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SINGULARLY PERTURBED NEUMANN PROBLEMS
WITH POTENTIALS

Alessio Pomponio

Abstract. The main purpose of this paper is to study the existence of
single-peaked solutions of the Neumann problem

��
�

−ε2div (J(x)∇u) + V (x)u = up in Ω,

∂u

∂ν
= 0 on ∂Ω,

where Ω is a smooth bounded domain of R
N , N ≥ 3, 1 < p < (N +

2)/(N − 2) and J and V are positive bounded scalar value potentials. We
will show that, for the existence of concentrating solutions, one has to check
if at least one between J and V is not constant on ∂Ω. In this case the
concentration point is determined by J and V only. In the other case the
concentration point is determined by an interplay among the derivatives of
J and V calculated on ∂Ω and the mean curvature H of ∂Ω.

1. Introduction

In this paper we study the following problem:

(1.1)

{ −ε2div(J(x)∇u) + V (x)u = up in Ω,
∂u

∂ν
= 0 on ∂Ω,
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where Ω is a smooth bounded domain with external normal ν, N ≥ 3, 1 < p <

(N + 2)/(N − 2), J : RN → R and V : RN → R are C2 functions.
When J ≡ 1 and V ≡ 1, then (1.1) becomes

(1.2)

{ −ε2∆u+ u = up in Ω,
∂u

∂ν
= 0 on ∂Ω.

Such a problem was intensively studied in several works. For example, W. M. Ni
and I. Takagi in [11], [12], show that, for ε sufficiently small, there exists a solu-
tion uε of (1.2) which concentrates in a point Qε ∈ ∂Ω and H(Qε) → max∂ΩH ,
hereH denotes the mean curvature of ∂Ω. Moreover, in [10], using the Liapunov–
Schmidt reduction, Y. Y. Li constructs solutions with single peak and multi-
peaks on ∂Ω located near any stable critical points of H . Since the publications
of [11], [12], there have been many works on spike-layer solutions of (1.2), see for
example [5]–[9], [14] and references therein.

What happens in presence of potentials J and V ?
In this paper we try to give an answer to this question and we will show

that, for the existence of concentrating solutions, one has to check if at least one
between J and V is not constant on ∂Ω. In this case the concentration point
is determined by J and V only. In the other case the concentration point is
determined by an interplay among the derivatives of J and V calculated on ∂Ω
and the mean curvature H .

On J and V we will do the following assumptions:

(J) J ∈ C2(Ω,R), J and D2J are bounded; moreover,

J(x) ≥ C > 0 for all x ∈ Ω,

(V) V ∈ C2(Ω,R), V and D2V are bounded; moreover,

V (x) ≥ C > 0 for all x ∈ Ω.

Let us introduce an auxiliary function which will play a crucial role in the
study of (1.1). Let Γ: ∂Ω → R be a function so defined:

(1.3) Γ(Q) = V (Q)(p+1)/(p−1)−N/2J(Q)N/2.

Let us observe that by (J) and (V), Γ is well defined.
Our first result is:

Theorem 1.1. Let Q0 ∈ ∂Ω. Suppose (J) and (V). There exists ε0 > 0
such that if 0 < ε < ε0, then (1.1) possesses a solution uε which concentrates in
Qε with Qε → Q0, as ε → 0, provided that one of the two following conditions
holds:

(a) Q0 is a non-degenerate critical point of Γ,
(b) Q0 is an isolated local strict minimum or maximum of Γ.
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Hence, if J and V are not constant on the boundary ∂Ω, the concentration
phenomena depend only by J and V and not by the mean curvature H . Our
second result deals with the other case and, more precisely, we will show that, if
J and V (and so also Γ) are constant on the boundary, then the concentration
phenomena are due by another auxiliary function which depends on the deriva-
tives of J and V on the boundary and by the mean curvature H . Let Σ: ∂Ω → R

be the function so defined:

(1.4) Σ(Q) ≡ k1

∫
R

−
ν(Q)

J ′(Q)[x]|(∇U )(k2x)|2 dx

+ k3

∫
R

−
ν(Q)

V ′(Q)[x][U (k2x)]2 dx− k4H(Q),

where U is the unique solution of
−∆U + U = U

p
in R

N ,

U > 0 in R
N ,

U(0) = maxRN U,

ν(Q) is the outer normal in Q at Ω,

R
−
ν(Q) ≡ {x ∈ R

N : x · ν(Q) ≤ 0},

and, for i = 1, . . . , 4, ki are constants which depend only on J and V and not
on Q (see Remark 5.3 for an explicit formula).

Our second result is:

Theorem 1.2. Suppose (J) and (V) with J and V constant on the boundary
∂Ω. Let Q0 ∈ ∂Ω be an isolated local strict minimum or maximum of Σ. There
exists ε0 > 0 such that if 0 < ε < ε0, then (1.1) possesses a solution uε which
concentrates in Qε with Qε → Q0, as ε→ 0.

Example 1.3. Suppose that J ≡ 1 and fix any Q0 ∈ ∂Ω. For k ∈ N, let
Vk be a bounded smooth function constantly equal to 1 on the ∂Ω and in the
whole Ω, except a little ball tangent at ∂Ω in Q0, with ∇Vk(Q0) = −kν(Q0) (see
Figure 1).

It is easy to see that, outside a little neighbourhood of Q0 in ∂Ω, we have

Σ(Q) = −C1H(Q), while Σ(Q0) = −C1H(Q0) + kC2,

where

C1 =
1
2
B +

(
1
2
− 1
p+ 1

)
A,

C2 = −1
2

∫
{ν(Q0)·x≤0}

ν(Q0) · xU2
dx.
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VkThe shape of 

Q0Ω

Vk

Figure 1

Since C2 > 0, we can choose k � 1 such that Q0 is the absolute maximum point
for Σ and hence there exists a solution concentrating at Q0.

Theorem 1.1 will be proved as a particular case of two multiplicity results
in Section 6, where we will prove also Theorem 1.2. The proof of the theorems
relies on a finite dimensional reduction, precisely on the perturbation technique
developed in [1]–[3]. In Section 2 we give some preliminary lemmas and some es-
timates which will be useful in Sections 3 and 4, where we perform the Liapunov–
Schmidt reduction, and in Section 5, where we make the asymptotic expansion
of the finite dimensional functional.

Finally we mention that problem (1.1), but with the Dirichlet boundary
conditions, is studied by the author and by S. Secchi in [13], where we show that
there are solutions which concentrate in minima of an auxiliary function, which
depends only on J and V .

Acknowledgments. The author wishes to thank Professor Antonio Am-
brosetti and Professor Andrea Malchiodi for suggesting the problem and for
useful discussions.

Notation.

• R
N
+ ≡ {(x1, . . . , xN ) ∈ R

N : xN > 0}.
• If µ ∈ R

N , then R
−
µ ≡ {x ∈ R

N : x · µ ≤ 0}, where with x · µ we denote
the scalar product in R

N between x and µ.
• If r > 0 and x0 ∈ R

N , Br(x0) ≡ {x ∈ R
N : |x − x0| < r}. We denote

with Br the ball of radius r centered in the origin.
• If u: RN → R and P ∈ R

N , we set uP ≡ u( · − P ).
• If UQ is the function defined in (2.2), when there is no misunderstanding,

we will often write U instead of UQ. Moreover, if P = Q/ε, then
UP ≡ UQ( · − P ).

• If Q ∈ ∂Ω, we denote with ν(Q) the outer normal in Q at Ω and with
H(Q) the mean curvature of ∂Ω in Q.
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• If ε > 0, we set Ωε ≡ Ω/ε ≡ {x ∈ R
N : εx ∈ Ω}.

• We denote with ‖ · ‖ and with ( · | · ), respectively the norm and the
scalar product of H1(Ωε). While we denote with ‖·‖+ and with ( · | · )+,
respectively the norm and the scalar product of H1(RN

+ ).
• If P ∈ ∂Ωε, we set ∂Pi ≡ ∂/∂ei, where {e1, . . . , eN−1} is an orthonormal

basis of TP (∂Ωε). Analogously, if Q ∈ ∂Ω, we set ∂Qi ≡ ∂/∂ẽi, where
{ẽ1, . . . , ẽN−1} is an orthonormal basis of TQ(∂Ω).

2. Preliminary lemmas and some estimates

First of all we perform the change of variable x 	→ εx and so problem (1.1)
becomes

(2.1)

{ −div(J(εx)∇u) + V (εx)u = up in Ωε,

∂u

∂ν
= 0 on ∂Ωε,

where Ωε = ε−1Ω. Of course if u is a solution of (2.1), then u( · /ε) is a solution
of (1.1). Solutions of (2.1) are critical points u ∈ H1(Ωε) of

fε(u) =
1
2

∫
Ωε

J(εx)|∇u|2 dx +
1
2

∫
Ωε

V (εx)u2 dx− 1
p+ 1

∫
Ωε

|u|p+1.

The solutions of (2.1) will be found near a UQ, the unique solution of
−J(Q)∆u+ V (Q)u = up in R

N ,

u > 0 in R
N ,

u(0) = maxRN u

for an appropriate choice of Q ∈ ∂Ω. It is easy to see that

(2.2) UQ(x) = V (Q)1/(p−1) U(x
√
V (Q)/J(Q)),

where U is the unique solution of
−∆U + U = U

p
in R

N ,

U > 0 in R
N ,

U(0) = maxRN U,

which is radially symmetric and decays exponentially at infinity with its deriva-
tives.

We remark that UQ is a solution also of the “problem to infinity”:

(2.3)

{ −J(Q)∆u+ V (Q)u = up in R
N
+ ,

∂u

∂ν
= 0 on ∂R

N
+ .

The solutions of (2.3) are critical points of the functional defined on H1(RN
+ )

(2.4) FQ(u) =
1
2
J(Q)

∫
R

N
+

|∇u|2 +
1
2
V (Q)

∫
R

N
+

u2 − 1
p+ 1

∫
R

N
+

|u|p+1.
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We recall that we will often write U instead of UQ. If P = ε−1Q ∈ ∂Ωε, we
set UP ≡ UQ( · − P ) and Zε ≡ {UP : P ∈ ∂Ωε}.

Lemma 2.1. For all Q ∈ ∂Ω and for all ε sufficiently small, if P = Q/ε ∈
∂Ωε, then

(2.5) ‖∇fε(UP )‖ = O(ε).

Proof.

(∇fε(UP )|v) =
∫

Ωε

J(εx)∇UP · ∇v +
∫

Ωε

V (εx)UP v −
∫

Ωε

Up
P v

=
∫

(Ω−Q)/ε

J(εx+Q)∇U · ∇v−P

+
∫

(Ω−Q)/ε

V (εx+Q)Uv−P −
∫

(Ω−Q)/ε

Upv−P

=
∫

(Ω−Q)/ε

J(Q)∇U · ∇v−P

+
∫

(Ω−Q)/ε

V (Q)Uv−P −
∫

(Ω−Q)/ε

Upv−P

+
∫

(Ω−Q)/ε

(J(εx+Q) − J(Q))∇U · ∇v−P

+
∫

(Ω−Q)/ε

(V (εx+Q) − V (Q))Uv−P

=
∫

(Ω−Q)/ε

[−J(Q)∆U + V (Q)U − Up]v−P + J(Q)
∫

∂Ωε

∂UP

∂ν
v

+
∫

(Ω−Q)/ε

(J(εx+Q) − J(Q))∇U · ∇v−P

+
∫

(Ω−Q)/ε

(V (εx+Q) − V (Q))Uv−P .

Hence, since U ≡ UQ is solution of (2.3), we get

(∇fε(UP )|v) = J(Q)
∫

∂Ωε

∂UP

∂ν
v(2.6)

+
∫

(Ω−Q)/ε

(J(εx+Q) − J(Q))∇U · ∇v−P

+
∫

(Ω−Q)/ε

(V (εx+Q) − V (Q))Uv−P .

Let us estimate the first of these three terms:∣∣∣∣J(Q)
∫

∂Ωε

∂UP

∂ν
v

∣∣∣∣ ≤ C‖v‖L2(∂Ωε)

( ∫
∂Ωε

∣∣∣∣∂UP

∂ν

∣∣∣∣2)1/2

.
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First of all, we observe that there exist ε0 > 0 and C > 0 such that, for all
ε ∈ (0, ε0) and for all v ∈ H1(Ωε), we have

‖v‖L2(∂Ωε) ≤ C‖v‖H1(Ωε).

Moreover, after making a translation and rotation, we can assume that Q co-
incides with the origin O and that part of ∂Ω is given by xN = ψ(x′) =
(1/2)

∑N−1
i=1 λix

2
i + O(|x′|3) for |x′| < µ, where µ is some constant depending

only on Ω. Then for |y′| < µ/ε, the corresponding part of ∂Ωε is given by
yN = Ψ(y′) = ε−1ψ(εy′) = (ε/2)

∑N−1
i=1 λiy

2
i +O(ε2|y′|3). Then it is easy to see

that

∂U

∂ν
(y′,Ψ(y′)) = ε

[ N−1∑
i=1

λiyi
∂U

∂yi
(y′, 0) − 1

2
∂2U

∂y2
N

(y′, 0)
N−1∑
i=1

λiy
2
i

]
+O(ε2).

Let us observe that by the exponential decay of U and of its derivatives, we get:∫
∂�Ωε

∣∣∣∣∂U∂ν
∣∣∣∣2 = ε2

∫
∂�Ωε

[ N−1∑
i=1

λiyi
∂U

∂yi
(y′, 0) − 1

2
∂2U

∂y2
N

(y′, 0)
N−1∑
i=1

λiy
2
i

]2

+ o(ε2)

= O(ε2),

where ∂Ω̃ε ≡ ∂Ωε ∩Bε−1/2 . Therefore

(2.7)
( ∫

∂Ωε

∣∣∣∣∂U∂ν
∣∣∣∣2)1/2

=
( ∫

∂Ωε∩B
ε−1/2

∣∣∣∣∂U∂ν
∣∣∣∣2)1/2

+ o(ε) = O(ε).

Let us calculate the second term of (2.6). We start observing that, from the
assumption D2J bounded, we infer that

|J(εx+Q) − J(Q)| ≤ ε|J ′(Q)||x| + c1ε
2|x|2,

and so, using again the exponential decay of U and of its derivatives,

(2.8)
∫

(Ω−Q)/ε

(J(εx+Q) − J(Q))∇U · ∇v−P

≤ ‖v‖
( ∫

(Ω−Q)/ε

|J(εx+Q) − J(Q)|2|∇U |2
)1/2

≤ c2‖v‖
[∫

R
N
+

ε2|J ′(Q)|2|x|2|∇U |4 +
∫

R
N
+

ε4|x|4|∇U |4
]1/2

= O(ε)‖v‖.

Analogously, we can say that:

(2.9)
∫

(Ω−Q)/ε

(V (εx+Q) − V (Q))Uv−P = O(ε)‖v‖.

Now the conclusion follows immediately by (2.6)–(2.9). �

We here present some useful estimates that will be used in the sequel.



308 A. Pomponio

Proposition 2.2. Let P = Q/ε ∈ ∂Ωε. Then we have:∫
Ωε

Up+1
P =

∫
R

N
+

(UQ)p+1(2.10)

− ε
H(Q)

2

∫
RN−1

[UQ(y′, 0)]p+1|y′|2 dy′ + o(ε),

(2.11)
∫

∂Ωε

∂UP

∂ν
UP = − ε

(N − 1)H(Q)
4

∫
RN−1

[UQ(y′, 0)]2 dy′ + o(ε),

(2.12) J(Q)
∫

Ωε

|∇UP |2 + V (Q)
∫

Ωε

U2
P

=
∫

R
N
+

(UQ)p+1 − ε
H(Q)

2

∫
RN−1

[UQ(y′, 0)]p+1|y′|2 dy′

− εJ(Q)
(N − 1)H(Q)

4

∫
RN−1

[UQ(y′, 0)]2 dy′ + o(ε),

(2.13)
∫

Ωε

J(εx)|∇UP |2 = J(Q)
∫

Ωε

|∇UP |2 + ε

∫
R

−
ν(Q)

J ′(Q)[x]|∇UQ|2 + o(ε),∫
Ωε

V (εx)U2
P =V (Q)

∫
Ωε

U2
P + ε

∫
R

−
ν(Q)

V ′(Q)[x](UQ)2 + o(ε).(2.14)

Moreover, we have ∫
Ωε

Up
P ∂PiUP = ε

1
p+ 1

C∂QiΓ(Q) + o(ε),(2.15)

∂Pi

[
J(Q)

∫
Ωε

|∇UP |2 + V (Q)
∫

Ωε

U2
P

]
= εC∂QiΓ(Q) + o(ε).(2.16)

where C =
∫

R
N
+
U

p+1
and Γ is defined in (1.3).

Proof. The first two formulas can be proved repeating the arguments of
Lemma 1.2 of [10]. Equation (2.12) follows easily by (2.10) and (2.11) observing
that

J(Q)
∫

Ωε

|∇UP |2 + V (Q)
∫

Ωε

U2
P =

∫
Ωε

Up+1
P + J(Q)

∫
∂Ωε

∂UP

∂ν
UP .

Let us prove (2.13). Arguing as in the proof of (2.8), we infer:∫
Ωε

J(εx)|∇UP |2 =
∫

(Ω−Q)ε

J(εx+Q)|∇UQ|2

=J(Q)
∫

(Ω−Q)/ε

|∇UQ|2 + ε

∫
(Ω−Q)/ε

J ′(Q)[x]|∇UQ|2 + o(ε)

=J(Q)
∫

Ωε

|∇UP |2 + ε

∫
R

−
ν(Q)

J ′(Q)[x]|∇UQ|2 + o(ε).
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We can prove equation (2.14) repeating the arguments of (2.13). Since∫
Ωε

Up
P∂PiUP =

1
p+ 1

∂Pi

∫
Ωε

Up+1
P ,

equations (2.15) and (2.16) follow easily because, as observed by [10], the error
terms O(ε) in (2.10) and (2.12) become of order o(ε) after applying ∂Pi to them.�

3. Invertibility of D2fε on (TUPZ
ε)⊥

In this section we will show that D2fε is invertible on (TUPZ
ε)⊥, where

TUPZ
ε denotes the tangent space to Zε at UP .

Let Lε,Q: (TUPZ
ε)⊥ → (TUPZ

ε)⊥ denote the operator defined by setting
(Lε,Qv|w) = D2fε(UP )[v, w].

Lemma 3.1. There exists C > 0 such that for ε small enough one has that

(3.1) |(Lε,Qv|v)| ≥ C‖v‖2, for all v ∈ (TUPZ
ε)⊥.

Proof. By (2.2), if we set α(Q) = V (Q)1/(p−1) and β(Q) =
√
V (Q)/J(Q),

we have that UQ(x) = α(Q)U (β(Q)x). Therefore, we have:

∂PiU
Q(x− P ) = ∂Pi [α(εP )U(β(εP )(x − P ))]

= ε∂Piα(εP )UQ(β(εP )(x − P ))

+ εα(εP )∂Piβ(εP )∇UQ(β(εP )(x − P )) · (x− P )

− α(εP )β(εP )(∂xiU
Q)(β(εP )(x − P )).

Hence

(3.2) ∂PiU
Q(x− P ) = −∂xiU

Q(x− P ) +O(ε).

For simplicity, we can assume that Q = εP is the origin O.
Following [10], without loss of generality, we assume that Q = εP is the

origin O, xN is the tangent plane of ∂Ω at Q and ν(Q) = (0, . . . , 0,−1). We also
assume that part of ∂Ω is given by xN = ψ(x′) = (1/2)

∑N−1
i=1 λix

2
i + O(|x′|3)

for |x′| < µ, where µ is some constant depending only on Ω. Then for |y′| <
µ/ε, the corresponding part of ∂Ωε is given by yN = Ψ(y′) = ε−1ψ(εy′) =
(ε/2)

∑N−1
i=1 λiy

2
i +O(ε2|y′|3).

We recall that TUOZε = spanH1(Ωε){∂P1U
O, . . . , ∂PN−1U

O}. We set

Vε =spanH1(Ωε){UO, ∂x1U
O, . . . , ∂xN−1U

O},
V+ =spanH1(RN

+ ){UO, ∂x1U
O, . . . , ∂xN−1U

O}.

By (3.2) it suffices to prove (3.1) for all v ∈ span{UO, φ}, where φ is orthogonal
to Vε. Precisely we shall prove that there exist C1, C2 > 0 such that, for all



310 A. Pomponio

ε > 0 small enough, one has:

(Lε,OUO|UO) ≤ −C1 < 0.(3.3)

(Lε,Oφ|φ) ≥ C2‖φ‖2.(3.4)

The proof of (3.3) follows easily from the fact that UO is a Mountain Pass critical
point of FO and so from the fact that there exists c0 > 0 such that, for all ε > 0
small enough, one finds:

D2FO(UO)[UO, UO] < −c0 < 0.

Indeed, arguing as in the proof of Lemma 2.1 (see (2.8) and (2.9)) and by (2.10)
and (2.12), we have:

(Lε,OUO|UO) =
∫

Ωε

J(εx)|∇UO |2 +
∫

Ωε

V (εx)(UO)2 − p

∫
Ωε

(UO)p+1

=J(O)
∫

Ωε

|∇UO|2 + V (O)
∫

Ωε

(UO)2 − p

∫
Ωε

(UO)p+1 +O(ε)

=D2FO(UO)[UO, UO] +O(ε) < −c0 +O(ε) < −C1.

Let us prove (3.4). As before, the fact that UO is a Mountain Pass critical
point of FO implies that

(3.5) D2FO(UO)[φ̃, φ̃] > c1‖φ̃‖2
+ for all φ̃ ⊥ V+.

Let us consider a smooth function χ1: RN → R such that

χ1(x) = 1 for |x| ≤ ε−1/8,

χ1(x) = 0 for |x| ≥ 2ε−1/8,

|∇χ1(x)| ≤ 2ε1/8 for ε−1/8 ≤ |x| ≤ 2ε−1/8.

We also set χ2(x) = 1 − χ1(x). Given φ ⊥ Vε, let us consider the functions

φi(x) = χi(x)φ(x), i = 1, 2.

If Q �= O, then we would take

φi(x) = χi(x− P )φ(x), i = 1, 2.

With calculations similar to those of [3], we have

(3.6) ‖φ‖2 = ‖φ1‖2 + ‖φ2‖2 + 2
∫

RN

χ1χ2(φ2 + |∇φ|2)︸ ︷︷ ︸
Iφ

+O(ε1/8)‖φ‖2.

We need to evaluate the three terms in the equation below:

(3.7) (Lε,Oφ|φ) = (Lε,Oφ1|φ1) + (Lε,Oφ2|φ2) + 2(Lε,Oφ1|φ2).



Singularly Perturbed Neumann Problems with Potentials 311

Let us start with (Lε,Oφ1|φ1). Let η = ηε a smooth cutoff function satisfying

η(y) = 1 for |y| ≤ ε−1/4,

η(y) = 0 for |y| ≥ 2ε−1/4,

|∇η(y)| ≤ 2ε1/4 for ε−1/4 ≤ |y| ≤ 2ε−1/4.

Now we will straighten ∂Ωε in the following way: let Φ: RN
+ ∩Bε−1/2 → Ωε be a

function so defined:
Φ(y′, yN ) = (y′, yN + Ψ(y′)).

We observe that

DΦ(y) =


1 0

. . .
...

1 0

∇y′Ψ(y′) 1

 .

∣∣∣∣∣∣∣∣∣∣∣
Let us defined φ̃1 ∈ H1(RN

+ ) as

φ̃1(y) =

{
φ1(Φ(y))η(y) if |y| ≤ ε−1/2,

0 if |y| > ε−1/2.

We get∫
R

N
+

|∇φ̃1|2 =
∫

R
N
+∩B

2ε−1/4

|∇[φ1(Φ(y))]|2 dy

=
∫

R
N
+∩B

2ε−1/4

N−1∑
i=1

∣∣∣∣∂φ1

∂xi
(Φ) + ελiyi

∂φ1

∂xN
(Φ)

∣∣∣∣2 +
∣∣∣∣ ∂φ1

∂xN
(Φ)

∣∣∣∣2 + o(ε)‖φ‖2

=
∫

R
N
+∩B

2ε−1/4

|(∇φ1)(Φ)|2 +O(ε7/8)‖φ‖2

=
∫

Ωε

|∇φ1|2 +O(ε7/8)‖φ‖2.

Analogously, we have∫
R

N
+

|φ̃1|2 =
∫

Ωε

|φ1|2, and so ‖φ̃1‖2
+ = ‖φ1‖2 +O(ε7/8)‖φ‖2.

Let us now evaluate (Lε,Oφ1|φ1):

(Lε,Oφ1|φ1) =
∫

Ωε

J(εx)|∇φ1|2 +
∫

Ωε

V (εx)φ2
1 − p

∫
Ωε

(UO)p−1φ2
1

=J(O)
∫

Ωε

|∇φ1|2 + V (O)
∫

Ωε

φ2
1 − p

∫
Ωε

(UO)p−1φ2
1

+ ε

∫
Ωε

J ′(O)[x]|∇φ1 |2 + ε

∫
Ωε

V ′(O)[x]φ2
1 + o(ε)‖φ‖2
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=J(O)
∫

Ωε

|∇φ1|2 + V (O)
∫

Ωε

φ2
1 − p

∫
Ωε

(UO)p−1φ2
1 +O(ε7/8)‖φ‖2

=J(O)
∫

R
N
+

|∇φ̃1|2 + V (O)
∫

R
N
+

φ̃1

2

− p

∫
R

N
+

[UO(Φ)]p−1φ̃1

2
+O(ε7/8)‖φ‖2

=D2FO(UO)[φ̃1, φ̃1]

− p

∫
R

N
+

([UO(Φ)]p−1 − (UO)p−1)φ̃1

2
+O(ε7/8)‖φ‖2.

We have∣∣∣∣ ∫
R

N
+

([UO(Φ)]p−1 − (UO)p−1)φ̃1

2
∣∣∣∣ ≤C

∫
R

N
+

|Ψ(y′)|φ̃1

2

=O(ε3/4)‖φ̃1‖2 = O(ε3/4)‖φ‖2.

Therefore, we have that

(3.8) (Lε,Oφ1|φ1) = D2FO(UO)[φ̃1, φ̃1] +O(ε3/4)‖φ‖2.

We can write φ̃1 = ξ + ζ, where ξ ∈ V+ and ζ ⊥ V+. More precisely

ξ = (φ̃1|UO)+UO‖UO‖−2
+ +

N−1∑
i=1

(φ̃1|∂PiU
O)+∂PiU

O‖∂PiU
O‖−2

+ .

Let us calculate (φ̃1|UO)+.

(φ̃1|UO)+ =
∫

R
N
+

∇φ̃1 · ∇UO +
∫

R
N
+

φ̃1U
O

=
∫

R
N
+∩B

2ε−1/4

∇[φ1(Φ(y))] · ∇UO +
∫

R
N
+∩B

2ε−1/4

φ1(Φ(y))UO

=
∫

R
N
+∩B

2ε−1/4

[(∇φ1)(Φ) · ∇UO + φ1(Φ)UO]

+ ε

N−1∑
i=1

∫
R

N
+∩B

2ε−1/4

λiyi
∂φ1

∂xN
(Φ)

∂UO

∂xi

=
∫

Ωε

∇φ1 · ∇UO(Φ−1) +
∫

Ωε

φ1U
O(Φ−1) + O(ε7/8)‖φ‖2

=
∫

Ωε

∇φ1 · ∇UO +
∫

Ωε

φ1U
O +O(ε3/4)‖φ‖ = O(ε3/4)‖φ‖.

In an analogous way, we can prove also that (φ̃1|∂PiU
O)+ = O(ε3/4)‖φ‖, and so

‖ξ‖+ = O(ε3/4)‖φ‖,(3.9)

‖ζ‖+ = ‖φ1‖ +O(ε3/4)‖φ‖.(3.10)
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Let us estimate D2FO(UO)[φ̃1, φ̃1]. We get:

(3.11) D2FO(UO)[φ̃1, φ̃1]

= D2FO(UO)[ζ, ζ] + 2D2FO(UO)[ζ, ξ] +D2FO(UO)[ξ, ξ].

By (3.5) and (3.10), we know that

D2FO(UO)[ζ, ζ] > c1‖ζ‖2
+ = c1‖φ1‖2 +O(ε3/4)‖φ‖2,

while, by (3.9) and straightforward calculations, we have

D2FO(UO)[ζ, ξ] = O(ε3/4)‖φ‖2,

D2FO(UO)[ξ, ξ] = O(ε3/2)‖φ‖2.

By these estimates, (3.11) and (3.8), we can say that

(3.12) (Lε,Oφ1|φ1) > c1‖φ1‖2 +O(ε3/4)‖φ‖2.

Using the definition of χi and the exponential decay of UO, we easily get

(Lε,Oφ2|φ2) ≥ c2‖φ2‖2 + o(ε)‖φ‖2,(3.13)

(Lε,Oφ1|φ2) ≥ c3Iφ +O(ε1/8)‖φ‖2,(3.14)

where Iφ is defined in (3.6). Therefore by (3.7), (3.12)–(3.14) and recalling (3.6)
we get

(Lε,Oφ|φ) ≥ c4‖φ‖2 +O(ε1/8)‖φ‖2.

This completes the proof of the lemma. �

4. The finite dimensional reduction

Lemma 4.1. For ε > 0 small enough, there exists a unique w = w(ε,Q) ∈
(TUPZ

ε)⊥ such that ∇fε(UP +w) ∈ TUPZ. Such a w(ε,Q) is of class C2, resp.
C1,p−1, with respect to Q, provided that p ≥ 2, resp. 1 < p < 2. Moreover,
the functional Aε(Q) = fε(UQ/ε + w(ε,Q)) has the same regularity of w and
satisfies:

∇Aε(Q0) = 0 ⇔ ∇fε(UQ0/ε + w(ε,Q0)) = 0.

Proof. Let P = Pε,Q denote the projection onto (TUPZ
ε)⊥. We want to

find a solution w ∈ (TUPZ
ε)⊥ of the equation P∇fε(UP +w) = 0. One has that

∇fε(UP +w) = ∇fε(UP )+D2fε(UP )[w]+R(UP , w) with ‖R(UP , w)‖ = o(‖w‖),
uniformly with respect to UP . Therefore, our equation is:

(4.1) Lε,Qw + P∇fε(UP ) + PR(UP , w) = 0.

According to Lemma 3.1, this is equivalent to

w = Nε,Q(w), where Nε,Q(w) = −Lε,Q(P∇fε(UP ) + PR(UP , w)).
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By (2.5) it follows that

(4.2) ‖Nε,Q(w)‖ = O(ε) + o(‖w‖).
Then one readily checks that Nε,Q is a contraction on some ball in (TUPZ

ε)⊥

provided that ε > 0 is small enough. Then there exists a unique w such that w =
Nε,Q(w). Let us point out that we cannot use the Implicit Function Theorem
to find w(ε,Q), because the map (ε, u) 	→ P∇fε(u) fails to be C2. However,
fixed ε > 0 small, we can apply the Implicit Function Theorem to the map
(Q,w) 	→ P∇fε(UP + w). Then, in particular, the function w(ε,Q) turns out
to be of class C1 with respect to Q. Finally, it is a standard argument, see [1]
and [2], to check that the critical points of Aε(Q) = fε(UP + w) give rise to
critical points of fε. �

Remark 4.2. From (4.2) it immediately follows that:

(4.3) ‖w‖ = O(ε).

For future references, it is convenient to estimate the derivative ∂Piw.

Lemma 4.3. If γ = min{1, p− 1}, then, for i = 1, . . . , N − 1, one has that:

(4.4) ‖∂Piw‖ = O(εγ).

Proof. We will set h(UP , w) = (UP + w)p − Up
P − pUp−1

P w. With these
notations, and recalling that Lε,Qw = −div(J(εx)∇w) + V (εx)w − pUp−1

P w, it
follows that, for all v ∈ (TUPZ

ε)⊥, since w satisfies (4.1), then:∫
Ωε

J(εx)∇UP · ∇v +
∫

Ωε

V (εx)UP v −
∫

Ωε

Up
P v

+
∫

Ωε

J(εx)∇w · ∇v +
∫

Ωε

V (εx)wv − p

∫
Ωε

Up−1
P wv −

∫
Ωε

h(UP , w)v = 0.

Hence ∂Piw verifies:

(4.5)
∫

Ωε

J(εx)∇(∂PiUP ) · ∇v +
∫

Ωε

V (εx)(∂PiUP )v − p

∫
Ωε

Up−1
P (∂PiUP )v

+
∫

Ωε

J(εx)∇(∂Piw) · ∇v +
∫

Ωε

V (εx)(∂Piw)v − p

∫
Ωε

Up−1
P (∂Piw)v

− p(p− 1)
∫

Ωε

Up−2
P (∂PiUP )wv −

∫
Ωε

[hUP (∂PiUP ) + hw(∂Piw)] v = 0.

Let us set L′ = Lε,Q − hw. Then (4.5) can be written as

(4.6) (L′(∂Piw)|v) = p(p− 1)
∫

Ωε

Up−2
P (∂PiUP )wv +

∫
Ωε

hUP (∂PiUP )v

−
∫

Ωε

J(εx)∇(∂PiUP ) · ∇v −
∫

Ωε

V (εx)(∂PiUP )v + p

∫
Ωε

Up−1
P (∂PiUP )v.
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It is easy to see that

(4.7)
∣∣∣∣p(p− 1)

∫
Ωε

Up−2
P (∂PiUP )wv

∣∣∣∣ ≤ c1‖w‖‖v‖

and, if γ = min{1, p− 1},

(4.8)
∣∣∣∣ ∫

Ωε

hUP (∂PiUP )v
∣∣∣∣ ≤ c2‖w‖γ‖v‖.

Let us study the second line of (4.6). We recall that often we will write U
instead of UQ. Reasoning as in the proof of Lemma 2.1 (see (2.8) and (2.9)), we
infer:

I ≡
∫

Ωε

J(εx)∇(∂PiUP ) · ∇v +
∫

Ωε

V (εx)(∂PiUP )v − p

∫
Ωε

Up−1
P (∂PiUP )v

=
∫

(Ω−Q)/ε

J(Q)∇(∂PiU) · ∇v−P +
∫

(Ω−Q)/ε

V (Q)(∂PiU)v−P

+ ε

∫
Ωε

J ′(Q)[x− P ]∇(∂PiUP ) · ∇v + ε

∫
Ωε

V ′(Q)[x− P ](∂PiUP )v

− p

∫
Ωε

Up−1
P (∂PiUP )v +O(ε)‖v‖.

Suppose, for simplicity, Q coincides with the origin O and that part of ∂Ω is
given by xN = ψ(x′) = (1/2)

∑N−1
i=1 λix

2
i +O(|x′|3) for |x′| < µ, where µ is some

constant depending only on Ω. Then for |y′| < µ/ε, the corresponding part of
∂Ωε is given by yN = Ψ(y′) = ε−1ψ(εy′) = (ε/2)

∑N−1
i=1 λiy

2
i + O(ε2|y′|3).

Since by (3.2) ∂PiUP = −∂xiUP +O(ε), by integration by parts, we get:

ε

∫
Ωε

J ′(Q)[x− P ]∇(∂PiUP ) · ∇v = ε

∫
Ωε

∂QiJ(Q)∇UP · ∇v +O(ε)‖v‖,

ε

∫
Ωε

V ′(Q)[x− P ](∂PiUP )v = ε

∫
Ωε

∂QiV (Q)UP v +O(ε)‖v‖.

Hence

I =
∫

Ωε

J(Q)∇(∂PiUP ) · ∇v + ε

∫
Ωε

∂QiJ(Q)∇UP · ∇v

+
∫

Ωε

V (Q)(∂PiUP )v + ε

∫
Ωε

∂QiV (Q)UP v

− p

∫
Ωε

Up−1
P (∂PiUP )v +O(ε)‖v‖.

Being U = UQ solution of (2.3), we have that

−J(Q)∆(∂PiU)−ε∂QiJ(Q)∆U+V (Q)(∂PiU)+ε∂QiV (Q)U−pUp−1(∂PiU) = 0

and so

I = J(Q)
∫

∂Ωε

∂

∂ν
(∂PiUP )v + ε∂QiJ(Q)

∫
∂Ωε

∂UP

∂ν
v +O(ε)‖v‖.
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Arguing again as in the proof of Lemma 2.1 (see (2.7)), we can prove that∣∣∣∣J(Q)
∫

∂Ωε

∂

∂ν
(∂PiUP )v + ε∂QiJ(Q)

∫
∂Ωε

∂UP

∂ν
v

∣∣∣∣ = O(ε)‖v‖.

Hence

(4.9) I = O(ε3/4)‖v‖.
Putting together (4.6)–(4.9), we find

|(L′(∂wi)|v)| = (c3‖w‖γ +O(ε)) ‖v‖.
Since hw → 0 as w → 0, the operator L′, likewise L, is invertible for ε > 0 small
and therefore one finds

‖∂Piw‖ ≤ c4‖w‖γ +O(ε).

Finally, by Remark 4.2, the Lemma follows. �

5. The finite dimensional functional

Theorem 5.1. Let Q ∈ ∂Ω and P = Q/ε ∈ ∂Ωε. Suppose (J) and (V).
Then, for ε sufficiently small, we get:

(5.1) Aε(Q) = fε(UP + w(ε,Q)) = c0Γ(Q) + εΣ(Q) + o(ε),

where Γ is the auxiliary functions introduced in (1.3),

c0 ≡
(

1
2
− 1
p+ 1

) ∫
R

N
+

U
p+1

,

and Σ: ∂Ω → R is so defined:

(5.2) Σ(Q) ≡ 1
2

∫
R

−
ν(Q)

J ′(Q)[x]|∇UQ|2 dx+
1
2

∫
R

−
ν(Q)

V ′(Q)[x](UQ)2 dx

− 1
2
B

Q
J(Q)H(Q) −

(
1
2
− 1
p+ 1

)
A

Q
H(Q),

with

A
Q ≡ 1

2

∫
RN−1

[UQ(x′, 0)]p+1|x′|2 dx′,

B
Q ≡ (N − 1)

4

∫
RN−1

[UQ(x′, 0)]2 dx.

Moreover, for all i = 1, . . . , N − 1, we get:

(5.3) ∂PiAε(Q) = εc0∂QiΓ(Q) + o(ε).

Proof. In the sequel, to be short, we will often write w instead of w(ε,Q).
It is always understood that ε is taken in such a way that all the results discussed
previously hold.
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First of all, reasoning as in the proofs of (2.13) and (2.14) and by (4.3), we
can observe that∫

Ωε

J(εx)∇UP · ∇w = J(Q)
∫

Ωε

∇UP · ∇w + o(ε),(5.4) ∫
Ωε

V (εx)UP w =V (Q)
∫

Ωε

UP w + o(ε).(5.5)

We have:

Aε(Q) = fε(UP + w(ε,Q))

=
1
2

∫
Ωε

J(εx)|∇(UP + w)|2 +
1
2

∫
Ωε

V (εx)(UP + w)2

− 1
p+ 1

∫
Ωε

(UP + w)p+1

by (4.3)

=
1
2

∫
Ωε

J(εx)|∇UP |2 +
1
2

∫
Ωε

V (εx)U2
P − 1

2

∫
Ωε

Up+1
P

+
∫

Ωε

J(εx)∇UP · ∇w +
∫

Ωε

V (εx)UPw

−
∫

Ωε

Up
P w +

(
1
2
− 1
p+ 1

)∫
Ωε

Up+1
P

− 1
p+ 1

∫
Ωε

[(UP + w)p+1 − Up+1
P − (p+ 1)Up

Pw] + o(ε)

by (2.12)–(2.14), (5.4) and (5.5) and with our notations

=
1
2

∫
R

N
+

Up+1 − ε

2
A

Q
H(Q) − ε

2
B

Q
J(Q)H(Q) +

ε

2

∫
R

−
ν(Q)

J ′(Q)[x]|∇U |2

+
ε

2

∫
R

−
ν(Q)

V ′(Q)[x]U2 − 1
2

∫
R

N
+

Up+1 +
ε

2
A

Q
H(Q)

+ J(Q)
∫

Ωε

∇UP · ∇w + V (Q)
∫

Ωε

UP w −
∫

Ωε

Up
P w

+
(

1
2
− 1
p+ 1

) ∫
R

N
+

Up+1 − ε

(
1
2
− 1
p+ 1

)
A

Q
H(Q) + o(ε).

From the fact that U is solution of (2.3), we infer

J(Q)
∫

Ωε

∇UP · ∇w + V (Q)
∫

Ωε

UPw −
∫

Ωε

Up
Pw

=
∫

Ωε

[−J(Q)∆UP + V (Q)UP − Up
P ]w + J(Q)

∫
∂Ωε

∂UP

∂ν
w

= J(Q)
∫

∂Ωε

∂UP

∂ν
w = o(ε).
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By these considerations we can say that

Aε(Q) =
(

1
2
− 1
p+ 1

) ∫
R

N
+

Up+1

+ ε

[
1
2

∫
R

−
ν(Q)

J ′(Q)[x]|∇U |2 +
1
2

∫
R

−
ν(Q)

V ′(Q)[x]U2

− 1
2
B

Q
J(Q)H(Q) −

(
1
2
− 1
p+ 1

)
A

Q
H(Q)

]
+ o(ε).

Now the conclusion of the first part of the theorem follows observing that, since
by (2.2)

UQ(x) = V (Q)1/(p−1)U(x
√
V (Q)/J(Q)),

then ∫
R

N
+

Up+1 = V (Q)(p+1)/(p−1)−N/2J(Q)N/2

∫
R

N
+

U
p+1

.

Let us prove now the estimate on the derivatives of Aε. First of all, we
observe that by (2.5) and by (4.4), we infer that

|∇fε(UP )[∂Piw]| = O(ε1+γ),

and so, by (4.3) and (4.4), we have:

∂PiAε(Q) =∇fε(UP + w)[∂PiUP + ∂Piw] = ∇fε(UP + w)[∂PiUP ] +O(ε1+γ)

=∇fε(UP )[∂PiUP ] +D2fε(UP )[w, ∂PiUP ]

+ (∇fε(UP + w) −∇fε(UP ) −D2fε(UP )[w])[∂PiUP ] +O(ε1+γ).

But
‖∇fε(UP + w) −∇fε(UP ) −D2fε(UP )[w]‖ = o(‖w‖) = o(ε)

and, moreover, by (4.1) also D2fε(UP )[w, ∂PiUP ] = O(ε1+γ), therefore

(5.6) ∂PiAε(Q) = ∇fε(UP )[∂PiUP ] +O(ε1+γ).

Let us calculate ∇fε(UP )[∂PiUP ].

∇fε(UP ) [∂PiUP ]

=
∫

Ωε

J(εx)∇UP · ∇(∂PiUP ) +
∫

Ωε

V (εx)UP (∂PiUP ) −
∫

Ωε

Up
P (∂PiUP )

=J(Q)
∫

Ωε

∇UP · ∇(∂PiUP ) + V (Q)
∫

Ωε

UP (∂PiUP )

+ ε

∫
R

−
ν(Q)

J ′(Q)[x]∇U · ∇(∂PiU) + ε

∫
R

−
ν(Q)

V ′(Q)[x]U(∂PiU)

−
∫

Ωε

Up
P (∂PiUP ) + o(ε).

Suppose, for simplicity, Q coincides with the origin O and that part of ∂Ω is
given by xN = ψ(x′) = (1/2)

∑N−1
i=1 λix

2
i +O(|x′|3) for |x′| < µ, where µ is some
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constant depending only on Ω. Then for |y′| < µ/ε, the corresponding part of
∂Ωε is given by yN = Ψ(y′) = ε−1ψ(εy′) = (ε/2)

∑N−1
i=1 λiy

2
i + O(ε2|y′|3).

Since by (3.2) ∂PiUP = −∂xiUP +O(ε), by integration by parts, we get:∫
R

−
ν(Q)

J ′(Q)[x]∇U · ∇(∂PiU) =
1
2

∫
R

−
ν(Q)

∂QiJ(Q)|∇U |2,∫
R

−
ν(Q)

V ′(Q)[x]U(∂PiU) =
1
2

∫
R

−
ν(Q)

∂QiV (Q)U2.

Therefore we infer

∇fε(UP )[∂PiUP ] =
1
2
∂Pi

[
J(Q)

∫
Ωε

|∇UP |2 + V (Q)
∫

Ωε

U2
P

]
−

∫
Ωε

Up
P (∂PiUP ) + o(ε),

and so, by (2.15) and (2.16),

∇fε(UP )[∂PiUP ] = ε

[(
1
2
− 1
p+ 1

) ∫
R

N
+

U
p+1

]
∂QiΓ(Q) = εc0∂QiΓ(Q) + o(ε).

By this equation and by (5.6), (5.3) follows immediately. �

Remark 5.2. Let us observe that by (5.1) and (5.3), for ε sufficiently small,
we have

(5.7) ‖Aε − c0Γ‖C1(∂Ω) = O(ε).

Remark 5.3. By (2.2), it is easy to see that, if J and V are constant on the
boundary ∂Ω, then Σ, defined in (1.4), coincides with Σ, defined in (5.2) with
the following definitions:

CJ ≡ J|∂Ω , CV ≡ V|∂Ω ,

k1 ≡ (CV )(p+1)/(p−1)

2CJ
, k2 ≡

√
CV /CJ ,

k3 ≡ (CV )2/(p−1)

2
, k4 ≡ −1

2
BCJ −

(
1
2
− 1
p+ 1

)
A,

where

A ≡ (CV )(p+1)/(p−1)

2

∫
RN−1

[U(x′
√
CV /CJ , 0)]p+1|x′|2 dx′,

B ≡ (N − 1)(CV )2/(p−1)

4

∫
RN−1

[U(x′
√
CV /CJ , 0)]2 dx′.
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6. Proofs of Theorems 1.1 and 1.2

In this section we will state and prove two multiplicity results for (1.1) whose
Theorem 1.1 is a particular case. Finally we will prove also Theorem 1.2.

Let us start introducing a topological invariant related to Conley theory.

Definition 6.1. Let M be a subset of R
N , M �= ∅. The cup long l(M) of

M is defined by

l(M) = 1 + sup{k ∈ N | ∃α1, . . . , αk ∈ Ȟ∗(M) \ 1, α1 ∪ . . . ∪ αk �= 0}.

If no such class exists, we set l(M) = 1. Here Ȟ∗(M) is the Alexander cohomol-
ogy of M with real coefficients and ∪ denotes the cup product.

Let us recall Theorem 6.4 in Chapter II of [4].

Theorem 6.2. Let N a Hilbert–Riemannian manifold. Let g ∈ C2(N) and
let M ⊂ N be a smooth compact nondegenerate manifold of critical points of g.
Let U be a neighbourhood of M and let h ∈ C1(N). Then, if ‖g − h‖C1(U) is
sufficiently small, the function g possesses at least l(M) critical points in U .

Let us suppose that Γ has a smooth manifold of critical points M . We say
that M is nondegenerate (for Γ) if every x ∈M is a nondegenerate critical point
of Γ|M⊥ . The Morse index of M is, by definition, the Morse index of any x ∈M ,
as critical point of Γ|M⊥ .

We now can state our first multiplicity result.

Theorem 6.3. Let (J) and (V) hold and suppose Γ has a nondegenerate
smooth manifold of critical points M ⊂ ∂Ω. There exists ε0 > 0 such that if
0 < ε < ε0, then (1.1) has at least l(M) solutions that concentrate near points
of M .

Proof. Fix a δ-neighbourhood Mδ of M such that the only critical points
of Γ in Mδ are those in M . We will take U = Mδ.

For ε sufficiently small, by (5.7) and Theorem 6.2, Aε possesses at least l(M)
critical points, which are solutions of (2.1) by Lemma 4.1. Let Qε ∈M be one of
these critical points, then uQε

ε = UQε/ε+w(ε,Qε) is a solution of (2.1). Therefore

uQε
ε (x/ε) � UQε/ε(x/ε) = UQε

(
x−Qε

ε

)
is a solution of (1.1). �

Moreover, when we deal with local minima (resp. maxima) of Γ, the preced-
ing results can be improved because the number of positive solutions of (1.1) can
be estimated by means of the category and M does not need to be a manifold.
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Theorem 6.4. Let (J) and (V) hold and suppose Γ has a compact set X ⊂
∂Ω where Γ achieves a strict local minimum (resp. maximum), in the sense that
there exist δ > 0 and a δ-neighbourhood Xδ ⊂ ∂Ω of X such that

b ≡ inf{Γ(Q) : Q ∈ ∂Xδ} > a ≡ Γ|X , (resp. sup{Γ(Q) : Q ∈ ∂Xδ} < Γ|X ).

Then there exists ε0 > 0 such that (1.1) has at least cat(X,Xδ) solutions that
concentrate near points of Xδ, provided ε ∈ (0, ε0). Here cat(X,Xδ) denotes the
Lusternik–Schnirelman category of X with respect to Xδ.

Proof. We will treat only the case of minima, being the other one similar.
We set Y = {Q ∈ Xδ : Aε(Q) ≤ c0(a + b)/2}. By (5.1) it follows that there
exists ε0 > 0 such that

(6.1) X ⊂ Y ⊂ Xδ,

provided ε ∈ (0, ε0). Moreover, if Q ∈ ∂Xδ then Γ(Q) ≥ b and hence

Aε(Q) ≥ c0Γ(Q) +O(ε) ≥ c0b+O(ε).

On the other side, if Q ∈ Y then Aε(Q) ≤ c0(a + b)/2. Hence, for ε small, Y
cannot meet ∂Xδ and this readily implies that Y is compact. Then Aε possesses
at least cat(Y,Xδ) critical points in Xδ. Using (6.1) and the properties of the
category one gets

cat(Y, Y ) ≥ cat(X,Xδ),

and the result follows. �
Remark 6.5. Let us observe that the (a) of Theorem 1.1 is a particular case

of Theorem 6.3 while the (b) of Theorem 1.1 is a particular case of Theorem 6.4.

Let us now prove Theorem 1.2.

Proof of Theorem 1.2. Let Q be a minimum point of Σ (the other case
is similar) and let Λ ⊂ ∂Ω be a compact neighbourhood of Q such that

min
Λ

Σ < min
∂Λ

Σ.

By (5.1) and Remark 5.3, it is easy to see that for ε sufficiently small, there
results:

min
Λ

Aε < min
∂Λ

Aε.

Hence, Aε possesses a critical point Qε in Λ. By Lemma 4.1 we have that
uε,Qε = UQε/ε + w(ε,Qε) is a critical point of fε and so a solution of problem
(2.1). Therefore

uε,Qε(x/ε) � UQε/ε(x/ε) = UQε

(
x−Qε

ε

)
is a solution of (1.1). �
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