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AN EIGENVALUE PROBLEM
FOR A QUASILINEAR ELLIPTIC FIELD EQUATION ON Rn

V. Benci — A. M. Micheletti — D. Visetti

Abstract. We study the field equation

−∆u + V (x)u + εr(−∆pu + W ′(u)) = µu

on Rn, with ε positive parameter. The function W is singular in a point
and so the configurations are characterized by a topological invariant: the

topological charge. By a min-max method, for ε sufficiently small, there

exists a finite number of solutions (µ(ε), u(ε)) of the eigenvalue problem for
any given charge q ∈ Z \ {0}.

1. Introduction

In this paper we are concerned with the following nonlinear field equation:

(Pε) −∆u+ V (x)u+ εr (−∆pu+W ′(u)) = µu

where u is a function from Rn to Rn+1 with n ≥ 3, ε is a positive parameter
and p, r ∈ N with p > n and r > p − n. Here ∆u = (∆u1, . . . ,∆un+1), being
u = (u1, . . . , un+1) and ∆ the classical Laplacian operator. Moreover, ∆pu

denotes the (n+ 1)-vector, whose i-th component is given by

(∆pu)i = ∇ · (|∇ui|p−2∇ui).
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Finally, V is a real function V : Rn → R and W ′ is the gradient of a function
W : Rn+1 \{ξ∗} → R, where ξ∗ is a point of Rn+1 which for simplicity we choose
on the (n+ 1)-th component:

(1) ξ∗ = (0, ξ),

with 0 ∈ Rn and ξ ∈ R, ξ > 0.
The motivation for considering an eigenvalue problem relative to a nonlinear

equation such as (Pε) needs some explanations. Let us consider the nonlinear
Schrödinger equation

(2) iψt = −∆ψ + V (x)ψ + εrN(ψ)

where N(ψ) is a nonlinear differential operator. The standing waves

ψ(x, t) = u(x)e−iµt

of equation (2) are determined by the solutions of the following nonlinear eigen-
value problem

(3) −∆u+ V (x)u+ εrN(u) = µu

provided that

(4) N(u(x)e−iµt) = e−iµtN(u(x)).

The nonlinear operator

(5) N(u) = −∆pu+W ′(u)

can be extended to the complex functions in such a way to verify (4).
The choice of the operator (5) is due to the fact that in a paper of 1964

Derrick ([13]) pointed out by a simple rescaling argument that equation

−∆ϕ+
1
c2
ϕtt +

1
2
f ′(ϕ) = 0,

where f ′ is the gradient of a nonnegative C1 real function f and the function ϕ
has domain Rn with n > 2, has no nontrivial static solutions:

“We are faced with the disconcerting fact that no equation of type

∆ϕ− 1
c2
ϕtt =

1
2
f ′(ϕ)

has any time-independent solutions which could reasonably be interpreted
as elementary particles.”

He presents some conjectures and the first one is to consider higher powers for
the derivatives: in fact in [4] (see also [7]) the authors proved that equation

(6) −∆ϕ−∆pϕ+W ′(ϕ) = 0,
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(where ϕ : R3 → R4), has a family {ϕq}q∈Z\{0} of nontrivial solutions with
the energy concentrated around the origin. These solutions are characterized
by a topological invariant ch( · ), called topological charge, which takes integer
values (see (9)). More precisely, for every q ∈ Z \ {0}, there exists a solution ϕq

with ch(ϕq) = q. An interesting concentration problem has been studied in [2],
where the authors consider some bound states of a field equation like (6) with
the addition of a potential depending on a parameter.

Here we study the eigenvalue problem relative to equation (6), with the
addition of a potential V ; so we look for critical points of a suitable constrained
functional and not only minima.

Throughout the paper we always assume these hypotheses on the function
V : Rn → R:

(V1) lim
|x|→∞

V (x) = ∞,

(V2) V (x)e−|x| ∈ Lp(Rn,R),
(V3) ess inf

x∈Rn
V (x) > 0.

We note that (V2) is a technical hypothesis. We need it to prove the reg-
ularity of the eigenfunctions of the linear eigenvalue problem (see Lemma 2.8),
but it may be weakened.

The assumptions on the function W : Rn+1 \ {ξ∗} → R are the following:

(W1) W ∈ C1(Rn+1 \ {ξ∗},R),
(W2) W (ξ) ≥ 0 for all ξ ∈ Rn+1 \ {ξ∗} and W (0) = 0,
(W3) there exist two constants c1, c2 > 0 such that

ξ ∈ Rn+1, 0 < |ξ| < c1 ⇒W (ξ∗ + ξ) ≥ c2
|ξ|np/(p−n)

and ξ − c1 > 0,
(W4) there exist two constants c3, c4 > 0 such that

ξ ∈ Rn+1, 0 ≤ |ξ| < c3 ⇒ |W ′(ξ)| ≤ c4|ξ|.

The energy functional associated to the problem (Pε) is:

(7) Jε(u) =
∫

Rn

[
1
2
|∇u|2 +

1
2
V (x)|u|2 +

εr

p
|∇u|p + εrW (u)

]
dx.

In [8] the authors proved the existence of solutions for the eigenvalue problem
(Pε) on a bounded domain Ω. In this paper we consider a more complex case,
namely when the domain is Rn and the potential is coercive, i.e. V (x) →∞ for
|x| → ∞.

We state the following existence results (see Theorem 3.1 and Theorem 3.2):
Given q ∈ Z \ {0} and k ∈ N, we consider ξ∗ = (0, ξ) with 0 ∈ Rn and ξ large
enough. Then for ε sufficiently small and for any j ≤ k with λ̃j−1 < λ̃j, there
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exist µj(ε) and uj(ε) respectively eigenvalue and eigenfunction of the problem
(Pε), such that the topological charge of uj(ε) is q.

Moreover, given q ∈ Z, for any ξ∗ = (0, ξ) (with 0 ∈ Rn and ξ > 0) and for
any ε > 0, there exist µ1(ε) and u1(ε) respectively eigenvalue and eigenfunction
of the problem (Pε), such that the topological charge of u1(ε) is q.

Here λ̃j (see Subsection 2.4) are the eigenvalues of the linear problem −∆u+
V (x)u = λ̃u, since we have the discreteness of the spectrum of the Schrödinger
operator −∆ + V , with lim|x|→∞ V (x) = ∞, by a compact embedding theorem
(see e.g. [5] and Theorem 2.1).

Our aim is to find critical values of the energy functional Jε in the intersection
of any connected component, characterized by the topological charge, with the
unitary sphere in L2(Rn,Rn+1). The idea is to consider the functional Jε as
a perturbation of the symmetric functional

J0(u) =
∫

Rn

1
2
[|∇u|2 + V (x)|u|2] dx.

Non-symmetric perturbations of a symmetric problem, in order to preserve criti-
cal values, have been studied by several authors. We omit for the sake of brevity
a complete bibliography and we recall only [3], which seems to be the first work
on the subject, and the recent papers [10] and [11]. In this paper we give a result
of preservation for the functional Jε of some critical values λ̃j of the functional J0

restricted on the unitary sphere of L2(Rn,Rn+1) in the space Γ(Rn,Rn+1) (see
Subsection 2.1).

The content of the paper is divided into the following sections. In Section 2
there is the description of the functional setting, the definition of a topological
invariant, called topological charge, and some arguments of eigenvalues theory.
The compactness, that we lose because of the unbounded domain Rn, is recovered
by the compact embedding of [5] (see Theorem 2.1). Then, by some technical
devices, we obtain the Palais–Smale condition for the functional Jε (defined
in (7)). The addition of the potential V breaks the translation invariance, so
that the technical lemmas require some care.

Section 3 is devoted to the proof of our main results. In Theorem 3.1 we state
the existence of some critical values of the functional Jε on every component
of the unitary sphere, characterized by the value of the topological invariant
“topological charge” (see (11), (8), (10)). These critical values cqε,j (see (28))
of the functional Jε are of “min-max type”. The construction of some suitable
functions Gq

ε of topological charge q (see (26)) and some suitable manifolds Mq
ε,j

(see (27)) is crucial in finding the critical values cqε,j . In Theorem 3.2 we state
the existence of the minimum of the functional Jε on every component of the
unitary sphere, characterized by the topological charge (see (10)).
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Notations. We fix the following notations:

• |x| is the Euclidean norm of x ∈ Rn,
• if ξ ∈ Rn+1 some times we will use the notation ξ = (ξ̃, ξ), where ξ̃ ∈ Rn

and ξ ∈ R,
• if x ∈ Rn and ρ > 0, then B(x, ρ) is the open ball with centre in x and

radius ρ.

2. Functional setting

2.1. The space E. We shall consider the following functional spaces:

• Γ(Rn,R) the completion of C∞0 (Rn,R) with respect to the norm

‖z‖2Γ(Rn,R) =
∫

Rn

V (x) |z(x)|2 dx+
∫

Rn

|∇z(x)|2 dx;

the space Γ(Rn,R) is then a Hilbert space, whose scalar product is
denoted by (z1, z2)Γ(Rn,R).

• Γ(Rn,Rn+1) the completion of C∞0 (Rn,Rn+1) with respect to the norm

‖u‖2Γ(Rn,Rn+1) =
∫

Rn

V (x) |u(x)|2 dx+
∫

Rn

|∇u(x)|2 dx;

where |u|2 =
∑n+1

i=1 |ui|2 and |∇u|2 =
∑n

i=1

∑n+1
j=1 |∂uj/∂xi|2; analo-

gously the space Γ(Rn,Rn+1) is a Hilbert space, whose scalar product
is denoted by (u1, u2)Γ(Rn,Rn+1).

It is clear that the spaces Γ(Rn,R) and Γ(Rn,Rn+1) are continuously embed-
ded respectively into the Sobolev spaces H1(Rn,R) and H1(Rn,Rn+1). At this
point we recall a compact embedding theorem of Benci and Fortunato (see [5]),
which will be important in the sequel:

Theorem 2.1. The embedding of the space Γ(Rn,R) into the space L2(Rn,R)
is compact.

We shall denote by:

• E the completion of C∞0 (Rn,Rn+1) with respect to the norm

‖u‖2E =
∫

Rn

V (x) |u(x)|2 dx+
∫

Rn

|∇u(x)|2 dx+
( ∫

Rn

|∇u(x)|p dx
)2/p

.

The main properties of the Banach space E are summarized in the following
lemma and corollary:

Lemma 2.1. The Banach space E is continuously embedded into the space
Ls(Rn,Rn+1) for 2 ≤ s ≤ ∞.

For the proof see [4].
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Corollary 2.1.

(i) The Banach space E is continuously embedded into the Sobolev space
W 1,p(Rn,Rn+1).

(ii) There exist two constants C0, C1 > 0 such that, for every u ∈ E,

‖u‖L∞(Rn,Rn+1) ≤ C0‖u‖E ,

|u(x)− u(y)| ≤ C1|x− y|(p−n)/p‖∇u‖Lp(Rn,Rn+1).

(iii) If u ∈ E then lim|x|→∞ u(x) = 0.

2.2. Topological charge and connected components of Λ. In the space
E we can consider the open subset

(8) Λ = {u ∈ E | ξ∗ 6∈ u(Rn)}.

We recall now the definition of topological charge introduced by Benci, Fortunato
and Pisani in [7] (we report here the definition given in [4]).

We write the n+ 1 components of a function u ∈ E in the following way:

u(x) = (ũ(x), u(x)),

where ũ : Rn → Rn and u : Rn → R.

Definition 1. Let u be a function in Λ ⊂ E, then the support of u is the
following set:

Ku = {x ∈ Rn | u(x) > ξ},
where ξ is defined in (1). The topological charge of u is the following function:

(9) ch (u) =

{
deg(ũ,Ku, 0) if Ku 6= ∅,
0 if Ku = ∅.

As a consequence of the fact that u is continuous and lim|x|→∞ u(x) = 0 (see
Corollary 2.1), Ku is an open bounded subset of Rn. Since u ∈ Λ, if x ∈ ∂Ku,
we have u(x) = ξ and ũ(x) 6= 0. Therefore the previous definition is well posed.

Moreover, the topological charge is continuous with respect to the uniform
convergence (see [7]):

Lemma 2.2. For every u ∈ Λ there exists r = r(u) > 0 such that, for every
v ∈ Λ,

‖v − u‖L∞(Rn,Rn+1) ≤ r ⇒ ch (u) = ch (v).

The set Λ ⊂ E is divided into connected components by the topological
charge:

Λ =
⋃
q∈Z

Λq,
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where

(10) Λq = {u ∈ Λ | ch (u) = q}.

2.3. Palais–Smale condition for the energy functional. First of all we
verify that the functional Jε is well defined on the set Λ, that is:

Jε(u) <∞ for all u ∈ Λ.

It is enough to check that
∫

Rn W (u(x)) dx < ∞. In fact by (W2) and (W4) we
have that ∫

Rn

W (u(x)) dx ≤
∫

B

c4|u(x)|2 dx+
∫

Rn\B
W (u(x)) dx,

where B = {x ∈ Rn | u(x) ∈ B(0, c3)}. The first integral is bounded because∫
B
|u(x)|2 dx ≤

∫
Rn |u(x)|2 dx < ∞. The second integral is bounded because by

Corollary 2.1 the domain Rn \B is bounded.

Lemma 2.3. The energy functional Jε is of class C1 on the open set Λ of E.

Proof. The first part of the energy functional is clearly of class C1. Then
we consider G(u) =

∫
Rn W (u(x)) dx. Now we want to prove the Gateaux differ-

entiability, hence we show that

lim
t→0

∫
Rn

[
W (u+ tv)−W (u)

t
−W ′(u) · v

]
dx = 0

for all u ∈ Λ and for all v ∈ E. The integrand clearly tends to zero pointwise.
By the Lagrange Theorem we have that

W (u(x) + tv(x))−W (u(x)) = tW ′(u(x) + θtv(x)) · v(x)

for t ∈ R small enough, where θ = θ(x, t) ∈ [0, 1]. As lim|x|→∞ u(x) = 0, there
exists R1 > 0 such that

x ∈ Rn \B(0, R1) ⇒

{
|u(x)| ≤ c3/2,

|u(x) + θtv(x)| ≤ c3,

for |t| ≤ t with t suitably small. Then by (W4), we have the following inequalities

|W ′(u(x) + θtv(x)) · v(x)|

≤

{
c4[|u(x)|+ t|v(x)|]|v(x)| for all x ∈ Rn \B(0, R1),

const |v(x)| for all x ∈ B(0, R1).

There are analogous inequalities for |W ′(u(x)) · v(x)|. So we can apply the Le-
besgue’s dominated convergence theorem.
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To have the Fréchet differentiability of the functional G it remains to show
that the Gateaux derivative

v → G′(u)(v) =
∫

Rn

W ′(u) · v dx u ∈ Λ, v ∈ E

is continuous with respect to u. Let {ui}i∈N be a sequence in Λ strongly con-
verging to u0 ∈ Λ, then we have

‖G′(ui)−G′(u0)‖E∗ = sup
v∈E

‖v‖E=1

∣∣∣∣ ∫
Rn

[W ′(ui)−W ′(u0)] · v
∣∣∣∣

≤ sup
v∈E

‖v‖E=1

[ ∫
Rn

|W ′(ui)−W ′(u0)|2
]1/2

‖v‖L2(Rn,Rn+1)

≤ C

[ ∫
Rn

|W ′(ui)−W ′(u0)|2
]1/2

,

where C is a constant. Obviously we have that for all x ∈ Rn |W ′(ui(x)) −
W ′(u0(x))| → 0. Moreover, there exists R2 > 0 such that

x ∈ Rn \B(0, R2) ⇒

{
|u0(x)| ≤ c3/2,

|ui(x)| ≤ c3,

for i large enough; hence, for i large enough, we have

|W ′(ui(x))| ≤

{
c4|ui(x)| for all x ∈ Rn \B(0, R2),

const for all x ∈ B(0, R2),

|W ′(u0(x))| ≤

{
c4|u0(x)| for all x ∈ Rn \B(0, R2),

const for all x ∈ B(0, R2),

and consequently

|W ′(ui(x))−W ′(u0(x))|2 ≤

{
c24(|ui(x)|+ |u0(x)|)2 for all x ∈ Rn \B(0, R2),

const for all x ∈ B(0, R2).

We can now apply the generalized version of the Lebesgue’s dominated conver-
gence theorem and conclude that ‖G′(ui)−G′(u0)‖E∗ → 0. �

We put

(11) S = {u ∈ E | ‖u‖L2(Rn,Rn+1) = 1}.

To get some critical points of the functional Jε on the C2 manifold Λ ∩ S
we use the following version of Palais–Smale condition. For Jε ∈ C1(Λ,R), the
norm of the derivative at u ∈ S of the restriction Ĵε = Jε|Λ∩S is defined by

‖Ĵ ′ε(u)‖∗ = min
t∈R

‖J ′ε(u)− tg′(u)‖E∗ ,

where g : E → R is the function defined by g(u) =
∫

Rn |u(x)|2 dx.
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Definition 2. The functional Jε is said to satisfy the Palais–Smale condi-
tion in c ∈ R on Λ∩S (on Λq ∩S, for q ∈ Z) if, for any sequence {ui}i∈N ⊂ Λ∩S
({ui}i∈N ⊂ Λq ∩ S) such that Jε(ui) → c and ‖Ĵ ′ε(ui)‖∗ → 0, there exists a sub-
sequence which converges to u ∈ Λ ∩ S (u ∈ Λq ∩ S).

To obtain the Palais–Smale condition, we need a few technical lemmas.

Lemma 2.4. Let {ui}i∈N be a sequence in Λq (with q ∈ Z) such that the
sequence {Jε(ui)}i∈N is bounded. We consider the open bounded sets

(12) Zi = {x ∈ Rn | |ui(x)| > c3}.

Then the set
⋃

i∈N Zi ⊂ Rn is bounded.

Proof. By contradiction we suppose that
⋃

i∈N Zi is unbounded; then there
exist a sequence of indices νi →∞ for i→∞ and a sequence of points {xνi

}i∈N

such that xνi
∈ Zνi

and |xνi
| → ∞. By (12) we have:

(13) |uνi
(xνi

)| > c3;

we consider the numbers Rνi = sup{R > 0 | for all x ∈ B(xνi , R) |uνi(x)| >
c3/2}. We claim that Rνi

→ 0 for i → ∞. In fact, if Rνi
6→ 0, there exists

M > 0 such that Rνi
> M for infinitely many indices. Then for such indices we

have: ∫
Rn

V (x) |uνi
(x)|2 dx ≥

∫
B(xνi

,Rνi
)

V (x) |uνi
(x)|2 dx

≥
(
c3
2

)2 ∫
B(xνi

,M)

V (x) dx,

but
∫

B(xνi
,M)

V (x) dx→∞ and this is a contradiction.
We choose now for every i ∈ N a point x̂νi

∈ ∂B(xνi
, Rνi

), i.e. such that

(14) |uνi
(x̂νi

)| = c3/2;

it is clear that |x̂νi − xνi | = Rνi → 0. As the functions ui are equiuniformly
continuous, i.e. for all x, y ∈ Rn and for all i ∈ N (see (ii) of Corollary 2.1)

|ui(x)− ui(y)| ≤ C1|x− y|(p−n)/p ‖∇ui‖Lp(Rn,Rn+1) ≤ const |x− y|(p−n)/p,

then |uνi
(xνi

) − uνi
(x̂νi

)| tends to zero for i → ∞. On the other hand, by (13)
and (14), there holds:

|uνi
(xνi

)− uνi
(x̂νi

)| ≥ |uνi
(xνi

)| − |uνi
(x̂νi

)| > c3/2. �

The next two lemmas are the Propositions 3.8 and 3.9 of [7]. The addition
of the potential V in our equation leads to the loss of translation invariance.
Hence we give a proof of Lemma 2.6. (see Proposition 3.9 in [7]), because the
arguments of [7] partially fall.
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Lemma 2.5. Let {ui}i∈N ⊂ Λ be a sequence weakly converging to u and such
that {Jε(ui)}i∈N ⊂ R is bounded, then u ∈ Λ.

Lemma 2.6. For any a > 0, there exists d > 0 such that for every u ∈ Λ

Jε(u) ≤ a⇒ inf
x∈Rn

|u(x)− ξ∗| ≥ d.

Proof. By contradiction we suppose that there exist a > 0 and a sequence
{ui}i∈N ⊂ Λ such that for any i ∈ N Jε(ui) ≤ a and infx∈Rn |ui(x)−ξ∗| ≤ 1/i. As
we have ‖ui‖E ≤ const, up to a subsequence ui weakly converges to u in E. In
particular ui converges to u pointwise. Moreover, by Lemma 2.5, we know that
u ∈ Λ. We denote by {xi}i∈N a sequence of points in Rn such that ui(xi) → ξ∗.
We claim that {xi}i∈N is bounded. By contradiction let |xi| tend to ∞. We
consider now

Ri = sup{R ≥ 0 | for all x ∈ B(xi, R), ui(x) ∈ B(ξ∗, c1)},

where c1 is the constant defined in (W3); proceeding in the same way as in
the proof of Lemma 2.4, we obtain that Ri → 0. For every i ∈ N we choose
a point x̂i on the boundary of B(xi, Ri), i.e. x̂i is such that |ui(x̂i)−ξ∗| = c1 and
|xi − x̂i| → 0. Now by the equiuniform continuity we have |ui(x̂i)− ui(xi)| → 0,
but this is absurd because

|ui(x̂i)− ui(xi)| = |ui(x̂i)− ξ∗ + ξ∗ − ui(xi)| ≥ |c1 − |ui(xi)− ξ∗||

and |c1 − |ui(xi) − ξ∗|| → c1 > 0. Then {xi}i∈N is bounded and up to a subse-
quence xi → x0. Since we have

|ui(xi)− u(x0)| ≤ |ui(xi)− ui(x0)|+ |ui(x0)− u(x0)|,

by equiuniform continuity and by pointwise convergence we can conclude that
|ui(xi) − u(x0)| → 0. This means that u(x0) = ξ∗ and this is in contradiction
with the fact that u ∈ Λ. �

Proposition 2.1. The functional Jε satisfies the Palais–Smale condition
on Λ ∩ S (on Λq ∩ S for q ∈ Z) for any c ∈ R and 0 < ε ≤ 1.

Proof. It is immediate that every Palais–Smale sequence {ui}i∈N on Λ∩S
is bounded in E. Hence we can choose a subsequence, which for simplicity
we denote again {ui}i∈N, converging to a function u weakly in E, strongly in
L2(Rn,Rn+1) (by Theorem 2.1) and uniformly on every compact subset of Rn.
As we have

min
t∈R

‖J ′ε(ui)− tg′(ui)‖E∗ → 0,
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there is a sequence ηi > 0, with ηi → 0 for i → ∞ and a sequence ti ∈ R such
that for all v ∈ E

(15)
∣∣∣∣ ∫

Rn

[∇ui · ∇v + V (x)ui · v + εr|∇ui|p−2∇ui · ∇v + εrW ′(ui) · v] dx

− 2ti
∫

Rn

ui · v dx
∣∣∣∣ ≤ ηi‖v‖E .

From the substitution v = ui in (15), we obtain

(16)
∣∣∣∣ ∫

Rn

[|∇ui|2 + V (x)|ui|2 + εr|∇ui|p + εrW ′(ui) · ui] dx− 2ti

∣∣∣∣ ≤ ηi‖ui‖E .

Since {ui}i∈N is bounded in E, the first three terms are bounded. Now, by
Lemma 2.4 and by (W4), we observe that∣∣∣∣ ∫

Rn

W ′(ui) · ui dx

∣∣∣∣ ≤ ∣∣∣∣ ∫
Zi

W ′(ui) · ui dx

∣∣∣∣ +
∣∣∣∣ ∫

Rn\Zi

W ′(ui) · ui dx

∣∣∣∣
≤

∫
K

|W ′(ui)||ui| dx+ c4‖ui‖2L2(Rn,Rn+1)

where Zi is defined in (12) and K is a compact subset of Rn such that
⋃∞

i=1 Zi ⊂
K. Hence the fourth term of (16) is bounded too and so {ti}i∈N is bounded.

Substituting now v = ui − u, we get:∣∣∣∣ ∫
Rn

[∇ui · ∇(ui − u) + V (x)ui · (ui − u) + εr|∇ui|p−2∇ui · ∇(ui − u)

+ εrW ′(ui) · (ui − u)] dx− 2ti
∫

Rn

ui · (ui − u) dx
∣∣∣∣ ≤ ηi‖ui − u‖E

and we write∫
Rn

[∇ui · ∇(ui − u) + V (x)ui · (ui − u) + εr|∇ui|p−2∇ui · ∇(ui − u)] dx

= −εr

∫
Rn

[W ′(ui) · (ui − u) + 2tiui · (ui − u)] dx+ o(1).

As {ti}i∈N is bounded and {ui}i∈N converges to u in L2(Rn,Rn+1) we get that
ti

∫
Rn ui · (ui − u) dx tends to zero. Moreover by Lemma 2.4 and (W4)∣∣∣∣ ∫

Rn

W ′(ui) · (ui − u) dx
∣∣∣∣ ≤ ∣∣∣∣ ∫

Zi

W ′(ui) · (ui − u) dx
∣∣∣∣

+ c4‖ui‖L2(Rn,Rn+1)‖ui − u‖L2(Rn,Rn+1)

≤C‖ui − u‖L∞(K,Rn+1)

+ c4‖ui‖L2(Rn,Rn+1)‖ui − u‖L2(Rn,Rn+1),
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where Zi is defined in (12), C is a constant and K is a compact subset of Rn

such that
⋃∞

i=1 Zi ⊂ K; hence this term tends to zero. Concluding∫
Rn

[∇ui · ∇(ui − u) + V (x)ui · (ui − u) + εr|∇ui|p−2∇ui · ∇(ui − u)] dx→ 0

for i → ∞. At this point we recall that −∆p is a monotone operator (see [16]
and [4]), and there exists ν > 0 such that for all u1, u2 ∈ E∫

Rn

[|∇(u1 − u2)|2 + V (x) |u1 − u2|2 + |∇u1|p−2∇u1 · ∇(u1 − u2)

− |∇u2|p−2∇u2 · ∇(u1 − u2)] dx ≥ ‖u1 − u2‖2Γ(Rn,Rn+1) + ν‖∇(u1 − u2)‖p
Lp .

Hence we get our claim. �

2.4. Eigenvalues of the Schrödinger operator. By the compactness
result cited in Theorem 2.1 we obtain the discreteness of the spectrum of the
Schrödinger operator−∆+V (x) on L2(Rn,R) (which is the self-adjoint extension
of the operator −∆+V (x) on C∞0 (Rn,R)). That is the spectrum of the operator
−∆ + V (x) consists of a countable set of eigenvalues of finite multiplicity. The
following sequence denotes the eigenvalues counted with their multiplicity:

λ1 ≤ . . . ≤ λk ≤ . . .

We denote by {ei}i∈N the sequence of the corresponding eigenfunctions, with
(ei, ej)L2(Rn,R) = δij .

We consider now the sequence

λ̃1 ≤ . . . ≤ λ̃m ≤ . . .

of the eigenvalues of the problem

(17) −∆u+ V (x)u = λ̃u with u ∈ Γ(Rn,Rn+1).

If u = (u1, . . . , un+1), then (17) is equivalent to

−∆ui + V (x)ui = λ̃ui with i = 1, . . . , n+ 1.

It is trivial that λ1 = λ̃1 = . . . = λ̃n+1 ≤ λ̃n+2, in fact if λ is an eigenvalue of
multiplicity ν of the problem

−∆z + V (x)z = λz with z ∈ Γ(Rn,R),

then it is an eigenvalue of (17) of multiplicity (n+ 1)ν. Moreover, if λk < λk+1,
then λ̃(n+1)k < λ̃(n+1)k+1.

If we set ẽj = (ej , 0, . . . , 0), ẽj+1 = (0, ej , . . . , 0), . . . , ẽj+n = (0, 0, . . . , ej), it
is clear what we mean by the sequence of the eigenvectors {ϕi}i∈N corresponding
to the sequence {λ̃i}i∈N, which is an orthonormal set in L2(Rn,Rn+1).
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The main properties of the eigenvalues {λi}i∈N and {λ̃i}i∈N are summarized
in the following lemma:

Lemma 2.7. The following properties hold:

λi = min
w∈Γ(Rn,R)

(w,ej)
L2(Rn,R)=0

∀j=1,...,i−1

‖w‖2Γ(Rn,R)

‖w‖2L2(Rn,R)

,

λ̃i = min
u∈Γ(Rn,Rn+1)

(u,ϕj)
L2(Rn,Rn+1)

=0

∀j=1,...,i−1

‖u‖2Γ(Rn,Rn+1)

‖u‖2L2(Rn,Rn+1)

,

and

(ei, ej)Γ(Rn,R) = λiδij for all i, j ∈ N,

(ϕi, ϕj)Γ(Rn,Rn+1) = λ̃iδij for all i, j ∈ N.

If we set Em = span [e1, . . . , em] and E⊥m = {w ∈ Γ(Rn,R) | (w, ei)L2(Rn,R) = 0
for i = 1, . . . ,m}, we get

w ∈ Em ⇒ λ1 ≤
‖w‖2Γ(Rn,R)

‖w‖2L2(Rn,R)

≤ λm,

w ∈ E⊥m ⇒
‖w‖2Γ(Rn,R)

‖w‖2L2(Rn,R)

≥ λm+1.

If we set, respectively, Fm = span [ϕ1, . . . , ϕm] and F⊥m = {u ∈ Γ(Rn,Rn+1) |
(u, ϕi)L2(Rn,Rn+1) = 0 for i = 1, . . . ,m}, we get

u ∈ Fm ⇒ λ̃1 ≤
‖u‖2Γ(Rn,Rn+1)

‖u‖2L2(Rn,Rn+1)

≤ λ̃m,(18)

u ∈ F⊥m ⇒
‖u‖2Γ(Rn,Rn+1)

‖u‖2L2(Rn,Rn+1)

≥ λ̃m+1.(19)

The proof is a direct consequence of classical argumentations of spectral
theory.

Now we recall the following estimate about the eigenfunctions of the Schrö-
dinger operator (see [9, p. 169]):

Remark 1. If z ∈ Γ(Rn,R) is such that −∆z + V (x)z = λz, then for any
a > 0 there exists a constant ca such that

(20) |z(x)| ≤ cae
−a|x|.

By this result and the regularity theorems we get the following lemma.
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Lemma 2.8. The eigenfunctions ϕi ∈ Γ(Rn,Rn+1) of the Schrödinger oper-
ator −∆ + V (x) belong to the Banach space E.

Proof. By a regularity result, if z ∈ Γ(Rn,R) is such that −∆z−λz = −V z
and if V z ∈ L2(Rn,R) ∩ Lp(Rn,R), then z ∈ W 2,p(Rn,R). By this fact the
statement follows immediately.

Now we verify that V z ∈ L2(Rn,R) ∩Lp(Rn,R). By Remark 1 and (V2) we
get ∫

Rn

|V (x)z(x)|p dx ≤ const ‖V (x)e−|x|‖p
Lp(Rn,R) <∞.

Moreover, if R > 0 is such that for x ∈ Rn \B(0, R) V (x) > 1, we have∫
Rn

|V (x)z(x)|2 dx

≤ const
( ∫

B(0,R)

|V (x)|2e−p|x| dx+
∫

Rn\B(0,R)

|V (x)|pe−p|x| dx

)
<∞. �

3. Critical values of the energy functional on every manifold Λq ∩ S

3.1. The functions Gq
ε. Fixed an integer k ∈ N, we define

(21) Mk = sup
u∈S(k)

‖u‖L∞(Rn,Rn+1)

where

(22) S(k) = Fk ∩ S for all k ∈ N.

At this point we choose the (n+1)-th coordinate ξ of the point ξ∗ defined in (1)
in such a way that

(23) ξ > 2Mk.

First of all we construct a function Gρ depending on a parameter ρ > 0. We
consider two functions ϕρ, ψρ : R+ → [0, 1] of class C∞ such that

(24) ϕρ(r) =

{
1 for 0 ≤ r ≤ ρ2,

0 for r ≥ 4ρ2,
ψρ(r) =

{
1 for 0 ≤ r ≤ 9ρ2,

0 for r ≥ 16ρ2.

Moreover, ϕρ and ψρ take values between 0 and 1 for ρ2 ≤ r ≤ 4ρ2 and 9ρ2 ≤
r ≤ 16ρ2, respectively. We define:

(25)
Gρ : B(0, 5ρ) ⊂ Rn → (Rn × R) \ {ξ∗},

x 7→ ψρ(|x|2)
(
ξ

ρ
x, 2ξϕρ(|x|2)

)
.

It is important to observe that the distance of the image of Gρ from the point
ξ∗ is ξ.

We can now introduce for any q ∈ Z \ {0} the functions Gq
ε.
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Definition 3. If q ∈ Z \ {0} and 0 < ε ≤ 1, we set

(26) Gq
ε(x) =

{
Gρi(γq(x− x̂i)/ε) for x ∈ B(x̂i, 5ερi) and i = 1, . . . , |q|,

0 for x ∈ Rn \
⋃ |q|

i=1B(x̂i, 5ερi),

where Gρ is defined in (25), γq is the following function from Rn to Rn

γq(x1, x2, . . . , xn) =

{
(x1, x2, . . . , xn) for q > 0,

(−x1, x2, . . . , xn) for q < 0,

and the points x̂i and the radiuses ρi are such that

1. B(x̂i, ρi) ∩B(x̂j , ρj) = ∅ for all i 6= j, i, j = 1, . . . , |q|,
2. ‖Gq

1‖L2(Rn,Rn+1) < 1.

Finally, we define Gq = Gq
1.

Remark 2. We note that by construction the image of Gq
ε does not intersect

the point ξ∗ and the distance of the image from the point is ξ. Moreover, even
if we expand the functions Gq

ε (0 < ε ≤ 1) of a factor t ≥ 1, their image is such
that they do not meet the point ξ∗ and the distance is still ξ. Hence tGq

ε ∈ Λq

for all t ≥ 1 and ε ∈ (0, 1].

Remark 3. By the definition of the functions Gq
ε and by Remark 2 we can

conclude that for any q ∈ Z we have that Λq ∩ S 6= ∅.
The following lemma presents some useful properties of the functions Gq

ε

which will be crucial in the sequel:

Lemma 3.1. There exist ρ̂ > 0 and ε, with 0 < ε ≤ 1, such that for all
0 < ε ≤ ε we have

(i) ‖Gq
ε + ρ̂u‖L2(Rn,Rn+1) ≤ 1 for all u ∈ S(k),

(ii) inf
ε∈(0,ε]
u∈S(k)

‖Gq
ε + ρ̂u‖L2(Rn,Rn+1) > 0,

(iii) inf
x∈Rn

ε∈(0,ε]
u∈S(k)

∣∣∣∣ Gq
ε(x) + ρ̂u(x)

‖Gq
ε + ρ̂u‖L2(Rn,Rn+1)

− ξ∗

∣∣∣∣ > ξ

2
,

(iv)
Gq

ε + ρ̂u

‖Gq
ε + ρ̂u‖L2(Rn,Rn+1)

∈ Λq ∩ S for all u ∈ S(k).

For the proof see [8].

3.2. The critical values cqε,j of the energy functional on Λq ∩ S. Now
we can introduce some definitions which we will use to study multiplicity of
solutions.

Definition 4. Fixed k ∈ N, q ∈ Z \ {0} and 0 < ε ≤ ε, where ε is defined
in Lemma 3.1, we set

(27) Mq
ε,j =

{
Gq

ε + ρ̂u

‖Gq
ε + ρ̂u‖L2(Rn,Rn+1)

∣∣∣∣u ∈ S(j)
}
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with j ≤ k and ρ̂ defined in Lemma 3.1.

Remark 4. It is trivial that for j ≤ k we have Mq
ε,j−1 ⊂ Mq

ε,j , where
Mq

ε,0 = ∅. By Lemma 3.1 we can claim that Mq
ε,j ⊂ Λq ∩ S. Moreover, Mq

ε,j is
a submanifold of Λq ∩ S for ε sufficiently small.

Definition 5. Fixed k ∈ N, for all q ∈ Z \ {0}, j ≤ k and 0 < ε ≤ ε (ε is
defined in Lemma 3.1), we introduce the following values:

(28) cqε,j = inf
h∈Hq

ε,j

sup
v∈Mq

ε,j

Jε(h(v)),

where Hq
ε,j are the following sets of continuous transformations:

Hq
ε,j = {h : Λq ∩ S → Λq ∩ S | h continuous, h|Mq

ε,j−1
= idMq

ε,j−1
}.

We observe that Hq
ε,j+1 ⊂ Hq

ε,j .

Lemma 3.2. Fixed k ∈ N, for all q ∈ Z \ {0}, j < k and 0 < ε ≤ ε, we have

(i) cqε,j ≤ cqε,j+1,
(ii) cqε,j ∈ R.

In the following we will use the version of the deformation lemma on a C2

manifold which we now recall (see for example [14], [18] and [19]).

Lemma 3.3 (Deformation Lemma). Let J be a C1-functional defined on
a C2-Finsler manifold M . Let c be a regular value for J . We assume that:

(i) J satisfies the Palais–Smale condition in c on M ,
(ii) there exists k > 0 such that the sublevel Jc+k is complete.

Then there exist δ > 0 and a deformation η : [0, 1]×M −→M such that:

η(0, u) = u for all u ∈M,

η(t, u) = u for all t ∈ [0, 1] and all u ∈ Jc−2δ,

η(1, Jc+δ) ⊂ Jc−δ.

Lemma 3.4. For any q ∈ Z, ε ∈ (0, 1] and a ∈ R, the subset Λq ∩ S ∩ Ja
ε of

the Banach space E is complete.

We give some notations: if u ∈ E we set

(29) PFj
u =

j∑
i=1

(u, ϕi)Γ(Rn,Rn+1)ϕi and QFj
u = u− PFj

u.

It is immediate that

(30) (QFju, ϕi)Γ(Rn,Rn+1) = λ̃i(QFju, ϕi)L2(Rn,Rn+1) = 0 for all i = 1, . . . , j.

We can now prove the main result:
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Theorem 3.1. Given q ∈ Z\{0} and k ∈ N, we consider ξ∗ = (0, ξ) ∈ Rn+1

with ξ > 2Mk, where Mk = supu∈S(k) ‖u‖L∞(Rn,Rn+1).
Then there exists ε̂ ∈ (0, 1] such that for any ε ∈ (0, ε̂] and for any j ≤ k

with λ̃j−1 < λ̃j, we get that cqε,j is a critical value for the functional Jε restricted
to the manifold Λq ∩ S. Moreover, cqε,j−1 < cqε,j and cqε,j → λ̃j for ε→ 0.

Proof. In the following proof we will denote by ‖ · ‖Lq and ‖ · ‖Γ the norms
respectively in Lq(Rn,Rn+1) and in Γ(Rn,Rn+1).
We divide the argument into three steps.

Step 1. We prove that

sup
v∈Mq

ε,j

Jε(v) ≤ λ̃j + σ(ε),(31)

cqε,j ≤ λ̃j + σ(ε),(32)

where limε→0 σ(ε) = 0.
First of all we verify that

(33) sup
v∈Mq

ε,j

J0(v) ≤ λ̃j + sup
u∈S(j)

‖QFj
Gq

ε‖2Γ
‖PFj

Gq
ε + ρ̂u‖2L2 + ‖QFj

Gq
ε‖2L2

.

In fact by Definition 4, (29) and (30) we have:

sup
v∈Mq

ε,j

J0(v) = sup
u∈S(j)

∥∥∥∥ Gq
ε + ρ̂u

‖Gq
ε + ρ̂u‖L2

∥∥∥∥2

Γ

= sup
u∈S(j)

‖PFj
Gq

ε + ρ̂u‖2Γ + ‖QFj
Gq

ε‖2Γ
‖PFjG

q
ε + ρ̂u‖2L2 + ‖QFjG

q
ε‖2L2

≤ sup
u∈S(j)

( ‖PFj
Gq

ε + ρ̂u‖2Γ
‖PFjG

q
ε + ρ̂u‖2L2

+
‖QFj

Gq
ε‖2Γ

‖PFjG
q
ε + ρ̂u‖2L2 + ‖QFjG

q
ε‖2L2

)
≤ λ̃j + sup

u∈S(j)

‖QFjG
q
ε‖2Γ

‖PFj
Gq

ε + ρ̂u‖2L2 + ‖QFj
Gq

ε‖2L2

.

Now, by definition of Jε and (33), we prove the following inequalities:

cqε,j = inf
h∈Hq

ε,j

sup
v∈Mq

ε,j

Jε(h(v)) ≤ sup
v∈Mq

ε,j

Jε(v)(34)

≤ sup
v∈Mq

ε,j

J0(v) + εr sup
v∈Mq

ε,j

∫
Rn

(
1
p
|∇v|p +W (v)

)
dx

≤ λ̃j + sup
u∈S(j)

‖QFj
Gq

ε‖2Γ
‖PFjG

q
ε + ρ̂u‖2L2 + ‖QFjG

q
ε‖2L2

+
εr

p
sup

u∈S(j)

∫
Rn |∇(Gq

ε + ρ̂u)|p dx
‖Gq

ε + ρ̂u‖p
L2

+ εr sup
u∈S(j)

∫
Rn

W

(
Gq

ε + ρ̂u

‖Gq
ε + ρ̂u‖L2

)
dx.
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At this point we note that limε→0 ‖QFj
Gq

ε‖2Γ = 0; in fact by (29) and (30), by
the fact that the support of Gq

ε is contained in the support of Gq for all ε < 1
and by the fact that V ∈ L2

loc(Rn,R), we have

‖QFj
Gq

ε‖2Γ ≤ ‖Gq
ε‖2Γ ≤

∫
Rn

|∇Gq
ε|2 dx+ ‖V ‖L2(Ω,R)‖Gq

ε‖2L4

= εn−2

∫
Rn

|∇Gq|2 dx+ ε
n
2 ‖V ‖L2(Ω,R)‖Gq‖2L4

where Ω ⊂ Rn is the support of Gq.
Moreover, by (ii) of Lemma 3.1 we obtain

sup
0<ε≤ε

sup
u∈S(j)

1
‖PFj

Gq
ε + ρ̂u‖2L2 + ‖QFj

Gq
ε‖2L2

<∞,

in fact ‖PFjG
q
ε‖2L2 ≤ εn‖Gq‖2L2 and ‖QFjG

q
ε‖2L2 ≤ εn‖Gq‖2L2 . Therefore the

second term of the last inequality of (34) goes to zero when ε goes to zero. Now
we observe that the following inequality holds:∫

Rn

|∇(Gq
ε + ρ̂u)|p dx ≤ const

(
εn−p

∫
Rn

|∇Gq|p dx+ ρ̂p

∫
Rn

|∇u|p dx
)
.

Then by this inequality and (ii) of Lemma 3.1 (we recall that r > p − n), we
have that the third term of the last inequality of (34) tends to zero when ε tends
to zero.

As regards the last term, we verify that
∫

Rn W ((Gq
ε + ρ̂u)/‖Gq

ε + ρ̂u‖L2) dx
is bounded. In fact by definition of Gq

ε and by the exponential decay of the
eigenfunctions (see Remark 1) there exists a ball B(0, R) such that, if we write
u =

∑j
i=1 aiϕi with

∑j
i=1 a

2
i = 1, for all x ∈ Rn \B(0, R) the following inequal-

ities hold∣∣∣∣Gq
ε(x) + ρ̂u(x)
‖Gq

ε + ρ̂u‖L2

∣∣∣∣ =
ρ̂|u(x)|

‖Gq
ε + ρ̂u‖L2

≤
const ρ̂(

∑j
i=1 |ai|)e−|x|

‖Gq
ε + ρ̂u‖L2

≤Me−|x| < c3

where the constant M does not depend on u ∈ S(j) nor on ε for ε small enough
(see the point (ii) of Lemma 3.1). By (W4) we get∣∣∣∣W(

Gq
ε(x) + ρ̂u(x)
‖Gq

ε + ρ̂u‖L2

)∣∣∣∣ ≤ c4
|Gq

ε(x) + ρ̂u(x)|2

‖Gq
ε + ρ̂u‖2L2

for any x ∈ Rn \B(0, R). Concluding we have∣∣∣∣ ∫
Rn

W

(
Gq

ε + ρ̂u

‖Gq
ε + ρ̂u‖L2

)
dx

∣∣∣∣ ≤ c4 +
∫

B(0,R)

∣∣∣∣W(
Gq

ε + ρ̂u

‖Gq
ε + ρ̂u‖L2

)∣∣∣∣ dx
where the integral on the right hand side is bounded by (iii) of Lemma 3.1. So
we have the claim.

Step 2. We prove that cqε,j ≥ λ̃j.
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By positivity of W the following inequalities hold

cqε,j ≥ inf
h∈Hq

ε,j

sup
v∈Mq

ε,j

‖h(v)‖2Γ ≥ inf
h∈Hq

ε,j

sup
v∈Mq

ε,j
PFj−1

h(v)=0

‖h(v)‖2Γ.

By an argument of degree theory we get that for any h ∈ Hq
ε,j the intersection

of the set h(Mq
ε,j) with the set {u ∈ E | (u, ϕi)Γ = 0 for all i = 1, . . . , j − 1} is

not empty, that is there exists v ∈ Mq
ε,j such that PFj−1h(v) = 0 (for the proof

see [8]). Now by (19) in Lemma 2.7 we obtain cqε,j ≥ λ̃j .

Step 3. If λ̃j−1 < λ̃j, then cqε,j is a critical value for the functional Jε on the
manifold Λq ∩ S and cqε,j−1 < cqε,j for ε small enough.

We begin by noting that

cqε,j−1 < cqε,j ,(35)

sup
v∈Mq

ε,j−1

Jε(v) < cqε,j ;(36)

in fact, by Steps 1 and 2, we obtain for ε sufficiently small,

cqε,j−1 ≤ λ̃j−1 + σ(ε) < λ̃j ≤ cqε,j ,

sup
v∈Mq

ε,j−1

Jε(v) ≤ λ̃j−1 + σ(ε) < λ̃j ≤ cqε,j .

Now we suppose by contradiction that cqε,j is a regular value for Jε on Λq ∩ S.
By Proposition 2.1 and Lemmas 3.3, 3.4 there exist δ > 0 and a deformation
η : [0, 1]× Λq ∩ S → Λq ∩ S such that

η(0, u) = u for all u ∈ Λq ∩ S,

η(t, u) = u for all t ∈ [0, 1] and all u ∈ Jcq
ε,j−2δ

ε ,

η(1, J
cq

ε,j+δ
ε ) ⊂ J

cq
ε,j−δ

ε .

By (36) we can suppose

(37) sup
v∈Mq

ε,j−1

Jε(v) < cqε,j − 2δ.

Moreover, by definition of cqε,j there exists a transformation ĥ ∈ Hq
ε,j such that

supv∈Mq
ε,j
Jε(ĥ(v)) < cqε,j + δ. Now by the properties of the deformation η and

by (37) we get η(1, ĥ( · )) ∈ Hq
ε,j and supv∈Mq

ε,j
Jε(η(1, ĥ(v))) < cqε,j − δ and this

is a contradiction. �

3.3. Minima of the energy functional on Λq ∩ S. Finally we can get
the minimum values of the functional Jε on each manifold Λq ∩ S, with q ∈ Z,
for any ε > 0 and for any ξ∗ = (0, ξ).
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Theorem 3.2. Given q ∈ Z, for any ξ∗ = (0, ξ) with 0 ∈ Rn and ξ > 0 and
for any ε > 0, there exists a minimum for the functional Jε on the submanifold
Λq ∩ S of Λ ∩ S.

Proof. The claim follows by the fact that Λq∩S is not empty (see Remark 3)
and the functional Jε is bounded from below and satisfies the Palais–Smale
condition on Λq ∩ S (see Proposition 2.1). �

Remark 5. The minimum critical value of Jε on Λq ∩ S is not obtained by
Theorem 3.1 and coincides by definition with cqε,1 (Definition 5). Moreover, the
minimum critical value cqε,1 tends to λ̃1 for ε that tends to 0.
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Dunod-Gauthier Villar, Paris, 1969.



An Eigenvalue Problem for a Quasilinear Elliptic Field Equation on Rn 211

[17] A. Manes and A. M. Micheletti, Un’estensione della teoria variazionale classica

degli autovalori per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. A (7) 4
(1973), 285–301.

[18] R. S. Palais, Lusternik–Schnirelman theory on Banach manifolds, Topology 5 (1966),
115–132.

[19] P. H. Rabinowitz, Minimax methods in critical point theory with applications to dif-
ferential equations, C.B.M.S. Reg. Conf. 65, Amer. Math. Soc., Providence, 1986.

Manuscript received February 16, 2001

V. Benci, A. M. Micheletti and D. Visetti

Dipartimento di Matematica Applicata “U. Dini”
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