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EXISTENCE OF TRAVELLING WAVE SOLUTIONS
FOR REACTION-DIFFUSION-CONVECTION SYSTEMS

VIA THE CONLEY INDEX THEORY

Bogdan Kaźmierczak

Abstract. By using the Conley connection index theory we prove the ex-

istence of travelling wave solutions for a class of reaction-diffusion systems.

The results are applied to equations describing laser sustained plasma.

Introduction

Consider a system of reaction-diffusion-convection equations

(1) c̃i(u,∇u)
(
∂

∂t
+~vi(u,∇u) ·∇

)
ui = ã(u,∇ui)∆ui+M̃i(u,∇u) ·∇ui+fi(u),

where (t, x) ∈ (−∞,∞)× Rd, d ≥ 1, i = 1, . . . , n, n ≥ 2, u = (u1, . . . , un).
Let us look for travelling wave type solutions

(2) ui(x, t) = ui(x · ~n+ qt) for i = 1, . . . , n,

where ~n ∈ Rd is a chosen unit vector (the direction of propagation) and q ∈ R1

is the speed of the wave. If we denote ξ := x · ~n+ qt, then we arrive at a system
of ordinary differential equations of the type:

(3) ai(u, u′i)u
′′
i − qci(u, u′)u′i +Mi(u, u′)u′i + fi(u) = 0,
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where ′ = d/dξ, ξ ∈ R1. We are interested in solutions u(ξ) = (u1(ξ), . . . , un(ξ))
such that limξ→−∞ = 0 and limξ→∞ = 1, where 0 := (0, . . . , 0) and 1 :=
(1, . . . , 1) are stable zeros of the vector function f = (f1, . . . , fn). This is a sort
of an eigenvalue problem. By this we mean that such solutions may exist only
for certain values of q. In consequence q is a parameter, which is to be properly
chosen.

In this paper we use the Conley connection index theory to prove existence
of heteroclinic connections for system (3). The crucial assumption imposed on
the coefficients of system (3) consists in the so called local monotonicity of the
functions fi (see Assumption 2). Similar problems in the case of constant ai, ci
and Mi ≡ 0 was exhaustively analyzed in the book of Volperts’ ([18]). Using the
Volperts’ methods, Crooks ([6]) extended their results to the case of nonzeroMi.
The method of the existence proof in both [18] and [6] is based on the results in
the topological degree theory. There is also a deep paper ([14]) using the alter-
native method, namely the Conley index theory. However, this paper analyzes
slightly different system modelling the behaviour of symbiotic species in ecology,
where fi(u) = uif̃(u). In the present work we prove the existence of heteroclinic
solutions to (3) using also the Conley index theory. The terms Mi satisfy more
or less the same conditions as in [6], but contrary to [6] the coefficients ai and
ci are variable. The general idea of the proof is closely related to the classical
paper [4] (and [14]). It should be stressed however that our proofs of auxilliary
lemmas take advantage of the results in [18], [6] and [5]. We will be looking
for solutions which are strictly monotone, i.e. u′i(ξ) > 0, i ∈ {1, . . . , n}, for all
ξ ∈ R1. This is a basic assumption, which allows us to choose a proper isolating
neighbourhood – a fundamental notion in the Conley index theory.

The paper is organized as follows. Section 1 contains the main assumptions.
In Section 2 we define a continuous family of systems depending on a parameter
λ ∈ [0, 1] coinciding with (3) for λ = 1. In Section 3 we present basic lemmas
concerning “a priori” estimates of ‖u′(ξ)‖C0(R1) and q. Let us note that neither
the terms qci(u, u′)u′i nor Mi(u, u

′)u′i do not need to grow weaker than |u′|2 as
|u′| → ∞ (see Assumptions 3 and 4). In Section 4 we construct a family of
isolating neighbourhoods. These neighbourhoods consist approximately of the
Cartesian product of the parallelepipeds [0, 1]n, [0,m]n and [−Q,Q], where m
and Q are numbers resulting from “a priori” estimates of the first derivative
and the parameter q. However, this set is to be properly modified. First, small
balls around the limit singular points are added. Secondly, intermediate sin-
gular points are to be cut off properly. For some values of the continuation
parameter these singular points form a closed subset with nonempty interior of
a n-dimensional subspace {(u, z) : u ∈ Rn, z = 0}. The proof of existence
of heteroclinic connections exploits the fact that invariant sets contained in the
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corresponding elements of a continuous family of neighbourhoods have the same
Conley index. Thus our task is to make a proper continuation of our problem to
the simpler one (i.e. such that can be completely characterized within the terms of
the Conley index theory), choose appropriate family of isolating neighbourhoods
and to prove that at every step of this continuation the invariant set contained
in the closure of the isolating neighbourhood has no common points with its
boundary. The main part of our work concerns the systems with the functions
fi, i ∈ {1, . . . ,m} satisfying the local monotonicity conditions. In Section 6 we
extend our considerations to the case of functions, which can be represented in
the form fi(u) = uiΦi(ui)f̃i(u), with f̃i satisfying local monotonicity conditions
and Φi(ui) > 0 for ui 6= 0 (see Assumtion 5). In Section 7 we prove the existence
of heteroclinic connections for a system of equations describing multitemperature
plasma sustained by a laser beam.

1. Main assumptions and auxilliary lemmas

Assumption 1. All the functions appearing in system (3) are of C1-class.

Assumption 2. Assume that

(a) the functions fi ∈ C1(Rn,R1) satisfy the conditions of local monotonic-
ity, i.e. fi,j(u) > 0 for all i, j ∈ {1, . . . , n}, j 6= i and all u ∈ [0, 1]n

such that fi(u) = 0.
(b) 0 and 1 are solutions to the system

(4) fi(u) = 0 for i = 1, . . . , n.

Both constant states 0 and 1 are stable, i.e. all the eigenvalues of the
matrices

(5) fi,j(0), fi,j(1)

have negative real parts.
(c) All the other solutions {E1, . . . , EK} to system (4) are contained in
(0, 1)n and are unstable i.e. the matrix fi,j(Ek), k = 1, . . . ,K, has at
least one eigenvalue with positive real part.

Definition 1. Let 0 = (0, . . . , 0) ∈ Rn, 1 = (1, . . . , 1) ∈ Rn, (0,0) =
((0, . . . , 0), (0, . . . , 0)) ∈ R2n, (1,0) = ((1, . . . , 1), (0, . . . , 0)) ∈ R2n. For any
Y ∈ Rn and natural m ≥ 1 we put

|Y | = sup
i
|Yi|, Rm+ = {y : y ∈ Rm, y ≥ 0}.

For u, v ∈ Rn we will write u ≥ v (u > v), if and only if ui ≥ vi (ui > vi), i =
1, . . . , n.
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Assumption 3. ai(u, zi) > 1 for all i ∈ {1, . . . , n}, all 0 < u < 1 and all
zi ∈ R1+. There exists c0 > 0 such that c0 < ci(u, z) for all z ∈ Rn+, 0 ≤ u ≤ 1.
There exists b > 0 such that for all 0 < u, v < 1 and all nonnegative p and r
with |p| ≤ |r| we have ci(u, p)(ci(v, r))−1 ≤ b.

For all i ∈ {1, . . . ,m}, let χi : R1+ → R1+ denote a continuous and increasing
function such that ∫ zi

0
inf
0≤u≤1

ai(u, zi)zi dzi ≥ χi(zi).

Assumption 4. For each i ∈ {1, . . . , n} one of the below conditions holds:

(a) For all j ∈ {1, . . . , n} there exist functions Γij : R1+ → R1+ continuous,
increasing and such that Γij(y)χi(y)−1 → 0 as y → ∞, and for all
zi ∈ R1+:

(6)
∫ zi
0

a∗i,j(zi)zi dzi ≤ Γij(zi),

where a∗i,j(zi) = sup0≤u≤1 ai,uj (u, zi). The function Mi(u, z) satisfies
the inequality

(7) |Mi(u, z)| ≤ k(|u|)(1 + β(|z|)),

with k : R1+ → R1+ continuous, and β : R1+ → R1+ continuous, increasing
and such that β(y)y(χi(y))−1 → 0 as y →∞.

(b) For all j ∈ {1, . . . , n} there exist functions Γij : R1+ → R1+ continuous,
increasing and such that Γij(y)χi(y)−1 → 0 as y → ∞ and, for all
zi ∈ R1+,

(8)
∫ zi
0

a∗i,j(zi)zi dzi ≥ −Γij(zi),

where a∗i,j(zi) = inf0≤u≤1 ai,uj (u, zi), and inequality (7) is satisfied.
(c) ai(u, zi) = ai(u) and Mi(u, z) satisfies condition (7) with β(y)y−1 → 0
as y →∞ or the sum ai(u)u′′i +Mi(u, u

′)u′i can be written in the form
(ai(u)u′i)

′ + µi(u, u′)u′i and µi(u, z) satisfies (7) with β(y)y
−1 → 0 as

y →∞.
(d) ci ≡ 1, inequality (6) holds and for all p, r ∈ Rn+, |p| ≤ |r|,

Mi(u, p) ≥Mi(v, r)− M̂i(u, p, v, r)

for all 0 ≤ u ≤ v ≤ 1, M̂i(u, p, v, r) ≤ k(u, v)(1 + β(|r|)), with k :
R2n+ → R1+ continuous, β : R1+ → R1+ continuous, increasing and such
that β(y)y(χi(y))−1 → 0 as y →∞.

(e) ci ≡ 1, inequality (8) holds and for all p, r ∈ Rn+, |p| ≤ |r|,

Mi(u, p) ≤Mi(v, r) + M̂i(u, p, v, r)
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for all 0 ≤ v ≤ u ≤ 1, M̂i(u, p, v, r) ≤ k(u, v)(1 + β(|r|)), with k :
R2n+ → R1+ continuous, β : R1+ → R1+ continuous, increasing and such
that β(y)y(χi(y))−1 → 0 as y →∞.

Remark 1. The condition ai(u, zi) > 1 in Assumption 3 can be obviously
achieved if only ai(u, zi) > Cai > 0 for all zi ∈ R1+, 0 < u < 1. The last
inequality in Assumption 3 is satisfied for instance if ci = ci(u).

Remark 2. The condition (a) in Assumption 4 is satisfied for instance if,
for all j ∈ {1, . . . , n}, ai(u, zi),uj ≤ 0 for all u ∈ [0, 1]n and all zi ∈ R1+ and the
condition (b) if ai(u, zi),uj ≥ 0 for all u ∈ [0, 1]n and all zi ∈ R1+. Let us also
note that, when point (c) of Assumption 4 is satisfied, we do not need neither of
the conditions (a), (b) to be fulfilled.

Remark 3. Points (d) an (e) of Assumption 4 are approximately the same
as in the paper [6]. Let us note that in this case we do not assume any growth
condition on the term Mi.

When dealing with systems satisfying monotonicity conditions the notion
of Perron–Frobenius eigenvalue and Perron–Frobenius eigenvector is important.
The following lemma will be frequently used below.

Lemma 1 (Perron–Frobenius, see [5, Theorem 1.4]). Let M be an n × n
matrix with positive off-diagonal elements. Then M has a real, simple eigen-
value µPF (M) such that an associated eigenvector has positive components and
every other eigenvalue of M has real part less than µPF . Moreover, any pos-
itive eigenvector of M must be a multiple of the eigenvector corresponding to
µPF (M). µPF is called the Perron–Frobenius eigenvalue of M, and the asso-
ciated positive eigenvector P with ‖P‖ = 1 the Perron–Frobenius eigenvector
ofM.

For positive matrices the largest eigenvalue is an increasing function of any
of their elements.

Lemma 2 (see [10, Theorem 6, p. 350]). Let M be an n × n matrix with
positive elements. Then its Perron–Frobenius eigenvalue is a strictly increasing
function of any of its entries.

Lemma 3. Let M be an n × n matrix with positive off-diagonal elements.
Then its Perron–Frobenius eigenvalue is a strictly increasing function of any of
its entries.

Proof. Let us consider the matrixMc =M+ cI, where I is the unit n×n
matrix and c ∈ R1. Every eigenvalue µ ofM determines an eigenvalue µc of the
matrixMc by the relation

(9) µc = c+ µ.
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If c is taken suffciently large, then all the entries of Mc are positive. Using
Lemma 2 and (9) we conlude that the claim of the lemma is true. �

2. Continuation of the system

We will consider a family of problems depending on the parameter λ ∈ [0, 1]:

(10) aλi(u, u′i)u
′′
i − Jλi(q, u, u′)u′i +Gλi(u) = 0,

where
aλi(u, u′i) = ψ(λ)ai(u, u

′
i) + (1− ψ(λ)),

Jλi(q, u, u′)u′i = qcλi(u, u
′)u′i − ψ(λ)Mi(u, u′)u′i,

cλi(u, u′) = ψ(λ)ci(u, u′) + (1− ψ(λ)).

Here ψ(λ) : [0, 1] → [0, 1] is a C0,1-function such that ψ ≡ 0 for λ ∈ [0, 3/4]
and ψ(λ) = 4(λ− 3/4) for λ ∈ [3/4, 1]. The functions Gλi are determined as in
the book [18, p. 157] with the parameter τ in [18] equal to 1− λ. However, for
the reader’s convenience we sketch this homotopy below. Let w(s) be smooth
function of a real variable:

(11) w(s) =

{
1 for |s| ≤ δ/2,
0 for |s| ≥ δ,

such that w(s) > 0 for |s| < δ, δ ∈ (0, 1/2). Then we can define the function ω(u):

ω(u) =


w(|u|) for |u| ≤ δ,
w(|u− 1|) for |u− 1| ≤ δ,
0 for |u| ≥ δ, |u− 1| ≥ δ.

Let

(12) ωλ(u) = 1− 3(1− λ) + 3ω(u)(1− λ)

for λ ∈ [2/3, 1]. Before proceeding further we introduce an auxilliary function
g : Rn → Rn.

Definition 2. Let g(u) = (g1(u), . . . , gn(u)) denote a C1(Rn)-function sat-
isfying for all i ∈ {2, . . . , n} the following conditions:

(a) gi(u1, u2, . . . , ui−1, u1, ui+1, . . . , un) = g1(ui, u2, . . . , ui−1, ui, ui+1, . . . ,
un),

(b) g1,1(u) ≤ −k, g1,i(u) ≥ k for all u ∈ Rn, i ∈ {2, . . . , n}, k > 0.
(c)
∑n
i=1 g1,i(0) < 0,

∑n
i=1 g1,i(1) < 0.

(d) the only solutions to the equation g(u1, u1, . . . , u1) = 0 are 0, 1 and
E = (e1, . . . , en), with 0 < E < 1.
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For instance, the function g(u) = (g1(u), . . . , gn(u)) with gi(u) = G(ui) −∑
j 6=i σ(ui−uj), where σ > 0 is a sufficiently large constant and G(y) = −y(y−

a)(y − 1), a ∈ (0, 1), satisfies the above conditions.

Remark 4. It is easy to show that:

(1) All the solutions to the equation g(u) = 0 must lie on the diagonal, i.e.
all of their components must be equal.

(2) the Perron–Frobenius eigenvalue of Dg(0) and Dg(1) are negative and
equal to

∑n
i=1 g1,i(0) and

∑n
i=1 g1,i(1) < 0 respectively, with the corre-

sponding eigenvectors proportional to (1, . . . , 1).

Now, let H denote an arbitrary constant matrix with positive off-diagonal
elements satisfying the inequalities:

(13) H < Df(0), Df(1), Dg(0), Dg(1),

(The inequalities are understood as inequalities between the corresponding en-
tries.)

Gλ(u) =


f(u)ωλ(u) for λ ∈ [2/3, 1],
3(2λ− 1)f(u)ω(u) + 2(2− 3λ)h(u) for λ ∈ [1/2, 2/3],
3(1− 2λ)g(u)ω(u) + 2(3λ− 1)h(u) for λ ∈ [1/3, 1/2],
g(u)ω1−λ(u) for λ ∈ [0, 1/3],

where h(u) = w(|u|)Hu+ w(|u− 1|)H(u− 1).
Thus for λ ∈ [2/3, 1] the function Gλ(u) does not change with respect to λ

for u inside δ/2 neighbourhoods of the points 0 and 1 and becomes identically
equal to zero outside of δ-neighbourhoods of these points for λ = 2/3. For λ ∈
[1/3, 2/3) inside the δ-neighbourhoods the vector function f(u) is homotopically
transformed to the function g(u). (It becomes equal to g(u) for λ = 1/3.) Finally,
for λ ∈ [0, 1/3), the function Gλ(u) is transformed to g(u) everywhere in Rn.
Due to the choice of the matrix H the following lemma holds (see [18, p. 158]).

Lemma 4. For all λ ∈ [0, 1] all the eigenvalues of the matrices DGλ(0),
DGλ(1) have negative real parts. For all λ ∈ [0, 1/3) and λ ∈ (2/3, 1] the
functions Gλ(u) satisfy the condition of local monotonicity, i.e. Gλi,j(u) > 0 for
all j 6= i and all u ∈ Rn such that Gλi(u) = 0. Moreover, for δ > 0 sufficiently
small, Gλ(u) satisfies the condition of local monotonicity for all λ ∈ [0, 1] and
u such that |u| < δ or |u − 1| < δ. The only zeros of Gλ(u) for |u| < δ or
|u− 1| < δ are 0 and 1.

Proof. By Assumption 2 and Remark 4 it is obvious that the first state-
ment is true for λ ∈ [2/3, 1] ∪ [0, 1/3]. Note that for λ ∈ [1/2, 2/3) we have
Df(0) > DGλ(0), Df(1) > DGλ(1) and for λ ∈ (1/3, 1/2] we have Dg(0) >
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DGλ(0), Dg(1) > DGλ(1). Thus by means of Lemma 3 we conclude that the
first statement of the lemma is true. The second statement of the lemma follows
from the fact that the property of local monotonicity is retained after multipli-
cation by positive functions. While proving the third statement we will examine
only the vicinity of the point 0. This claim is true for λ ∈ [2/3, 1]. Let us
suppose that it is not true for all λ ∈ [0, 2/3). As the function ω(u) > 0 for
|u| < δ, this would imply that also the vector function Gωλ(u) = (ω(u))−1Gλ(u)
has some additional zero for |u| < δ. Hence for some λ̃ ∈ [0, 2/3) there would
exist ũ, 0 < |ũ| < δ, such that Gωeλ(ũ) = 0 and Gωλ(u) 6= 0 for all 0 < |u| < δ

and all λ ∈ (λ̃, 1]. As f(u), h(u) and g(u) are continuously differentiable, then
the Perron–Frobenius eigenvalue of the matrix DGωλ(u) is negative also for all
|u| < δ, if δ is taken sufficiently small. It follows that det(DGωλ(u)) 6= 0 for
these u. In consequence, due to the implicit function theorem, it would follow
that for all λ > λ̃, but sufficiently close to it, there would exist a continuous
branch u(λ) such that u(λ) → ũ as λ → λ̃ and Gωλ(u(λ)) = 0. But this is a
contradiction to our supposition. In the same way we consider the vicinity of
the point 1. The lemma is proved. �

Definition 3. A pair (qλ, uλ) ∈ R1×C2(R1,Rn), λ ∈ [0, 1], is called a hete-
roclinic pair for system (10), if uλ(ξ) satisfies system (10) for q = qλ, uλ(ξ)→ 0
as ξ → −∞, uλ(ξ) → 1 as ξ → ∞ and u′λ(ξ) → 0 as ξ → ±∞. A heteroclinic
pair (qλ, uλ) is called monotone, if u′λ(ξ) ≥ 0 for all ξ ∈ R1. It is called strictly
monotone, if u′λ(ξ) > 0 for all ξ ∈ R1.

The system (10) can be written as a first order system:

(15)

u′1 = z1,

. . . . . .

u′n = zn,

z′1 = (aλi(u, z1))
−1[Jλ1(q, u, z)z1 −Gλ1(u)],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

z′n = (aλn(u, zn))
−1[Jλn(q, u, z)zn −Gλn(u)].

To this form of the system (10) we will usually refer, when applying the results
of the Conley index theory (e.g. [4], [14]).

3. A priori estimates of |u′|C0 and qλ

For monotone solutions to system (10) the following lemma holds.

Lemma 5. Suppose that for λ ∈ [0, 1], q ∈ R1, u is a bounded C2(R1) solution
to system (10) such that 0 ≤ u(ξ) ≤ 1 and u′(ξ) ≥ 0 for all ξ ∈ R1. Then there
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exists a constant m > 0 such that |u′|C0(R1) < m. This constant is independent
of λ ∈ [0, 1], q ∈ R1 and u.

Proof. Obviously, u′i(ξ) → 0 as ξ → ±∞, and the limits limξ→±∞ ui(ξ)
exist for all i ∈ {1, . . . , n}. (In particular we may have limξ→−∞ u(ξ) = 0 and
limξ→∞ u(ξ) = 1.)

Suppose that supk supξ∈R1 u
′
k(ξ) = u′i(ξ0). It means that the function u

′
i(ξ)

has a maximum at ξ0. Thus u′′i (ξ0) = 0. It follows that

(16) qcλi(u(ξ0), u′(ξ0)) = ψ(λ)Mi(u(ξ0), u′(ξ0)) +Gλi(u(ξ0))(u′i(ξ0))
−1.

Suppose that condition (a) in Assumption 4 takes place. Let us note that

(17)
∫ ξ0
−∞

aλi(u(s), zi(s))zi(s)z′i(s) ds

=
∫ ξ0
−∞

{[∫ zi(s)
0

aλi(u(s), zi)zi dzi

]
s

−
∑
j

zj(s)
∫ zi(s)
0
[aλi,uj (u(s), zi)zi dzi]

}
ds

:=
∫ ξ0
−∞
(Aλi(u(s), zi(s))′ ds−Bλi(ξ0) = Aλi(u(ξ0), zi(ξ0))−Bλi(ξ0),

where, by Aλi(u(s), zi) we have denoted the primitive function of aλi(u(s), zi)zi
with respect to zi such that Aλi(u(s),0) = 0 for all u(s) ∈ [0, 1]n. Thus multi-
plying the i-th equation by u′i(ξ) and integrating over the interval (−∞, ξ0) we
obtain:

(18) Aλi(u(ξ0), u′i(ξ0)) = Bλi(ξ0)

+
∫ ξ0
−∞

qcλi(u(ξ0)), u′(ξ0))cλi(u(s), u′(s))[cλi(u(ξ0)), u′(ξ0))]−1u′i(s)u
′
i(s) ds

−
∫ ξ0
−∞

ψ(λ)Mi(u(s), u′(s))u′i(s)u
′
i(s) ds−

∫ ξ0
−∞

Gλi(u(s))u′i(s) ds.

Using (16) and Assumption 3 we conclude that the absolute value of the
second term at the right hand side of (18) is not greater than:∫ ξ0
−∞
|ψ(λ)Mi(u(ξ0), u′(ξ0)) +Gλi(u(ξ0))(u′i(ξ0))−1)|̃bu′i(s)u′i(s) ds

≤ b̃|ψ(λ)Mi(u(ξ0), u′(ξ0))|
∫ ξ0
−∞

u′i(s)u
′
i(s) ds+ b̃|Gλi(u(ξ0))|

∫ ξ0
−∞

u′i(s) ds

≤ b̃|ψ(λ)Mi(u(ξ0), u′(ξ0))|u′i(ξ0)ui(ξ0) + b̃|Gλi(u(ξ0))|ui(ξ0)
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where b̃ = max{1, b} is a number independent of u′i(ξ0). Note that due to the
definition of aλi and Γij we have:

Bλi(ξ0) ≤ ψ(λ)
∑
j

Γij(u′i(ξ0))
∫ ξ0
−∞

u′j(s) ds

= ψ(λ)
∑
j

Γij(u′i(ξ0))uj(ξ0).

Thus, according Assumption 4(a), independently of the value of q, we obtain

(20) ψ(λ)χi(u′i(ξ0)) + (1− ψ(λ))
1
2
(u′i(ξ0))

2

≤ψ(λ)
∑
j

uj(ξ0)Γij(u′i(ξ0)) + (1 + b̃)ψ(λ)K(1 + β(u
′
i(ξ0)))u

′
i(ξ0)

+ b̃|Gλi(u(ξ0))|+ G̃,

with G̃ bounded independently of the solution u(ξ). So, due to the fact that
β(y)y(χ(y))−1 = o(1) and Γij(y)(χ(y))−1 = o(1) as y → ∞, we infer that the
value of u′i(ξ0) must be bounded by a number independent λ, q. This estimation
holds for each heteroclinic solution of the system.

Suppose that condition (b) in Assumption 4 takes place. We will use the
identity ∫ ξ0

∞
aλi(u(s),zi(s))zi(s)z′i(s) ds(21)

=
∫ ξ0
∞

{[∫ zi(s)
0

aλi(u(s), zi)zi dzi

]
s

−
∑
j

zj(s)
∫ zi(s)
0
[aλi,uj (u(s), zi)zi dzi]

}
ds

=
∫ ξ0
∞
(Aλi(u(s), zi(s)))′ ds− B̃λi(ξ0)

=Aλi(u(ξ0), zi(ξ0))− B̃λi(ξ0).

Thus multiplying the i-th equation by u′i(ξ) and integrating from ∞ up till ξ we
obtain the equality similar to (18)

(22) Aλi(u(ξ0), u′i(ξ0)) = B̃λi(ξ0)

+
∫ ξ0
∞

qcλi(u(ξ0)), u′(ξ0))cλi(u(s), u′(s))[cλi(u(ξ0)), u′(ξ0))]−1u′i(s)u
′
i(s) ds

−
∫ ξ0
∞

ψ(λ)Mi(u(s), u′(s))u′i(s)u
′
i(s) ds−

∫ ξ0
∞

Gλi(u(s))u′i(s) ds.
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Due to the fact that we integrate from ∞ to ξ we obtain, by using the
condition (b) in Assumption 4, (16) and Assumption 3, similarly as above:

ψ(λ)χi(u′i(ξ0)) + (1− ψ(λ))
1
2
(u′i(ξ0))

2

≤ψ(λ)
∑
j

(1− uj(ξ0))Γij(u′i(ξ0)) + b̃ψ(λ)|Mi(u(ξ0), u′(ξ0))|u′i(ξ0)(1− ui(ξ0))

+ (1 + b̃)ψ(λ)K(1 + β(u′i(ξ0)))u
′
i(ξ0)(1− ui(ξ0)) + b̃|Gλi(u(ξ0))|+G,

where b̃ = max{1, b} is a number independent of u′i(ξ0) and G is bounded inde-
pendently of the particular solution u(ξ). So, due to the fact that

β(y)y(χ(y))−1 = o(1) and Γij(y)(χ(y))−1 = o(1)

as y → ∞, we infer that the value of u′i(ξ0) must be bounded by a number
independent λ, q and a particular heteroclinic solution of the system.
When Assumption 4(c) is fulfilled, the proof may be carried out similarly.

First, when Mi(u, z) satisfies (7), we can divide the i-th equation by ai and
obtain the equation with the coefficient by u′′i equal to 1. (After this operation
Assumptions 2 and 3 retain their validity). Suppose that the second possibility of
point (c) holds. Multiplying the i-th equation by aλi(u(s))u′i(s) and integrating
from −∞ to ξ0 we obtain the equality

1
2
[aλi(u(ξ0))u′i(ξ0)]

2 =
∫ ξ0
−∞

qcλi(u(s), u′(s))aλi(u(s))u′i(s)u
′
i(s) ds

−
∫ ξ0
−∞

ψ(λ)µi(u(s), u′(s))aλi(u(s))u′i(s)u
′
i(s) ds

−
∫ ξ0
−∞

Gλi(u(s))aλi(u(s))u′i(s) ds,

from which one may obtain the desired estimate.
Suppose that Assumption 4(d) is satisfied. We have as before

q = ψ(λ)Mi(u(ξ0), u′(ξ0)) +Gλi(u(ξ0))(u′i(ξ0))
−1.

Then, as above, we obtain

χi(u′i(ξ0)) + (1− ψ(λ))
1
2
(u′i(ξ0))

2

≤Bλi(ξ0) +
∫ ξ0
−∞
(q − ψ(λ)Mi(u(s), u′(s))u′i(s)u′i(s) ds

−
∫ ξ0
−∞

Gλi(u(s))u′i(s) ds

≤
∫ ξ0
−∞
[q − ψ(λ)Mi(u(ξ0), u′(ξ0))−Gλi(u(ξ0))(u′i(ξ0))−1]u′i(s)u′i(s) ds
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+
∫ ξ0
−∞

Gλi(u(ξ0))(u′i(ξ0))
−1)u′i(s)u

′
i(s) ds−

∫ ξ0
−∞

Gλi(u(s))u′i(s) ds

+ ψ(λ)
∫ ξ0
−∞
[Mi(u(ξ0), u′(ξ0))−Mi(u(s), u′(s))]u′i(s)u′i(s) ds+Bλi(ξ0)

≤Ci + ψ(λ)K(1 + β(u′i(ξ0)))u′i(ξ0)ui(ξ0) + ψ(λ)
∑
j

uj(ξ0)Γij(u′i(ξ0)),

where Ci and K are independent of u′i(ξ0). Hence, as before we conclude that
the lemma is true.
When Assumption 4(e) is satisfied then we integrate from ∞ up till ξ0. We

obtain:

χi(u′i(ξ0)) + (1− ψ(λ))
1
2
(u′i(ξ0))

2

≤ B̃λi(ξ0) +
∫ ξ0
∞
[q − ψ(λ)Mi(u(ξ0), u′(ξ0))

−Gλi(u(ξ0))(u′i(ξ0))−1]u′i(s)u′i(s) ds

+
∫ ξ0
∞

Gλi(u(ξ0))(u′i(ξ0))
−1)u′i(s)u

′
i(s) ds−

∫ ξ0
∞

Gλi(u(s))u′i(s) ds

+ ψ(λ)
∫ ξ0
∞
[Mi(u(ξ0), u′(ξ0))−Mi(u(s), u′(s))]u′i(s)u′i(s) ds

≤Ci + ψ(λ)K(1 + β(u′i(ξ0)))u′i(ξ0)(1− ui(ξ0))

+ ψ(λ)
∑
j

(1− uj(ξ0))Γij(u′i(ξ0)),

where Ci and K are independent of u′i(ξ0). The lemma is proved. �

The following lemma holds.

Lemma 6. Let the components of F ∈ C1(Rn,Rn) satisfy Assumption 2. Let
P (0) and P (1) denote the eigenvector corresponding to the Perron–Frobenius
eigenvalue of DF (0) and DF (1), respectively. Then there exist r > 0 and ϑ > 0
such that for each i ∈ {1, . . . , n}

dist (u,W0i) < ϑ(r)⇒ Fi(u) < 0,

dist (u,W1i) < ϑ(r)⇒ Fi(u) > 0,

where

W0i = {u : 0 ≤ u ≤ rP (0), ui = rPi(0)},
W1i = {u : 1 ≥ u ≥ rP (1), ui = 1− rPi(1)}.

Proof. Let µF denote the Perron–Frobenius eigenvalue of DF (0). Then r
may be taken so small that F (rP (0)) = r DF P (0) + o(r) < rµFP (0)/2. More-
over, we can decrease r if necessary, so that the monotonicity conditions from
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Assumption 2(a) hold in the set 0 ≤ u ≤ 2rP (0). Using these conditions we
conclude that Fi(u) < 0 for u ∈ W0i. In consequence there exists ϑ = ϑ(r) > 0
such that the first of the above relations is satisfied. In the same way we prove
the second relation. �

Lemma 7. Let F and r be the same as in Lemma 6. Then for any point
u ∈ W0 = {u : 0 ≤ u ≤ rP (0), u 6= 0} there exists i ∈ {1, . . . , n} such that
Fi(u) < 0. Likewise, for any point u ∈ W1 = {u : 1 ≥ u ≥ 1 − rP (1), u 6= 1}
there exists i ∈ {1, . . . , n} such that Fi(u) > 0.

Proof. Let us take an arbitrary point U = (U1, . . . , Un) ∈ W0. Let r̃ =
maxj Uj(rPj(0))−1 = Uk(rPk(0))−1 for some k ∈ {1, . . . , n}. As r̃ ≤ r then
it follows from the proof of Lemma 6 that it holds with r replaced by r̃ and
ϑ(r) replaced by ϑ(r̃). In consequence Fk(u) < 0 for u ∈ W̃0k = {u : 0 ≤ u ≤
r̃P (0), uk = r̃Pk(0)}. In the same way we consider the parallelepiped W1. The
lemma is proved. �

Another proof of Lemma 7 can be found in [18, p. 159].
As a corollary to Lemma 7 we have the following lemma.

Lemma 8. Let F be the same as in Lemma 6. Then there does not exist
a point u, 0 < |u| < δ̃, δ̃ sufficiently small, such that Fi(u) ≥ 0 for all i ∈
{1, . . . , n}. Likewise there does not exist a point u, 0 < |1−u| < δ̃, δ̃ sufficiently
small, such that Fi(u) ≤ 0 for all i ∈ {1, . . . , n}.

Proof. It suffices to take δ̃ < r and apply Lemma 7. �

Remark 5. It is easy to note that if r and δ̃ are taken sufficiently small then
Lemmas 6–8 hold also for the functions Gλ, λ ∈ [0, 1].
Now, we are able to prove a priori estimates for q.

Lemma 9. If (qλ, uλ) is a strictly monotone heteroclinic pair for system (10),
then |qλ| < Q, where Q is independent of λ ∈ [0, 1] and uλ.

Proof. For simplicity, we will omit the subscript λ in qλ and uλ. The idea
of the proof is contained in [6] (Lemma 3.4). As u(ξ) → 0 monotonically as
ξ → −∞, then there must exist an index i and ξ = ξ0 such that u(ξ) enters
the region 0 ≤ u ≤ rP (0) through the (closed) set W0i, i.e. u(ξ0) ∈ W0i (see
Lemma 6). Let us take ξ1 < ξ0 such that ui(ξ0)− ui(ξ1) = ϑ/2. Integrating the
i-th equation of the system (10) we obtain

(23)
∫ ξ0
ξ1

aλi(u(s), u′i(s))u
′′
i (s) ds−

∫ ξ0
ξ1

cλi(u(s), u′(s))qu′i(s) ds

−
∫ ξ0
ξ1

ψ(λ)Mi(u(s), u′(s))u′i(s) ds+
∫ ξ0
ξ1

Gλi(u(s)) ds = 0.
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Let us note that∫ ξ0
ξ1

aλi(u(s), u′i(s))u
′′
i (s) ds = Ãλi(u(ξ1), u

′
i(ξ1))− Ãλi(u(ξ0), u′i(ξ0))

+
∫ ξ0
ξ1

∑
j

zj(s)
∫ zi(s)
0
[aλi,uj (u(s), zi) dzi] ds,

where Ãλi(u(s), zi) is the primitive function of aλi(u(s), zi) such that Ãλi(u(s),0)
= 0. The expressions on the right hand side are bounded, due to the Lemma 5,
so
∫ ξ0
ξ1
aλi(u′(s))u′′i (s) ds < R1 < ∞. The third term on the left hand side of

equation (23) is also bounded from above independently of λ, ξ0 and ξ1 by some
finite number R2. If (R1 + R2) ≤ 0, then q is negative, due to the fact that∫ ξ0
ξ1
Gλi(u(s)) ds < 0. So, suppose that (R1 +R2) > 0 and q ≥ 0. Then, in view

of Assumption 3, the second term can be estimated as follows:∫ ξ0
ξ1

cλi(u(s), u′(s))qu′i(s)ds ≥ qc0
∫ ξ0
ξ1

u′i(s) ds

= qc0

∫ ξ0
ξ1

(ui(ξ0)− ui(ξ1)) ≥ qc0
ϑ

2
.

Consequently, from (23) we obtain the relation qc0ϑ < 2(R1+R2), which implies
that q < c−10 ϑ−12(R1 + R2). In the same way, by analyzing the behaviour of
a heteroclinic trajectory near the singular point (1,0) we can prove the bound-
edness of the parameter q from below. �

4. Construction of isolating neighbourhoods

For the notions concerning the Conley and connection index theory we refer
the reader to [2], [4], [13] and [17]. The a priori estimates of the previous section
allow us to find an isolating neighbourhood, i.e. a compact set having the prop-
erty that no invariant set contained in it touches its boundary. The isolating
neighbourhood will be defined in several steps. Let

N = {(u, z) : ui ∈ [0, 1], zi ∈ [0,m], i ∈ {1, . . . , n}},
N∗(ε) = N ∪ B(A, ε) ∪ B(B, ε),

where m is a number given by Lemma 5 and B(A, ε) and B(B, ε) denote the
closed balls in the space (u, z) of radius ε with centers at the points A = (0,0)
and B = (1,0), respectively. Explicitly

B(A, ε) = {(u, z) : sup{|u|, |z|} ≤ ε},
B(B, ε) = {(u, z) : sup{|1− u|, |z|} ≤ ε}.

The number εmust be taken sufficiently small. Its upper value will be determined
in a series of lemmas below.
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Lemma 10. For each λ ∈ [0, 1] and each q ∈ [−Q,Q] the points A = (0,0)
and B = (1,0) are saddle singular points of system (15). The linearization
matrices of system (15) at these points have exactly n eigenvalues in the left half
plane and n eigenvalues in the right half plane.

Proof. See Theorem 3.3 in [5]. �

Having an arbitrary compact subset N in the phase space (u, z) by I(N )
we will understand the maximal invariant set contained in N i.e. the set of all
points (u0, z0) ∈ N such that the trajectory of a solution (u(ξ), z(ξ)), ξ ∈ R1, to
system (15) satisfying initial condition (u(0), z(0)) = (u0, z0) lies in N .
First we will show that if a trajectory belongs to I(N∗(ε)), then it cannot

leave the set N if only ε is taken sufficiently small.

Lemma 11. For q ∈ [−Q,Q] with Q as in Lemma 9 and all ε ∈ (0, ε0) with
ε0 > 0 sufficiently small no trajectory of a solution to system (10) belonging to
I(N∗) can enter the set N∗ \N .

Proof. We consider only the ball B(B, ε). As B is a saddle singular point
then any trajectory leaves the ball B(B, ε) in forward or backward direction,
if only ε is taken sufficiently small (ε can be taken independently of λ ∈ [0, 1]
and q ∈ [−Q,Q]). According to the Hartman–Grobman theorem (see e.g. [1])
sufficiently close to the saddle singular point the flow generated by our system
is C0-equivalent to the flow generated by its linearization. It follows that for
ξ → ∞ or ξ → −∞ the considered trajectory either leaves the ball B(B, ε) or
tends to the point B if ε > 0 is small enough. So, suppose that a trajectory
from I(N∗) leaves the set N and enters the set B(B, ε) \N . We will prove that
this trajectory can neither reach the point B nor enter the set N again. Suppose
that this trajectory reaches the point B without entering the set N again. It is
easy to note that then there must exist an index i and numbers ξ1 ∈ R1, δ > 0,
such that u′i(ξ) > 0 for ξ ∈ (ξ1 − δ, ξ1), u′i(ξ1) = 0, and such that u′i(ξ) < 0 for
ξ ∈ (ξ1, ξ1+ δ). Moreover, u′i(ξ) must have a global minimum in the set (ξ1,∞).
Due to the fact that u′(ξ)→ 0 as ξ →∞ for all j the quantity infξ∈(ξ1,∞) u′j(ξ)
is finite and at least for j = i it is negative. Thus there exists a unique s > 0
such that the function vs(ξ) = u′(ξ) + sPλ(1) := v(ξ) + sPλ(1) ≥ 0 for all
ξ ∈ (ξ1,∞) and such that for some ξ∗ ∈ (ξ1,∞) the vector vs(ξ∗) has at least
one zero component. Here Pλ(1) is the eigenvector corresponding to the Perron–
Frobenius eigenvalue of the matrix DGλ(1). To fix our attention suppose that
vs1(ξ∗) = 0. Thus v1(ξ∗) = −sPλ1(1), v′1(ξ∗) = 0 and v′′1 (ξ∗) ≥ 0. Let us note
that the components of v(ξ) satisfy the equation

(24) aλi(u, u′i)v
′′
i + Ti(λ, q, u, u

′)v′i +
∑
j

{Gλi,j(u) + Sλi(λ, q, u, u′)δij}vj = 0,
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obtained by differentiation and expressing u′′j , j 6= i, from the j-th equation of
system (10). We note that the function Sλi behaves like O(|u′(ξ)|)+O(|1−u(ξ)|)
as ξ →∞. Let K(λ, q, u, u′) denote the matrix with the entries Kij equal to the
expressions in the braces in (24). Let ε0 < δ/2 be so small that in the set
{(u, z) : sup{|1− u|, |z|} < ε0}, independently of λ ∈ [0, 1] and q ∈ [−Q,Q], the
following conditions are satisfied:

(1) K(λ, q, u, z) has all of its off-diagonal terms positive,
(2) K(λ, q, u, z)Pλ(1) < 0.

It is obvious that the constant ε0 with the above mentioned properties exists.
Now, we will show that if sup{|1− u(ξ∗)|, |u′(ξ∗)|} < ε0 then

(25)
∑
j

{Gλ1,j(u(ξ∗)) + Sλ1(λ, q, u(ξ∗), u′(ξ∗))δ1j}vj(ξ∗) > 0.

To prove it let us consider the function

φ(y) =
{∑
j

(Gλ1,j(u) + Sλ1(λ, q, u, u′)δ1j

}
(ξ∗)(vj(ξ∗)(1− y)− sPλj(1)y).

If v(ξ∗) = −sPλ(1), the claim results from the assumption imposed on ε0. If
v(ξ∗) 6= −sPλ(1), then for at least one j 6= i we have vj(ξ∗) − sPλj(1) > 0,
so φ′(y) < 0 (due to the fact that K(λ, q, u, u′) has all of its off-diagonal terms
positive inside the ball B(B, ε)), φ(1) > 0, hence φ(0) > 0. Thus inequality (25)
is proved. But this contradicts (24) for i = 1 as v′1(ξ

∗) = 0 and v′′1 (ξ
∗) ≥ 0. Now,

suppose that the considered trajectory enters the set N again. It means that
there exists ξ2 ∈ (ξ1,∞) such that u′(ξ2) ≥ 0. Consequently, the whole proof
may be repeated verbatim. (This time ξ∗ ∈ (ξ1, ξ2).) �

Remark 6. The first part of the proof of Lemma 11 can be carried out with-
out using the Hartman–Grobman theorem. We will prove it near the point A.
Near the point B the proof is the same. Suppose first, that for an invariant
trajectory we have ui(ξ0) < 0 for some index i and some finite ξ0. Suppose that
zi(ξ0) > 0. By considering the backward trajectory we infer that either zi(ξ0)
becomes negative for some ξ < ξ0 or at least zi(ξ) → 0 as ξ → −∞. In the
latter case ui(−∞) < 0. If we assume that zj(ξ) ≥ 0 for all ξ ∈ R1 and all
j 6= i, then, as ξ → −∞ we have zk(ξ)→ 0 for all k ∈ {1, . . . , n} and the limits
limξ→−∞ uk(ξ) exist. However, as ui(−∞) < 0, then at least one component of
Gλ(u(−∞)), say Gλl(u(−∞)) 6= 0. Hence z′l(ξ) tends (as ξ → −∞) to a number,
which is different from 0. But this contradicts the fact that zl(ξ) → 0. Similar
conclusion holds if zi(ξ0) = 0. As a result, for at least one j ∈ {1, . . . , n} we
must have zj(ξ∗) < 0 for some finite ξ∗. The same is obviously true if an invari-
ant trajectory leaves the set z ≥ 0 inside B(A, ε). As the solutions inside N∗ are
bounded then the function zj must attain a negative minimum for some finite ξ
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inside B(A, ε). Now, the rest of the proof may be carried out similarly to the
proof of Lemma 11. It is seen that with this modification Lemma 11 is valid also
in the case, when q is not a constant parameter, but changes suffficiently slowly.
Thus suppose that q′ = ρφ(u, z)q, where φ is globally bounded and ρ > 0 is
a parameter, which can be taken arbitrarily small. Then the matrix K(λ, q, u, z)
changes to K̃(λ, q, u, z) = K(λ, q, u, z) − ρqcλi(u, z)φ(u, z)δij . It is obvious that
for |ρ| sufficiently small K̃ satisfies the conditions (1) and (2) fulfilled by the ma-
trix K (at the point 0). (Condition (1) is obviously satisfied. Due to the fact that
λ and q belong to the compact sets we have K(λ, q, u, z)Pλ(0) < k < 0, indepen-
dently of λ and q, hence for |ρ| sufficiently small we have K̃(λ, q, u, z)Pλ(0) < 0.)
The rest of the proof may be repeated without changes.

It follows from Lemma 11 that I(N∗) = I(N), thus for any trajectory from
I(N∗) we have ui(ξ) ≥ 0 for all ξ ∈ R1. One notes that for λ ∈ (2/3, 1]∪ [0, 1/3)
and all q ∈ [−Q,Q] the boundary of N∗ contains at least intermediate singular
points belonging to I(N∗). For other values of the parameter λ the situation
may be even more complicated. To use the Conley connection index theory we
must analyze the structure of the set I(N) ∩ ∂N and to modify the set N∗ in
such a way that it becomes an isolating neighbourhood.
First, we will analyze the set I(N) ∩ ∂N for λ ∈ (2/3, 1] ∪ [0, 1/3). As we

noted the following lemma holds.

Lemma 12. For λ ∈ (2/3, 1] ∪ [0, 1/3) and q ∈ [−Q,Q]

I(N) ∩ ∂N = {(u,0), u ∈ [0, 1]n : Gλ(u) = 0}.

Remark 7. Due to the form of Gλ, the last set does not change on each of
the intervals (2/3, 1] and [0, 1/3).

Proof of Lemma 12. Suppose that the trajectory touches the side ui = 0
or ui = 1 of ∂N for some i ∈ {1, . . . , n}. So that it stays in N we must have
zi = 0 at this point. Thus, we must consider these parts of ∂N , where zi = 0
for some i. So, suppose that a trajectory touches the side zi = 0 for ξ = ξ0.
As it does not leave the set N we must also have z′i(ξ0) = 0 and z

′′(ξ0) ≥ 0.
Hence Gλi(u(ξ0)) = 0. However, differentiating the i-th equation we obtain the
equation aλi(u(ξ0), zi(ξ0))z′′i (ξ0) +

∑
j 6=iGλi,j(u(ξ0))zj(ξ0) = 0, from which we

infer, due to the monotonicity conditions, that z′′i (ξ0) < 0 unless zj(ξ0) = 0 for
all j ∈ {1, . . . , n}. But then repeating the above arguments for each j 6= i we
conclude that (u(ξ0), z(ξ0)) is a singular point. �

According to the definition of Gλ the similar lemma holds for λ ∈ [1/3, 2/3],
but for u lying inside the balls

b(0, δ) = {u : |u| ≤ δ} and b(1, δ) = {u : |1− u| ≤ δ}.
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Lemma 13. For λ ∈ [1/3, 2/3] and q ∈ [−Q,Q]

I(N)∩ [∂N ∩{(u, z) : u ∈ int(b(0, δ))∪ int(b(1, δ))}] = {(u,0), u = 0 or u = 1}.

The unstable singular points (Ek,0), k ∈ {1, . . . ,K} for λ ∈ (2/3, 1] and the
unstable singular point (E,0) for λ ∈ [0, 1/3) have the following crucial property
given in the following lemma.

Lemma 14. For λ ∈ (2/3, 1] and q ∈ [−Q,Q] there cannot exist simultane-
ously two solutions u, u to system (10) satisfying the following conditions:

(1) (u(ξ), u′(ξ))→ (Ek,0) as ξ →∞, with u′(ξ) > 0,
(2) (u(ξ), u′(ξ))→ (Ek,0) as ξ → −∞, with u′(ξ) > 0,

for all k = 1, . . . ,K.
For λ ∈ [0, 1/3) and q ∈ [−Q,Q], there cannot exist simultaneously two

solutions u, u to system (10) such that:

(3) (u(ξ), u′(ξ))→ (E,0) as ξ →∞, with u′(ξ) > 0,
(4) (u(ξ), u′(ξ))→ (E,0) as ξ → −∞, with u′(ξ) > 0.

The following lemmas are of basic importance in the proof of Lemma 14.

Lemma 15 (see [18, Lemma 2.4, p. 161]). Let A be a constant diagonal
matrix with positive entries. Let F : Rn → Rn be such that F (u0) = 0 and
DF (u0) has all of its off-diagonal elements positive. If there exists a solution
u(ξ) to the system

Au′′ + cu′ + F (u) = 0
tending to u0 as ξ → ∞ (−∞) and such that u(ξ) < u0 (u(ξ) > u0) for all
suffciently large ξ (−ξ), then there exist a number κ ≤ 0 (κ ≥ 0) and a positive
vector P , such that

[Aκ2 + cκ+DF (u0)]P = 0.

Lemma 16 (cf. Lemma 3.7 in [5]). Let A, C, B be n × n matrices with
Bij > 0 if j 6= i, A, C diagonal with A positive-definite. Then the Perron–
Frobenius eigenvalue µPF (η2A+ηC+B) is a strictly convex function of η ∈ R1.
To be more precise, for η1, η2 ∈ R1, η1 6= η2 and 0 < t < 1, we have:

µPF {(tη1 + (1− t)η2)2A+ (tη1 + (1− t)η2)C +B}
≤ tµPF {η21A+ η1C +B}+ (1− t)µPF (η22A+ η2C +B}.

Proof. The proof of this lemma is the same as the proof of Lemma 3.7
in [5]. According to the result of Cohen (see [5, Theorem 3.6]) for any matrixM
with positive off-diagonal elements, any two real diagonal matrices C1, C2 and
any t ∈ (0, 1) we have

µPF [tC1 + (1− t)C2 +M] ≤ tµPF [C1 +M] + (1− t)µPF [C2 +M].
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For any η1, η2 ∈ R1 with η1 6= η2 and t ∈ (0, 1) we have (tη1 + (1 − t)η2)2 <
tη21 + (1− t)η22 . So, using Lemma 3, we obtain

µPF [(tη1 + (1− t)η2)2A+ (tη1 + (1− t)η2)C +B]
< µPF [t(η21A+ η1C) + (1− t)(η22A+ η2C) +B]
< tµPF [η21A+ η1C +B] + (1− t)µPF [η22A+ η2C +B].

The lemma is proved. �

Proof of Lemma 14. The proof of this lemma follows by an appropiate
modification of the proof of Lemma 2.4 p. 161 in [18] (see also [6]). Let us
consider the case λ ∈ (2/3, 1]. Suppose that both of the possibilities (1) and (2)
occur. Then u0 = Ek. We will show that in each case the lemma similar to
Lemma 15 holds. This will lead to a contradiction. Suppose that point (2) takes
place. Let H(τ, λ) denote the matrix obtained from DGλ(u0) by subtracting
a sufficiently small number τ > 0 from its elements. We have

Gλ(u) = DGλ(u0)(u− u0) +O((u− u0)2)
= H(τ, λ)(u− u0) + {DGλ(u0)−H(τ, λ)(u− u0)}+O((u− u0)2)
= H(τ, λ)(u− u0) + τ Ĩ(u− u0) +O((u− u0)2)

where Ĩ denotes the matrix with all of its entries equal to 1.
First, we will prove that for all i and all (−ξ) sufficiently large we have

u′i(ξ) ≤ C|u(ξ)−u0|. First, let us assume that u′(ξ) tends to zero monotonically
for all ξ < ξ̃ as ξ decreases. By multiplying the i-th equation by u′i(ξ), integrating
from (−∞) to ξ < ξ̃, and using the mean value theorem we obtain the inequality

(u′i(ξ))
2 ≤ {|Jλi(q, u0,0) + o1(1)|u′i(ξ1)(ui(ξ)− u0i)

+ |DGλi(u(ξ2))(u(ξ3)− u0)(1 + o2(1))|(ui(ξ)− u0i)}
(
1
2
aλi(u0,0)

)−1
,

where o1, o2 tend to zero as ξ → −∞ and ξ1, ξ2, ξ3 ∈ (−∞, ξ). From this we
obtain the inequality

(u′(ξ))2 ≤ C1u′(ξ)|u(ξ)− u0|+ C2|u(ξ)− u0|2

for some finite positive constants C1, C2. It is obvious that the last inequality
can be fulfilled only if u′(ξ) ≤ C|u(ξ) − u0| with the constant C independent
of ξ.
Now, suppose that u′i(ξ) does not tend to 0 monotonically and suppose that

the inequality u′i(ξ) ≤ C|u(ξ)−u0| is not true. Then there would exist a sequence
{ξk}∞1 diverging to (−∞) such that u′i(ξk) ≥ k|u(ξ)− u0| for any natural k ≥ 1.
Let us replace this sequence by the sequence {ξ̃k}∞1 , where ξ̃k = ξk, if u′i(ξ) ≤
u′i(ξk) for all ξ ≤ ξk, or, if it is not true, ξ̃k < ξk is the first nearest point, where
u′i attains the supremum on the set (−∞, ξk). Moreover, out of this subsequence
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we may choose a subsequence, which will be denoted in the same way, such that
u′i(ξ̃k) < u′i(ξ̃k−1) and

(26) u′i(ξ) ≤ u′i(ξ̃k) for ξ ≤ ξ̃k.

According to the definition of the sequence {ξ̃k}∞1 we would have

u′i(ξ̃k) > Ck|ui(ξ̃k)− u0|

with Ck →∞ as k →∞. However, carrying out the same integration as in the
monotonic case for ξ replaced by ξk (and taking advantage of (26)) we can prove
that u′i(ξk) ≤ C|u(ξk)−u0| with C independent of k. This contradicition proves
our claim. Let

aλ(u0,0) = diag (aλ1(u0, 0), . . . , aλn(u0, 0)),

cλ(u0,0) = diag (cλ1(u0,0), . . . , cλn(u0,0)),

M(u0,0) = diag (M1(u0,0), . . . ,Mn(u0,0)).

Near the point (u0,0) system (10) can be written in the following way:

aλ(u0,0)u′′(ξ)− qcλ(u0,0)u′(ξ) + ψ(λ)M(u0,0)u′(ξ)
+H(τ, λ)(u(ξ)− u0) + H̃(τ, λ, ξ) = 0,

where by the use of Lagrange mean-value theorem

H̃i(τ, λ, ξ) =Gλi(u(ξ))−
n∑
j=1

Hij(τ, λ)(uj(ξ)− u0j) + τ
n∑
j=1

(uj(ξ)− u0j)

+ ψ(λ)u′′i (ξ)
[ n∑
j=1

(uj(ξ)− u0j)A1ij(ξ) + u′i(ξ)A2i(ξ)
]

+ ψ(λ)u′i(ξ)
[ n∑
j=1

(uj(ξ)− u0j)A3ij(ξ) +
n∑
j=1

u′j(ξ)A4ij(ξ)
]
,

where A1ij , A2i, A3ij , A4ij are bounded in C1-norm. The fact that uj(ξ) →
u0j , u′j(ξ) → 0, u′′j (ξ) → 0 implies that for any τ > 0 sufficiently small there
exists ξ∗ = ξ∗(τ) with (−ξ∗) sufficiently large such that for all ξ ≤ ξ∗ the
function H̃(τ, λ, ξ) is positive. Hence u(ξ) is a supersolution to the boundary
value problem:

−U,t + aλ(u0,0)U ′′ − qcλ(u0,0)U ′ + ψ(λ)M(u0,0)U ′ +H(τ, λ)(U − u0) = 0,
U(t, ξ∗) = u(ξ∗), U(0, ξ) = u(ξ).

One can show existence of a time independent function v(ξ) such that v(ξ) > u0
for ξ < ξ∗, v(ξ) → u0 as ξ → −∞ satisfying the last system of equations
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(see [18]). From Lemma 15 it follows that there exists a number κτ ≥ 0 and a
positive vector Pτ , |Pτ | = 1, such that

(27) {aλ(u0,0)κ2τ − [qcλ(u0,0) + ψ(λ)M(u0,0)]κτ +H(τ, λ)}Pτ = 0,

Letting τ → 0 we infer that there exists a number κ ≥ 0 and a vector P ≥ 0
satisfying the relation

(28) T (κ, q)P = {aλ(u0,0)κ2−[qcλ(u0,0)−ψ(λ)M(u0,0)]κ+DGλ(u0)}P = 0.

One can show (see the proof of Lemma 2.4 in [18]) that P > 0. In the same way,
by considering the solution satisfying point 1. we can arrive at the conclusion
that there exists a number κ̃ ≤ 0 and a vector P̃ > 0, |P̃ | = 1, satisfying relation

(29) T (κ̃, q)P̃ = {aλ(u0,0)κ̃2−[qcλ(u0,0)−ψ(λ)M(u0,0)]κ̃+DGλ(u0)}P̃ = 0.

As, according to Assumption 2, µPF (DGλ(u0)) > 0, then κ > 0 and κ̃ < 0. Let
η1 = κ and η2 = κ̃. We will prove that for fixed q both of the relations (28), (29)
cannot be satisfied. If both of these relations were satified, then for η = η1 and
η = η2 the Perron–Frobenius eigenvalues of the matrix

(30) T (η, q) = aλ(u0,0)η2 − [qcλ(u0,0)− ψ(λ)M(u0,0)]η +DGλ(u0)

would be equal to 0. However, we can find t ∈ (0, 1) such that tη1+(1−t)η2 = 0.
Hence according to Lemma 16 we would have

0 <µPF (DGλ(u0))

≤ t{aλ(u0,0)η21 − [qcλ(u0,0)− ψ(λ)M(u0,0)]η1 +DGλ(u0)}
+ (1− t){aλ(u0,0)η22 − [qcλ(u0,0)− ψ(λ)M(u0,0)]η2 +DGλ(u0)} = 0.

This leads to a contradiction.
Similarly, we prove that points (3) and (4) cannot take place simultaneously.

Thus Lemma 14 is proved. �

The next lemma claims that the intermediate singular points are the maximal
invariant sets in some suffciently small neighbourhoods of them. We say that
they are invariant relative to I(N) (see Chapter D, p. 334 in [4]).

Lemma 17. For every λ ∈ [0, 1/3) there exists a sufficiently small open
neighbourhood VE(λ) of (E, 0) such that (E, 0) is the maximal invariant set in
VE(λ) ∩ N . For every λ ∈ (2/3, 1] and every k = 1, . . . ,K there exists a suffi-
ciently small open neighbourhood VEk(λ) of the singular point (Ek, 0) such that
(Ek, 0) is the maximal invariant set in VEk(λ) ∩N .

Proof. Suppose that the first claim is not true and that there exists a tra-
jectory (u(ξ), z(ξ)) contained completely in VE(λ)∩N . According to Lemma 14
this trajectory cannot tend to the point (E, 0) both for ξ → ∞ and ξ → −∞.
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Let us suppose that it tends to this point only for ξ → −∞ ( ξ → ∞). As
there is no other singular point in some vicinity of (E, 0), then due to Lemma 12
z′(ξ) > εz > 0 for all ξ > 0 (or ξ < 0). Hence for ξ (or −ξ) suffciently large
this trajectory must leave the set VE(λ) ∩ N . Similarly we can prove that for
every λ ∈ [0, 1/3) and every k = 1, . . . ,K there exists a sufficiently small open
neighbourhood (in R2n) VEk(λ) of the singular point (Ek, 0) such that (Ek, 0) is
the maximal invariant set in VEk(λ) ∩N . �

Definition 4. For λ ∈ [0, 1/3) and q ∈ [−Q,Q] let A∗+(λ, q) (A∗−(λ, q))
denote the set of points lying on the trajectories of solutions (u(ξ), z(ξ)) to
system (15) belonging to I(N) such that limξ→∞ u(ξ) = E, (limξ→−∞ u(ξ) =
E), and limξ→∞ z(ξ) = 0 (limξ→−∞ z(ξ) = 0). For λ ∈ (2/3, 1] and q ∈
[−Q,Q] let Ak+(λ, q) (Ak−(λ, q)) denote the set of points lying on the trajec-
tories of solutions (u(ξ), z(ξ)) belonging to I(N) such that limξ→∞ u(ξ) = Ek
(limξ→−∞ u(ξ) = Ek), and limξ→∞ z(ξ) = 0 (limξ→−∞ z(ξ) = 0).

From Lemma 14 one can easily derive the important properties of the sets
defined in Definition 4.

Lemma 18. For each λ ∈ [0, 1/3), q ∈ [−Q,Q] at least one of the sets
A∗+(λ, q), A

∗
−(λ, q) must be empty. As well for all λ ∈ (2/3, 1], q ∈ [−Q,Q] and

all k ∈ {1, . . . ,K}, at least one of the sets Ak+(λ, q), Ak−(λ, q) must be empty.

Using Lemma 14 and its proof one can also give a more precise characteri-
zation of these sets.

Lemma 19. For λ ∈ [0, 1/3), A∗+(λ, q) = ∅ if q ≥ 0 and A∗−(λ, q) = ∅ if
q ≤ 0. For λ ∈ (2/3, 3/4], k ∈ K, Ak+(λ, q) = ∅ for q ≥ 0 and Ak−(λ, q) = ∅ for
q ≤ 0. For λ ∈ (3/4, 1], k ∈ K, there exist numbers q∗k(λ) and q∗k(λ) ≥ q∗k(λ)
such that Ak+(λ, q) = ∅ for q ≥ q∗k(λ) and Ak−(λ, q) = ∅ for q ≤ q∗k(λ).
Moreover, the sets {q ∈ R1 : Ak+(λ, q) = ∅} and {q ∈ R1 : Ak−(λ, q) = ∅} are
simply connected.

Proof. For λ ≤ 3/4 we have ψ(λ) ≡ 0, hence the matrix T (η, q) given
by (30) takes the form

η2I − ηqu′ηI +DGλ(u0).
If q ≤ 0 and η ≥ 0 then the maximal eigenvalue of this matrix is positive, because
it is positive for η = 0 (cf. Lemma 3 and the proof of Lemma 4). The same
arguments work if q ≥ 0 and η ≤ 0. Hence the first two claims of the lemma
are true. If λ ∈ (3/4, 1] then there exists q∗k(λ) so large that [−qcλ(u0,0) +
ψ(λ)M(u0,0)] ≤ 0 for q ≥ q∗k(λ) and q∗k(λ) sufficiently close to (−∞) such that
(−qcλ(u0,0) + ψ(λ)M(u0,0)] ≥ 0 for q ≤ q∗k(λ). Hence as above we can prove
the third statement of the lemma. Now, let q1 ∈ {q ∈ R1 : Ak+(λ, q) = ∅}
and suppose that there exists q2 > q1 such that µPF (T (η2, q2)) = 0 for some
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η2 < 0. This would mean that the matrix T (η2, q1) has its diagonal elements
strictly smaller than those of the matrix T (η2, q2), hence µPF (T (η2, q1)) < 0.
As µPF (T (0, q1)) > 0 then by continuity of µPF (T (η, q1)) with respect to η it
would be possible to find η1, 0 > η1 > η2, such that µPF (T (q1, η1)) = 0. This is
a contradiction. In the similar way we prove that the set {q ∈ R1 : Ak−(λ, q) = ∅}
is simply connected. �

Now, we will analyze the set I(N)∩∂N for λ ∈ [1/3, 2/3], q ∈ [−Q,Q]. Note
that for these values of λ we are dealing with the system:

u′′i − qu′i +Gλi(u) = 0,

i = 1, . . . , n. Moreover, Gλi(u) ≡ 0 for u 6∈ int (b(0, δ)) ∪ int (b(1, δ)).

Definition 5. Let P = {(u, z) : (u, z) ∈ N, z = 0, u 6∈ int (b(0, δ)) ∪
int (b(1, δ))}. For λ ∈ [1/3, 2/3] and q ∈ [−Q,Q] let A+(λ, q) (A−(λ, q) ) denote
the set of points lying on the trajectories of solutions (u(ξ), z(ξ)) belonging to
I(N) such that limξ→∞(u(ξ), z(ξ)) ∈ P (limξ→−∞(u(ξ), z(ξ)) ∈ P).

(Note that for every trajectory from N the limits limξ→±∞(u(ξ), z(ξ)) are
well defined.) Our aim is to excise a sufficiently small neighbourhood of the set P
out of N∗ so that it becomes an isolating neighbourhood. However, before doing
that, we must check whether the sets A+(λ, q) and A−(λ, q) have the proper
structure. We want to use the Lemma in Chapter D, p. 334 in [4]. For the
reader’s convenience we cite it here.
Let Z be a compact invariant set and let Ẑ be a subset of Z. Then Ẑ is called

an isolated invariant set relative to Z if there is a compact neighbourhood N̂ of Ẑ
in Z such that Ẑ = I(Ẑ). If this is the case let A+ = A+(Ẑ, Z) (respectively,
A−(Ẑ, Z)) be the set of points on solutions in Z \ Ẑ that tend to Ẑ in forward
time (respectively, backward time).

Lemma 20 ([4, p. 334]). Suppose that N is compact. Let Z = I(N) and let
Ẑ be isolated relative to Z. Suppose that either A+ = A+(Ẑ, Z) or A−(Ẑ, Z) is
empty. Then, for all small enough neighbourhoods U of Ẑ,

I(N \ U) ∩ ∂(N \ U) = I(N) ∩ ∂N \ (A+ ∪A− ∪ Ẑ).

For the reader’s convenience we give the proof of Lemma 20 in Appendix.
The analysis of the sets A+(λ, q) and A−(λ, q) will be divided into three

cases: q = 0, q > 0 and q < 0.

Case I. q = 0.

Lemma 21. For λ ∈ [1/3, 2/3] and q = 0 both A+(λ, q) and A−(λ, q) are
empty and I(N) ∩ ∂N∗ = P. Moreover, P is the maximal invariant set in the
closure of a sufficiently small neighbourhood of P contained in N .
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Proof. Suppose that a trajectory (u(ξ), z(ξ)) touches the part of the bound-
ary given by the relation ui = 0 or ui = 1 at some point (U,Z). So that this
trajectory does not leave the set N we must have Zi = 0 at this point. Thus
the problem is reduced to the analysis of these parts of the boundary at which
zi = 0.

(a) Suppose that U lies outside the open balls b(0, δ) = {u : |u| ≤ δ} and
b(1, δ) = {u : |1 − u| ≤ δ}. Suppose first that Zj = 0 for all j ∈ {1, . . . , n}.
Then (U,Z) = (U,0) is a singular point. Obviously this singular point is not
isolated, because in every arbitrarily small neighbourhood of it there are other
singular points belonging to P. But no other trajectory passes through it nor
tends to it as ξ → ±∞. (To see this, note that sufficiently close to this point
system (10) becomes simply z′j = 0.) Thus suppose that Zj > 0 for some j
and that (U,Z) = (u(ξ0), z(ξ0)). Then, as zi(ξ) = const as long as u(ξ) stays
outside b(0, δ) and b(1, δ) the projection of this trajectory onto u-space will
be contained in the plane ui = const = ui(ξ0). It will thus have the form
uj(ξ) = zj(ξ0)(ξ − ξ0). But, any trajectory of this form will cross the boundary
of the set [0, 1]n for (ξ − ξ0) or (−(ξ − ξ0)) sufficiently large. (To see this, let
us note that, as δ < 1/2, at most for one of the balls b(0, δ) and b(1, δ) the
intersection with the plane ui = ui(ξ0) is nonempty independently of ui(ξ0).)
Hence the point (U,Z) with Zj > 0 for at least one j cannot belong to I(N).

(b) Suppose that U = u(ξ0) lies at the boundary of b(0, δ). If we assume that
zj(ξ0) > 0 for at least one j, then, by repeating the arguments from point (a),
we note that the trajectory through the point (U,Z) will leave the set N , so
this point will not belong to I(N). So, let us assume that Zj = 0 for all j.
Suppose that there exists a trajectory belonging to I(N), which tends the point
(U,0) as ξ → ∞. It follows that zj(ξ) ≥ 0, zj(ξ) 6≡ 0, ξ ∈ R1 for at least
one j. Hence u(ξ) lies inside the ball b(0, δ) for all ξ ∈ R1. From Lemma 13
we conclude that if the considered trajectory touched that part of the boundary
at which Zj = 0 for some j ∈ {1, . . . , n} and u ∈ int(b(0, δ), then it would not
belong to I(N∗). (Remind that there is no singular point with |u| < δ except
for (0,0).) In consequence zj(ξ) > 0 for all ξ ∈ R1 for all j. Now, let us
note for all j ∈ {1, . . . , n} there exists a sequence {ξjJ}∞J=1 such that ξ

j
J → ∞

as J → ∞ and z′j(ξ
j
J) < 0. (Otherwise, zj(ξ) could not tend to 0, because

zj(ξ) > 0 and its derivative would be nonnegative for ξ sufficiently large.) As
(ω(u(ξjJ)))

−1z′j(ξ
j
J) = −(ω(u(ξ

j
J)))

−1Gλj(u(ξ
j
J)) and u(ξ

j
J) → U as J → ∞, it

follows, due to the positveness of ω(u) for |u| < δ, that (ω(U))−1Gλj(U) ≥ 0.
However, this situation is impossible if δ is chosen sufficiently small, according
Lemma 8. Thus a trajectory with the above prescribed properties does not exist.
Moreover, there does not exist an invariant trajectory contained in N tending to
(U,Z) as ξ → −∞. If such a trajectory existed, then there would be ξ0 ∈ (−∞, 0)
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such that u(ξ0) 6∈ b(0, δ) and zj(ξ0) > 0 at least for one j. (Otherwise it would
be a singular point.) But, as z′j(ξ) = 0 for all ξ ∈ (−∞, ξ0], it would mean
that limξ→−∞ zj(ξ) > 0, which is a contradiction. The same arguments can be
applied to ∂b(1, δ) (with different direction of time).
This proves the first two statements of the lemma. The third statement

follows from the arguments above. First, if (u, z) is such that u 6∈ b(0, δ)∪b(1, δ)
and z 6= 0, then by (a) (u, z) 6∈ I(N). If u lies at the boundary of these balls,
then by (b) the same conclusion holds. If u lies inside these balls and zj = 0
for some j, then by Lemmas 11 and 13 also (u, z) 6∈ I(N). Finally suppose that
u ∈ b(0, δ) and zj 6= 0, for all j. Then the trajectory through this point will leave
any sufficiently small closed neighbourhood of P (in N) as ξ → −∞ unless zk(ξ)
becomes equal to 0 for at least one k. But this situation is impossible according
to Lemma 13. The same arguments hold, if u ∈ b(1, δ). The lemma is proved.�

Case II. q > 0.

Lemma 22. For λ ∈ [1/3, 2/3] and q > 0 the set A+(λ, q) is empty, whereas
[I(N) ∩ ∂N∗ \ P] ⊂ A−(λ, q). Moreover, P is the maximal invariant set in the
closure of a sufficiently small neighbourhood of P contained in N .

Proof. Suppose that a trajectory (u(ξ), z(ξ)) touches at the point (U,Z)
the part of the boundary given by the relation ui = 0. So that this trajectory
does not leave the set N we must have Zi = 0. Thus the problem is reduced to
the analysis of that part of the boundary at which zi = 0.
(a) Suppose that U lies outside the closed balls b(0, δ) and b(1, δ). Suppose

that Zj = 0 for all j. Then (U,Z) = (U,0) is a singular point. As in the first case
this singular point is not isolated, because in every arbitrarily small neighbour-
hood of it there are other singular points belonging to P, But no other trajectory
passes through it or tends to it as ξ → ∞. (To see this, note that sufficiently
close to this point system (10) becomes simply z′j = qzj , j ∈ {1, . . . , n}.) Now,
suppose that some Zj are positive and that (U,Z) = (u(ξ0), z(ξ0)). Then, for
positive ξ−ξ0 the projection of the trajectory starting from the considered point
has the form

(31) (uj(ξ), zj(ξ)) = (uj(ξ0)+zj(ξ0)q−1{exp[q(ξ−ξ0)]−1}, zj(ξ0) exp[q(ξ−ξ0)]),

j = 1, . . . , n. The u projection of this trajectory is a straight line starting
from the point u(ξ0) and lying in the plane ui = const = ui(ξ0) as long as
u(ξ) 6∈ b(0, δ) ∪ b(1, δ). Thus, if ui(ξ0) ≤ 1− δ, then any forward trajectory (for
ξ > ξ0) will leave the set N∗. So, let us assume that ui(ξ0) > 1− δ. For ξ > ξ0
sufficiently large the trajectory may get inside the ball b(1, δ). As the value of
ξ − ξ0 decreases, it either leaves N∗ or tends, as ξ → −∞, to the singular point
(u,0) ∈ P where u = (u1(ξ0) − z1(ξ0)q−1, . . . , un(ξ0) − zn(ξ0)q−1). (The last
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claim follows from the fact that δ ∈ (0, 1/2).) However, it is obvious from (31)
and from the fact that zj satisfies the equation z′j = qzj that for such a point
there does not exist a trajectory in N∗ tending to it as ξ →∞.
(b) Let us consider the trajectories tending to the points of the form (U,Z) =

(U,0), U ∈ ∂b(0, δ), as ξ → ∞. We may repeat the proof from the point I(b)
to claim that such a trajectory cannot belong to I(N). Finally, if U ∈ ∂b(1, δ),
then also does not exist a trajectory in I(N) tending to the considered point
as ξ → ∞. (If such a trajectory existed then for at least one j we would have
uj(ξ) 6∈ b(0, δ) ∪ b(1, δ) for all ξ ≥ Ξ, Ξ < ∞, and zj( · ) would not be equal
to 0 on this set. Then however z′j(ξ) = qzj(ξ) ≥ 0, so we could not have
limξ→∞ zj(ξ) = 0.)

The last claim of the lemma can be proved as in Lemma 21. The lemma is
proved. �

Case III. q < 0. As in the case q > 0 we may prove the following lemma.

Lemma 23. For λ ∈ [1/3, 2/3] and q < 0 the set A−(λ, q) is empty, whereas
[I(N) ∩ ∂N∗ \ P] ⊂ A+(λ, q). Moreover, P is the maximal invariant set in the
closure of a sufficiently small neighbourhood of P contained in N .

Now, we will modify the set N∗ continuously with respect to λ in such a way
that it becomes an isolating neighbourhood. First, using Lemmas 20, 12 and 18
we infer that for λ ∈ [0, 1/3) and all q ∈ [−Q,Q] there exists γλ > 0 such that

N∗(λ) = N∗ \ B((E, 0), γλ),

where B((E, 0), γλ) is an open ball with centre at (E, 0) and radius γλ, is an
isolating neighbourhood as

I(N∗(λ)) ∩ ∂N∗(λ) = I(N) ∩ ∂N∗ \ [(E, 0) ∪A∗+(λ, q) ∪A∗−(λ, q)]
= I(N) ∩ ∂N∗ \ (E, 0) = ∅.

Likewise, according to Lemmas 20, 12 and 18, for λ ∈ (2/3, 1] and all q ∈ [−Q,Q]
there exists γλ > 0 such that

N∗(λ) = N∗ \
⋃
k

B((Ek, 0), γλ)

is an isolating neighbourhood as

I(N∗(λ)) ∩ ∂N∗(λ) = I(N) ∩ ∂N∗ \
[⋃
k

(Ek, 0) ∪
⋃
k

Ak+(λ, q) ∪
⋃
k

Ak−(λ, q)
]

= I(N) ∩ ∂N∗ \
[⋃
k

(Ek, 0)
]
= ∅.
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According to Lemmas 21–23 and Lemma 20 for all λ ∈ [1/3, 2/3] and all q ∈
[−Q,Q] there exists an open neighbourhood V ⊂ R2n of the set P such that

N∗(λ) = N∗ \ V

is an isolating neighbourhood, i.e.

I(N∗(λ)) ∩ ∂N∗(λ) = I(N) ∩ ∂N∗ \ (P ∪A+(λ, q) ∪A−(λ, q)) = ∅.

Due to the properties of isolating neighbourhoods N∗ \ V is an isolating
neighbourhood for all λ ∈ [1/3 − 2∆λ, 2/3 + 2∆λ] for some ∆λ > 0 sufficiently
small. Then we can choose γ > 0 so small that B((E, 0), γ) ⊂ V for λ ∈
[1/3 − 2∆λ, 1/3 − ∆λ],

⋃
k B((Ek, 0), γ) ⊂ V for λ ∈ [2/3 + ∆λ, 2/3 + 2∆λ],

and γ ≤ γλ for all λ ∈ [0, 1/3 − ∆λ] ∪ [2/3 + ∆λ, 1]. Hence we can construct
a continuous in λ ∈ [0, 1] family of open sets V (λ) such that V (λ) = V for
λ ∈ [1/3 − ∆λ, 2/3 + ∆λ], V (λ) = B((E, 0), γ), λ ∈ [0, 1/3 − 2∆λ], V (λ) =⋃
k B((Ek, 0), γ), λ ∈ [2/3 + 2∆λ, 1] and V (λ) ⊂ V for λ ∈ (1/3 − 2∆λ, 1/3 −
∆λ) ∪ (2/3 + ∆, 2/3 + 2∆). Consequently for all λ ∈ [0, 1], q ∈ [−Q,Q] the set

(32) Nλ = N∗ \ V (λ)

is an isolating neighbourhood.

5. Use of the Conley connection index theory

First, let us state an obvious lemma.

Lemma 24. There exists ε̃ > 0 (sufficiently small) such that for all λ ∈ [0, 1]
and all q ∈ [−Q,Q] the closed balls B(A, ε̃) and B(A, ε̃) are isolating neighbour-
hoods. The maximal invariant sets in these balls are the singular points (0,0)
and (1,0) respectively. The Conley index of these sets is equal to Σn.

Proof. According to Lemma 10 the sets (0,0) and (1,0) are saddle points
and the linearization matrix of system (15) at these points have exactly n eigen-
values in the left half plane and n eigenvalues in the right half plane. �

For λ = 0 system (15) takes the form:

(33)

u′1 = z1,

. . . . . .

u′n = zn,

z′1 = qz1 − g1(u),
. . . . . . . . . . . . . . .

z′n = qzn − gn(u).
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To use the Conley connection index theory developed e.g. in [4] system (15)
should be supplemented by an additional equation for q:

(34) q′ = ρφ(u, z)q,

where ρ is sufficiently small positive parameter. Let W− and W+ denote open
neighbourhoods in R2n × (−Q − ε,Q + ε) of (0,0) × (−Q) ∪ (0,0) × Q and
(1,0)× (−Q) ∪ (1,0)×Q respectively having disjoint closures. The real valued
continuous function φ is arbitrary except for the fact that it is positive on W−

and negative on W+ (see [4]).
Now, for λ ∈ [0, 1], let I−λ := (0,0) × [−Q,Q], I

+
λ := (1,0) × [−Q,Q].

According to Lemma p. 325 in [4] or due to the results in [3] for ρ > 0 sufficiently
small and all λ ∈ [0, 1] the set Nλ × [−Q,Q] is an isolating neighbourhood with
respect to the flow generated by system (15) and equation (34).

Remark 8. The last fact may be also proved straightforwardly. For all
λ ∈ [0, 1] one may take φ in such a way that φ|Nλ×Q is positive in some open 2n-
dimensional ball B1 of radius r∗ < ε/2 centered at (0,0)×Q, negative in some
open 2n-dimensional ballB2 of radius r∗ centered at (1,0)×Q and equal to 0 else-
where. Likewise, let φ|Nλ×(−Q) be positive in some open 2n-dimensional ball B3
of radius r∗ centered at (0,0) × (−Q), negative in some open 2n-dimensional
ball B4 of radius r∗ centered at (1,0)× (−Q) and equal to 0 elsewhere. Let us
note that for ρ > 0 sufficiently small invariant trajectories do not touch the set
∂Nλ × [−Q,Q], as it is true for ρ = 0. Let us consider the set Nλ ×Q. Outside
the balls B1 and B2 we have φ ≡ 0, so the flow is the same as for ρ = 0. Hence
every trajectory through a point in Nλ ×Q \ (B1 ∪ B2) lies in the plane q = Q
unless it reaches B1 or B2. Thus, it either leaves the set Nλ×Q or gets inside B1
or B2. However, the second possibility cannot take place, because a trajectory
through every point inside B1 or B2 leaves Nλ× [−Q,Q] immediately in forward
or backward direction. The same considerations hold for Nλ × (−Q). It follows
that the set Nλ × [−Q,Q] is an isolating neighbourhood.

Let Iλ denote the maximal invariant set in Nλ× [−Q,Q] with respect to the
flow generated by (15) together with the equation q′ = 0. Due to the results of
the above sections the connection triples (I−λ , I

+
λ , Iλ), λ ∈ [0, 1), and (I

−
1 , I

+
1 , I1)

are related by continuation. By Theorem in §2.D of [4] these triples have the
same (homotopic) connection indices. According to the definition (see [4]) the
connection index of the triple (I−λ , I

+
λ , Iλ) is the Conley index of Nλ × [−Q,Q]

with respect to the flow generated by (15) together with (34). This index is
homotopic to the index of the maximal invariant set contained in N0 × [−Q,Q]
with respect to the flow generated by system (33), (34).
Let us introduce the new variables ζ1 = u1, ζi = ui − u1, i = 2, . . . , n.

This transformation is a homeomorphism, so it does not change the homotopy



Existence of Travelling Wave Solutions 387

class of the quotient spaces. In these variables the isolating neighbourhood N0
is changed to the set Nζ and the system (33)–(34) changes to

(35)

ζ ′1 = θ1,

. . . . . .

ζ ′n = θn,

θ′1 − qθ1 + g∗1 = 0,
θ′2 − qθ2 + g∗2ζ2 = 0,
. . . . . . . . . . . . . . . . . .

θ′n − qθn + g∗nζn = 0,

(36) q′ = ρφ∗(ζ, θ)q,

where g∗1 = g1(u(ζ)), φ∗ = φ(u(ζ), z(θ)) and for i = 2, . . . , n, we have g∗i ζi =
g1(ζ1+ζi, . . . , ζ1+ζi−1, ζ1, . . . , ζ1+ζn)−g1(ζ1, . . . , ζ1+ζi−1, ζ1+ζi, . . . , ζ1+ζn) =
{g1(ζ1+ζi, . . . , ζ1+ζi−1, ζ1, . . . , ζ1+ζn)−g1(ζ1, . . . , ζ1+ζi−1, ζ1, . . . , ζ1+ζn)}−
{g1(ζ1, . . . , ζ1+ζi−1, ζ1+ζi, . . . , ζ1+ζn)−g1(ζ1, . . . , ζ1+ζi−1, ζ1, . . . , ζ1+ζn)} =
g1,1(ζ∗1)ζi − g1,i(ζ∗2)ζi for some ζ∗1, ζ∗2 ∈ Rn. Due to Definition 2, g1,1 < 0 and
g1,i > 0 for all i = 2, . . . , n. Thus, we conclude that for any bounded solution
ζ(ξ) to system (35)

(37) ζ2(ξ) = . . . = ζn(ξ) = 0

for all ξ ∈ R1 (see Lemma 3.2 p. 173 in [18]). Hence, without changing the
Conley index of the maximal invariant set in N0 × [−Q,Q] we can replace the
last set of equations by

(38)

ζ ′1 = θ1,

. . . . . .

ζ ′n = θn,

θ′1 − qθ1 + g1(ζ1, . . . , ζ1) = 0,
θ′2 − ζ2 = 0,
. . . . . . . . . . . .

θ′n − ζn = 0,

and equation (36) by

(39) q′ = ρφ̃(ζ1, θ1)q,

where φ̃(ζ1, θ1) = φ∗(ζ1, 0, . . . , 0, θ1, 0, . . . , 0). We note that each pair of n − 1
equations in (38) for (ζi, θi), i = 2, . . . , n, is completely decoupled from the rest.
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Moreover, due to the robustness of the Conley index there is a homotopy Nζ(η)
such that

Nζ(0) = N0, Nζ(1) = N∗ζ × [−δ, δ]2 × . . .× [−δ, δ]2︸ ︷︷ ︸
(n−1) times

,

where N∗ζ lies in the (u1, u
′
1)-space, such that for η ∈ [0, 1] the set Nζ(η) is

an isolating neighbourhood for the flow generated by the system (38) for each
q ∈ [−Q,Q]. Thus (cf. [2], [17]) the Conley index h of Nζ(1) × [−Q,Q] with
respect to the flow generated by system (38), (39) is homotopic to

h1θ ∧ h2 ∧ . . . ∧ hn︸ ︷︷ ︸
(n−1) times

,

where h1θ is the Conley index of N∗ζ × [−Q,Q] with respect to the flow generated
by the pair of equations for ζ1 and θ1 together with (39), and hi, i = 2, . . . , n,
is the Conley index of the rectangle [−δ, δ] × [−δ, δ] with respect to the flow
generated by the system

ζ ′i = θi,

θ′i − ζi = 0.

Obviously hi ∼= Σ1. The index h1 is computed in [4] and it is homotopic to 0.
Thus

h ∼= 0 ∧ Σ1 ∧ . . . ∧ Σ1︸ ︷︷ ︸
(n−1) times

∼= 0 ∧ Σn−1 ∼= 0.

For each q = q0 ∈ [−Q,Q] the Conley index of the set A = (0,0) and of
the set B = (1,0) with respect to the flow generated by system (15) is equal
to Σn. As (Σ1 ∧Σn)∨Σn = Σn+1 ∨Σn is not homotopic to 0, then according to
Theorem of §2.F in [4], it follows that I−1 ∪ I

+
1 6= I1. Due to Lemma 11 we have

thus proved the following existence theorem.

Theorem 1. Suppose that Assumptions 1–4 hold. Then there exists a hete-
roclinic pair (q, u) ∈ (−Q,Q)× C2(R1) satisfying system (3).

Remark 9. As we mentioned the proof of Theorem 1 follows from Theorem
of §2.F in [4]. However, for the reader’s convenience, we will give a straightfor-
ward proof of it here. As a matter of fact one can prove that heteroclinic solutions
exist for all λ ∈ [0, 1]. Let us fix λ ∈ [0, 1]. It is obvious that for ρ > 0 sufficiently
small the sets B(A, ε)× [−Q,Q] and B(B, ε)× [−Q,Q] are isolating neighbour-
hoods with respect to the flow generated by the system (15), (34) (see [3], [4] or
use the arguments in Remark 8). The Conley index of I−ρ = I(B(A, ε)×[−Q,Q])
with respect to the flow generated by system (15), (34) is homotopic to (Σ1∧Σn).
Similarly, the Conley index of I+ρ = I(B(B, ε) × [−Q,Q]) is homotopic to Σn.
Finally, as it was noted above, the Conley index of Iρ = I(Nλ × [−Q,Q]) with
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respect to the flow generated by system (15) together with equation (34) is ho-
motopic to 0. As (Σ1 ∧ Σn) ∨ Σn = Σn+1 ∨ Σn is not homotopic to 0, then
Iρ 6= I−ρ ∪ I+ρ (see e.g. [17, Theorem 22.31]). It follows that for all ρ > 0
sufficiently small there exists at least one invariant trajectory, which is not
contained completely neither in B(A, ε) × [−Q,Q] nor in B(B, ε) × [−Q,Q].
Thus there exists at least one point on this trajectory contained in the set
Nλ \ (B(A, ε) × [−Q,Q] ∪ B(B, ε) × [−Q,Q]). According to Remark 6 the u-
component of this solution is strictly monotone and u(ρ, ξ) → 0 as ξ → −∞,
u(ρ, ξ) → 1 as ξ → ∞ and u′(ρ, ξ) → 0 as ξ → ±∞. So, all the invariant
trajectories cross the plane {(u, z) : u1 = 1/2} at exactly one point. Let us
fix the position of the invariant trajectories for ρ > 0 sufficiently small by the
condition u1(ρ, 0) = 1/2. Let ρk = 1/k, where k = 1, 2, . . . . For each k let
(qk(ξ), uk(ξ), zk(ξ)) denote a solution to system (15), (39) for ρ = ρk, with its
values completely contained in the interior of Nλ× [−Q,Q]. Let {nk}∞k=1 denote
a subsequence of {k}∞k=1 such that {qnk}∞k=1 converges to some q0. Out of this
sequence we can in turn choose subsequences {nrk}∞k=1, where r = 1, 2, . . . , hav-
ing the property that the sequence {unrk} converges in C2([−r, r]) to a function
u0r(ξ) uniformly in ξ on the interval [−r, r], and {n(r+1)k}∞k=1 is a subsequence
of {nrk}∞k=1. (The convergence is guaranteed by Arzeli lemma and bootstrap
argument.) Hence choosing the diagonal subsequence we obtain a sequence
{mk}∞k=1 such that {umk}∞k=1 converges in C2 to a function u0(ξ) uniformly
in ξ on every interval [−r, r]. Now, due to the strict monotonicity of uk(ξ) we
conclude that (q0, u0(ξ), z0(ξ)) is a monotone heteroclinic triple for system (15)
(and (q0, u0(ξ)) is a monotone heteroclinic pair for system (10)). Using the fact
that (u0(ξ), z0(ξ)) ∈ Nλ × q0 for all ξ ∈ R1 and Lemma 11 we conclude that
u0 : R1 → Rn is strictly monotonic. It is worthwile to note that from the geo-
metric point of view the limit trajectory may consist of the two parts: the image
of the heteroclinic solution (q0, u0, z0) and of the singular segments lying on I−λ
and I+λ .

6. Travelling waves in systems describing mutualist species

As we noted in Introduction, equations (3) may describe travelling waves in
ecological systems of mutualist type (see e.g. [14], [15], [9]). Then the functions fi
become more specific, i.e. fi(u) = uiΦi(ui)f̃i(u), i = 1, . . . , n. We impose the
following conditions on the functions f̃i and Φi, which are generalizations of
conditions H1–H5 in [14].

Assumption 5. Assume that

(a) The functions f̃i satisfy the conditions of local monotonicity, i.e.

f̃i,j(u) > 0 for all i, j ∈ {1, . . . , n}, j 6= i, and all u ∈ [0, 1]n
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such that f̃i(u) = 0.
(b) 1 = (1, . . . , 1) is a solution to the system

(40) f̃i(u) = 0, i = 1, . . . , n.

This solution is stable, i.e. all the eigenvalues of the matrix

(41) f̃i,j(1)

have negative real parts.
(c) All the other solutions {E1, . . . , EK} to system (4) not equal to 0 and 1
are contained in the interior of the set [0, 1]n and are unstable i.e. the
matrix fi,j(Ek), k = 1, . . . ,K, has at least one eigenvalue with positive
real part.

(d) f̃i(0) < 0.
(e) Φ(ui) > 0 for all ui ∈ R1, ui 6= 0.

It is obvious that the negativity of the Perron–Frobenius eigenvalue of the
matrix f̃i,j(1) is equivalent to the negativity of the Perron–Frobenius eigenvalue
of the matrix fi,j(1). One can also see that the positivity of the Perron–Frobenius
eigenvalue of the matrix fi,j(Ek), k = 1, . . . ,K, is equivalent to the positivity
of the Perron–Frobenius eigenvalue of the matrix f̃i,j(Ek).
The functions f satify the local monotonicity assumption only in the set

u > 0. However, the methods of the previous sections can be used also in
this case. The idea of the existence proof of heteroclinic solutions in this case is
practically the same as in the previous section, yet relevant changes are necessary
at some points. First, the functions Gλ near the point 0 will be defined in
a slightly different way. Let

ω∗(u) = w(|u|), ω∗(u) = w(|1− u|),

where the function w is given by (11). Gλ is defined formally as before

(42) Gλ(u) =


f(u)ωλ(u) for λ ∈ [2/3, 1],
3(2λ− 1)f(u)ω(u) + 2(2− 3λ)h(u) for λ ∈ [1/2, 2/3],
3(1− 2λ)g(u)ω(u) + 2(3λ− 1)h(u) for λ ∈ [1/3, 1/2],
g(u)ω1−λ(u) for λ ∈ [0, 1/3],

where ωλ(u) is defined by (12), but now

h(u) = ω∗(u)(−pI)u+ ω∗(u)H(u− 1).

H is subject to the condition H < Df(1), Dg(1) and p > 0 is such that −pI <
Df(0), Dg(0). Thus near 1 the Gλ is the same as before and near 0 the matrixH
is replaced by a negative diagonal matrix −pI.
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Lemma 25. For all λ ∈ [0, 1] all the eigenvalues of the matrix DGλ(1) have
negative real parts. For all λ ∈ [0, 1/3) the functions Gλ(u) satisfy the condi-
tions of local monotonicity. For λ ∈ (2/3, 1] the functions Gλ(u) satisfy the con-
ditions of local monotonicity for all u ∈ [0, 1]n, u > 0. Moreover, for δ > 0 suffi-
ciently small, Gλ(u) satisfies the condition of local monotonicity for all λ ∈ [0, 1]
and all u such that |u − 1| < δ or 0 < u < δ1. The only zero of Gλ(u) for
|u− 1| < δ is 1.

Near the point 0 the following lemmas are also true.

Lemma 26. For all λ ∈ [1/2, 2/3] and for all δ > 0 sufficiently small the
only solution to the equation

ω∗(u)[3(2λ− 1)f(u)− 2(2− 3λ)pIu] = 0

in the ball |u| < δ is 0.

Proof. Let 2(2 − 3λ) = l. As ω∗(u) > 0 for |u| < δ, then it suffices to
consider the system

ui[(1− l)Φ(ui)f̃i(u)− lp] = 0, i = 1, . . . , n.

According to Assumption 5(d) f̃i(u) < 0 for |u| suffciently small, so for all
l ∈ [0, 1] all the solutions u from the ball |u| < δ to the i-th equation lie in the
disc {u : |u| < δ, ui = 0}. The intersection of these sets for all i is just the
point 0. �

Lemma 27. For all λ ∈ (1/3, 1/2) the Perron–Frobenius eigenvalue of the
matrix [3(1 − 2λ)Dg(0) − 2(3λ − 1)pI] is smaller than µPF (Dg(0)). For all
λ ∈ [1/3, 1/2] and for all δ > 0 sufficiently small the only solution to the equation

ω∗(u)[3(1− 2λ)g(u)− 2(3λ− 1)pIu] = 0

in the ball |u| < δ is 0.

Proof. The lemma may be proved as Lemma 4. �

One notes that Lemma 5 holds also, when f satisfies Assumption 5 instead
of Assumption 2. The counterparts of Lemmas 6–8 hold also, but near u = 0
Lemma 6 must be reformulated because for λ ≥ 1/2 the matrix DGλ(0) has its
off-diagonal entries equal to zero and we cannot use Lemma 1.

Lemma 28. Let f ∈ C1(Rn,Rn) satisfy Assumption 5. Then for all λ ∈ [0, 1]
the statements of Lemmas 6–8 hold with respect to functions Gλi defined by (42)
near u = 1 with numbers r and ϑ(r) independent of λ. The same is true near
u = 0 for λ ∈ [0, 1/3). For λ ∈ [1/3, 1] there exist a number ϑ̃ > 0 and
a continuous family of closed parallelepipeds W̃λ = [0, wλ1] × . . . × [0, . . . , wλn]
with positive sides such that W̃λ = [0, w]n, w > 0, for λ ∈ [2/3, 1], and such
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that for all i we have Gλi(u) < 0 if dist (u, W̃λi) < ϑ̃, where W̃λi = W̃λ ∩ {u :
ui = wλi}. Moreover, for each λ ∈ [1/3, 1], the statement of Lemma 8 holds for
δ̃ < 1/2minj wλj.

Proof. The proof follows from Assumption 5, the definition of functions
Gλi ((42)) and the proofs of Lemmas 6–8. �

By means of the last lemma and Lemma 5 we can prove a priori estimates
for the parameter q.

Lemma 29. If λ ∈ [0, 1] and (qλ, uλ) is a heteroclinic pair satisfying sys-
tem (10), with f satisfying Assumption 5 instead of Assumption 2, such that
u′λ(ξ) > 0 for all ξ ∈ R1, then the value of |qλ| < Q, where Q is independent
of λ and uλ.

Lemma 30. Suppose, for λ ∈ [0, 1/3) ∪ (2/3, 1], that (u0, z0) ∈ I(N) ∩ ∂N .
Then (u0, z0) is a singular point. The same holds also for λ ∈ [1/3, 2/3] if
|1− u0| < δ.

Proof. The proof can be carried out as the proof of Lemma 12 for λ ∈
[0, 1/3). So, let us take λ ∈ (2/3, 1]. Below, for brevity, we will not discern the
situation, when |ξ| is finite or infinite at the considered points. Suppose that
u0i = 0 or u0i = 1 for some point lying on a trajectory belonging to I(N) and
some i ∈ {1, . . . , n}. Then we must have also z0i = 0 at this point. Thus,
the problem is reduced to examining these parts of ∂N at which zi = 0 for
i ∈ {1, . . . , n}. So, let z0i = 0 for some point lying on a trajectory belonging to
I(N). Then we must have also z′i = 0 and z

′′
i ≥ 0 at this point for the trajectory

passing through (u0, z0). From the i-th equation it follows that

z′i = 0 = −Gλi(u) = −ωλ(u)uiΦi(ui)f̃i(u).

There are two possibilities. Either u0i = 0 or f̃i(u0) = 0. Suppose that the first
possibility takes place. Then the considered trajectory lies in the invariant plane
{(u, z) : ui = 0, zi = 0}. But as zj ≥ 0 in N , then for any j = 1, . . . , n, j 6= i,
there must be at least one point on it, where zj = 0. At this point the two
possibilities repeat (i.e. either uj = 0 or f̃i(u1, . . . , ui−1, 0, ui+1, . . . , un) = 0).
As a result the considered trajectory lies in the invariant plane Z

eK = {(u, z) :
uk = 0, zk = 0, k ∈ K̃}, where K̃ is a subset of {1, . . . , n}. If K̃ = {1, . . . , n},
then the considered trajectory reduces to a point (0,0). If K̃ is empty then we
can prove (as in the proof of Lemma 12) that (u0, z0) is a singular point (u0,0),
with f̃(u0) = 0. Now, suppose that K̃ 6= {1, . . . , n}, yet it is not empty. This
situation is impossible. To show that, we note as above, that there exists a point
with zj = z′j = f̃j = 0, uj 6= 0, j 6∈ K̃. By differentiating the j-th equation
we obtain at this point the equality ujΦj(uj)

∑
k 6=j,k 6∈ eK f̃j,k(u)zk = 0. As in
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the proof of Lemma 12 it follows from the local monotonicity conditions that
all zk = 0 and all fk(u) = 0, k 6∈ K̃. So this point would be a solution to the
equation f = 0. But according to Assumption 5(c) there is no solution to the
equation f = 0 at the faces of the set [0, 1]n except for 0 and 1. The proof of
the second claim can be carried out as the proof of Lemma 12. �

Lemma 31. Suppose that Assumption 5 holds instead for Assumption 2. For
all λ ∈ [0, 1] and all q ∈ [−Q,Q] the point (1,0) is a saddle singular point. The
same is true for the point A = (0,0) for all λ ∈ [0, 2/3) and all q ∈ [−Q,Q].

Proof. As the monotonicity conditions are satisfied near u = 1 the first
claim follows from Theorem 3.3 in [5]. The same arguments hold for the point
A = (0,0) if λ ∈ [0, 1/2). Now, note that the eigenvalues of the linearization
matrix near A = (0,0) are solutions to the reduced eigenvalue problem:

[aλ(0, 0)y2 − (qcλ(0,0)−M(0,0))y +DGλ(0)]r = 0,

where

aλ(0, 0) = diag (aλ1(0, 0), . . . , aλn(0, 0)),

cλ(0,0) = diag (cλ1(0,0), . . . , cλn(0,0)),

M(0,0) = diag (M1(0,0), . . . ,Mn(0,0)),

whereas r ∈ Rn is the reduced eigenvector (see [5 p. 1623]). If λ ∈ [1/2, 2/3) then
according to (42) DGλ(0) is also diagonal with negative entries, so the solutions
to the above equation are real and nonzero. To be more precise, there are
n positive and n negative values of y satisfying the above eigenvalue problem.�

Lemma 32. For all λ ∈ [0, 1], q ∈ [−Q,Q] with Q as in Lemma 29 and ε0 > 0
sufficiently small, no trajectory of a solution to system (10) (with f satisfying
Assumption 5 instead of 2) belonging to I(N∗) can have common points with the
set N∗ \N .

Proof. It is obvious that near the point B this lemma may be proved as
Lemma 11. We will prove its validity near the point A. It is easy to note that this
lemma holds for λ ∈ [0, 1/3]. It also holds for λ ∈ (1/2, 1]. The proof is almost
the same as in [14], but for the reader’s convenience we will insert it in the paper.
Let us note that for these values of λ for all i we have Gλi(u) = uiΦ̃λi(ui)G̃λi(u),
where G̃λi(u) < 0 near u = 0, Φ̃λi(ui) > 0 for ui 6= 0. From the proof of
Lemma 30 it is clear that a trajectory belonging to I(N∗) cannot have common
points with the boundary ∂N outside the balls B(A, ε). Suppose that there
exists a trajectory (u(ξ), z(ξ)) from I(N∗) such that ui(ξ∗) < 0 for some ξ∗
and some index i. We have two possibilities. First, suppose that there exists a
finite ξ0 such that ui(ξ) attains minimum at ξ0 hence ui(ξ0) < 0, zi(ξ0) = 0 and
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z′i(ξ0) ≥ 0. This possibility is to be rejected as according to the i-th equation
aλi(u(ξ0), zi(ξ0))z

′
i(ξ0) = −ui(ξ0)Φ̃λi(u(ξ0))G̃λi(ui(ξ0)) < 0. If such ξ0 does not

exist then ui(ξ) ≥ limξ→∞ ui(ξ) for ξ ∈ [ξ∗,∞) or ui(ξ) ≥ limξ→−∞ ui(ξ) for
ξ ∈ (−∞, ξ∗]. In this case zi(ξ) ≤ 0 for ξ ∈ (ξ∗,∞) or zi(ξ) ≥ 0 for ξ ∈ (−∞, ξ∗)
respectively. (Otherwise zi(ξ) would change its sign and ui(ξ) would attain
a minimum for finite ξ.) Consequently, zi(ξ)→ 0 as ξ →∞ or ξ → −∞. Hence
we would have aλi(u(ξ), zi(ξ))z

′
i(ξ) = −ui(ξ)Φ̃λi(u(ξ))G̃λi(u(ξ)) + o(1) < 0 as

long as we are in the ball B(A, ε). But this contradicts the fact that zi(ξ)→ 0.
Thus we must have uj ≥ 0 for all j. Now, suppose that for an invariant trajectory
we have zi(ξ0) < 0, ui(ξ0) ≥ 0 for some finite ξ0. We will prove that zi(ξ) < 0 as
long as ξ < ξ0 is such that G̃λi(u(ξ)) < 0. For, suppose that zi(ξ̃) = 0 and zi(ξ) <
0 for all ξ ∈ (ξ̃, ξ0). Then aλi(u(ξ̃), zi(ξ̃))z′i(ξ̃) = −ui(ξ̃)Φ̃λi(ui)G̃λi(u(ξ̃)) > 0,
if G̃λi(u(ξ̃)) < 0. (Note that ui(ξ0) ≥ 0 hence ui(ξ̃) > 0.) This leads to a
contradiction. (The same arguments hold, if zi(ξ) → 0 as ξ → −∞.) So, the
backward trajectory starting from the point (u(ξ0), z(ξ0)) would leave the region,
where G̃λi(u) < 0 and consequently the ball B(A, ε). (We assume that ε0 < δ

is sufficiently small.) But a point (u, z) 6∈ B(A, ε) with zi < 0 does not belong
to N∗.

Thus for λ ∈ (1/2, 1] the lemma is proved, as we have come to the conclusion
that invariant trajectories satisfy in B(A, ε0) the conditions:

uj ≡ 0, zj ≡ 0, j ∈ K̃,
uj > 0, zj > 0, j ∈ {1, . . . , n} \ K̃,

where K̃ ⊂ {1, . . . , n}; K̃ may be empty.
Now we will show that Lemma 32 also holds for λ ∈ (1/3, 1/2]. For these

values of λ the system (10) takes the form

u′′i − qu′i +Gλi(u) = 0, i = 1, . . . , n.

Let 3(1−2λ) = l. Take any l ∈ [0, 1]. Proceeding as in the proof of Lemma 11
we arrive at the equation corresponding to (24):

(43) v′′i − qv′i − (1− l)pvi + l
∑
j

gi,j(u)vj = 0.

Let ε0 < δ/2 be so small that for |u| < ε0 the following conditions are
satisfied:

(1) Dg(u) has all of its off-diagonal terms positive,
(2) Dg(u)P (0) < 0.

According to Definition 2 and Remark 4, it is obvious that the constant ε0 with
the above mentioned properties exist and is independent of l and hence of λ.
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If ξ∗ has the same meaning as in the proof of Lemma 11 and |u(ξ∗)| < ε0
then one can show that (for all i)

(44) −(1− l)pvi(ξ∗) + l
∑
j

gi,j(u(ξ∗))vj(ξ∗) > 0.

If l = 0 then it is obviously true as p > 0. For l ∈ (0, 1] the proof of this
inequality can be done as in the proof of Lemma 11. In both cases we arrive at
a contradiction (as in the proof of Lemma 11). �

Remark 10. As in the case of Lemma 11 it is seen that this proof is valid also
in the case, when q is not a constant parameter, but varies suffficiently slowly,
e.g. if q′ = ρφ(u, z)q, where φ is globally bounded and ρ > 0 is a parameter,
which can be taken arbitrarily small. Near the point B and near the point A for
λ ∈ [0, 1/3] arguments corresponding to Remark 6 hold. Near the point A and
for λ ∈ (1/2, 1] the proof of Lemma 32 may be repeated. For λ ∈ (1/3, 1/2] we
may use the arguments from Remark 6 to state that if a segment of an invariant
trajectory is contained in B(A, ε) \N then there must exist an index i such that
zi is negative for some ξ. Then (43) changes to

(45) v′′i − qv′i − (1− l)(p+ ρqcλiφ)vi + l
∑
j

(gi,j(u)− ρqcλiφδij)vj = 0.

It is seen that the proof can be completed as the proof of Lemma 13.

Now, we will prove a lemma corresponding to Lemma 13.

Lemma 33. For λ ∈ [1/3, 2/3], suppose that (U,Z) ∈ I(N)∩∂N and |U | < δ.
Then, if q ≥ 0, the trajectory passing through (U,Z) must coincide with the
singular point (0,0). If q < 0 then it tends to a point in P defined in Definition 5.

Proof. Let λ ∈ (1/2, 2/3]. As above it suffices to consider the points (u, z)
on the trajectories from I(N) with zi = 0 for some i. If u-coordinates of the
points on a trajectory from I(N) stay inside the set |u| < δ then, as in the proof
of Lemma 30, one can show that (U,Z) = (0,0). (Remind that the only singular
point (u,0) with |u| < δ is (0,0).) Suppose that the considered trajectory
leaves the set {(u, z) : |u| < δ}. From the proof of Lemma 32 it follows that
we must have Ui = Zi = 0. So, this trajectory lies in the invariant plane
{(u, z) : ui = 0, zi = 0}. It may tend to the point (u,0) with |u| = δ or leave
the set {(u, z) : |u| ≥ δ}. Suppose first that it leaves this set and crosses its
boundary at a point (u, z), but stays in N . Then at this point we must have
zj > 0 for at least one j ∈ {1, . . . , n}. As we noted, the trajectory lies in the
invariant space {(u, z) : ui = 0, zi = 0}. As at the exit point we have z′k = qzk for
all k, then for q ≥ 0 it leaves the set N∗ and cannot belong to I(N∗). For q < 0
the trajectory either leaves N∗ or tends as ξ → ∞ to one the points belonging
to P (see the proof of Lemma 22). Now, suppose that the trajectory tends to
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the point (u,0) with |u| = δ as ξ → ∞. We will show that for q ≥ 0 this is
impossible. From the proof of Lemma 32 it follows that zj(ξ) > 0 for all j 6∈ K̃
and all ξ ∈ R1. So, for all j 6∈ K̃ there must exists a sequence {ξjJ}∞J=1 such
that ξjJ →∞ as J →∞ and z′j(ξ

j
J) < 0. (Otherwise, zj(ξ) could not tend to 0,

because zj(ξ) > 0 and its derivative would be nonnegative for ξ sufficiently large.)
As (ω(u(ξjJ)))

−1z′j(ξ
j
J) = −(ω(u(ξ

j
J)))

−1Gλj(u(ξ
j
J)) + (ω(u(ξ

j
J)))

−1qzj(ξ
j
J) and

uj(ξ
j
J)→ U it follows that Gλj(U) ≥ 0. But, if δ is taken sufficiently small, then

for λ ∈ (1/2, 2/3] we have Gλj(U) < 0 for all U satisfying |U | ≤ δ and Uj > 0.
This contradiction proves our claim.

For λ = 1/2 the equations of system (15) become completely uncoupled, so
the proof is obvious. For λ ∈ [1/3, 1/2), there are no invariant planes of the
form {(u, z) : uk = 0, zk = 0}. The functions Gλi(u) satisfy the monotonicity
conditions, thus the proof may be carried out as the proof of the corresponding
claims in Lemmas 21–23. �

The remaining stages of the existence proof can be done as in the case of
Assumption 2. In particular the excision of the sets of singular points occuring at
the boundary of N can be done in the same way as in the case of Assumption 2.
The lemmas corresponding to Lemmas 21–23 read.

Lemma 34. Let Assumptions 5 hold instead of Assumption 2. For λ ∈
[1/3, 2/3] and q = 0 both A+(λ, q) and A−(λ, q) are empty and I(N)∩∂N∗ = P.
Moreover, P is the maximal invariant set in the closure of a sufficiently small
neighbourhood of P contained in N .

Lemma 35. Let Assumptions 5 hold instead of Assumption 2. For λ ∈
[1/3, 2/3] and q > 0 the set A+(λ, q) is empty. Moreover, P is the maximal
invariant set in the closure of a sufficiently small neighbourhood of P contained
in N .

Lemma 36. Let Assumptions 5 hold instead of Assumption 2. For λ ∈
[1/3, 2/3] and q < 0 the set A−(λ, q) is empty. Moreover, P is the maximal
invariant set in the closure of a sufficiently small neighbourhood of P contained
in N .

For u 6∈ b(0, δ) the proofs of these lemmas can be carried out in the same way
as the proofs of Lemmas 21–23. For u ∈ b(0, δ) the trajectories can be analyzed
as in the proof of Lemma 33.

If Φi(0) = 0 for at least one i, then for λ ∈ [2/3, 1] point A = (0,0) is not
a hyperbolic singular point. However, the following statement is true.

Lemma 37. For all λ ∈ [2/3, 1], q ∈ [−Q,Q] the point A = (0,0) is an
isolated invariant set. Its Conley index is equal to Σn.
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Proof. The first part of the lemma is implicitly contained in the proof
of Lemma 32, but for the reader’s convenience we will repeat the arguments
here. Let us take εA > 0 so small that f̃i(u) < 0 for |u| < εA. Suppose that
there exists an invariant trajectory contained completely in the ball {(u, z) :
sup(|u|, |z|) < εA} Then for every i the function ui(ξ) must attain its maximal
and minimal value (for |ξ| finite or infinite). At these points z′i = −uiΦf̃i, thus
ui ≤ 0 at the point of its maximum and ui ≥ 0 at the point of its minimum.
In consequence this trajectory must coincide with the point (0,0). Thus the
set {(u, z) : sup(|u|, |z|) < εA} is an isolating neighbourhood. Moreover, this
set is an isolating neighbourhood for the point A also for all λ ∈ [2/3 − ∆, 1]
for some ∆ > 0. Hence by decreasing εA if necessary and by using Lemma 31
we can achieve that the ball B(A, εA) is an isolating neighbourhood of A for all
λ ∈ [0, 1], q ∈ [−Q,Q]. The Conley indices of maximal invariant sets in the same
isolating neighbourhood are homotopic (see e.g. [4], [13] and references therein).
Hence by Lemmas 31 and 24 follows the second claim of the lemma. �

We may thus state the following theorem:

Theorem 2. Suppose that Assumptions 1, 3–5 hold. Then there exists a het-
eroclinic pair (q, u) ∈ (−Q,Q)× C2(R1) satsifying system (3).

7. Ionization waves in laser plasma

In this section we will consider a system of equations describing multicompo-
nent plasma sustained by a laser beam of a given intensity I. By this we mean
plasma created in gas consisting of (n − 1) ≥ 1 different components. Under
a constant pressure p the temperature T1 of the light (electron) component and
the temperatures Ti, i ∈ {2, . . . , n}, of heavy particles (atoms and ions) of i-th
kind are described by the following equations (see [7], [8], [11], [12], [16]):

(46)

(
∂

∂t
+ ~v · ∇

){
3
2
kBN1T1 + Ẽ(T1)

}
= ∇(k1∇T1) + f1(T ),(

∂

∂t
+ ~v · ∇

){
3
2
kBNiTi

}
= ∇(ki∇Ti) + fi(T ),

i = 2, . . . , n. Here T = (T1, . . . , Tn), kj = kj(T ), j ∈ {1, . . . , n}, is the heat
conductivity coefficient, N1(T1) is the number density of electrons, Ni(Ti) is
the number density of the heavy component of i-th kind and ~v(T ) denotes the
common convectional velocity. kB is the Boltzmann constant. Ẽ(T1) is the
average ionization energy for the given temperature T1. (The energy necessary
to the first ionization of an atom depends on the kind of the atom. If we have
to do with a one component plasma, then Ẽ would be equal simply to N1(T1)E,
where E is the first ionization energy for the given kind of atoms.) The functions
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fi have the following form:

(47)

f1 = F1(T1) +
∑

j∈{2,... ,n}

c1j(T )(Tj − T1),

fi =
∑

j∈{1,... ,n},j 6=i

cij(T )(Tj − Ti) +Ki(T ),

for i = 2, . . . , n. The term F1 = κ(T1)I − Erad(T1) is responsible for the absorp-
tion of energy from the laser beam (κI) and its losses by through radiation (Erad).
The terms Ki(T ) describe the losses of energy in the process of heat conduction
and convection. The terms cij(T )(Tj − Ti) describe the transfer of energy form
the i-th to the j-th component of the plasma.

Let us look for solutions in the form of travelling waves:

(48) Ti(x, t) = ui(x · ~n+ χt), i = 1, . . . , n,

where ~n ∈ R3 is a chosen unit vector (the direction of propagation) and χ ∈ R1

is the speed of the wave. If we denote ξ := x ·~n+χt, then we arrive at a system
of ordinary differential equations:

(49) (kiu′i)
′ − qCi(u)u′i + fi(u) = 0,

i = 1, . . . , n, where u := (u1, . . . , un) and

q := (χ+ ~v · ~n)ρ(u), Ci(u) = (ρ(u))−1
∂

∂ui

{
3
2
kBNi(ui)ui + δi1Ẽ(ui)

}
,

with δi1 being the Kronecker’s delta. From the continuity equation for the plasma
as a whole it follows that q = const. To prove it, let us note that ρ = ρ(u), and
~v = ~v(u) can be treated as functions of ξ = x ·~n+χt. Thus while differentiating
these quantities we can put ∂/∂t = χ∂/∂ξ and ∂/∂xk = nk ∂/∂ξ. Hence from
the continuity equation we get [ρ(χ+ ~v · ~n)],ξ = 0, which proves our claim. The
quantity q can be interpreted as the mass speed of the wave in the system of
reference moving with the gas.

Assumption 6. The function F1(u1) has exactly three zeros: 0, 1 and U0 ∈
(0, 1) such that F ′1(0) < 0, F

′
1(U0) > 0 and F

′
1(1) < 0.

Assumption 7. supi∈{2,... ,n} supu∈[−1,2](|Ki(u)|+|DKi(u)|) < τ with τ suf-
ficiently small. Ki(0) = 0 for all i ∈ {2, . . . , n}.

This assumption is reasonable, as both the absorption of energy (in the pro-
cess of so called Inverse Bremsstrahlung) and the energetic losses are almost
entirely carried out by the electron component.
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Assumption 8. cij(u) > 0, cij(u) = cji(u) for all i, j ∈ {1, . . . , n}, u ∈
[0, 1]n,

∑
j 6=i cij,k(u)(uj − ui) + cik(u) > 0, for all i, k ∈ {1, . . . , n}, k 6= i, and

all u ∈ [0, 1]n.

The last part of this assumption may be justified by the fact that the deriva-
tives cij,k(u) are relatively large only for small values of u. Thus they are damped
by the factors (ui − uj).

Assumption 9. Ci(u) > C0i > 0 for all u ∈ [0, 1]n.

As Ci depend only on u, then in view of Assumption 9 system (49) satis-
fies Asumption 3 (the condition ai(u) > 1 for all u ∈ [0, 1]n can be achieved
by dividing the i-th equation by minu∈[0,1]n ai(u)). It also satifies point (c) of
Asumption 4. Now, we will show that Assumptions 6–8 imply Assumption 2.
We have for i 6= 1, k 6= i

fi,k(u) =
∑
j 6=i

cij,k(uj − ui) + cik(u) +Ki,k(u),

whereas for i = 1, k 6= 1

f1,k(u) =
∑
j 6=i

c1j,k(uj − ui) + cik(u).

From Assumption 8 it follows that for τ > 0 sufficiently small fi,k(u) > 0. Thus
the monotonicity condition (see Assumption 2(a)) is satisfied. Also the other
points of Assumption 2 are satisfied. To prove it we must examine the roots of
the system (4) and the structure of eigenvalues of Df at these roots. First, using
the fact that the terms Ki(u) were assumed sufficiently small, we will analyze
the solutions to the simplified system of the form:

(50)

F1(u1) +
∑
j 6=1

c1j(u)(uj − u1) = 0,∑
j 6=i

cij(u)(uj − ui) = 0,

where i = 2, . . . , n.

Lemma 38. The only solutions to system (50) are (0, . . . , 0), (1, . . . , 1) and
(U0, . . . , U0).

Proof. Adding the equations and using the symmetry cij = cji, we obtain:

(51) F1(u1) = 0.

Hence the first component of the solution to system (50) is equal to one of the
solutions to (51). The set of n − 1 equations for i = 2, . . . , n can be written in
the form:

(52) Mn−1(u2, . . . , un)T = −u1(c21(u), . . . , cn1(u))T ,
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where

Mn−1 =


−
∑
j 6=2 c2j(u) c23(u) . . . c2n(u)
c32(u) −

∑
j 6=3 c3j(u) . . . c3n(u)

. . . . . . . . . . . .

cn2(u) cn3(u) . . . −
∑
j 6=n cnj(u)

 .
Consider an auxilliary matrix arising fromMn−1 by rejecting from the diagonal
sums the terms ci1, i.e.

−
∑
j 6=1,2 c2j(u) c23(u) . . . c2n(u)
c32(u) −

∑
j 6=1,3 c3j(u) . . . c3n(u)

. . . . . . . . . . . .

cn2(u) cn3(u) . . . −
∑
j 6=1,n cnj(u)

 .
The Perron–Frobenius eigenvalue of this matrix is equal to 0, whereas the eigen-
vector corresponding to this eigenvalue is equal to (1, . . . , 1). Using Lemma 3
we infer that all the eigenvalues ofMn−1 will be negative, hence detMn−1 6= 0.
Thus system (52), for a given u1 has exactly one solution. It is equal to
(u1, . . . , u1), where u1 satisfies the equation F1(y) = 0. �

Now, let us find the structure of eigenvalues ofDf(ũ) for ũ equal to (0, . . . , 0),
(1, . . . , 1) and (U0, . . . , U0). We have

Df(ũ) =


F ′1(ũ)−

∑
j 6=1 c1j(ũ) c12(ũ) . . . c1n(ũ)

c21(ũ) −
∑
j 6=2 c2j(ũ) . . . c2n(ũ)

. . . . . . . . . . . . . . .

cn1(ũ) cn2(ũ) . . . −
∑
j 6=1,n cnj(ũ)

 .
(Note that the terms proportional to ci,k(ũ)(ũi − ũj) vanish.) Let us consider
the matrix:

Mn(ũ) =


−
∑
j 6=1 c1j(ũ) c12(ũ) . . . c1n(ũ)
c21(ũ) −

∑
j 6=2 c2j(ũ) . . . c2n(ũ)

. . . . . . . . . . . . . . .

cn1(ũ) cn2(ũ) . . . −
∑
j 6=1,n cnj(ũ)

 .
As before one notes that the Perron–Frobenius eigenvalue of this matrix is
equal to 0, whereas the eigenvector corresponding to this eigenvalue is equal
to (1, . . . , 1). Thus by means of Lemma 3 we have proved the following lemma.

Lemma 39. All the eigenvalues of Df(ũ) have their real parts negative, if
F ′1(ũ1) < 0. If F

′
1(ũ1) > 0, its Perron–Frobenius eigenvalue is positive.

Due to the implicit function theorem Lemma 38 can be replaced by the
following one.
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Lemma 40. Assume that the function F1(u1) has exactly three zeros: 0, 1
and u0 ∈ (0, 1). Then the only solutions to system (4) (with f given by (47)) are
(0, . . . , 0), (u1, . . . , un) = (1, . . . , 1) + O(τ) and (û1, . . . , ûn) = (U0, . . . , U0) +
O(τ).

By means of this lemma and the fact that the eigenvalues of a matrix de-
pend continuously on parameters we may prove the lemma corresponding to
Lemma 39.

Lemma 41. For τ sufficiently small all the eigenvalues of Df(u), for u =
(u1, . . . , un) equal to one of the solutions to system (4), have their real parts
negative, if F ′1(u1) < 0, whereas the Perron–Frobenius eigenvalue of Df(u) is
positive, if F ′1(u1) > 0.

By the linear change of variables ui → (ui)−1ui the largest root of system (47)
becomes equal to (1, . . . , 1). Thus using Theorem 1 we can state the following
result.

Theorem 3. Suppose that all the functions in system (49) are suffciently
smooth and that Assumption 6–9 are fulfilled. Then there exists q∗ ∈ R1 such
that for q = q∗ system (49) has a strictly monotone heteroclinic solution.

Appendix. Proof of Lemma 20

First we will prove the following auxilliary lemma.

Lemma 42. There exists an open neighbourhood U of the set Ẑ in R2n such
that ∂(N \ U) ∩ (U ∩N) does not contain the points belonging to I(N \ U).

Proof. Let O∗ be equal to a closed neighbourhood of Ẑ in R2n such that
δ ≤ dist (Ẑ, ∂O∗) ≤ 2δ. For δ sufficiently small we have I(O∗) = Ẑ. Let
Oδ = O∗ ∩ N . Then Oδ is a closed relative neighbourhood of the set Ẑ in N
such that δ ≤ dist (Ẑ, ∂Oδ \ ∂N) ≤ 2δ and I(Oδ) = Ẑ. Now, suppose that
there does not exist U satisfying the claim of the lemma. Then for every open
neighbourhood Uε ⊂ R2n of Ẑ such that 0 < dist (Ẑ, Uε) ≤ ε for all ε > 0
sufficiently small we could find a point Pε ∈ ∂(N \ Uε) ∩ (Uε ∩N) ∩ I(N \ Uε).
Note that ∂(N \ Uε) ∩ (Uε ∩ N)) = [(∂N \ Uε) ∪ (N ∩ ∂Uε)] ∩ (Uε ∩ N)) =
(∂N ∩ ∂Uε) ∪ (∂Uε ∩N). Let us consider the trajectory τε passing through Pε.
Let Pε = τε(tε). This trajectory must reach the set ∂Oδ \ ∂N ∪ (∂Oδ ∩ ∂N) for
sufficiently large |t−tε|. For, suppose that it is not true. Let, for example, for all
t > tε this trajectory has no common points with this set. It means that it stays
in the set Oδ for all t > tε as it cannot leave N through ∂N . Consequently, either
τε(t) → Ẑ as t → ∞ or the ω-limit set of the trajectory would be an invariant
set contained completely in Z ∩ Oδ. In the first case we arrive at contradiction
with the assumption that τε ⊂ I(N \ Uε) 6⊇ Ẑ. In the second case we arrive at
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contradiction with the fact that I(Oδ) = Ẑ. The same arguments may be used
to prove that the considered trajectory must reach the set ∂Oδ \∂N∪(∂Oδ∩∂N)
for some t < tε. So, τε(t) arrives at this set for the first time for t > tε at a point
D1ε = τε(tε + δ1ε). Similarly it arrives at this set for the first time for t < tε at
some point D2ε = τε(tε − δ2ε). It is obvious that, due to the continuity of the
solutions with respect to initial conditions and the fact that Ẑ is an invariant
subset, we must have δ1ε, δ2ε →∞ and dist (Pε, Ẑ)→ 0 as ε→ 0. Let us divide
the trajectory τε into two parts: τε+ joining D2ε and Pε and τε− joining D1ε
and Pε. Let τ̃ε+ = τε+(t + tε − δ2ε). Then D2ε = τ̃ε+(0) and Pε = τ̃ε+(δ2ε).
Analogically, if τ̃ε− = τε−(t+ tε + δ1ε), then D1ε = τ̃ε−(0) and Pε = τ̃ε−(−δ1ε).
By passing with ε to 0, we infer that in Z there would exist at least one orbit
(τ0+) tending to a point P0 ∈ Ẑ as t → ∞ and at least one orbit (τ0−) tending
to a point P0 ∈ Ẑ as t → −∞. This is a contradiction with the assumptions
made. The lemma is proved. �

Now, let us consider the points in (Z ∩Oδ) \ Ẑ. These points must lie on the
trajectories that leave Oδ in forward or backward time direction, as I(Oδ) = Ẑ.
Suppose, that we can find a point in (Z ∩ Oδ) \ Ẑ lying on a trajectory, which
does not tend to Ẑ as t → ∞ or t → −∞. If this trajectory leaves the set Oδ
in both time directions, then from the proof of the last lemma it follows that it
cannot have points in common with U , if U is taken sufficiently small. On the
other hand, suppose that we can find a point in (Z∩Oδ)\Ẑ lying on a trajectory,
which stays in Oδ for all t sufficiently large (or all (−t) sufficiently large) and
does not tend to Ẑ. It follows that the ω-limit (α-limit) set of this trajectory
would be an invariant set in Oδ different from Ẑ. But this is impossible according
to our assumptions. In consequence I(N \U) = I(N) \ (Ẑ ∪A+ ∪A−). Thus we
may write

(53) I(N \ U) ∩ ∂(N \ U)
= I(N \ U) ∩ (∂N \ U) ∪ I(N \ U) ∩ (∂U ∩N)
= I(N \ U) ∩ ∂N \ I(N \ U) ∩ U ∪ I(N \ U) ∩ (∂U ∩N)
= [I(N) \ Ẑ \A+ \A−] ∩ ∂N \ I(N \ U) ∩ U ∪ I(N \ U) ∩ (∂U ∩N).

The set I(N \U)∩U is empty, whereas, the set I(N \U)∩ (∂U ∩N) is empty
according to Lemma 42. In consequence

I(N \ U) ∩ ∂(N \ U) = [I(N) \ (Ẑ ∪A+ ∪A−)] ∩ ∂N(54)

= I(N) ∩ ∂N \ [Ẑ ∪A+ ∪ (A−] ∩ ∂N
= I(N) ∩ ∂N \ (Ẑ ∪A+ ∪A−).

That proves Lemma 20. �
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