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ON A “REVERSED” VARIATIONAL INEQUALITY

Dimitri Mugnai

Abstract. We are concerned with a class of penalized semilinear elliptic
problems depending on a parameter. We study some multiplicity results
and the limit problem obtained when the parameter goes to ∞. We ob-
tain a “reversed” variational inequality, which is deeply investigated in low
dimension.

1. Introduction

A large class of well studied equations admits, as a limit case, a variational
inequality which we can call “reversed”, since the sign of the inequality is not
the usual one.

A meaningful example is given by the classic jumping problem (see [11], [12]
and the references therein), which we write in the following way

(J, ω)

{
∆u+ αu − ω(e+ u)− = 0 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth and bounded domain of R
N , e is a positive function and α

and ω are real coefficients (in most cases e = e1, the first positive eigenfunction
of −∆ in W 1,2

0 (Ω)).
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If (ωn)n∈N is a sequence diverging to +∞ and (uωn)n∈N is a sequence of
solutions of (J, ωn) which weakly converges to u in W 1,2

0 (Ω), then u satisfies the
“reversed inequality”

(J,∞)

{ ∫
Du · v − α

∫
uv ≤ 0 for all v in W 1,2

0 (Ω) such that v ≥ 0,

u ≥ −e.

Of course we also require that u satisfies the equation in the set of x’s in Ω
where u(x) > −e(x), which will be defined in a suitable way. And it is clear
that, from this point of view, we are interested in those solutions u’s which do
not satisfy the equation on the whole of Ω.

We can observe that in the particular case N = 1, Ω = (a, b), if u(x) is
the trajectory depending on the time x of a material point which moves in the
(unidimensional) billiard R

+, bouncing on the boundary {0}, then u satisfies the
reversed inequality (J,∞).

Note that the functionals defined on W 1,2
0 (Ω) associated to problems (J, ω)

Fω(u) =
1
2

∫
|Du|2 − α

2

∫
u2 − ω

k

∫
[(u+ e)−]2

have an increasing lack of convexity as ω goes to +∞ and tend to the functional

F∞(u) =

{ 1
2

∫
|Du|2 − α

2

∫
u2 if u ≥ −e,

−∞ elsewhere.

We will consider a family of problems which, however, seem to have many
links (at least for ω <∞) with the ones above

(Pω)

{
∆2u+ c∆u− αu + ω((u− φ)−)k−1 = 0 in Ω,

u = ∆u = 0 on ∂Ω,

where ∆2 is the biharmonic operator, c and α are real numbers, ω is a positive
parameter, k > 2 and k is subcritical.

The corresponding limit problem is

(P∞)
∫

∆u∆ψ − c

∫
Du ·Dψ − α

∫
uψ ≤ 0

for all ψ in H1
0 (Ω)∩H2(Ω) such that ψ ≥ 0. The choice k > 2 allows an a priori

bound of a suitable family of solutions. The presence of the biharmonic operator
lets us show that in some cases there are limit solutions u’s which do not satisfy
the equation

∆2u+ c∆u− αu = 0

in the whole of Ω.
In this paper we study existence and multiplicity of solutions of (Pω) and of

a stronger version of (P∞).
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In fact if N ≤ 3 it is possible to prove that a solution of (P∞) satisfies the
following “reversed” variational inequality∫

∆u∆(v − u) − c

∫
Du ·D(v − u) − α

∫
u(v − u) ≤ 0

for all v in H1
0 (Ω) ∩ H2(Ω), v ≥ φ. The name “reversed” comes from the

comparison between this inequality and the “classical” variational inequalities
introduced in [10]. In fact in that case, if Φ is an obstacle, that is Φ|∂Ω < 0
and Φ is positive on a set of positive measure, if one looks for

min
{∫

|∆v|2
∣∣∣∣ v ∈ H1

0 (Ω) ∩H2(Ω), v ≥ Φ
}
,

one finds that the unique solution u of this problem solves∫
∆u∆(v − u) ≥ 0 for all v in H1

0 (Ω) ∩H2(Ω), v ≥ Φ.

At this point we also observe that problem (Pω) can be compared to the
problem introduced by Lazer and McKenna in [7] as a model to study travelling
waves in suspension bridges. The problem is the following one{

∆2u+ c∆u− bu− b(u+ 1)− = 0 in Ω,

u = ∆u = 0 on ∂Ω,

A large number of results have been found on this context: important results
are given in [6], [7], [13]–[17], [21].

2. Setting of the problem

Let Ω be a bounded and smooth domain of R
N , N ≥ 1. We will make the

following fundamental assumptions

(H)


ω ∈ R, ω > 0,

2 < k (and k < 2N/(N − 4) if N ≥ 5),

α, c ∈ R and φ ∈ Lk(Ω).

For some technical results, such as the Palais-Smale condition, we will not make
other assumptions on φ, but in most cases we will assume φ ≤ 0 a.e. in Ω
or supΩ φ < 0. We observe that such a requirement is related to the physical
model of travelling waves in suspension bridges, where φ ≡ −1 (see [6], [7],
[13]–[17], [21]).

Now consider the following sequence of problems

(Pω)

{
∆2u+ c∆u− αu + ω((u− φ)−)k−1 = 0 in Ω,

u = ∆u = 0 on ∂Ω,

where ∆2 is the biharmonic operator, v− = max{0,−v} and u ∈ H = H1
0 (Ω) ∩

H2(Ω). In H we set 〈u, v〉 =
∫

∆u∆v, ‖u‖2 =
∫
|∆u|2.



324 D. Mugnai

Remark 2.1. The norm just introduced is equivalent in H to the norm
of H2(Ω).

In fact ∆ : H → L2(Ω) is linear, injective (if ∆u = 0 and u = 0 on ∂Ω,
then u ≡ 0), continuous if H is endowed with the H2(Ω) norm and surjective
(by regularity theorems). Then

∫
|∆u|2 ≥ c‖u‖H2(Ω) by the Open Mapping

Theorem.

Remark 2.2. H is a closed subspace of H2(Ω).

In order to study problem (Pω), we will follow a variational approach. Con-
sider fω : H → R defined as follows

fω(u) =
1
2

∫
|∆u|2 − c

2

∫
|Du|2 − α

2

∫
u2 − ω

k

∫
((u − φ)−)k.

We observe that, if k > 1, fω is of class C1, and if k > 2, it is of class C2.
Moreover, its critical points are solutions of (Pω).

We will also sometimes use the following notation for the quadratic form
defined on H as

Qc,α(u) =
1
2

∫
|∆u|2 − c

2

∫
|Du|2 − α

2

∫
u2.

Remark 2.3. The following problem{
∆2u+ c∆u = Λu in Ω,

u = ∆u = 0 on ∂Ω,

has an increasing sequence of eigenvalues Λi = λni(λni − c), i ≥ 1, where the
sequence (λni )i∈N is a rearrangement of the eigenvalues of ∆u + λu = 0, u = 0
on ∂Ω (if c > λk + λj , j < k, then λ2

k − cλk < λ2
j − cλj). The eigenfunctions of

the former problem are the ones corresponding to the latter problem (Ei = eni),
and they are orthonormal in L2(Ω). We recall that e1 can be chosen strictly
positive in Ω.

Observe that, since λr → ∞ as r → ∞, there is possibly only a finite number
of negative or null Λi’s, and Λi → ∞ as i → ∞. Note that the first eigenvalue
is not simple any more, in general. Finally set Hj = Span (E1, . . . , Ej) for
any j ≥ 1.

3. Palais–Smale condition

We will investigate the existence of critical points of fω through some varia-
tional tools that we recall in the Appendix.

Proposition 3.1. Suppose α �= λ2
1 − cλ1 and hypothesis (H) holds. Then

fω satisfies (PS)c for every c in R.
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Proof. Let (uh)h be a (PS)c sequence, that is fω(uh) → c and f ′
ω(uh) → 0.

It is enough to show that ‖uh‖ is bounded, since for all z in H

∇fω(z) = z + i∗(c∆z − αz + ω((z − φ)−)k−1),

where i∗ : L2(Ω) −→ H , the adjoint of the immersion i : H −→ L2(Ω), is
a compact operator. In fact, if un ⇀ u inH , then un converges strongly in Lk(Ω).
So ((un − φ)−)k−1 converges strongly in Lk/(k−1)(Ω) and thus in H ′. But then
un = ∇fω(un) − i∗(c∆un − αun + ω((un − φ)−)k−1) converges strongly, since
(∆un)n and (un)n are bounded in L2(Ω).

Thus suppose by contradiction that, up to a subsequence, ‖uh‖ diverges.
Then there is v in H such that (up to a subsequence) vh = uh/‖uh‖ ⇀ v in H .
Note that, dividing fω(uh) by ‖uh‖k and passing to the limit, we get

∫
(v−)k = 0,

and so v ≥ 0.
Now observe that for all ε > 0, exists Cε > 0 such that∣∣∣∣ ∫ ((uh − φ)−)k−1φ

∣∣∣∣ ≤ ε

∫
((uh − φ)−)k + Cε.

In fact∣∣∣∣ ∫ ((uh − φ)−)k−1φ

∣∣∣∣ ≤ ( ∫
((uh − φ)−)k

)1−1/k

‖φ‖Lk(Ω)

≤ ‖φ‖Lk(Ω)

(
ε̃

∫
((uh − φ)−)k + C̃ε

)
.

Here we used the fact that for every R ≥ 0, for every 0 < α < p and for
every ε > 0

(1) Rα ≤ α

p
εRp +

p− α

p

(
1
ε

)α/(p−α)

.

In this way

f ′
ω(uh)(uh)
‖uh‖

=
1

‖uh‖

{∫
|∆uh|2 − c

∫
|Duh|2 − α

∫
u2

h

+ ω

∫
((uh − φ)−)k−1uh

}
=

1
‖uh‖

{
2fω(uh) +

(
2
k
− 1

)
ω

∫
((uh − φ)−)k

+ ω

∫
((uh − φ)−)k−1φ

}
≤ 1

‖uh‖

{
2fω(uh) +

(
2
k
− 1 + ε

)
ω

∫
((uh − φ)−)k + ωCε

}
.
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But f ′
ω(uh)(uh)/‖uh‖ → 0 as h→ 0 and passing to the limit we get, if ε is small

enough (i.e. 2/k − 1 + ε < 0),

lim
h→∞

∫
((uh − φ)−)k

‖uh‖
= 0 and hence lim

h→∞

∫
((uh − φ)−)k−1φ

‖uh‖
= 0.

Moreover, since uh = (uh − φ) + φ,

lim
h→∞

∫
((uh − φ)−)k−1uh

‖uh‖
= 0.

But in this way

f ′
ω(uh)(uh)
‖uh‖2

= 1 − c

∫
|Dvh|2 − α

∫
v2

h +
ω

∫
((uh − φ)−)k−1uh

‖uh‖2

→ 1 − c

∫
|Dv|2 − α

∫
v2.

On the other hand f ′
ω(uh)(uh)/‖uh‖2 → 0 as h → ∞. Therefore if c and α are

non positive we get a contradiction. Otherwise v �≡ 0.
Now observe that

∫
((uh − φ)−)k−1e1/‖uh‖ → 0, since∫

((uh − φ)−)k−1e1

‖uh‖
≤

(
1

‖uh‖

∫
ek
1

)1/k(
1

‖uh‖

∫
((uh − φ)−)k

)1−1/k

.

Therefore

f ′
ω(uh)e1
‖uh‖

=
1

‖uh‖

{∫
∆uh∆e1 − c

∫
Duh ·De1 − α

∫
uhe1

+ ω

∫
((uh − φ)−)k−1e1

}
→ (λ2

1 − cλ1 − α)
∫
ve1.

But f ′
ω(uh)e1/‖uh‖ → 0 as h → ∞ and the previous limit implies v ≡ 0, since

α �= λ2
1 − cλ1. Then a contradiction arises. �

Remark 3.2. We observe that the requirement α �= λ2
1 − cλ1 is not merely

a technical assumption: indeed, if α = λ2
1 − cλ1 we can take the sequence

un = tne1, tn > 0 and tn → ∞. Such a sequence is such that fω(un) = 0
and f ′

ω(un) = 0 for all ω and all n in N. But, of course, it is impossible to find
a converging subsequence.

4. Existence of one forcing solution

From now on we will also assume that φ ≤ 0, in order to find some solutions
to problem (Pω). In particular our goal is to find some particular solutions, the
ones which we call forcing solutions.
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Definition 4.1. A function u in H is called a forcing solution of prob-
lem (Pω) if it is a solution such that (u− φ)− �= 0.

The definition just given is justified by the fact that in some cases, if a se-
quence of forcing solutions weakly converges to u, such a u is forced to be over φ
and to touch φ somewhere.

Remark 4.2. If u is a solution of (Pω) such that fω(u) �= 0, then u is
a forcing solution. In fact, if u ≥ φ a.e. in Ω, then 0 = f ′

ω(u)ψ =
∫

∆u∆ψ −
c
∫
Du · Dψ − α

∫
uψ for every ψ in H , and so, taking ψ = u, we would have

fω(u) = 0.
Conversely, if φ ≤ 0, every forcing solution u is such that fω(u) > 0. In fact

0 = f ′
ω(u)u = 2fω(u) +

(
2
k
− 1

)
ω

∫
((u − φ)−)k + ω

∫
((u− φ)−)k−1φ

and then f(u) > 0.

In this section we want to show that if φ ≤ 0, then there exists a forcing
solution uω of problem (Pω) for every ω > 0. Actually we show that there exists
a forcing solution for all N ≥ 1 if α < λ2

1− cλ1 and for all N ≥ 2 if α > λ2
1− cλ1.

In view of Proposition 3.1 and Remark 3.2 we will not take into account the case
α = λ2

1 − cλ1.
We finally observe that, if φ ≤ 0 u ≡ 0 is always a solution of (Pω), whatever

c, α and ω are.

Lemma 4.3. Let k be in [1,∞) and such that k < 2N/(N − 4) if N > 4,
φ ∈ Lk(Ω) and φ ≤ 0. Then∫

((u − φ)−)k = O(‖u‖k).

Proof. Denote by {u− φ ≤ 0} the set {x ∈ Ω | u(x) − φ(x) ≤ 0}.
Case 1. N > 4. Set q = 2N/(N − 4). Then∫

((u − φ)−)k =
∫
{u−φ≤0}

(−u+ φ)k

and since 0 ≤ −u+ φ ≤ −u, the last quantity is less or equal to∫
{u−φ≤0}

(−u)k ≤
(∫

{u−φ≤0}
(−u)q

)k/q

m({u− φ ≤ 0})1−k/q

≤
(∫

Ω

|u|q
)k/q

m({u− φ ≤ 0})1−k/q,

and by the Sobolev’s Embedding Theorem it is smaller than

C‖u‖km({u− φ ≤ 0})1−k/q,
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for a universal constant C > 0 (here m(A) stands for the Lebesgue measure of
any set A).

Case 2. N = 4. Starting as in the previous step∫
((u − φ)−)k ≤ ‖u‖k

Ls(Ω) m({u− φ ≤ 0})1−k/s

for every s > k. As before, there exists a universal positive constant C such that
the last quantity is less or equal to C‖u‖km({u− φ ≤ 0})1−k/s.

Case 3. N ≤ 3. In this case there exists C > 0 such that for every u in H∫
((u − φ)−)k ≤ ‖u‖k

L∞(Ω) m({u− φ ≤ 0}) ≤ C‖u‖k m({u− φ ≤ 0}). �

As already said, in the theorems involving the existence of forcing solutions,
we distinguish two cases: the first one in which α < λ2

1 − cλ1 and the one in
which α > λ2

1 − cλ1.

Remark 4.4. If there exists l ≥ 1 such that e1 �∈ Hl, then there isn’t any
non trivial non negative (or non positive) function in Hl. In fact for all v in H

such that v ≥ 0, v �≡ 0, we get 〈v, e1〉 = λ2
1

∫
ve1 > 0.

Lemma 4.5. Assume (H) and Λl ≤ α < Λl+1, l ≥ 1. Then

(a) supHl
fω = 0,

(b) if φ ≤ 0, there exists C+
l > 0 such that

lim
ρ→0

1
ρ2

inf
w∈H⊥

l
,

‖w‖=ρ

fω(w) ≥ C+
l ,

(c) if α < λ2
1 − cλ1, then

lim
v∈Hl,σ≥0,

‖v−σe1‖→∞

fω(v − σe1) = −∞.

Proof. (a) It is obvious, since fω(v) ≤ (Λl − α)/2
∫
v2 for all v in Hl and

fω(0) = 0.
(b) Observe that, by Lemma 4.3, for any ε > 0 there exists ρ > 0 such that, if

‖w‖ ≤ ρ, fω(w) ≥ C+
l ‖w‖2− ε‖w‖2, where C+

l = infni≥l+1(λ2
ni

− cλni −α)/λ2
ni

.
The thesis follows.

(c) Suppose by contradiction that there exist vh in Hl, σh ≥ 0 and C in R

such that ‖vh − σhe1‖ → ∞ and

(2)
1
2

∫
|∆(vh−σhe1)|2 −

c

2

∫
|D(vh−σhe1)|2

− α

2

∫
(vh−σhe1)2 −

ω

k

∫
((vh−σhe1−φ)−)k ≥ C.
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Up to a subsequence we can suppose that (vh − σhe1)/‖vh − σhe1‖ → v − σe1

in H , in Lk(Ω) and a.e. in Ω, where v ∈ Hl and σ ≥ 0 (remember that this is
a finite dimensional case). Dividing both sides of inequality (2) by ‖vh − σhe1‖2

and passing to the limit, we obtain that

lim sup
h→∞

‖vh − σe1‖k−2

∫ ((
vh − σhe1 − φ

‖vh − σhe1‖

)−)k

is a real non negative number. In this way v − σe1 ≥ 0 a.e. in Ω.
Since α < λ2

1 − cλ1, e1 ∈ H⊥
l . In this way 〈v, e1〉 = 0, and so 0 ≤ 〈v −

σe1, e1〉 = −σλ2
1, which is possible if and only if σ = 0. This implies v ≥ 0 in Hl,

which is impossible for Remark 4.4. �

As we will see, the proof of the following theorem is essentially based on an
application of Theorem A.3, which topologically degenerates in a mountain pass
structure if the quadratic form is positive definite.

Theorem 4.6. Suppose (H) holds, φ ≤ 0 and α < λ2
1−cλ1. Then there exists

a non trivial critical point uω of fω (i.e. a forcing solution of problem (Pω)).
Moreover, 0 < fω(uω) for all ω, and for all ω > 0 supω≥ω fω(uω) <∞.

Proof. There are two cases.
Case 1. Suppose that Λi > 0 for all i in N. Then Qc,α is positive definite

and we can introduce the following scalar product in H : (u, v) =
∫

∆u∆v −
c
∫
Du · Dv − α

∫
uv. We observe that the induced norm ‖| · |‖ is equivalent

to the norm introduced in H . In fact there exist positive a0 and b0 such that
a0‖u‖2 ≤ ‖|u|‖2 ≤ b0‖u‖2, where b0 is obtained by the continuity of Qc,α on H ,
while a0 is obtained from next Remark 4.7.

Observe that fω(0) = 0, limt→∞ fω(−te1) = −∞ and that fω is locally
coercive. In fact Qc,α(u) ≥ (a0/2)‖u‖2. By Lemma 4.3 for every ε in (0, a0/2ω)
there exists ρω > 0 such that inf‖|u|‖=ρω

fω(u) ≥ (a0/2 − ωε)ρ2
ω. In this way, by

the Mountain Pass Theorem, there exists a critical point uω with positive critical
value. We observe that the Palais–Smale condition also holds with this norm, as
one can easily check adapting the proof of Proposition 3.1.

Moreover, by Remark 4.2 we get that (uω − φ)− �= 0, since fω(uω) > 0.
Finally, we find an upper bound for the critical values. In fact, if tω > 0 is

such that fω(−tωe1) ≤ 0, then(
a0

2
− ωε

)
ρ2

ω ≤ fω(uω) ≤ sup
t∈[0,tω]

fω(−te1)

≤ sup
t∈[0,tω]

fω(−te1) ≤ sup
t∈[0,∞)

fω(−te1) <∞.

Here we used the fact that if ω1 < ω2 and u ∈ H , then fω1(u) ≥ fω2(u).
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Case 2. Now suppose that exists l ≥ 1 such that Λl ≤ α < Λl+1. Lemma 4.5
implies that there exist Rω and ρω such that Rω > ρω > 0 and

inf
w∈H⊥

l
‖w‖=ρω

fω(w) > sup
z∈ΣRω

fω(z),

where ΣRω = {z = v − σe1 | v ∈ Hl, σ ≥ 0, ‖z‖ = Rω}. In this way the
hypotheses of the Linking Theorem are satisfied, so there exists a critical point uω

such that

0 < inf
w∈H⊥

l
‖w‖=ρω

fω(w) ≤ fω(uω) ≤ sup
z∈∆Rω

fω(z),

where ∆Rω = {z = v − σe1 | v ∈ Hl, σ ≥ 0, ‖z‖ ≤ Rω}. More precisely, this is
a forcing solution of problem (Pω), by Remark 4.2. The Linking Theorem also
provides the existence of another critical point with non positive critical value,
but it is the trivial one.

We observe that also in this case we can find a uniform bound for the critical
values fω(uω). In fact from the Linking Theorem for any ω > 0

fω(uω) ≤ sup
z∈∆Rω

fω(z) ≤ sup
z∈∆Rω

fω(z) ≤ sup
v∈Hl,

σ≥0

fω(v − σe1) <∞. �

Remark 4.7. If the quadratic form Qc,α is positive definite, there exists
a0 > 0 such that for every w in H∫

|∆w|2 − c

∫
|Dw|2 − α

∫
w2 ≥ a0‖w‖2.

In fact, every w in H can be written as w =
∑∞

i=1 βiEi, βi ∈ R, so∫
|∆w|2 − c

∫
|Dw|2 − α

∫
w2 =

∑
β2

i

(λ2
ni

− cλni − α)
λ2

ni

λ2
ni

≥ a0

∑
β2

i λ
2
ni

= a0‖w‖2.

Here a0 is the infimum of (λ2
ni

− cλni − αn)/λ2
ni

for ni ≥ 1, and this infimum
is positive, since the quotient goes to 1 as i → ∞ and it is strictly positive for
every finite subset of indices.

For the case α > λ2
1 − cλ1 we obtain a result which is analogous to the one

of Theorem 4.6, at least if N ≥ 2. Note that if α > λ2
1 − cλ1, then there exists

l ≥ 1 such that Λl ≤ α < Λl+1 and e1 ∈ Hl.
Now let e be in H⊥

l such that ess sup e = +∞ (if N ≥ 4) or there exists
x0 on ∂Ω such that ∂u(x0)/∂ν = −∞ (if N = 2 or N = 3), where ν is the
unit outward normal to ∂Ω. In both cases m({x ∈ Ω | e(x) > v(x)}) > 0 for
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all v in Hl, since functions belonging to Hl are smooth. We remark that such
a function e exists since the mapping

u 
→
{
u|∂Ω,

∂u

∂ν

}
is linear, continuous and surjective from W 2,2(Ω) onto W 3/2,2(∂Ω)×W 1/2,2(∂Ω)
(see [2] or [8]).

The following Lemma is the one corresponding to (c) of Lemma 4.5 in the
case α > λ2

1 − cλ1.

Lemma 4.8. Assume (H) and N ≥ 2. Suppose α > λ2
1 − cλ1 and Λl ≤ α <

Λl+1. Then

lim
v∈Hl,σ≥0,

‖v−σe‖→∞

f(v − σe) = −∞.

Proof. Suppose by contradiction that there exist vh in Hl, σh ≥ 0 and C

in R such that ‖vh − σhe‖ → ∞ and

(3)
1
2

∫
|∆(vh − σhe)|2 −

c

2

∫
|D(vh − σhe)|2

− α

2

∫
(vh − σhe)2 −

ω

k

∫
((vh − σhe− φ)−)k ≥ C.

Up to a subsequence we can suppose that

(vh − σhe)/‖vh − σhe‖ → v − σe

in H , where v ∈ Hl and σ ≥ 0. Dividing both sides of inequality (3) by ‖vh −
σhe‖2 and passing to the limit, we obtain∫

|∆(v − σe)|2 − c

∫
|D(v − σe)|2 − α

∫
(v − σe)2 ≥ 0

and v − σe ≥ 0 a.e. in Ω. By the choice of e we get σ = 0, v ≥ 0 and
∫
|∆v|2 −

c
∫
|Dv|2−α

∫
v2 ≥ 0. But v ∈ Hl, so Qc,α(v) = 0 and v belongs to the subspace

spanned by the eigenfunctions associated to the null eigenvalues of Qc,α. In this
way 〈v, e1〉 = 0, since α > λ2

1−cλ1. But v �≡ 0 (‖v‖ = 1), so 〈v, e1〉 = λ2
1

∫
ve1 > 0

and a contradiction arises. �

Theorem 4.9. Assume (H), φ ≤ 0, α > λ2
1 − cλ1 and N ≥ 2. Then for all

ω > 0 there exists a non trivial critical point uω of fω (i.e. is a forcing solution
of (Pω)). Moreover, 0 < fω(uω) for all ω and all ω > 0 supω≥ω fω(uω) <∞.

Proof. We can suppose that exists l ≥ 1 such that Λl ≤ α < Λl+1 and
e1 ∈ Hl. Observe that (a) and (b) of Lemma 4.5 still hold in this case, as well
as Lemma 4.8.
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As in the previous case, by Lemma 4.8, it is possible to apply the Linking
Theorem and find a critical point uω for every ω such that (uω − φ)− �= 0 and
supω≥ω fω(uω) <∞ for all ω > 0. �

Remark 4.10. In both Theorem 4.6 and Theorem 4.9, if N ≤ 3, supφ < 0
in Ω and ρ is small enough, the ε used in the Mountain Pass Theorem or in
the Linking Theorem can be replaced by 0, since H is continuously embedded
in C0(Ω). In this way for all ω > 0, infω fω(uω) > 0 (see also Corollary 5.19).

Definition 4.11. For any j ≥ 1 set

Λ∗
j = max

{∫
|∆v|2 − c

∫
|Dv|2

∣∣∣∣ v ∈ Hj , v ≥ 0,
∫
v2 = 1

}
.

Observe that in general Λ∗
j ≤ Λj . But if r is such that e1 = Er and if j > r,

then Λ∗
j < Λj . In fact, suppose v in Hj gives the maximum in Definition 4.11

and v =
∑j

m=1 βmEm. Since Ej �= e1, then |βj | < 1 and βr > 0, since for all v
in H such that v ≥ 0, v �≡ 0, 〈v, e1〉 = λ2

1

∫
ve1 = λ2

1βr > 0.

Theorem 4.12. Suppose (H) holds, φ ≤ 0, α > λ2
1 − cλ1, l ≥ 1 is such

that Λl ≤ α < Λl+1, α > Λ∗
l+1 and N ≥ 1. Then there exists a non trivial

critical point uω of fω (which is a forcing solution of problem (Pω)). Moreover,
0 < fω(uω) for all ω and all ω > 0 supω≥ω fω(uω) <∞.

Proof. The proof is very similar to the one of the previous theorem, but
in this case we create a linking with El+1. In fact, proceeding as in the proof of
Lemma 4.8, with e replaced by El+1, we would get that there exists v inHl, σ in R

such that ‖v + σEl+1‖ = 1 and 0 ≤ Qc,α(v + σE1) ≤ (Λ∗
l+1 − α)

∫
(v + σEl+1)2,

which would imply v + σEl+1 = 0, which is impossible. The rest follows in the
same way. �

5. Multiplicity of forcing solutions

In theorems related to multiplicity of forcing solutions we will consider a spe-
cial case starting from the assumption that there exist l ≥ 1 and s ≥ l + 1 such
that Λl < Λl+1 = . . . = Λs < Λs+1. We will consider two cases, according to
whether Λs < λ2

1 − cλ1 or λ2
1 − cλ1 ≤ Λl.

It is clear, for example, that if m is such that c ≤ λ1 + λm and λm > λ1,
then the eigenvalue Λl = λ2

m − cλm satisfies λ2
1 − cλ1 ≤ Λl, while if m is such

that c > λ1 + λm and λm > λ1, then Λs = λ2
m − cλm satisfies Λs < λ2

1 − cλ1.
We now need some preliminary results and to obtain them, we consider the

case Λs < λ2
1 − cλ1 and the case λ2

1 − cλ1 ≤ Λl separately.
Case 1. Λs < λ2

1 − cλ1. We recall that in this case there aren’t non trivial
non negative functions in Hs.
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Lemma 5.1. Assume (H) and Λs < λ2
1 − cλ1. Then

lim
v∈Hs,
‖v‖→∞

fω(v) = −∞.

Proof. Suppose by contradiction that there exist vh in Hs and C in R such
that ‖vh‖ → ∞ and

(4)
1
2

∫
|∆vh|2 −

c

2

∫
|Dvh|2 −

α

2

∫
v2

h − ω

k

∫
((vh − φ)−)k ≥ C.

Up to a subsequence we can suppose that vh/‖vh‖ → v in Hs \ {0}. Dividing
both sides of inequality (4) by ‖vh‖k, we get v ≥ 0 and this is a contradiction.�

Actually each functional fω depends on α, too. We do not emphasize such
a dependence explicitly in view of the results we will prove in the last sections,
but, anyway, it should be kept in mind that fω = fω,α. With such a convention,
we can give the following

Definition 5.2. For every α in R, ω > 0 and j ≥ 1 set Mω
j (α) = maxHj fω.

Proposition 5.3. Assume (H) and Λj < λ2
1 − cλ1. Then, for every ω > 0,

(a) Mω
j (α) <∞,

(b) supφ < 0 and α < Λj ⇒Mω
j (α) > 0,

(c) α ≥ Λj ⇒Mω
j (α) = 0,

(d) limα→Λj M
ω
j (α) = 0.

Proof. (a) Suppose by contradiction that there exists vh in Hj such that

(5)
1
2

∫
|∆vh|2 −

c

2

∫
|Dvh|2 −

α

2

∫
v2

h − ω

k

∫
((vh − φ)−)k ≥ h.

Whatever c and α are, we get ‖vh‖ → ∞, and so, up to a subsequence, vh/‖vh‖ →
v in Hj \ {0}. Dividing both sides of inequality (5) by ‖vh‖k we get v ≥ 0, which
is impossible.

(b) Let E �= 0 be an eigenfunction with eigenvalue Λj and such that E−φ ≥ 0
(this is possible since supφ < 0 and functions with eigenvalue Λj are smooth).
Then fω(E) = (Λj − α)/2

∫
E2 > 0.

(c) This is nothing else but (a) of Lemma 4.5.
(d) By contradiction, suppose there exist αh → Λj , vh in Hj and ε > 0 such

that

(6) Mω
j (αh) =

1
2

∫
|∆vh|2−

c

2

∫
|Dvh|2−

αh

2

∫
v2

h−
ω

k

∫
((vh−φ)−)k ≥ ε > 0.

If (vh)h is bounded, then, up to a subsequence, vh → v in Hj and

0 = Mj(Λj) ≥
1
2

∫
|∆v|2 − c

2

∫
|Dv|2 − Λj

2

∫
v2 − ω

k

∫
((v − φ)−)k ≥ ε > 0,
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which is clearly absurd. Then ‖vh‖ → ∞ and, up to a subsequence, vh/‖vh‖ → v

in Hj \ {0}. Dividing both sides of inequality (6) by ‖vh‖k we get v ≥ 0, which
is impossible. �

Proposition 5.4. Assume (H), φ ≤ 0 and let Λl ≤ α < Λl+1 ≤ . . . ≤ Λs <

Λs+1, s ≥ l+ 1 and Λs < λ2
1 − cλ1. Then there exist ρ′′ > ρ > ρ′ ≥ 0 and ρ1 > 0

such that

inf
w∈H⊥

l
,

‖w‖=ρ

fω(w) > 0 ≥ sup
u∈T

fω(u),

where T = ∂HsD and

D = {u = v + w | v ∈ Hl, w ∈ Span (El+1, . . . , Es), ‖v‖ ≤ ρ1, ρ
′ ≤ ‖w‖ ≤ ρ′′}.

Proof. By (c) of Proposition 5.3 Mω
l (α) = 0, by Lemma 5.1 and by (b) of

Lemma 4.5 there exist R > ρ > 0 such that

inf
w∈H⊥

l
,

‖w‖=ρ

fω(w) > max
{
Mω

l (α), sup
v∈Hs,
‖v‖=R

fω(v)
}
,

and the thesis follows. �

Lemma 5.5. Assume (H) and Λs < λ2
1 − cλ1. Then

lim
v∈Hs,σ≥0

‖v−σe1‖→∞

fω(v − σe1) = −∞.

Proof. Assume by contradiction that there exist vh in Hs, σh ≥ 0 and C

in R such that ‖vh − σhe1‖ → ∞ and

(7)
1
2

∫
|∆(vh − σhe1)|2 −

c

2

∫
|D(vh−σhe1)|2

− α

2

∫
(vh−σhe1)2 −

ω

k

∫
((vh − σhe1 − φ)−)k ≥ C.

Up to a subsequence, (vh − σhe1)/‖vh − σhe1‖ → v − σe1, where v ∈ Hs and
σ ≥ 0. Dividing both sides of inequality (7) by ‖vh − σhe1‖k we get v− σe1 ≥ 0.
Then 0 ≤ 〈v − σe1, e1〉 = −σλ2

1, and so σ = 0. In this way v ≥ 0. But ‖v‖ = 1
and this is not possible. �

Remark 5.6. Note that if e1 ∈ Span (El+1, . . . , Es) we can substitute e1
with the function e chosen for the case α > λ2

1 − cλ1, and then Lemma 5.5
holds for all N ≥ 2, and it gives a forcing solution of (Pω) applying the Linking
Theorem.
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Proposition 5.7. Assume (H), φ ≤ 0 and let Λl < Λl+1 = . . . = Λs <

Λs+1, s ≥ l+1 and Λs < λ2
1 − cλ1. Then there exists an open neighbourhood Oω

s

of Λs such that, if α ∈ Oω
s ∩ [Λl,Λs), there exist R > ρ > 0 such that

inf
w∈H⊥

s ,

‖w‖=ρ

fω(w) > sup
z∈ΣR(Hs,e1)

fω(z),

where ΣR(Hs, e1) is the boundary in Hs ⊕ Span (e1) of ∆R(Hs, e1) and

∆R(Hs, e1) = {z = v − σe1 | v ∈ Hs, σ ≥ 0, ‖z‖ ≤ R}.

Proof. Define

Oω
s =

{
α ∈ [Λl,Λs+1) | ∃ρ > 0 such that Mω

s (α) < inf
w∈H⊥

s ,

‖w‖=ρ

fω(w)
}
.

By (d) of Proposition 5.3 Mω
s (α) → 0 as α→ Λs; by (b) of Lemma 4.5

lim
ρ→0

1
ρ2

inf
w∈H⊥

s ,

‖w‖=ρ

fω(w) ≥ C+
s = inf

ni≥s+1

λ2
ni

− cλni − α

λ2
ni

.

But

C+
s ≥ inf

ni≥s+1

λ2
ni

− cλni − Λs

λ2
ni

> 0

for every α < Λs. In this way Oω
s �= ∅ and it is an open neighbourhood of Λs.

Moreover, by Lemma 5.5, there exists R > ρ > 0 such that

inf
w∈H⊥

s ,

‖w‖=ρ

fω(w) > sup
v∈Hs,σ≥0,
‖v−σe1‖=R

fω(v − σe1),

and the thesis follows. �

Case 2. λ2
1 − cλ1 ≤ Λl. As usual we suppose that there exists 1 ≤ r ≤ l such

that Er = e1.

Proposition 5.8. Assume (H), λ2
1 − cλ1 ≤ Λl and let j ≥ r. Then, for

every ω > 0,

(a) α > Λ∗
j ⇒Mω

j (α) <∞,
(b) supφ < 0 and α < Λj ⇒Mω

j (α) > 0,
(c) α ≥ Λj ⇒Mω

j (α) = 0,
(d) j > r ⇒ limα→Λj M

ω
j (α) = 0.

Proof. The proof is very similar to the one of Proposition 5.3.
(a) Starting as in the proof of (a) of Proposition 5.3, we obtain a function

v ≥ 0 in Hj such that ‖v‖ = 1 and such that 0 ≤ Qc,α(v) ≤ (Λ∗
j − α)/2

∫
v2,

which implies v ≡ 0, and this is absurd.
(b) and (c) are proved as in Proposition 5.3.
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(d) Starting as in the proof of (d) of Proposition 5.3 we obtain a function v
in Hj such that ‖v‖ = 1 and v ≥ 0. But moreover Qc,α(v) = 0. So v belongs
to the subspace spanned by the eigenfunctions associated to Λj, and this is
impossible, since j > r. �

Lemma 5.9. Assume (H) and α > Λ∗
j , j ≥ r. Then

lim
v∈Hj ,

‖v‖→∞

fω(v) = −∞.

Proof. Starting as in Lemma 5.1 we obtain that there is v in Hj , v ≥ 0,
‖v‖ = 1 such that 0 ≤ Qc,α(v) ≤ (Λ∗

j − α)/2
∫
v2. This implies v ≡ 0, which is

absurd. �

Proposition 5.10. Assume (H), φ ≤ 0 and let λ2
1−cλ1 ≤ Λl ≤ α < Λl+1 ≤

. . . ≤ Λs < Λs+1, s ≥ l + 1. Suppose α > Λ∗
s. Then there exist ρ′′ > ρ > ρ′ ≥ 0

and ρ1 > 0 such that

inf
w∈H⊥

l
,

‖w‖=ρ

fω(w) > 0 ≥ sup
u∈T

fω(u),

where T = ∂HsD and

D = {u = v + w | v ∈ Hl, w ∈ Span (El+1, . . . , Es), ‖v‖ ≤ ρ1, ρ
′ ≤ ‖w‖ ≤ ρ′′}.

Proof. By (c) of Proposition 5.8, Mω
l (α) = 0; by Lemma 5.9 (applied with

j = s) and by (b) of Lemma 4.5 there exist R > ρ > 0 such that

inf
w∈H⊥

l
,

‖w‖=ρ

fω(w) > max
{
Mω

l (α), sup
v∈Hs,
‖v‖=R

fω(v)
}
,

and the thesis follows. �

If N ≥ 2 consider again the function e chosen before.

Lemma 5.11. Assume (H) and let λ2
1 − cλ1 ≤ Λl ≤ α ≤ Λl+1 ≤ . . . ≤ Λs <

Λs+1, s ≥ l + 1. If α > Λ∗
s, then

lim
v∈Hs,σ≥0
‖v−σe‖→∞

fω(v − σe) = −∞.

Proof. Starting as in Lemma 5.5 we find v in Hs and σ ≥ 0 such that
v − σe ≥ 0, ‖v − σe‖ = 1 and 0 ≤ Qc,α(v − σe). Then σ = 0 and v ≥ 0, so that
0 ≤ Qc,α(v) ≤ (Λ∗

k − α)/2
∫
v2. This implies v ≡ 0, which is absurd. �

Remark 5.12. If Λ∗
s+1 < Λs and α > Λ∗

s+1, we can substitute e with Es+1

and Lemma 5.11 holds for all N ≥ 1. But, in general, this condition is hardly
satisfied.
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Proposition 5.13. Assume (H), φ ≤ 0 and let λ2
1 − cλ1 ≤ Λl < Λl+1 =

. . . = Λs < Λs+1, s ≥ l + 1 and N ≥ 2. Then there exists an open neighbour-
hood Oω

s of Λs such that, if α ∈ Oω
s ∩ [Λl,Λs), there exist R > ρ > 0 such

that

inf
w∈H⊥

s ,

‖w‖=ρ

fω(w) > sup
z∈ΣR(Hs,e)

fω(z),

where ΣR(Hs, e) is the boundary of ∆R(Hs, e) in Hs ⊕ Span (e) and

∆R(Hs, e) = {z = v − σe | v ∈ Hs, σ ≥ 0, ‖z‖ ≤ R}.

Proof. Consider the set

Oω
s =

{
α ∈ (Λl,Λs+1) | α > Λ∗

s, ∃ ρ > 0 such that Ms(α) < inf
w∈H⊥

s ,

‖w‖=ρ

f(w)
}
.

Since s ≥ l + 1, Λ∗
s < Λs; by (b) of Lemma 4.5 there exist ρ > 0 and C+

s > 0
such that

inf
w∈H⊥

s

‖w‖=ρ

fω(w) ≥ C+
s ρ

2.

Moreover, by (d) of Proposition 5.11, Mω
s (α) → 0 if α → Λs. We deduce that

Oω
s is a non empty open neighbourhood of Λs. Moreover, by Lemma 5.11, there

exist R > ρ > 0 such that

inf
w∈H⊥

s ,

‖w‖=ρ

fω(w) > sup
v∈Hs,σ≥0,
‖v−σe‖=R

fω(v − σe). �

Lemma 5.14. Assume (H), φ ≤ 0 and let Λl < Λl+1 ≤ . . . ≤ Λs < Λs+1,
s ≥ l + 1. Then, for any δ > 0, there exists ε0 > 0 such that for every α

in [Λl + δ,Λs+1 − δ], the unique critical point of f constrained on Hl ⊕ H⊥
s in

f−1
ω ([−ε0, ε0]) is the trivial one.

Proof. Suppose by contradiction that there exist δ > 0, αn in [Λl+δ,Λs+1−
δ], αn → α and un in Hl ⊕H⊥

s \ {0} such that

fn
ω (un) :=

1
2

∫
|∆un|2 −

c

2

∫
|Dun|2 −

αn

2

∫
u2

n +
ω

k

∫
((un − φ)−)k → 0

and, for every u in Hl ⊕H⊥
s ,

(8)
∫

∆un∆u− c

∫
Dun ·Du− αn

∫
unu+ ω

∫
((un − φ)−)k−1u = 0.

Set un = vn + wn, where vn ∈ Hl and wn ∈ H⊥
s .
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(I) In (8) take u = wn − vn. Then

(9)
( ∫

|∆wn|2 − c

∫
|Dwn|2 − αn

∫
w2

n

)
−

( ∫
|∆vn|2 − c

∫
|Dvn|2 − αn

∫
v2

n

)
= −ω

∫
((un − φ)−)k−1(wn − vn).

But

−ω
∫

((un − φ)−)k−1(wn − vn)(10)

≤ω

(∫
((un − φ)−)k

)1−1/k

‖wn − vn‖Lk(Ω)

≤C

( ∫
((un − φ)−)k

)1−1/k

‖wn − vn‖

=C

( ∫
((un − φ)−)k

)1−1/k

‖un‖,

since vn and wn are orthogonal.
Now we want to show that there exists a positive constant a such that the

l.h.s. of (9) is greater than a‖un‖2. First of all observe that∫
|∆vn|2 − c

∫
|Dvn|2 − αn

∫
v2

n ≤ max
ni≤l

(
− δ

λ2
ni

)
‖vn‖2.

Moreover, there exists C+
s > 0 such that, for all w in H⊥

s ,∫
|∆wn|2 − c

∫
|Dwn|2 − αn

∫
w2

n ≥ C+
s ‖w‖2.

In this way we have proved that there exists a > 0 such that

(11)
∫

|∆un|2 − c

∫
|Dun|2 − αn

∫
u2

n ≥ a(‖vn‖2 + ‖wn‖2) = a‖un‖2.

Since un �≡ 0, (9), (10) and (11) give

(12) a‖un‖ ≤ C

( ∫
((un − φ)−)k

)1−1/k

.

(II) Putting u = un in (8), we get

0 = 2fn
ω (un) +

(
2
k
− 1

)
ω

∫
((un − φ)−)k + ω

∫
((un − φ)−)k−1φ

and this equality implies that
∫
((un −φ)−)k and

∫
((un −φ)−)k−1φ go to 0 as n

goes to ∞. Then (12) implies that ‖un‖ → 0. But (
∫

((un − φ)−)k)1−1/k =
O(‖un‖k−1) (see Lemma 4.3) and a contradiction arises. �
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Lemma 5.15. Assume (H) and let Λl < Λl+1 ≤ . . . ≤ Λs < Λs+1, s ≥ l + 1,
α �= λ2

1 − cλ1. Denote by P : H −→ (El+1, . . . , Es) and Q : H → Hl ⊕ H⊥
s

the orthogonal projections. Suppose un in H is such that fω(un) is bounded,
Pun → 0 and Q∇fω(un) → 0. Then (un)n is bounded in H.

Proof. Suppose by contradiction that there exists a sequence (un)n in H

such that ‖un‖ → ∞, Pun → 0, fω(un) is bounded and

Q(un + i∗(c∆un − αun + ω((un − φ)−)k−1) → 0,

where i∗ : L2(Ω) → H is the compact adjoint operator of the immersion i : H →
L2(Ω). Up to a subsequence, we can suppose that un/‖un‖⇀ u in H .

Since fω(un) is bounded, dividing it by ‖un‖k, we get
∫
(u−)k = 0, and

so u ≥ 0.
Now observe that

〈Q∇f(un),un〉 = 〈∇f(un), un〉 − 〈P∇f(un), un〉

=2fω(un) +
(

2
k
− 1

)
ω

∫
((un − φ)−)k + ω

∫
((un − φ)−)k−1φ

−
∫

∆P (un + i∗(c∆un − αun + ω((un − φ)−)k−1))∆un

=2fω(un) +
(

2
k
− 1

)
ω

∫
((un − φ)−)k + ω

∫
((un − φ)−)k−1φ

−
∫

|∆Pun|2 −
∫

∆Pi∗(c∆un − αun + ω((un − φ)−)k−1)∆un.

Now observe that Pi∗(c∆un − αun + ω((un − φ)−)k−1) ∈ Span (El+1, . . . , Es),
so it is a smooth function. In this way the last integral above is equal to∫

∆2Pi∗[(c∆un − αun + ω((un − φ)−)k−1)]un

=
∫

∆2Pi∗[(c∆un − αun + ω((un − φ)−)k−1)]Pun

=
∫

∆2i∗((c∆un − αun + ω((un − φ)−)k−1))Pun

= −c
∫

|DPun|2 − α

∫
(Pun)2 + ω

∫
((un − φ)−)k−1Pun.

Moreover,∣∣∣∣ ∫
((un − φ)−)k−1Pun

∣∣∣∣ ≤ ( ∫
((un − φ)−)k

)1−1/k( ∫
|Pun|k

)1/k

≤ C

( ∫
((un − φ)−)k

)1−1/k

‖Pun‖.
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Finally,

〈Q∇f(un), un〉 =2fω(un) +
(

2
k
− 1

)
ω

∫
((un − φ)−)k

+ ω

∫
((un − φ)−)k−1φ−

∫
|∆Pun|2 + c

∫
|DPun|2

+ α

∫
(Pun)2 − ω

∫
((un − φ)−)k−1Pun.

Dividing by ‖un‖k/(k−1), we get

0 ≤
(1 − 2/k)ω

∫
((un − φ)−)k

‖un‖k/(k−1)
= −〈Q∇f(un), un〉

‖un‖k/(k−1)
+

2fω(un)
‖un‖k/(k−1)

+
ω

∫
((un − φ)−)k−1φ

‖un‖k/(k−1)
−

∫
|∆Pun|2

‖un‖k/(k−1)
+
c

∫
|DPun|2

‖un‖k/(k−1)

+
α

∫
(Pun)2

‖un‖k/(k−1)
−
ω

∫
((un − φ)−)k−1Pun

‖un‖k/(k−1)
.

Throwing away the non positive terms, the last quantity is less or equal to

− 〈Q∇fω(un), un〉
‖un‖k/(k−1)

+
2fω(un)

‖un‖k/(k−1)

+
|c|

∫
|DPun|2

‖un‖k/(k−1)
+

|α|
∫

(Pun)2

‖un‖k/(k−1)
−
ω

∫
((un − φ)−)k−1Pun

‖un‖k/(k−1)

≤ o(1) + C

(
1

‖un‖k/(k−1)

∫
((un − φ)−)k

)1−1/k ‖Pun‖
‖un‖1/(k−1)

,

where o(1) → 0 as n → ∞. In this way
∫
((un − φ)−)k/‖un‖k/(k−1) is bounded,

and, up to a subsequence, it converges to 0. Then ((un−φ)−)k−1/‖un‖ converges
to 0 in Lk/(k−1)(Ω), and hence in H ′.

But Qun = un − Pun, so

(13)
Q∇f(un)
‖un‖

=
un

‖un‖
− Pun

‖un‖

+Qi∗
(
c
∆un

‖un‖
− α

un

‖un‖
+ ω

((un − φ)−)k−1

‖un‖

)
→ 0,

and then un/‖un‖ → u strongly in H and ‖u‖ = 1. But, on the other hand,
from (13) we get that u ∈ Hl ⊕H⊥

s and it is a solution of

(14)

{
∆2u+ c∆u− αu = 0 in Ω,

u = ∆u = 0 on ∂Ω,
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in Hl ⊕ H⊥
s , which is also non negative. But then u is a non negative and

non trivial function belonging to the subspace spanned by the eigenfunctions
associated to null eigenvalues of Qc,α, and this is impossible, since e1 doesn’t
belong to this space. In fact, if u =

∑
βiEi, multiplying the equation of (14)

by e1 and integrating, we get (λ2
1 − cλ1 − α)β1 = 0, which would imply β1 = 0,

while u ≥ 0, u �≡ 0, so its component along e1 must be positive. �

Proposition 5.16. Assume (H), φ ≤ 0 and let Λl < Λl+1 ≤ . . . ≤ Λs <

Λs+1 ≤ . . . , s ≥ l+1 and α �= λ2
1− cλ1. For every δ > 0 there exists ε0 > 0 such

that for every ε′, ε′′ in (0, ε0) and for every α in [Λl + δ,Λs+1− δ], the condition
(∇)(fω , Hl ⊕H⊥

s , ε
′, ε′′) holds.

Proof. Take ε) as in Lemma 5.14. Suppose by contradiction that there ex-
ists a sequence (un)n in H such that ‖Pun‖ = d(un, Hl⊕H⊥

s ) → 0, Q∇fω(un) →
0, ε′ ≤ fω(un) ≤ ε′′. By Lemma 5.15 (un)n is bounded and, up to a sub-
sequence, un → u in H with Pu = 0 and Q∇f(u) = 0, that is u is a criti-
cal point of fa constrained on Hl ⊕ H⊥

s . By Lemma 5.14, u = 0. But then
0 = fω(u) = lim fω(un) ≥ ε′, since fω is continuous, and thus we get a contra-
diction. �

Theorem 5.17. Assume (H), φ ≤ 0, Λl < Λl+1 = . . . = Λs < Λs+1 ≤ . . . ,
s ≥ l + 1 and λ2

1 − cλ1 > Λs. Then there exists τω
s > 0 such that, if α ∈

(Λs − τω
s ,Λs), then fω has at least three non trivial critical points which are

forcing solutions of problem (Pω).

Proof. The proof parallels the proof of next Theorem 5.18. �

Theorem 5.18. Assume (H), φ ≤ 0, N ≥ 2, Λl < Λl+1 = . . . = Λs <

Λs+1 ≤ . . . , s ≥ l + 1, λ2
1 − cλ1 ≤ Λl. Then there exists τω

s > 0 such that, if
α ∈ (Λs − τω

s ,Λs), then fω has at least three non trivial critical points which are
forcing solutions of problem (Pω). If Λ∗

s+1 < Λs the thesis is true for all N ≥ 1.

Proof. Fix δ > 0, take ε0 as in Proposition 5.16 and define Uω
s = Oω

s ∩
Aω

s (δ), where

Aω
s (δ) = {α ∈ [Λl − δ,Λs+1 − δ] |Mω

s (α) < ε0}.

By (c) and (d) of Proposition 5.8, Uω
s is not empty and it is an open neigh-

bourhood of Λs. Moreover, Proposition 5.10 and (∇)(fω , Hl ⊕H⊥
s , ε

′, ε′′) hold,
where ε′ < ε′′, and

max{sup fω(T ), 0} < ε′ < inf
w∈H⊥

l
,

‖w‖=ρ

fω(w) and Mω
s (α) < ε′′ < ε0.

So the (∇)-Theorem A.5 gives 3 critical points ui
ω such that fω(ui

ω) ≤Mω
s (α).
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By Proposition 5.13 and the Linking Theorem, there exist 2 critical points
v1

ω, v2
ω such that

sup
∆R

fω ≥ fω(v1
ω) ≥ inf

w∈H⊥
s ,

‖w‖=ρ

fω(w) > sup
ΣR

fω ≥ fω(v2
ω) ≥ inf

w∈H⊥
s ,

‖w‖≤ρ

fω(w).

In this way v1
ω �= ui

ω by the very definition of Oω
s (infw∈H⊥

s ,‖w‖=ρ fω(w) >

Mω
s (α)). �

Corollary 5.19. Under the assumptions of Theorem 5.17 or of Theo-
rem 5.18, if N ≤ 3 and supφ < 0, two different critical levels c1ω and c2ω are
such that lim infω c

1
ω > lim supω c

2
ω. Moreover, there exists ε > 0 such that

inf
ω
fω(uω) ≥ ε,

uω being one of the critical points of fω found in Theorem 5.17 or in Theo-
rem 5.18.

Proof. Since supφ < 0, in all the inequalities obtained for proving the
existence of one solution, we can suppose that the radius of the small sphere in
the Mountain Pass Theorem or the radii of the vertical spheres in the Linking
Theorems ({w ∈ H⊥

l | ‖w‖ = ρ}) are small enough so that the values of the
functionals fω are not influenced by the perturbation term ω

∫
((u − φ)−)k. So

there exists ε > 0 such that

fω(uω) =
1
2

∫
|∆uω|2−

c

2

∫
|Duω|2−

α

2

∫
u2

ω−
ω

K

∫
((uω−ϕ)−)K ≥ ε for all ω.

Moreover, we can find σ1 > σ2 > σ3 > σ4 > 0 and three sequences of
solutions v1

ω and uj
ω, j = 1, 2 such that for all ω

σ1 > fω(v1
ω) = c1ω ≥ σ2

(
= inf

w∈H⊥
s ,

‖w‖=ρω

fω(w)
)

> σ3 (= Mω
s (α)) ≥ fω(uj

ω) = c2ω > σ4 > 0.

Indeed, Mω
s is a decreasing function of ω. So in the definition of Oω

s , in which
we require that there exists ρω such that

Mω
s (α) < inf

w∈H⊥
s

‖w‖=ρω

fω(w),

we can choose ρω constant (for example equal to ρ1) and small enough so that
(w−φ)− = 0 and so infw∈H⊥

s ,‖w‖=ρω
fω(w) is independent on ω. In this way Oω

s

is independent on ω, too.
Passing to the limit we get

lim inf
ω→∞

c1ω > lim sup
ω→∞

c2ω. �
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We finally observe that the procedure to obtain the multiplicity results above
can be repeated for any functional in which the quadratic form Qc,α is replaced
by a quadratic form whose gradient has the form (linear operator)+(compact
operator). For example, one can consider functionals defined on W 1,2

0 (Ω) having
the form

f̃(u) =
1
2

∫
|Du|2 − α

2

∫
u2 − ω

k

∫
((u− φ)−)k.

See [18] for an application, where −φ is replaced by e1.

6. A priori estimate

From now on we will consider a sequence (ωn)n of real positive numbers such
that ωn → ∞ as n → ∞. For the sake of simplicity, we will write ω instead of
ωn and with ω → ∞ we will mean that n→ ∞ (and then ωn → ∞).

Theorem 6.1. Assume (H), α �= λ2
1 − cλ1, there exists τ > 0 such that

τe1 + φ ≤ 0 a.e. in Ω (for example supφ < 0) and uω is a solution of (Pω) with
supω fω(uω) <∞. Then

• inf
ω
fω(uω) > −∞,

• sup
ω
ω

∫
((uω − φ)−)k <∞,

• inf
ω
ω

∫
((uω − φ)−)k−1φ > −∞,

• (uω)ω is bounded in H.

Proof. Suppose by contradiction that (uω)ω is unbounded. We can suppose
that, up to a subsequence, ‖uω‖ → ∞ and that there exists v in H such that
vω = uω/‖uω‖ weakly converges to v in H , strongly in Lk(Ω) and a.e. in Ω.
Now,

0 = f ′
ω(uω)uω =

∫
|∆uω|2 − c

∫
|Du|2 − α

∫
u2

ω(15)

+ ω

∫
((uω − φ)−)k−1uω

=2fω(uω) +
(

2
k
− 1

)
ω

∫
((uω − φ)−)k

+ ω

∫
((uω − φ)−)k−1φ,

and, since φ is negative, if we divide by ‖uω‖ and pass to the limit, we obtain

lim
ω→∞

ω

∫
((uω − φ)−)k

‖uω‖
= 0, lim

ω→∞

ω

∫
((uω − φ)−)k−1φ

‖uω‖
= 0
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and also

(16) lim
ω→∞

ω

∫
((uω − φ)−)k−1uω

‖uω‖
= 0,

since ((uω − φ)−)k−1uω = −((uω − φ)−)k + ((uω − φ)−)k−1φ. In this way

0 =
f ′(uω)(uω)

‖uω‖2
= 1 − c

∫
|Dvω|2 − α

∫
v2

ω +
ω

∫
((uω − φ)−)k−1uω

‖uω‖2

→ 1 − c

∫
|Dv|2 − α

∫
v2.

If α and c are ≤ 0 this is immediately absurd. Otherwise this equality implies
that v �≡ 0. But

0 =
f ′

ω(uω)(uω)
ω‖uω‖k

→ −
∫

(v−)k,

and so v ≥ 0. Now observe that

(17) 0 = f ′
ω(uω)τe1 = (λ2

1 − cλ1 − α)τ
∫
uωe1 + ω

∫
((uω − φ)−)k−1τe1.

But ∫
((uω − φ)−)k−1τe1 =

∫
((uω − φ)−)k−1(τe1 + φ− uω + uω − φ)

≤ −
∫

((uω − φ)−)k−1uω,

and, by (16), we get

lim
ω→∞

ω

∫
((uω − φ)−)k−1e1

‖uω‖
= 0.

Therefore, from (17), we obtain

0 = (λ2
1 − cλ1 − α)

∫
ve1,

which is possible if and only if v ≡ 0. A contradiction arises and so (uω)ω is
bounded. From (15) the other statements of the thesis follow. �

Remark 6.2. As already remarked, no existence and bound theorem is
proved in the case α = λ2

1 − cλ1, since it is trivial in the part of existence
and it is impossible in the part of an a priori estimate. So the requirement
α �= λ2

1 − cλ1 is natural in this problem.
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Corollary 6.3. Assume (H), α �= λ2
1 − cλ1, supφ < 0 and uω is a solution

of (Pω) such that the sequence (uω)ω is bounded. Then

sup
ω
ω

∫
((uω − φ)−)k−1 <∞.

Proof. From (15) we get that there exists M > 0 such that

−ω
∫

((uω − φ)−)k−1φ ≤M for all ω,

but the l.h.s of this inequality is bigger than −ω supφ
∫

((uω − φ)−)k−1, and the
thesis follows. �

Under the assumptions of Theorem 6.1, (uω)ω is bounded, so we can take
a weakly convergent subsequence. On the other hand, if there exist a se-
quence of solutions (uω)ω and u in H such that uω ⇀ u in H , then ω

∫
((uω −

φ)−)k and ω
∫
((uω − φ)−)k−1φ are bounded, and thus infω fω(uω) > −∞ and

supω fω(uω) <∞. In fact

0 =
∫

|∆uω|2 − c

∫
|Duω|2 − α

∫
u2

ω + ω

∫
((uω − φ)−)k−1uω,

and so the last integral is bounded. But it equals −
∫
((uω − φ)−)k +

∫
((uω −

φ)−)k−1φ and since these integrals are both non positive, they are both bounded
and the thesis follows.

7. Bounce

If uω is a forcing solution of (Pω), we define Aω as (a set equivalent to)

Aω = {x ∈ Ω | uω(x) < φ(x)},
A = {x ∈ Ω | exists a neighbourhood U of x

and exists ω0 such that for all ω ≥ ω0 m(U ∩Aω) = 0}.

We observe that A is an open subset of Ω, and so its complementary set B

is closed, where

B = {x ∈ Ω | for all neighbourhood U of x and all ω0,

exists ω ≥ ω0 such that m(U ∩ Aω) > 0}.

We also remark that such a set B is, in some sense, the set of points in
which u touches φ, or the contact set; actually, if N ≤ 3 and φ is continuous B

coincides with the set of points x’s of Ω such that u(x) = φ(x).
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Theorem 7.1. If uω is a solution of (Pω) such that uω ⇀ u in H, then

(i) u ≥ φ a.e. in Ω,

(ii)
∫

∆u∆ψ− c

∫
Du ·Dψ−α

∫
uψ ≤ 0 for all ψ in H such that ψ ≥ 0

in Ω,

(iii)
∫

∆u∆ψ− c

∫
Du ·Dψ−α

∫
uψ = 0 for all ψ in H such that ψ = 0

on B.

In other words, in the sense of distributions in Ω, we have

(ii)’ ∆2u+ c∆u− αu ≤ 0 in Ω,
(iii)’ ∆2u+ c∆u− αu = 0 in Ω \ B.

In particular there exists a positive Radon measure µ such that

(18)
∫

∆u∆ψ − c

∫
Du ·Dψ − α

∫
uψ +

∫
ψ dµ = 0

for all ψ in D(Ω), and µ is supported in B.

Proof. (i) Suppose by contradiction that u − φ < 0 in a set of positive
measure. From the equality

(19)
∫

∆uω∆ψ − c

∫
Duω ·Dψ − α

∫
uωψ = −ω

∫
((uω − φ)−)k−1ψ

for all ψ in H , passing to the limit, we would have
∫

∆u∆ψ − c
∫
Du · Dψ −

α
∫
uψ = ∞, which is clearly absurd.
(ii) Take ψ in H and ψ ≥ 0. Passing to the limit in equation (19), we get

the thesis.
(iii) Define the linear operator Lω : D(Ω) → R in this way: if ψ ∈ D(Ω)

Lω(ψ) = ω

∫
((uω − φ)−)k−1ψ = −

∫
∆uω∆ψ + c

∫
Duω ·Dψ + α

∫
uωψ.

Since uω ⇀ u in H , Lω converges to a linear and bounded operator L defined as
L(ψ) = −

∫
∆u∆ψ + c

∫
Du · Dψ + α

∫
uψ for every ψ in D(Ω). But if ψ ≥ 0,

Lω(ψ) ≥ 0 and so L(ψ) ≥ 0, that is L is a linear and positive operator defined
on D(Ω). By Riesz Representation Theorem (see [1] or [4]) there exists a positive
Radon measure µ such that L(ψ) =

∫
ψ dµ for all ψ in D(Ω).

Let us show that suppµ ⊆ B. Let x0 ∈ Ω \ B. Then, by definition, there
exists a neighbourhood U of x0 and ω0 such that for all ω ≥ ω0 one has m(U ∩
Aω) = 0, that is uω(x) ≥ φ(x) in U for all ω ≥ ω0. Then for all ψ in C∞

C (U)
we have

∫
∆uω∆ψ − c

∫
Duω ·Dψ − α

∫
uωψ = 0 for all ω ≥ ω0. Passing to the

limit ∫
∆u∆ψ − c

∫
Du ·Dψ − α

∫
uψ = 0

for all ψ in C∞
C (U), that is ∆2u+ c∆u − αu = 0 in U . So xo �∈ suppµ. �
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Remark 7.2. We remark that the functionals Lω(ψ) converge for every ψ
in H , but in general we cannot write the limit functional as an integral, since
D(Ω) is not dense in H . Moreover, this fact implies that the distributional
versions (ii)’ and (iii)’ of the previous Theorem are, in some sense, weaker than
the other ones.

Remark 7.3. At this point we want to underline that the variational in-
equality we obtain is, in some sense, “reversed”. In fact, if Kφ = {u ∈ H | u ≥ φ}
is the set of admissible functions, we are looking for a solution in Kφ of

∆2u+ c∆u− αu ≤ 0,

while the classical variational inequality is ∆2u + c∆u − αu ≥ 0 (see [5], for
example).

We now want to prove some regularity results in the case α = 0.
The fact that u is not a solution of a classical variational problem doesn’t

let us apply the regularization methods related to that theory. Anyway we can
still get some information on the solution of the variational inequality by the
following

Theorem 7.4 (Maximum Principle). Suppose c < λ1 and u satisfies

(20)

{
∆2u+ c∆u ≤ 0 in Ω,

u = ∆u = 0 on ∂Ω.

Then either u ≡ 0 or, for every ball B contained in Ω, supB u < 0.

See [16] for a proof.
As an immediate application of this Theorem we get the following

Proposition 7.5. Suppose c < λ1, u is the weak limit of a sequence of
solutions of (Pω) with α = 0. Then φ ≤ u < 0 a.e. in Ω.

Remark 7.6. A symmetric result holds if we consider the problem

min
{ ∫

Ω

|Du|2
∣∣∣∣u ∈W 1,2

0 (Ω), u ≥ Φ
}
,

where Φ is an “obstacle” (that is Φ|∂Ω < 0 and Φ > 0 in a subset with positive
measure of Ω). In fact, if u0 is the unique minimal point, then 0 ≤ u0 (see [9]).
We observe that the same holds for the problem

min
{∫

Ω

|∆u|2
∣∣∣∣ u ∈ H1

0 (Ω) ∩H2(Ω), u ≥ Φ
}
,

which gives ∆2u ≥ 0 (see [5]).
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Proposition 7.7. Suppose φ ∈ C4(Ω), u satisfies problem (20) and ∆2φ +
c∆φ > 0 in Ω; then the “contact set” B = {x ∈ Ω | u(x) = φ(x)} does not have
interior points.

Proof. Suppose there exists x0 in the interior of B. In this case ∆2u(x0) =
∆2φ(x0). But then

0 ≥ ∆2u(x0) + c∆u(x0) = ∆2φ(x0) + c∆φ(x0).

The last sum is strictly positive and a contradiction arises. �

Suppose u satisfies ∆2u + c∆u ≤ 0 in D(Ω). We want to show that u has
some finer properties of regularity. In general we cannot expect to recover the
regularity results for the biharmonic operator (see [3] and [5]), but something
can still be said in the case α = 0. To do that, however, we follow the ideas of
those papers to prove the following proposition.

Proposition 7.8. If u satisfies (20) and N ≥ 2, then there exists a function
W such that

(a) W = ∆u a.e. in Ω,
(b) W is lower semicontinuous,
(c) for every x0 in Ω and for every sequence of balls Bρ(x0) with center

in x0 and radius ρ, we get∫
Bρ(x0)

W

�W (x0) as ρ ↓ 0.

Proof. Take x in Ω, ρ > 0 and define

wρ(x) =
∫

Bρ(x)

[∆u(y) + cu(y)] dy.

First of all we observe that for every x0 in Ω, wρ(x) is a decreasing function of ρ.
In fact if u is a regular function, Green’s formula gives

∆u(x0) + cu(x0) =
∫

Sρ(x0)

(∆u + cu) −
∫

Bρ(x0)

(∆2u+ c∆u)Gρ(x0 − y) dy,

where Gρ is the Green’s function in the ball of radius ρ:

Gρ(x− y) =


γ3(|x− y|2−N − ρ2−N if N > 3,

γ2 log
(

ρ

|x− y|

)
if N = 2,

γi > 0, i ≥ 2.
In the same way, if ρ′ > ρ, we get

∆u(x0) + cu(x0) =
∫

Sρ′ (x0)

(∆u+ cu) −
∫

Bρ′ (x0)

(∆2u+ c∆u)Gρ′ (x0 − y) dy.
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But 0 < Gρ ≤ Gρ′ , so if ∆2u+ c∆u ≤ 0, we get∫
Sρ(x0)

(∆u + cu) ≥
∫

Sρ′ (x0)

(∆u + cu).

Integrating

(21)
∫

Bρ(x0)

(∆u + cu) ≥
∫

Bρ′ (x0)

(∆u + cu).

If u ∈ H2(Ω) and ∆2u+ c∆u ≤ 0, setting uε the ε-regularized functions of u,
then ∆2uε +c∆uε ≤ 0, so (21) holds with u replaced by uε. Letting ε going to 0,
we get (21) for any u in H2(Ω). In this way wρ(x0) is an decreasing function
of ρ and a function w is defined as

wρ(x0) ↑ w(x0) as ρ ↓ 0.

Every wρ is continuous, so w is lower semicontinuous. By Lebesgue Theorem
wρ → ∆u+ cu a.e. in Ω. Setting

W (x) = w(x) − cu(x),

the proof is complete. �

8. The limit problem in the case supφ < 0 and N ≤ 3

The limit problem, as it was established in (18), holds for any ψ in C∞
C (Ω).

Now we want to show that, if N ≤ 3 and supφ < 0, it holds for all ψ in H . First
of all define a sequence of measures (µω)ω in such a way that∫

ψ dµω = ω

∫
((uω − φ)−)k−1ψ for all ψ in C0

0 (Ω).

Moreover, H ↪→ C0
0 (Ω) (but not in C0

C(Ω)) and we already know that
∫
ψ dµω →∫

ψ dµ for all ψ in C∞
C (Ω). So we only need to prove that

∫
ψ dµω →

∫
ψ dµ for

all ψ in C0
0 (Ω).

To do that we remind some basic concepts of measure theory.

Definition 8.1. Let νω be a sequence of measures and ν be a measure on Ω.
We say that νω weakly converges to ν, and we write νω

∗
⇀ ν, if the induced

functionals on the dual of C0
0 (Ω) converge in the weak-*topology:

∫
ψ dνω →∫

ψ dν for all ψ in C0
0 (Ω).

It is easy to show that, if the total variations of (νω)ω are bounded, that is
supω |νω|(Ω) <∞, this condition is equivalent to the fact that

∫
ψ dνω →

∫
ψ dν

for all ψ in C∞
C (Ω).

In the problem under investigation we assume supφ < 0, so that Corollary 6.3
implies that supω µω(Ω) = supω ω

∫
((uω − φ)−)k−1 < ∞. In this way the
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convergence of the induced functionals over ψ’s in C∞
C (Ω) is equivalent to the

convergence over ψ’s in C0
0 (Ω). In particular

∫
ψ dµ→

∫
ψ dµ for all ψ in H .

Lemma 8.2. If νω
∗
⇀ ν and zω → z uniformly in C0

0 (Ω), then
∫
zω dνω →∫

z dν.

Proof.∣∣∣∣ ∫ zω dνω −
∫
z dν

∣∣∣∣ ≤ ∣∣∣∣ ∫
zω dνω −

∫
z dνω

∣∣∣∣ +
∣∣∣∣ ∫

z dνω −
∫
z dν

∣∣∣∣.
The first term of the right hand side of the previous inequality goes to 0, since it
is less or equal to ‖zω−z‖∞|νω|(Ω), while the second one goes to 0 by definition.�

An immediate consequence is the following

Theorem 8.3. If N ≤ 3, φ ∈ C0(Ω), uω is a solution of (Pω), uω ⇀ u

in H and µ is the measure defined in (18), then

(22)
∫

∆u∆v − c

∫
Du ·Dv − α

∫
uv = −

∫
v dµ for all v in H.

Proof. Let v ∈ H . Then∫
∆uω∆v − c

∫
Duω ·Dv − α

∫
uωv = −ω

∫
((uω − φ)−)k−1v for all ω.

Passing to the limit, Lemma 8.2 implies the thesis. �

Lemma 8.4. Suppose N ≤ 3, supφ < 0 and uω is a solution of (Pω) such
that uω ⇀ u; then

lim
ω→∞

ω

∫
((uω − φ)−)k = 0.

Proof. From Corollary 6.3 we get that the total variations of the sequence
(µω)ω is bounded from above: supω µω(Ω) <∞. So

ω

∫
((uω − φ)−)k ≤ ω

∫
((uω − φ)−)k−1‖(uω − φ)−‖L∞(Ω).

But ‖(uω − φ)−‖L∞(Ω) → 0, and the thesis follows. �

Corollary 8.5. Suppose N ≤ 3 and supφ < 0. If uω is a solution of (Pω)
such that uω ⇀ u in H, then lim infω→∞ ω((uω − φ)−)k = 0 a.e. in Ω.

Proof. It follows from Lemma 8.4 and from Fatou’s Lemma. �
Remark 8.6. If u → u uniformly, fω(uω) �= 0 (i.e. uω is a forcing solution

of (Pω)), φ ∈ C0(Ω) and supφ < 0, then {x ∈ Ω | u(x) = φ(x)} �= ∅.
In fact, since uω → u uniformly, there would exist ω0 such that uω − φ > 0

for all ω ≥ ω0. But
∫

∆uω∆ψ− c
∫
Duω ·Dψ−α

∫
uωψ = −ω

∫
((uω −φ)−)k−1ψ

for every ψ in H , so ω ≥ ω0,
∫

∆uω∆ψ − c
∫
Duω · Dψ − α

∫
uωψ = 0, which

implies fω(uω) = 0 (choosing ψ = uω) and this is a contradiction.

As a corollary of Theorem 7.1 we get the following
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Theorem 8.7. Assume N ≤ 3, φ ∈ C0(Ω), supφ < 0, uω is a solution
of (Pω) and uω ⇀ u, then:

• uω → u uniformly and µ is supported in the contact set B = {x ∈ Ω |
u(x) = φ(x)}, that is µ(Ω \ B) = 0,

• if α �= Λi for all i and if {x ∈ Ω | u(x) = φ(x)} �= ∅ (for example if
(uω − φ)− �= 0 for all ω), then µ({x ∈ Ω | u(x) = φ(x)}) > 0,

• if G is any neighbourhood of ∂Ω such that G ⊂ Ω\B, then u ∈ H4
loc(G),

∆2u+ c∆u−αu = 0 a.e. in G and
∫

∆u∆ψ− c
∫
Du ·Dψ−α

∫
uψ = 0

for all ψ in H such that suppψ ⊂ G.

Proof. Since N ≤ 3, uω → u uniformly. φ ∈ C0(Ω) and supφ < 0, thus the
contact set B is a compact subset of Ω. Let ψ ∈ C∞

C (Ω \ B); then
∫

∆uω∆ψ −
c
∫
Duω · Dψ − α

∫
uωψ + ω

∫
((uω − φ)−)k−1ψ = 0. But if ω is big enough

(uω −φ)−ψ = 0 and so, passing to the limit,
∫

∆u∆ψ−c
∫
Du ·Dψ−α

∫
uψ = 0

for all ψ in C∞
C (Ω \ B), that is µ in supported in B.

Now suppose α �= Λi for all i and B �= ∅; assume by contradiction that µ = 0.
Then Theorem 8.3 gives

∫
∆u∆ψ − c

∫
Du · Dψ − α

∫
uψ = 0 for all ψ in H .

Since u �≡ 0, u is an eigenfunction in H of the biharmonic operator; therefore
there exists i in N such that α = Λi and this is a contradiction.

Since uω → u uniformly, (uω − φ)− = 0 definitely in every compact subset
of Ω \ B. If ψ in H is such that suppψ ⊂ G, for ω large enough we have∫

∆uω∆ψ−c
∫
Duω ·Dψ−α

∫
uωψ = 0. Then

∫
∆u∆ψ−c

∫
Du·Dψ−α

∫
uψ = 0.

In particular u ∈ H4
loc(G) and ∆2u+ c∆u− αu = 0 a.e. in G. �

Theorem 8.8. Suppose N ≤ 3, supφ < 0. If uω is a solution of (Pω)
and uω weakly converges to u in H, then uω → u strongly in H.

Proof. Putting u in (22) we get

(23)
∫

|∆u|2 − c

∫
|Du|2 − α

∫
u2 +

∫
u dµ = 0.

But ∫
|∆uω|2 = c

∫
|Duω|2 + α

∫
u2

ω − ω

∫
((uω − φ)−)k−1uω.

By Lemma 8.2, the right hand side of the last equality converges to

c

∫
|Du|2 + α

∫
u2 −

∫
u dµ.

By (23) we get

lim
ω→∞

∫
|∆uω|2 =

∫
|∆u|2

and the thesis follows. �

Set Kφ = {v ∈ H | v ≥ φ a.e. in Ω}, which is a convex and closed subset
of H . We can now prove this
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Theorem 8.9 (Reversed variational inequality). Suppose N ≤ 3, supφ < 0,
u is the limit of a sequence of forcing solutions uω of (Pω). Then

(24)
∫

∆u∆(v − u) − c

∫
Du ·D(v − u) − α

∫
u(v − u) ≤ 0 for all v in Kφ.

Proof. Let v be a function of Kφ. Then∫
∆uω∆(v − uω) − c

∫
Duω ·D(v − uω) − α

∫
uω(v − uω)

= −ω
∫

((uω − φ)−)k−1(v − uω).

But
∫
((uω −φ)−)k−1(v−uω) =

∫
((uω −φ)−)k−1(v−φ)−

∫
((uω −φ)−)k−1(uω −

φ) ≥ 0. By Theorem 8.8 and Lemma 8.4 the thesis follows. �

Remark 8.10. This is quite a surprising result, since this Theorem states
the exact contrary of the statement of a classical variational inequality: if Φ is
an obstacle (that is Φ|∂Ω ≤ 0 and Φ > 0 in a subset of positive measure in Ω)
and one looks for

(25) min
u∈KΦ

∫
|∆u|2,

then ∫
∆u∆(v − u) ≥ 0 for all v in KΦ,

where KΦ = {v ∈ H | v ≥ Φ a.e. in Ω} (see [5]).

9. Multiplicity results for the reversed
variational inequality in low dimension

As a corollary of Theorem 8.8, it is easy to prove the following

Theorem 9.1. If N ≤ 3, supφ < 0, α �= λ2
1 − cλ1 and u is the weak limit of

a sequence of forcing solutions uω of (Pω), then there is at least one non trivial
solutions of the limit problem (24).

Proof. By Theorem 8.9 u is a solution of (24). Moreover, by Corollary 5.19,
there exists ε > 0 such that

fω(uω) =
1
2

∫
|∆uω|2−

c

2

∫
|Duω|2−

α

2

∫
u2

ω−
ω

K

∫
((uω−ϕ)−)K ≥ ε for all ω.

By Theorem 8.8, uω → u strongly in H and by Lemma 8.4∫
|∆u|2 − c

∫
|Du|2 − α

∫
u2 ≥ 2ε > 0,

that is u �≡ 0. �

In particular we can prove the following multiplicity result.
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Theorem 9.2. Suppose N ≤ 3 and supφ < 0. Under the hypotheses of
Theorem 5.17 or of Theorem 5.18 , there exists τs > 0 such that for all α in
(Λs−τs,Λs) there exist at least two distinct non trivial solutions of equation (24).

Proof. In Corollary 5.19 we proved that there exists σ1 > σ2 > σ3 > σ4 > 0
and three sequences of solutions v1

ω and uj
ω, j = 1, 2 such that for all ω

σ1 > fω(v1
ω) ≥ σ2

(
= inf

w∈H⊥
s ,

‖w‖=ρω

fω(w)
)
> σ3(= Mω

s (α)) ≥ fω(uj
ω) > σ4 > 0

and such that v1
ω → v and uj

ω → uj , j = 1, 2 in H . We recall that Mω
s

is a decreasing function of ω. But since N ≤ 3, in the definition of Oω
s (in

which we require that there exists ρω such that Mω
s < infw∈H⊥

s ,‖w‖=ρω
fω(w))

we can choose ρω constant and small enough so that (w − φ)− = 0, and so
infw∈H⊥

s ,‖w‖=ρω
fω(w), is independent on ω.

Passing to the limit we get

σ1 ≥ 1
2

( ∫
∆v|2 − c

∫
|Dv|2 − α

∫
v2 +

∫
v dµ

)
≥ σ2

> σ3 ≥ 1
2

( ∫
∆uj |2 − c

∫
|Duj |2 − α

∫
u2

j +
∫
uj dµ

)
≥ σ4 > 0.

Of course we cannot distinguish u1 and u2 in the range [σ4, σ3], so we can only
establish the existence of one solution in that range. �

We observe that this is quite an interesting fact. Indeed we have proved
that for a “reversed” linear variational inequality there are some non trivial
solutions. And such a result is not obvious at all, since the existence of one non
trivial solution is not evident, either.

10. A deeper look on the case N ≤ 3

Let us consider any solution u of (24). For simplicity consider the case
c = α = 0. Then ∫

∆u∆v ≤
∫

|∆u|2 for all v in Kφ.

The (unique) solution of problem (25) satisfies∫
∆u∆(v − u) ≥ 0 for all v in Kφ,

as already remarked. But by Minty’s Lemma (see [5]), the last inequality holds
if and only if ∫

∆v∆(v − u) ≥ 0 for all v in Kφ.
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If we combine these two inequalities we immediately get∫
|∆u|2 ≤

∫
|∆v|2 for all v in Kφ,

as expected.
In our case a property analogous to Minty’s Lemma is not possible. In fact,

if (24) was equivalent to the following “reversed” Minty’s Lemma∫
|∆v|2 ≤

∫
∆u∆v for all v in Kφ,

we would get ∫
|∆u|2 ≥

∫
|∆v|2 for all v in Kφ,

which is clearly absurd, since

sup
v∈Kφ

∫
|∆v|2 = ∞.

Anyway we observe that the “reversed” Minty’s Lemma implies (24). In fact
for all v in Kφ we have

0 ≤
∫

|∆(v − u)|2 =
∫

|∆v|2 − 2
∫

∆u∆v +
∫

|∆u|2

and by the “reversed” Minty’s Lemma it is less or equal to

−
∫

∆u∆v +
∫

|∆u|2,

and so (24) holds.
We also observe that the “reversed” inequality is not equivalent to a classical

variational one, neither when the constraint u ≥ φ is replaced by U ≤ −φ. In
fact if we consider the function U = −u, then U satisfies

∫
∆U∆(V − U) −

c
∫
DU ·D(V − U) − α

∫
U(V − U) ≤ 0 for all V ≤ −φ.

Finally we prove some regularity results in the case α = 0.

Proposition 10.1. Suppose u satisfies (24) with α = 0, W is the function
defined in Proposition 7.8 and c < λ1. Then W ≥ 0 in Ω.

Proof. Fix xo in Ω and ρ > 0 such that Bρ(x0) ⊂ Ω. Denote by χB the
characteristic function of Bρ(x0) and let z be the solution of the problem{

∆z + cz = −χB in Ω,

z = 0 on ∂Ω.

By the regularity theorem for elliptic equations, z ∈ H and by the Maximum
Principle z ≥ 0 a.e. in Ω. Then v = u + z ∈ Kφ. In this way, putting such a v
in (24), we get ∫

∆u∆z − c

∫
Du ·Dz ≤ 0.
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Substituting the value of ∆z and integrating by parts we get∫
Bρ(x0)

∆u =
∫

Bρ(x0)

W ≥ 0.

By (c) of Proposition 7.8, dividing by the measure of Bρ(x0) and passing to the
limit, we get W (x0) ≥ 0. �

Since W = ∆u a.e. in Ω, we get the following

Corollary 10.2. If u satisfies problem (20) and c < λ1, then ∆u ≥ 0 a.e.
in Ω, that is u is subharmonic in Ω.

Of course, by the Maximum Principle we obtain again Proposition 7.5.

A. Variational theorems

Definition A.1. Let H be a Hilbert space, f : H −→ R be a C1-function
and c ∈ R. We say that (PS)c, Palais–Smale condition at level c, holds if for
any un such that lim f(un) = c and lim∇f(un) = 0, there exists a converging
subsequence of (un).

Theorem A.2 (Mountain Pass). Let B be a real Banach space and f ∈
C1(B,R) such that f(0) = 0 and

(i) there are positive constants ρ and α such that f|∂Bρ
≥ α,

(ii) there exists e in B \Bρ such that f(e) ≤ 0.

Suppose (PS)c holds for all c ≥ α. Then f has a critical value c ≥ α.
Moreover, c can be characterized as

c = inf
g∈Γ

max
u∈g([0,1])

f(u),

where Γ = {g ∈ C0([0, 1], B) | g(0) = 0, g(1) = e}. Here Bρ stands for the ball
of radius ρ: Bρ = {u ∈ B | ‖u‖ ≤ ρ}.

See [19] or [20] for a proof.

Theorem A.3 (Linking Theorem). Let H be a Hilbert space which is topo-
logical direct sum of subspaces H1 and H2, one of those having finite dimension.
Let f be a C1 real function defined on H and let e ∈ H1, e �≡ 0 and ρ1, ρ2 > 0
such that

(i) |ρ1 − ρ2| < ‖e‖ < ρ1 + ρ2,
(ii) supΣ1

f < infΣ2 f ,
(iii) −∞ < a = infB1 f and b = supB2

f <∞,

where B1 is the ball in H1 centered at 0 with radius ρ1, Σ1 is its boundary in H1,
B2 is the ball in Span (e)⊕H2 centered at e with radius ρ2 and Σ2 is its boundary
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in Span (e) ⊕H2. Suppose (PS)c holds for every c ∈ [a, b]. Then there exist two
critical levels c1 and c2 such that

a ≤ c1 ≤ sup
Σ1

f < inf
Σ2
f ≤ c1 ≤ b.

See [11] for a proof of this theorem.

Definition A.4. Let H be a Hilbert space, f : H → R be a C1-function, X
a closed subspace ofH , a, b ∈ R∪{−∞,∞}. We say that condition (∇)(f,X, a, b)
holds if there exists γ > 0 such that inf{‖PX∇f(u)‖ | a ≤ f(u) ≤ b, dist (u,X) ≤
γ} > 0, where PX : H → X is the orthogonal projection of H onto X .

Theorem A.5 ((∇)-Theorem). Let H be a Hilbert space and Hi, i = 1, 2, 3
three subspaces of H such that H = H1 ⊕ H2 ⊕ H3 and dim (Hi) < ∞ for
i = 1, 2. Denote by Pi the orthogonal projection of H onto Hi. Let f : H → R

be a C1,1-function. Let ρ, ρ′, ρ′′, ρ1 be such that ρ1 > 0, 0 ≤ ρ′ < ρ < ρ′′ and
define

∆ = {u ∈ H1 ⊕H2 | ρ′ ≤ ‖P2u‖ ≤ ρ′′, ‖P1u‖ ≤ ρ1} and T = ∂H1⊕H2∆,

S23(R) = {u ∈ H2 ⊕H3 | ‖u‖ = R} and B23 = {u ∈ H2 ⊕H3 | ‖u‖ ≤ R}.

Assume that
a′ = sup f(T ) < inf f(S23(ρ)) = a′′.

Let a and b be such that a′ < a < a′′ and b > sup f(∆). Assume (∇)(f,H1 ⊕
H3, a, b) holds and that (PS)c holds for every c in [a, b]. Then f has at least two
critical points in f−1([a, b])). Moreover, if a1 < inf f(B23(ρ)) > −∞ and (PS)c

holds at any c in [a1, b], then f has another critical level in [a1, a
′].

See [12] for the proof.
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