sy 9 %

Consequently, ¢;<Coé~". To finish the proof of Theorem 6 we need therefore only
demonstrate that for x ER,

>

J

Y
x—Z]

2 -1 " 2
exp{]og 2o 2 |x—z'k|2 } < Cologg,

Vi SY;

because then the maximum principle can be invoked. This last inequality follows from
Lemma 2.1 with

2\-1
a=<log3) Eyjézj.

As a final remark, it should be noted that the author was led to Theorem 1 by first
proving Theorem 6.
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